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Many algorithms for determining properties of real algebraic or 
semi-algebraic sets rely upon the ability to compute smooth 
points. In this paper, we present a procedure based on computing 
the critical points of some well-chosen function that guarantees 
the computation of smooth points in each bounded connected 
component of a (real) atomic semi-algebraic set. Our technique 
is intuitive in principal, performs well on previously difficult 
examples, and is straightforward to implement using existing 
numerical algebraic geometry software. The practical efficiency 
of our approach is demonstrated by solving a conjecture on the 
number of equilibria of the Kuramoto model for the n = 4 case. 
We also apply our method to design an algorithm to compute 
the real dimension of algebraic sets, the original motivation for 
this research. We compare the efficiency of our method to existing 
methods to compute the real dimension on a benchmark family.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

When studying an atomic semi-algebraic set S ⊂Rn , i.e.,

S = {
x ∈Rn : f1(x) = · · · = f s(x) = 0, q1(x) > 0, . . . ,qm(x) > 0

}
(1)
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for some polynomials f1, . . . , f s, q1, . . . , qm ∈ R[x1, . . . , xn], one often first considers the complex va-
riety V = {x ∈ Cn : f1(x) = · · · = f s(x) = 0}, known as its algebraic relaxation, and deduces properties 
of S from the properties of V . In particular, if S contains a smooth point and V is irreducible, then 
S is Zariski dense in V , and so all of the algebraic information of S can be determined from V . 
Thus, deciding the existence of smooth points in semi-algebraic sets and finding such points is a cen-
tral problem in real algebraic geometry with many applications. An example of such application is 
computing all typical ranks of tensors Bernardi et al. (2018); Kruskal (1989); Friedland (2012).

One of the main results of this paper is to give a new technique to compute smooth points 
on bounded connected components of atomic semi-algebraic sets. When V is equidimensional, our 
method is simple and suggests a natural implementation using numerical homotopy methods. It ex-
tends other approaches that compute sample points on real semi-algebraic sets, such as computing 
the critical points of the distance function, in the sense that our method also guarantees the smooth-
ness of the sample points. We illustrate this advantage on “Thom’s lips,” in which critical points of 
the distance function are often at the singularities (Wu and Reid, 2013, Ex. 2.3), while our method 
always computes smooth points.

The main idea is straightforward when V is irreducible. If a polynomial g vanishes on the singular 
points of V , but does not vanish on all of V , then the set of extreme points of g on V ∩ Rn must 
contain a smooth point on every bounded connected component of V ∩ Rn , if such points exist. 
We extend this idea beyond the case when V is irreducible and S = V ∩ Rn to the general case. 
We handle the case when V is reducible and its irreducible components have different dimensions 
using infinitesimal deformations of V and limits. We show that this limiting approach is well-suited for 
numerical homotopy continuation methods after we translate an infinitesimal real deformation (that 
may only work for arbitrary small values) into a complex deformation that works along a real arc 
parameterized by the interval (0, 1]. Finally, we present a novel technique to compute the required g
polynomial using deflations, and compare its degree bounds to traditional symbolic approaches (see 
Proposition 9.2). In fact, Corollary 11.5 proves that our Real Smooth Point Algorithm performs well 
if the depth of the deflations (i.e., the number of iterations) is small.

To demonstrate the practical efficiency of our new approach, we present the solution of a conjec-
ture for the first time: counting the equilibria of the Kuramoto model in the n = 4 case given in Xin et 
al. (2016) (see Kuramoto (1975) for the original model and Coss et al. (2018) for a detailed historical 
overview and additional references).

