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ABSTRACT. For the stochastic Navier-Stokes equations with a multiplicative white noise on T2, we prove
that there exists a unique strong solution locally in time when the initial datum belongs to LP(Q2; LP)
for p > 3.

1. Introduction
We consider the stochastic Navier-Stokes equation (SNSE)

du(t,z) = Au(t,z) dt — P((u(t, z) - V)u(t,z)) dt + o (u(t,z)) dW(t), (1.1)

V-u=0 (1.2)

u(0, ) = ugp(x), (t,x) € (0,00) x T3 (1.3)
on the 3D torus T3 = [0,1]?, where we assume that the initial datum wug satisfies V - ug = 0 and
fm ug = 0. The variable u denotes the velocity and P stands for the Leray projector onto the mean
zero divergence-free fields. The stochastic term o(u)dW(t) represents a possibly infinite-dimensional
multiplicative white noise and is interpreted in the It0 sense. Physically, it accounts for random velocity-
dependent perturbations during the flow evolution.

In this paper, we obtain a pathwise unique strong solution of (1.1)—(1.3) in LP(T?) for the full range
of exponents p > 3. This problem was previously addressed in the paper [KXZ|, where we used the
fixed point technique utilizing a multiplicative cut-off of the nonlinear term, which in turn led to the
restriction p > 5 for the initial data. In this paper, we change the approach to using a spectral Galerkin
type approximation. These approximations are generally well-suited for the Hilbert space setting but
are not considered well-adapted for LP type approximations. However, using a square cut-off in Fourier
space, we show that the solutions of the approximation converge in suitable spaces to the sought-after
local LP? solution of the stochastic Navier-Stokes system for p > 3.

When considering the approximating system and assuming an additive noise, one can write the
equation as the difference of the stochastic Stokes equation and an auxiliary deterministic equation;
cf. [F, MS] for applications of this approach to additive white noise and additive Lévy noise. When
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having a general multiplicative noise, we lose such an advantage. Here, we reduce the finite-dimensional
approximations of (1.1) to equations with an additive noise by a fixed point argument, and then we utilize
stopping times to linearize (u - V)u to derive energy estimates. However, introducing stopping times is
known for bringing the potential issue of them being degenerate, which prevents one from claiming a limit
on a nontrivial time interval for the sequence of approximating solutions. We circumvent this obstacle
by employing the estimates in probability subspaces that monotonically expand to the whole probability
space. In each of these subspaces, the sequence of stopping times has a positive limit almost surely, and
thus we can extract a pathwise limit of approximating solutions in that space. Then, we extend the result
to the whole probability space by using indicator functions and showing convergence in an appropriate
sense. There are also some challenges when studying SNSE in non-Hilbert trajectory spaces. First, the
usual Galerkin scheme does not converge in LP when p # 2. In this paper, we use the rectangular partial
sums instead (cf. (2.2) below) and prove their continuity in L”(I?) by applying a vector analog of the
Calderon-Zygmund theorem. Yet as a consequence, there is no available result ensuring the existence
of approximating solutions for this finite scheme. Hence, we first construct approximating solutions in
H(T3). Then we derive estimates in LP(T?), where the one of the important ingredients is Lemma 3.2,
which is proven in [KXZ] using [R].

A study of the SNSE dates back to the work of Bensoussan and Temam (cf. [BeT]) in the 1970’s.
Early investigations were usually conducted in Hilbert settings. Existing results on this include [MeS],
where the SNSE with additive white noise was considered in 2D domains, and a global strong solution was
shown to exist, and [F], where the consideration was in 3D. in [F'S], the authors proved the same results
for the SNSE in 2D unbounded domains with multiplicative noise. in [GZ], the authors constructed a
maximal strong solution for the equation in 3D bounded domains assuming H' regularity of the initial
data. If the SNSE is equipped with a non-degenerate noise and sufficiently small initial data in H*®, then
by [Ki], a global strong solution exists with large probability. Development of the theory naturally leads
to considerations in Banach spaces. An effort in this direction includes [AgV], where the authors studied
the equation with multiplicative noise in critical Besov spaces, and [KXZ]|, where the SNSE with L?
initial data was considered. Under the condition that p > 5, a unique strong solution exists globally with
large probability. There are also investigations on various notions of solutions to the SNSE or to relevant
equations with different types of noise; cf. [BF, FG, MR/ for results on martingale solutions of the SNSE,
[BCF, CC, DZ, MS] for the mild formulation subject to white noise, and [BT, ZBL1, ZBL2, FRS]
for mild formulation with Lévy noise. in [GV], the stochastic Euler equation with linear multiplicative
noise was addressed in W#?_ and in [BR], the vorticity equation of SNSE with a convolution-type noise
was considered.

The paper is organized as follows. Section 2 is an introduction to the approximating finite dimensional
scheme, while it also contains preliminaries on stochastic integration. In Section 3, we state our assump-
tions and the main result. In Section 4, we establish the local existence and the pathwise uniqueness of
strong solutions. Furthermore, we prove that

| sup Juls. ] < CE[lulg + 1]

0<s<T

and
E / Z/ IV (Juj(s,2)[P/?)? dz ds | < CE[||uoll? + 1],
0 —~ JT3
J
up to the maximal time of existence 7.

2. Notation and preliminaries

2.1. Basic Notation. The Fourier coefficients of an integrable function f are denoted by

Ff(m)= f(m) = . f(z)e 2mm gy, m e 7,
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where d is the space dimension, while the Fourier inversion formula reads
(F o) (@) = Y glm)e*™me,
mezZ?