We also apply our method to compute the real dimension of a semi-algebraic set. The difficulty 
of this problem, compared to its complex counterpart, is that in many cases the real part of a semi-
algebraic set lies within the singular set of the complex variety containing it so that its real dimension 
is smaller than the complex one. In terms of worst case complexity bounds of the existing algorithms 
in the literature, it is an open problem if the real dimension can be computed within the same 
asymptotic complexity bounds as the complex dimension. The original motivation for this research 
was to try to find an algorithm for the real dimension that has worst case complexity comparable 
to its complex counterpart. Even though this paper is presented using computational tools from nu-
merical algebraic geometry (cf., Sommese and Wampler (2005); Bates et al. (2013)), all procedures can 
be translated to symbolic methods for polynomials with rational coefficients. In fact, after performing 
a worst case complexity estimate for a symbolic version, we unfortunately found that it does not 
improve the existing complexity bounds in the worst case (see Lairez and Safey El Din (2021) and 
the references therein). This is one of the reasons we present our results in a numerical algebraic 
geometry setting and give evidence of the efficiency with implementation on a benchmark family. As 
mentioned above, in Proposition 9.2 and Corollary 11.5, we give bounds on the degrees of the poly-
nomials appearing in our algorithms and the number of homotopy paths they follow, highlighting the 
advantages and disadvantages of our approach compared to other purely symbolic techniques.

1.1. Related work

There are many approaches in the literature to compute at least one real point on every connected 
component of a semi-algebraic set. Methods using projections to obtain a cell decomposition based 
on sign conditions go back to Collins’ Cylindrical Algebraic Decomposition (CAD) algorithm described 
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in Collins (1975). Improved symbolic methods using critical points or generalized critical points of 
functions along with infinitesimals and randomization can be found in Rouillier et al. (2000); Aubry 
et al. (2002); Safey El Din (2007); Faugère et al. (2008). The current state of the art deterministic 
symbolic algorithm is given in (Basu et al., 2006a, Alg. 13.3) which computes sample points on each 
connected component of all realizable sign conditions of a polynomial system and gives a complexity 
analysis. The most recent application of this technique is in Safey El Din et al. (2018, 2019) where 
the authors compute smooth points on real algebraic sets in order to compute the real radical of 
polynomial systems and analyze complexity.

Another line of work has been developed in parallel focuses on computing critical points while 
utilizing the tool of polar varieties, introduced and developed in Bank et al. (1997); Safey El Din and 
Schost (2003); Bank et al. (2004, 2009, 2010, 2015); Safey El Din and Spaenlehauer (2016). Alter-
natively, a homotopy-based approach computing the critical points of the distance function from a 
generic point or a line is presented in Hauenstein (2013); Wu and Reid (2013). It is important to 
note, however, that all of these methods only guarantee the finding at least one real point on every 
connected component of a semi-algebraic set, rather than real smooth points.

The real dimension problem has similarly been widely studied and the current state of the art 
deterministic algorithm is given by (Basu et al., 2006a, Alg. 14.10) computing all realizable sign condi-
tions of a polynomial system. This approach improves on previous work in Vorobjov (1999) to obtain 
a complexity result with a better dependence on the number of polynomials in the input by utilizing 
a block elimination technique first proposed in Grigor’ev and Vorobjov (1988). More recent work has 
been presented giving probabilistic algorithms utilizing polar varieties which improve on complexity 
bounds even further in Safey El Din and Tsigaridas (2013); Bannwarth and Safey El Din (2015). Very 
recently, Lairez and Safey El Din (2021) gave a symbolic algorithm with improved complexity to com-
pute the dimension of real algebraic sets using “level sets” and use them to reduce the problem to 
one of lower dimension. In the present paper, we use a benchmark family that appeared in Lairez and 
Safey El Din (2021) to demonstrate the efficiency of our method.

One can also compute the real dimension by computing the real radical of a semi-algebraic set, 
first studied in Becker and Neuhaus (1993) with improvements and implementations in Neuhaus 
(1998); Zeng (1999); Spang (2008); Chen et al. (2013). The most recent implementation can be found 
in Safey El Din et al. (2018, 2019) as mentioned above. Their approach is shown to be efficient in 
the case when the algebraic set is smooth, but the iterative computation of singularities can increase 
the complexity significantly in the worst case. An alternative method using semidefinite programming 
techniques was proposed by Wang (2016); Ma et al. (2016).