We adopt the same notation for the Fourier transform of a distribution f € D’ = (C*(T%))’. As usual,
W#P(T9), where p > 1, denotes the class of functions f € D'(T?) for which | f||s,, = [|J*f|l, < oo , where

Jf() =Y (L+4x%m[*)*2f(m)e*™™*  zeT?  seR,

mez?
with | - ||, denoting the L? norm. When p = 2, we also write H*(T¢) = W*2(T¢). The Leray projector
d
(Pu)j(x) =Y (6k + RjRe)ur(z),  j=1,2,....d
k=1

is defined for distributions that have mean zero over T¢. Here,
Rj=——(-A)"2, j=1,2....d (2.1)

are Riesz transforms. For convenience, we write

WP = {Pf: f e WP}

sol —
When constructing solutions below, we use a finite approximation scheme to (1.1). For this purpose, we
introduce the rectangular partial sums

Tof(x)= Y - > fk)E™ = | flo—u)Dy(u)du, (2.2)
[k1|<mny |ka|<na s
for f € L*(T?), where n = (n1,...,nq) is a multi-index and D,,(u) = Dlkrl<n T 2ok <na e?mik i the

rectangular Dirichlet kernel. Denote
7 =min{ny,...,nq}, n=(ni,...,ng) € NI
It was shown in [G] that 7, is a continuous operator on all LI(T%) spaces (1 < g < 00), i.e.,
ITaflle < Collfllg,  f € LUT), (2.3)

and
| 7nf— fllg =0 as . — 00 (2.4)

The following lemma is one of our main devices for estimating the nonlinear terms.

LEMMA 2.1. For all ¢ € (1,00) and all f € WH4(T?) with x-zero mean, there exists a(q) € (0,1]
such that

Cq.a
(T = T fllg < =291, (25)
for all multiindices n = (n1,...,nq) and m = (mq,- -+ ,mq).

PROOF OF LEMMA 2.1. Let u € (C*(T%))4, and denote
T =T, A" div,
where Tpm = Tn — T and

d
. E -1 E N ik -z
Aildlv u = (471‘2“{;2 27T74klul(k/)) 62 k .
=1

k=(k1,....,ka)#0
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(Below, we shall choose u = Vf.) Note that A~ldiv Vf = f since f has zero mean. By the orthogonality
of {€2™*'*} and Parseval’s identity, we have

d
n,m ]‘ . ~
|72 < Z WZQW@I{[UZ(@
=1

[k|>mAR

2
Cd 2
S ’ﬁ’LQ A ’FL2 ||u||27

from where

Cyq
Tm)yl, < . 2.6
[ ullz < mAﬁl\ullz (2.6)

Substituting u by V f yields

Cs
<
e Fla < =S 91,

where C5 is a constant depending only on the dimension d. Now, let ¢ € (1,2) be arbitrary and choose
r=(14¢q)/2 € (1,q). Then we have

|7 a|, < Cp | AT iV u), < CL|[VAT iV ul|, < Cpllull,, (2.7)

where the constant C,. depends on r and thus on ¢; in the second inequality in (2.7), we used the
Poincaré inequality || f||, < C,||V |, which holds for » > 1 and f € W"" such that [, f = 0. Using
the Marcinkiewicz interpolation theorem on the inequalities (2.6) and (2.7) yields
Cacl [}

el (23)

1Tl < ©

where o € (0,1) is such that 1/¢ = «/2+ (1 — «)/r, ie., a« = (1/r —1/q)/(1/r — 1/2). Substituting
u = Vfin (2.8) yields (2.5) for ¢ € (1,2). The proof for ¢ € (2,00) is the same except that we take
r=2q. u

Above and in the rest of this paper, C denotes a generic positive constant, with additional dependence
indicated when necessary.

2.2. Preliminaries on stochastic analysis. We denote by H a real separable Hilbert space with
a complete orthonormal basis {ej}r>1, and by (2, F, (F¢)i>0,P) a complete probability space with an
augmented filtration (F;);>0. With {W}, : k € N} a family of independent F;-adapted Brownian motions,
W(t,w) =3 51 Wi(t,w)eg is an Fr-adapted and H-valued cylindrical Wiener process.
For a real separable Hilbert space ), we define [?(#,)) to be the set of Hilbert-Schmidt operators
from H to Y with the norm defined by
dim H
G By = D |Gexly <00,  GelP(H,D).
k=1
In this paper, we either regard (1.1) as a vector-valued equation or consider it componentwise. Corre-
spondingly, Y = R or R%. Let G = (G1,---,Gq) and Gey, := (Giey, -+ ,Gge). Then G € I12(H,R?) if
and only if G; € I?(H,R) for all i € {17 e ,d}. The Burkholder-Davis-Gundy (BDG) inequality
sup

t p/2
([ 161 ) ]
s€[0,t] 0

holds for p € [1,00) and all G € [ (’H Y) such that the right hand side above is finite. For s > 0, introduce

<CE

WP .= {f T¢ = 12(H,)) : fer € WP(T?) for each k, and / 12 1172 30,y e < oo},

which are Banach spaces with respect to the norm

1/p
e = ([ 17y e)
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Above, we denoted (J°f)e, = J*(fer). Also, WP is abbreviated as LP. If f € L2, then fot fdW, is an
L?(T%)-valued Wiener process (cf. [DZ2]).
Letting (Pf)er = P(fer), where P is the Leray projector, we have Pf € WP if f € WP, Write

WP = (Pf: f e WP},

sol T

Letting (7. f)er = Tn(fer), where T, is the rectangular partial sum in (2.2), we have the vector valued
analog of (2.3)—(2.4), stated next.

LEMMA 2.2. For every q € (1,00), we have
[ Tafllue < Cyllfllua,  n € NG (2.9)

and
| Tof = fllLe = 0 asn — oo, (2.10)

for f € LY with x-zero mean.

PrROOF OF LEMMA 2.2. It is sufficient to prove (2.9) when d = 1, in which case n € N. Consider the

mapping
H Z f(m)e%mmw = Z f(m)eQTrzm'z’
mEeEZ m>1
for I?-valued functions f such that f (0) = 0. Using the vector valued Calderén-Zygmund theorem, we
have
[H fllLa < Cqll fllLe,

where Cy is a constant, depending on ¢. Note that the same inequality is satisfied by the operators
Hp Yo ey f(m)e™ e = 57 f(m)e*™ ™%, The proof of (2.9) is then concluded by observing that
Tnf =T~ H_(41))Hy, for all n € N.

First note that I2-valued trigonometric polynomials 7 are dense in LY. This holds since the Fejér

kernel constitutes a partition of unity, implying the convergence of the [2-valued Fourier series in the
mean. Assume that f € L7, and let € > 0. Then there exists P € T such that || f — P|jL« < €, whence

If = TafllLe < |If = Pllea + 1P = TaPllLa + [TnP = TafllLe < €+ [P = TuPllLa + Cye.

Since, by P € T, the middle term vanishes for n sufficiently large, and we obtain limsup,, ., ||f —
TnfllLe < Cye. The proof of (2.10) is then concluded by sending ¢ — 0.

Lemma 2.2 confirms that fot T f AWy is an T, L?(T%)-valued Wiener process if f € 2.

Let A be an operator, for instance a differential operator, and let o and g be (12(H,R))%valued op-
erators. Given a cylindrical Wiener process W relative to a prescribed stochastic basis (2, F, (F¢)i>0, P),
we define the local strong solution for the d-dimensional stochastic evolution partial differential equation

u(t, x) = up(x) —i—/o (Au(r,z) + f(r,x))dr —i—/o (U(U(T, x)) + g(r, x)) dW (r) (2.11)
in the following way.

DEFINITION 2.1 (Local strong solution). A pair (u,7) is called a local strong solution of (2.11)
on (Q,F,(Fi)i>0,P) if 7 is a stopping time with P(r > 0) = 1 and if u € LP(Q;C([0,7 A T],LP) is
progressively measurable and it satisfies

¢

(u(t), ) = (o, &) + / (Au(r) + F(r), &) dr + / (o(u(r) + g(r), &) AW(r) P-as.

0
for all ¢ € C=(T9) and all t € [0,7 AT).

If A is a differential operator, we interpret (Au(r), ¢) using integration by parts.
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DEFINITION 2.2 (Pathwise uniqueness). The equation (2.11) is said to have a pathwise unique strong
solution if for any pair of local strong solutions (u,7) and (v,n) subject to (2, F, (Fi)i>0, P) and the same
Wiener process W, we have P(u(t) = v(¢), Vt € [0,7 An]) = 1.

3. Assumptions and main results

In this section, we summarize the assumptions and state the main result. We assume throughout
that d = 3 and p > 3. We point out however that the results extend easily to any space dimension d > 2
with the condition p > d. On the noise coefficient ¢ in (1.1), we assume

(1) (sub-linear growth)
Z loi(wle- < C(llull +1),  re{2,p3p}, (3.1)

(2) (Lipschitz continulty)

Z loi(u) = oi(0)l[ur < Cllu=vllr, 7 €{2,p}, (3:2)
(3) (preserved divergence and mean) o(W2') Cc W2, and [is0(u) =0 if [, u=0, and
(4) (sublinearity of the gradient)
Z IV(gi(u))llL> < Cllullz. (3-3)

Under these conditions, we have the followmg statement.

THEOREM 3.1. (Local strong solution up to a stopping time) Let p > 3 and ug € LP(2; LP(T?)).
Then there exists a pathwise unique local strong solution (u,T) to (1.1)~(1.3) such that

E| sup [lus, )2 + / Z / IV (Jus (s, 2)P/?)? de ds| < CE[JJuol2 + 1],

0<s<Tt

where C' > 0 is a constant depending on p.

For the sake of completeness, we state two auxiliary results that were proven in [KXZ]| (cf. Theo-
rem 4.1 and Lemma 4.4 in [KXZ]).

LEMMA 3.2. Let 2 < p < 0o and 0 < T < oo. Suppose that ug € LP(Q, LP(T?)), f € LP(Q x
[0, T], W=14(T%)), and g € LP(Q x [0, T],LP(T%)) are RP-valued with z-mean zero (w,t) a.s., and

providedd > 2, or1 < q < pifd = 1. Then there exists a unique maximal solutionu € LP(Q2; C([0,T], LP))
to

du(t,z) = Au(t,z) dt + f(t,z) dt + g(t,z) dW(t),
w(0,2) = up(x) a.s., e T

Moreover,

D T
E| sup [lut, )2+ / / IV (Juy (1, 2)|P/2)|? dad
0<t<T =Jo J
T D T
<CE (ol + [ 15N dt+ 30 [ [ st o)l dodt|
j=1
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where C' > 0 depends on T and p.
The following lemma is essential when passing to the limit in ||[u(™)|P/2| g1.
LEMMA 3.3. Letp > 2. If
U, — w in LP(Q; L*=([0,T], LP(T)))) as n — oo
and
V(| (w, t,2)|P/?) are uniformly bounded in L*(Q x [0,T], L*(T%)),
then
liminf E

n—oo

T T
/ IV (Jun (@, £, 2)[P/2) 2 dadt| > E / / IV (Julw,t, 2)P/2)2 dzdt| . (3.5)
0 Td 0 Td
Note that in (3.4) and (3.5), T can be replaced by a stopping time by using indicator functions.