2. Preliminaries

2.1. Basic definitions

The following collects some basic notions used throughout the paper, including atomic semi-
algebraic sets, semi-algebraic sets, and real algebraic sets.

A set S ⊂ Rn is an atomic semi-algebraic set if it is of the form of (1). A set T ⊂ Rn is a semi-
algebraic set if it is a finite union of atomic semi-algebraic sets. A set U ⊂ Rn is a real algebraic set if 
it is defined by polynomial equations only.

Smoothness on atomic semi-algebraic sets is described next.

Definition 2.1. Let S ⊂ Rn be an atomic semi-algebraic set as in (1). A point z ∈ S is smooth (or 
nonsingular) in S if z is smooth in the algebraic set

V ( f1, . . . , f s) = {x ∈Cn : f1(x) = · · · = f s(x) = 0},
i.e., if there exists a unique irreducible component V ⊂ V ( f1, . . . , f s) containing z such that

dim Tz(V ) = dim V

where Tz(V ) is the tangent space of V at z. We denote by Sing(S) the set of singular (or non-smooth) 
points in S .
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An algebraic set V ⊂ Cn is equidimensional of dimension d if every irreducible component of V
has dimension d. The following defines the (local) real dimension of semi-algebraic sets from (Basu et 
al., 2006a, §5.3).

Definition 2.2. For a semi-algebraic set S ⊂ Rn , its real dimension dimR S is the largest k such that 
there exists an injective semi-algebraic map from (0, 1)k to S . Here, a map ϕ : (0, 1)k → S is semi-
algebraic if the graph of ϕ in Rn+k is semi-algebraic. By convention, the dimension (real or complex) 
of the empty set is −1.

Definition 2.3. Consider a point z ∈ S ⊂ Rn , where S is a semi-algebraic set. The local real dimension
of S at z is the maximal real dimension of the closure of every connected component C j of S such 
that z ∈ C j .

The main ingredient in our results is the following theorem that was proven in (Marshall, 2008, 
Theorem 12.6.1).

Theorem 2.4. Let V ⊂ Cn be an irreducible algebraic set. Then

dimR
(
V ∩Rn)= dimC V

if and only if there exists z ∈ V ∩Rn that is smooth.

2.2. Semi-algebraic to algebraic

In this subsection, we show that our problem on atomic semi-algebraic sets can be reformulated 
as a problem on real algebraic sets. This will allow us to use homotopy continuation methods for 
solving polynomial equations.

The following shows that smooth points on each connected component of an atomic semi-algebraic 
set S can be obtained as projections of smooth points of some real algebraic set.

Proposition 2.5. Let S be an atomic semi-algebraic set as in (1) and

W :=
{
(x, z) ∈Rn ×Rm : f1(x) = · · · = f s(x) = 0, z21q1(x) − 1 = · · · = z2mqm(x) − 1 = 0

}
.

If y ∈ W is smooth, then πx(y) ∈ S is also smooth. Conversely, if x ∈ S is smooth, then (x, z) is smooth in W
for all z = (z1, . . . , zm) ∈Rm such that (x, z) ∈ W .

Proof. Without loss of generality, we can assume that f1, . . . , f s generate a prime ideal. The Jacobian 
matrix of the polynomial system defining W has the block structure

J (x, z) = J f (x) 0

∗ diag(2ziqi(x))

Since for (x, z) ∈ W we have zi gi(x) �= 0, the Jacobian matrix J f (x) has full column rank if and only 
if J (x, z) has full column rank, which proves the claim. �

Therefore, for the rest of the paper, we assume that we are given a real algebraic set and the goal 
is to compute smooth points on each connected component.

Remark 2.6. Applying Proposition 2.5 to reduce to the case of algebraic sets may not be the only 
possibility. We give this procedure for simplicity of presentation and implementation, but it is possible 
that another symbolically equivalent reduction method would produce a more efficient numerical 
algorithm. While a rigorous analysis of this falls outside the scope of this paper, we suggest the reader 
explores this more if they are studying an example or application that requires more computational 
efficiency.
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2.3. Boundedness

The next reduction is to replace an arbitrary real algebraic set with a compact one.