4. Existence of a local strong solution

Let d = 3, and fix p > 3; in particular, we allow all constants to depend on p without mention.
Denote

S.f(z) = > fk)ermike  fe LNT?), neN,

|k1|<n,|ka|<n,|ks|<n
i.e.,
Sn = Tnnn) (4.1)
(cf. (2.2) and (4.1)). As pointed out in Section 2, S, is a continuous linear operator in all L? spaces

(1 < ¢ < o). To construct a solution of (1.1)-(1.3), we consider for n € N a finite dimensional
approximation

du'™ = Au™ dt — S, P((u™ - V)u™) dt + Spo(u™) dW(t), (4.2)
V™ =0, (4.3)
u™(0,2) = Spup(z), = e T (4.4)

Note that the cancellation property of the convective term remains true in S,L?; namely, for u,v €
(S, L*(T?))3 c (HY(T?))? with V-u =V -v = 0, we have

/ u-8,P((v-V)u)de = / (u;Sn (vi0;u;) 4+ u; Sy Ry Ri0; (viug)) da
Td Td
= / (ujvi(“)iuj + ujRij(“)i(viuk)) dx (4.5)
Td

T

where R; are the Riesz transforms defined in (2.1); in the third inequality, we used R;0; = O;R;. If
Jps = [rs v =0, then

< Cllullsl|vls||Vwlls < ClIVulla|olly*Volly | Vuwll2. (4.6)

/ u-8,P((v-V)w) dx
Td

Also, note that in S,,L?(T?) we have the norm equivalence

1
clfllz < IV Fllz < Call fllz,
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under the mean-zero condition, where the second constant depends on the dimension n of the projection
Sp, and the first constant is universal. Hence, we conclude from (4.6) that

[ v SuP (- D) do] < Cululalolz ol (47)
’]I‘d

for u,v,w € S, L*(T?) with vanishing means.

The next result extends Theorem 3.1 and Lemma 3.1 in [F] from an additive to the multiplica-
tive noise. The statement is proven by modifying the arguments in [F] and [KXZ]. For the sake of
completeness and conciseness, we include a sketch of the proof.

LEMMA 4.1. Let T > 0, and suppose ug € L?(Q; L?) satisfies V - ug = 0 and Jps uo = 0. Then for
all n € N, the initial value problem (4.2)~(4.4) has a unique strong solution u™ € L2(Q; C([0,T], L?)) N
L2(Q; L*([0,T], H')). Moreover,

E

T
SupTllu(")(S)llgJr/0 Vu(")(8)||3d81 <G, (4.8)

0<s<

for some positive constant C independent of n.

PROOF OF LEMMA 4.1. We fix n € N and write S instead of S,, for simplicity. Let u(?) be the unique
strong solution of the standard heat equation subject to the initial data Sug. Consider the iteration

du® = Au® dt — (op)2SP ((u® - V)u®) dt + (¢pL )2 So(u1) dW(t), (4.9)
V-u® =0, (4.10)
u™(0,z) = Sug(z),  xeT?, (4.11)

where

o' = oM (Ju™(t,-)l2)
with oM € C®(R), ¢M(x) = 1 if |[z| < M/2, 0 < ¢M(z) < 1if M/2 < |z| < M, and ¢M(z) = 0 if
|2] > M. Since the noise is additive and the bilinear term is globally Lipschitz in u®) | due to the factor

(¢M)2, we can prove inductively as in [KXZ] that (4.9)—(4.11) has a pathwise unique strong solution in
L?(Q;C([0,T],L?)) for all k € N. Furthermore, by (4.5), we conclude that

T
E| sup [u® )+ / / VulP (s, 2) 2 deds| < Orar (Ellwold] +1).  (412)
0<s<T T Jo Jrs

Denoting v*) = u®*) — 4(*=1) and applying the It6 formula to the equation for the difference, we obtain
B | swp o] < Cut | sup 1o DB
0<s<t 0<s<

where we also used (4.6)—(4.7). This implies that there exists a fixed point ups of (4.9)—(4.11) in
L23(Q;C([0,t], L?)) for a sufficiently small ¢ € (0,7]. The square of the truncation function ¢ was
needed for claiming that such an interval is uniform with respect to k& and for previously establishing the
existence of u(¥). Passing to the limit in (4.12) by using Lemma 3.3, we conclude that (4.12) holds for uys
with T being replaced by t. Utilizing this estimate, we can show that ujs is a solution of the truncated
finite-dimensional model

du = Audt — (3 )2SP((u- V)u) dt + (3 )2Sa(u) dW(t), (4.13)
V-u=0, (4.14)
u(0,x) = Sug(z), €T (4.15)
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The pathwise uniqueness of the solution follows from a contraction argument similarly to above. The
extension of the existence and uniqueness results from a small time interval to [0, 7] is obtained by using
the pathwise uniqueness, and (4.12) still holds.

To address the non-truncated model (4.2)—(4.4), we introduce the stopping time

M
nM = inf {t >0 |u™(s)2 > } .
Clearly, (4.2)-(4.4) agrees with (4.13)—(4.15) on [0,7 A T] and thus we have a pathwise unique strong

solution at least up to n AT. Applying the It6 formula to (4.2) on [0, 7 AT] and using (4.5), we obtain
the energy estimate

' AT
E sup ||u(”)(s)||§+§ / / |Vu§n)(3,x)\2dxds
N 0 T3
J

0<s<nMAT

4.16

1! AT ( :
<CE (lulp+3 [ 180 o)l ds|
J
which by (3.1) and Lemma 2.2 leads to
na' AT
Bl s W3 <C (E uol3+ [ ()13 + 1>dsD
0<s<nMAT 0
(4.17)

T
gcTE[||u0H§+1]+c/ E[ sup ||u(”)(s)|§] dt.
0

0<s<nMAt

Then Gronwall’s lemma yields

E[ sup ||u<”><sAm¥>|§} _E
0<s<T

sup ||u(”)(3)§1 < CrE[||uoll3 + 1.
0<s<nMAT

Note that

B [Lyrerlu®oRI] <B [ sup s nn]
0<s<T

Then, P(nM < T) < CrE[||uo||3 + 1]/M?. Also, observe that n is an increasing function of M and that
P(un = ug, t € [0,7,']) =1

if M < K. Then defining n°° = limps_,o 7, we may uniquely define a process u° such that u> = uy,
on [0,7M], and u™ solves (4.2)-(4.4) on [0,7>]. Since P(n™ < T) = limp; oo P(M < T) =0 and T is
arbitrary, the solution is global. Note that (4.16) also implies

AT
E sup ||U(n)(5)||§+g / / |Vu§»n)(s,a:)|2dxds
= Jo T3

0<s<nMAT
T nM At
< CrE[fluoll3 +1] + 0/ E sup  [[ul™(s)|3 + Z/ / |Vu§”)(8, x)|?drds| dt.
0 0<s<nMAt j 0 T3
Applying Gronwall’s lemma and sending M — oo in (4.17), we obtain (4.8), concluding the proof. O

We proceed by deriving an LP estimate of u(™. For every M > 0, we introduce stopping times
relative to solutions {u(™} as

t 1/p
™ = inf{t >0: sup [[ul™(s)|, + (/ [u™ ()|, ds) > M}. (4.18)
0

0<s<t
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Adapting the proof in [KZ, Lemma 3| (by contradiction and passing to the limit) and assuming fT3 f=0,
we obtain the Gagliardo-Nirenberg inequality on T2,

P21 < Colll S 115 IV (LF1P72)15

where o = 3(1/2 — 1/r) and Cp > 0 is independent of f. In particular, setting r = 6 yields

IF15, < Col V(F1P/2)]13, (4.19)

provided f has x-mean zero. We need this inequality to prove the next lemma which asserts the bound-
edness of {u(™} in LP(Q; C(0, S A 7M], LP)) for some deterministic value S that is uniform with respect
to n.

LEMMA 4.2. Let p >3 and K > 1. Suppose that V -ug =0, [, uo =0, and ||ugll, < K a.s. Then
there exist M > K and S > 0 such that

E sup  [u™ (s, B+ / Z/ IV (|u n) (s,2)[P/?) > dads| < CE[||uoll? + 1]. (4.20)

0<s<TMAS

Moreover,

lim sup P sup  flu™(s |p—|—/ Z/ [V(|u ( ) (s,2)|P/?)|? dxds > MP| =0, (4.21)

S=0 n 0<s<TMAS

for any fixed K > 0 and the corresponding M.

PROOF OF LEMMA 4.2. Let M = 2sup,, [|Spuo||, + 1 (cf. (2.3)). The continuity of u(™ implies that
M > 0. Since both S,, and P preserve the 2-zero mean, we may apply Lemma 3.2 to (4.2) on

duf — AufV dt = —(S,P(u™ - V)u™) dt + Spoj (™) AW, j=1,2,3, (4.22)
on [0,S A TM] for a fixed j € {1,2,3}, writing the first term on the right side of (4.22) as
= Za Su(P(u{u™))  dt.
For g with 1/q € [1/p, (p +1)/3p), we choose exponents r and ! such that the three conditions
4+ I=1 r<p, p<l<3p (4.23)

hold. Then,

S/\T,,ILV[
E [ /0 ||Sn73(u§")u("))§dt] < CMPE

S/\T,,]LV[
/ ™ P dt
0

(4.24)

S/\T

< MPE V (Collu™ g + <lu™5,) d ]
0

For the stochastic term in (4.22) (cf. (3.4)), we also have

S/\T
/ / |Sno (u l2(H’Rd)d:cdt

M

SNAT,
< CE/ (a2 + 1) dt (4.25)
0
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due to (2.9) and the assumption (3.1). From (3.4), (4.24), and (4.25), we get

SATM
2| o W0 5 L v e a e s

0<t<SATM

(4.26)

S/\‘r
< CE |[uoll} +/0 (MPC|[u™ () ][5 + MPe|[ul™ (t)[|5, + 1) dt| .

Note that the right hand side of (4.26) is finite by the definition of the stopping time, which implies finite-
ness of the left-hand side. Choosing ¢ and then S sufficiently small so that CMPe < 1 and CSMPC, < 1,
we arrive at (4.20). The choice of S depends on M and the constants of embedding inequalities, but is
independent of n.

To obtain (4.21), we fix j € {1,2,3} and utilize the trajectory It6 expansion on [0, 7,

t / V()2 dudr
'H‘d

+p/ / |u n)|p 2 (n ( ((u(")-V)u("))j) dxdr

r / / P S0 (u™) dedW,
0 T

—1) [t
Lpe—1) / / [ P=2| Sy (u™) |3 derdr
2 0 Td J

As in the proof of [KXZ, Theorem 4.1], we apply the Poincaré-type inequality, obtaining

[ e, (P (- ), daar

ga/ IV (Ju ")Ip”)IQda:dHCMpa/ [u™ |2 dr
0

M9,

71

[u§™ (@12 = [1(Swuo);1IE —

for ¢ in (4.23) and for an arbitrarily small e. Under the assumption (3.1),

¢ t
/0 /’er |u§n)‘p—2||8noj(u(n))“l22 ddr < C/O (Hu(n)Hg + 1) dr

Choosing a sufficiently small € and summing in j, we arrive at
t
lu™ (@)17 +Z/O /T IV (ju{™[272)] dedr — | Spuoll?

J

t t

< Cp,M/ (™5 +1) dr+CpZ/ T P S0 (u) ded W, Pas.
0 X 0
J

Recall that M was set to satisfy M > 2||S,uol|, and that p > 3. Hence, the inequality above implies

7—54/\5
P| sup IIu(”>(t,~)H£+Z/O /T IV (a2, ) [P/?)? dwdt > MP
J

0<t<TMAS
TMAg
n MP
<P MNP 4 1) dr > 4.27
<\ [T ar sc,,M] (a.27)
! (1) 2,0 ) o MP
+P sup / u; [P S04 ™) dzdW, —
gogtgrgyms Td | | (™) 30
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Clearly,

E < (MP +1)8.

[ TMAS 2 1/2
< CE (/ (/ |u§")|pISnaj(u(”))led:E) dr)
0 Td

TTJLVI/\S
/ (lu™ |2 + 1) dr

0

Also, by the BDG inequality and Minkowski’s integral inequality,

E sup

0<t<TMAS

t
/ |u§n) |p_2u§-n)8naj (u™) dzdW,
0 Jrd

T,ILVI/\S 1/p
<CE| sup [u™ ()5 (/ /d|8n0j(u(”))||f2dmdr>
0 T

0<t<TMAS

< OMP=H(MP +1)PSHP,
Using (4.27) and Chebyshev’s inequality, we get
7_71:4/\5
Pl s W@l [T [ 190 @ dude > 27| < Cur(S + 57,
0<t<TMAS 5 Jo T3
Then, for the fixed K and the associated M,

T%/\S
lim sup P sup  lul™(t, B+ E / / |V(\u§-") (t,z)[P/?) > dzdt > MP| =0,
= Jo T3

5=0 n 0<t<TMAS
concluding the proof. O
We next show that {u(™} is Cauchy in LP L$°LE N LP LY L3P within a prescribed stopping time.

LEMMA 4.3. Let p >3 and K > 1. Assume that V -ug = 0, [rsug =0, and |Jug|l, < K a.s. Then
there exist M > K and a positive constant S depending on M such that

TfLVI/\Tf,VLI/\S
lim sup E sup ™ (t) — u(m)(t)HZ +/ Z/ |V(|u§n) - u§-m)|p/2)|2 dx dt| = 0.
0 ~ J13
j

m=On>mo | 0<t<TMATMAS

(4.28)

PrROOF OF LEMMA 4.3. We fix M > 0 as in the proof of Lemma 4.2. Then for every S > 0,
Tom = T ANTM A S is a positive stopping time almost surely. Denote wmm) = (M — (M) and
Snm = Sp — S Clearly on [0, Tp,y], the difference w(™™) satisfies

dw™™ — Aw™™ dt = S, P((u™ - V)u™) — S, P((u™ - V)u™) dt
+ (Sna(u(")) - Sma(u(m))) dW,,
v -wlmm =,
w™™(0) = Sppuo(z)  as.
We rewrite the first equation as

dw{™™ — Aw™™ dt =30, fijdt + g; dW,,  j=1,2,3,
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where
fij = Sm(Pugm)u(m))j - Sn(Pugn)u(")) j
= S (Pul™ ™) — 8, (P ™)) = Sy (Pul™u™);
€3] (2 3
R
and

95 = Sn(o;(™) = ;™)) + o (u™) = gi + g,

Now, choosing the exponents as in (4.23)—(4.24), we obtain

T 1 2 T n,m m n
B [P ] <z [ [ R - ) d
0 - 0 (4.29)
<cuk | [ g, + ) ar]
0

Recall that 1/¢ € [1/p,(p+ 1)/3p). For 0 < § < 1 and 0 < § < 1 such that ¢+ < 4p/3 and
1/g=0/(1+06)+ (1 —6)/(q+6), we have

E [/ ”fl(JB)”gdt] <CE {/ HSnmu(n) () ||1+5||Snmu n)H(l O dt:|
0 0

c T (n n (1-0)
P v [/0 19 (g™ w138 s P | 8 pdt}

C Tnm n )18 n
B | [ IV O 1 .

— m@ap A nbap

where 1/(1+06) =1/2+ 1/] and « is determined by Lemma 2.1. Note that & can be sufficiently small so
that 6p < 2 and 2 <[ < p. By (4.8) and (4.20), we conclude

wm Cur Tnm N " Cu
ﬂ«:[/ T “”npdt} E[/ <||Vu<>||§+||u<>||§p>dt}s

meap A n@ap m@ap A n@ap :

Also, by Lemma 2.2 and the assumption (3.2), we have

JEU "m/ ||gl||f2dxdt} <CSE
0 Td

Applying Lemmas 2.1 and 2.2, together with Fubini’s theorem, we obtain

Tnm Tnm 2
5[ [ [ lelpaea] <ce| [ ([ i) ([ i) dt]
0 Td 0 Td

sup  [lw™™ ||4 . (4.30)
S€[0,Tnm]

C {/T""‘
< E V(o (ul™ 2[|or(ul™) Hldt}
- ; || ( ( ))H]L || ( )HL< ) (4_31)
C Tnm m m
| A L P o
< Cu,s

mAn’
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where the third inequality follows from the assumptions (3.1) and (3.3). If eCyy < 1 in (4.29) and if
S > 0 is sufficiently small, then (4.29)—(4.31) lead to

0<t<Tnm

E sup ||w(n,m)(t, )||£ +/ E /T‘S |8k(|w§n,m)|p/2)|2 dxdt
0 , :
Jik

Cwm Cwm,s

< CE [||Snmuo(z)|Ib] + mbep Anpfar T m AR’

which completes the proof. O

The following result asserts positivity of the stopping time. We fix K > 1 and choose a constant
M > K that fulfills the requirements in Lemmas 4.2 and 4.3.

LEMMA 4.4. Let p >3 and K > 1. Assume that V -ug = 0, [rsug =0, and |Jug|, < K a.s. Then

there exist M > K, a stopping time Ty with P(ty; > 0) = 1, and a subsequence {u(™)} so that

TM
lim ( sup ||u("’“)(t)fu(t)||§+/ ™) (t) — u(t)|5, dt> =0 P-as.,
0

k=00 \o<t<ry

for some adapted process u € LP(Q, C([0, a], LP)) N LP(Q, LP([0, Tas], L?P)).

PROOF OF LEMMA 4.4. Using (4.19) and (4.21), there exists M be sufficiently large relative to K
so that

‘rfLw/\e 1/p M
lim sup P sup  |Ju™ (s, )|, + (/ [|u™ (s, 5, ds> > > = 0. (4.32)
0

=0 0<s<TM e

Fix a corresponding value for the constant S in (4.20) and (4.28). From (4.28) we can infer the existence
of a subsequence {n} for which

M

Ty, /\TVIQ/IQ+1/\S X
E sup [ (D] 4 +/0 [l ) (|5, dr | < 474 (4.33)

0<r<r M AT’%+1 AS

Now we need to prove that there exists a uniform time interval where this estimate can be applied.
Inspired by [GZ], we introduce stopping times

Ve
M, = inf {t >0: sup Hu ") (2 )|, + (/ () (r, ) ||2 dr) > 5 + 2"“}
o<r

and probability events

3 =

o NeANE+1AS
= N {w: s Juene el ([ o) () [y | < 275
0

k=N 0<r<npAng4+1AS
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Note that n, < 717 (cf. (4.18)). Then, by Chebyshev’s inequality,

N ANk+1AS %
P sup ||w(7lk,nk+1)(7"7w>||p + / “w(nk7"k+1)(r) w)ng dr > 9—k-2
0<r<mpAnk+1AS o
S P sup ||w(nk7nk+1)(r7w)”£ Z 2*]‘5?*31)
0<r<npAng+1AS

N A1 AS
+P /0 i) (1, )| |2, i > 27<P=3P

< okp+3p+1,)—kp _ 9—kp+3p+1

Next, by the Borel-Cantelli lemma,

0o 00 M ANk+1AS » o
PlA U, e el + ([ e ) [fdr | > 275725 ) —o.

Nel k=N | 0S7<meAne11AS

This shows that P(Jy_, Q~) = 1. Note that n; > nx41 A S in Qn if N <k, because

)
0<r<n

Nk %
Qv Nk <M A S} C {w tosup [ (i w)|, + (/ IIw("’“”“”(T,w)llﬁpdr) < Q_H}
0

and almost surely in Qn N {nx < Nry1 A S},

Mk 1/p
sup u(”’““)(rw)llp+</0 ||u("k+1)(r,-)||§pd?">

0<r<n

> sup [[ul™)(r, )], = sup [w™Fm ()],
0<r<mg 0<r<nk

1

Mk 1/p Nk P
; ( JAREEeT dr) - ( [t ->||§pdr)
0 0

Z % _|_ 2—k _ 2—k—2 > % + 2—]{:—1,

which contradicts ng < nr+1 A S. Then, Qn N {nk < Nrr1 A S} =0, and {ng(w) A S} is a non-increasing
sequence in Q. Also note that Q2 monotonically expands to the whole probability space, and then
Ty = limg oo i A S is well-defined almost everywhere in 2. Furthermore,

Pty <€) =P <fj ﬁ{nk/\S < e}) =s1l1pIP’ (ﬁ{nms < e}ﬁQl>

I=1k=l

€ 1/p
M
< sgpP(m AS <e) < stllp]P’ ( sup [ul™) (r, )|, + (/ ) (7, .)||§pdr> > -5 + 2—l>
0

0<r<e

if e < S, which by (4.32) yields

P(ry = 0) =P < ﬁ {ru < 1/m}> < lim P(ry < 1/m) =0,

m=1

It remains to show that {u(™*)} has an w-pointwise limit and the limit belongs to L? (€, C([0, 7as], L?))N
LP(Q, LP([0, 7as], L3P)). Indeed, by (4.33) and [KXZ, Lemma 5.2],

w10, £ uy in C([0, 7], LP) N0 LP((0, 7], L), P-ae.
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for some adapted process uy and for all N € N. Then, {u("k)} converges in the same manner to u =
limy 500 un on Q. Using (4.20), we obtain that {u("*) 1 } are uniformly bounded in L (€2, L°°([0, 7as], L?))N
LP(Q, LP([0, 7az], L3P)). Thus, the same conclusion holds for uy and u, which completes the proof. [

Next, we prove the pathwise uniqueness of local strong solutions.

LEMMA 4.5. Let p > 3. Assume that V - ug =0, fﬂ,g ug =0, and ug € LP(Q, LP). Then for any pair
of local strong solutions (vV), 1) and (v?,7) of (1.1)~(1.3) that satisfy

0<s<T

E| sup [lo(s)] + / 3 / 19 (v (s, 2)P/2)2 dards| < CE[uoZ + 1], (4.34)
0 i T3
we have P(vM(t) = v (t), Vt € [0,7]) = 1.

PrOOF OF LEMMA 4.5. Let M > 0 and introduce stopping times
¢
nM =inf{t>0: sup [u(s)|[? +/ Z/ IV (|v; (s, 2)[P/)|? da ds > M
0<s<t 07 /T
If ||uo(w)||, < M, then nM (w) > 0, otherwise n (w) = 0 for i = 1,2. Define n™ = nM And A 7. Due to
(4.34), limps_y0o P(P™ = 7) = 1. Let S > 0 and denote w = v — o2, On [0,7™ A S], w satisfies
dw — Awdt = =P ((w- V)o@) =P (V) - V)w) dt + (0(1)(1)) - J(v(2))) dW,,
V-w=0,
w(0) =0 as.
The It6 formula yields, as in (4.29) and (4.30),

n™MAS
E|  sup ||w(s)||g+/0 Z/TS V(s (5,2 P) drds | < E
J

0<s<nMAS

n™MAS
/0 (ellwllZ, + Carelleo|Z) dt |
which can be further simplified to

E sup  [lw[]] dt.

sup [w(s)| s,
<s<nMAt

0<s<nMAS

s
SCM/ E
0

By Grénwall’s lemma, we conclude that w = 0 a.s. on [0,7™ A S]. Since S is an arbitrary and positive
constant independent of M, by sending both M and S to the positive infinity, we obtain the pathwise
uniqueness on [0, 7). O

PROOF OF THEOREM 3.1. Using the notation in the proof of Lemma 4.4, we first impose ||ugl|, <
K a.s. and show that u is a strong solution to (1.1)-(1.3) on [0,7as]. Denote (; = inf;>xm A S. By
right-continuity of the filtration F;, {(x}ren are also stopping times. Note that ¢, < ¢ if k¥ < I and
GQ<mAS.

Since each {(u(™),n;)} is a local solution to an approximating equation, then componentwise,

(Tj0,¢,1 (5)u ™ (5),6) = /0 Lo, () (™, Ag) dr + /o 110,6,0) (1) (Su P (uul™), 0;0) dr
J (4.35)

+ / ﬂ[O,Cm](T>(Snza(u(nl))»¢> dW, + (Sy,u0, ), (s,w)-a.e.,
0
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for all € C°(T3), s € [0, 5], and m < I. Also, (4.33) holds on [0, (] for {u;};>m. Utilizing Lemma 4.4
and the boundedness of {u("*)} in LP L°LP on [0, (,,], we may pass to the limit in (4.35) and obtain

| o0, 80) dr+ 3 [ 110,00 (Su P a0, 0,0) dr
0 i’ (4.36)

S / L0 (7) (1 AG) + (Plugu), 0;0)) dr,
0

for a.e. (s,w) as I — oo. Also, by the BDG inequality,

E | sup / Lg,¢, (1) (Sn,o(u™) — o (u), ¢) AW,
s€f0,S]1J0
Cm ) 1/2 o , 1/2
<CE (/ ||(Sm(g(u("l))_g(u)),¢)||l2dr> + CE (/ ||((Sn,—I)a(u),¢)H12dr> ]
0 0
where

o 1/2
E [(/O (S (0(u™) — (), )3 dr> ]
( [ (L 18uto) - ot ar) ||¢||§dr> 1/2]
< CJlglE K [ (L 18uto) - ot ar) " dr) W]

Cm
< Clo)2E l/o 10, (0(u™) = o ()|, dr}

<CE

and
< Cl|o||2E

Cm , 1/2
E [(/O 1((Sa — Do), 8)% dr)

Then by Lemma 2.2 and the assumptions on o,

Cm
/0 (S, = Do (W)L dr] :

E l sup / L10,¢,,] (1) (Sn, 0 (ul™)) — o(u), @) dWr]
s€l0,S]1J0
Cm
< CS¢[]2E Surg [u —u| + C||¢]]2E / (S, = Do (u)|If, dr| .
s€(0,(m 0

The right-hand side approaches to zero as [ — oco. Hence, we may infer the existence of a further
subsequence, which for simplicity we still denote by {n;}, such that

S

/0 Jl[o,cml(r)(sma(u("")),(b)dWTH—OO> ; Lio,¢,) () (o (), @) dW,., (s,w)-a.e. (4.37)
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Combining (4.36) and (4.37), we obtain

S

Lo,c,.1(5) (u(s), ¢) = (uo, ®) + Lo,c,.1(5) /OS (u, A@) dr + Ly c,.] (8)/0 (o(u),¢) dW,

s (4.38)
+ Z L(0,¢,.](8) /0 (P(Uju)73j¢) dr, (s,w)-a.e.,

for all m € N. Sending m — oo in (4.38) and noting that lim,, oo 1jo.c,,](t) = Ljo,7,,](t) P-a.s., we
conclude that u is indeed a strong solution to (1.1)—(1.3) on [0, 7as]. Moreover, due to (4.20), we have

0<s<7Tnm

T™
E ]]'QN sup Hu(nl)(s, )Hg + j]‘QN/ E /3 |V(\u§"z)(57x)|10/2)|2 dx ds S O]EI:HU()HZ + 1}
0 - T
J

if N <. Then we use Lemmas 3.3 and 4.3, send | — oo in above inequality, and send N — oo, arriving
at

E| sup fu(s )2+ / 3 / V(s (s, 2)P2)P dods | < CE[Juolls+1].  (4.39)
0 j T3

0<s<7pn
To remove the condition |Jug||, < K a.s., we denote the local strong solution corresponding to the
initial data uOﬂkS”“OHp<k+1 by (U(k),’rk), i.e.,

Bi0721(5) (10 (9:9) = (0Tt <k 100) + Loy 5) [ (. A0) dr + 2oy (5) [ (o). o) v,

S

+ Zﬂ[o,rk}(s)/o (P ((ur))ju)), 8;0) dr, (s,w)-a.e.,
’ (4.40)

for all £ € N. Define
u= Z:u(k)]lkﬁlluo\lzo<k+17 T= ZTk]lkSHuoHp<k+1~
k=0 k=0
Since P(1, > 0) = 1 for all 74, we have
(o) o0
P(r>0) => P(r > 0]k < [luolly, < k+ DP(k < [Juoll, <k+1) =Y Pk < |lugl, <k+1)=1.
k=0 k=0

Next, note 1[077k]1k§\|u0|\p<k+1 = 1[0,7]1k§|\u0||p<k+1- Also, ZI?;O O'(U(k))jlkg\|uo\|p<k+l agrees with o(u)
in IL”. Multiplying both sides of (4.40) by 1j.<|juy|,<k+1 and summing over k, we obtain

S

]1[0,7'] (S) (U(S), ¢) = (u07 ¢) + ]]-[O,T](S) /OS (uz A¢) dr + ]1[0,7'] (S) [) (U(U)v ¢) dWr
+ Z Tj0,71(5) /OS (P(uju),aj(b) dr, (s,w)-a.e.,

namely, (u,T) is a local solution associated with a general initial data ug € LP (2, LP(T?)).
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Since uyy € C([0, 73], LP) almost surely, we have v € C([0, 7], L?) almost surely. In addition, using
(4.39) and the pathwise uniqueness, we obtain

E | sup |u(s, ”erZ/ / (Juj (s, x)[P/?)|? dx ds

0<s<T

= B (ot cers | sup (s, -+ 3 / 1V dads

< lim CE ot <oraluolZ) + C < CE[Juolt] + €

concluding the proof. O
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