Proposition 2.7. Let f1, . . . , f s−1 ∈ R[x1, . . . , xn−1] and consider p = (p1, . . . , pn−1) ∈ Rn−1 . Let δ ∈R+ , 
introduce a new variable xn, and consider

fs := (x1 − p1)
2 + · · · + (xn−1 − pn−1)

2 + x2n − δ.

Then, V ( f1, . . . , f s) ∩Rn is bounded and

πn−1
(
V ( f1, . . . , f s) ∩Rn)= V ( f1, . . . , f s−1) ∩

{
z ∈Rn−1 : ‖z − p‖2 ≤ δ

}
where πn−1(x1, . . . , xn) = (x1, . . . , xn−1).

Remark 2.8. The definition of f s above is based on a standard trick used in real algebraic geometry 
to make an arbitrary real algebraic set bounded (e.g., see Basu et al. (2006b)). In general, V ∩ Rn−1

is embedded into a sphere in Rn around the origin of radius 1/ζ where ζ is infinitesimal. Since 
numerical homotopy continuation methods are incompatible with infinitesimal variables, in this paper 
we are only interested in computing points with bounded coordinates, so it is sufficient to embed its 
intersection with a closed ball around p of radius

√
δ for some fixed δ ∈ R+ . In particular, we will 

not use infinitesimal variables in our algorithms.

Later in the paper, when we assume that V ( f1, . . . , f s) ∩Rn is bounded, we assume that we have 
applied Proposition 2.7 if necessary.

2.4. Genericity assumptions

The algorithms described in this paper make assumptions that certain points, matrices, or linear 
polynomials are generically chosen from a vector space (over Q, R or C). In all of these cases, 
there exists a proper Zariski closed subset of the corresponding vector space such that all choices 
outside this set yield correct results. Therefore, a generic choice means it is outside of this proper 
Zariski closed subset. For algorithms which depend on generic choices, we follow the convention from 
the literature that they compute the correct solutions with algebraic probability one (Sommese and 
Wampler, 2005, Chap. 4). Effective probability bounds can be obtained from bounds on the degrees 
of the proper Zariski closed sets containing the “bad” choices. See (Krick et al., 2001, Prop. 4.5) and 
Elliott and Schost (2019) for such bounds for linear changes of variables for Noetherian position and 
transversality, respectively.

2.5. Witness sets

In this subsection, we discuss some main ideas from numerical algebraic geometry following Bates 
et al. (2013). In particular, we consider positive-dimensional algebraic sets and utilize a data structure 
for them that allows computation using classical homotopy continuation methods for square non-
singular systems. The key is the notion of witness sets, which will rely on the idea of slicing an 
algebraic set with a generic linear space.

Definition 2.9. If an algebraic set V ⊂ Cn is equidimensional with dim(V ) = k, a witness set for V is 
the triple (F , L, W ) such that

• F ⊂ C[x] is a witness system for V , i.e., each irreducible component of V is an irreducible com-
ponent of V (F ),

• L ⊂ C[x] is a linear system where V (L) is a linear space of codimension k that intersects V
transversely, and
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• W ⊂ Cn is a witness point set which is equal to V ∩ V (L).

We note that the number of points in the witness point set W in the above definition will deter-
mine the number of paths we need to track with homotopy continuation methods, directly impacting 
the complexity of the numerical algebraic geometry computations. Note also that this number is an 
invariant of V called its degree.

Although the witness point set provides some information, a witness system is needed to perform 
any additional computations, such as deciding whether a given point lies on the algebraic set V .
Membership Test Algorithm 1 follows the approach of (Bates et al., 2013, Section 8.4) in order to do 
this and is correct with algebraic probability one.

Algorithm 1 MembershipTest.
Input: p ∈Cn and (F , L, W ) a witness set for some equidimensional algebraic set V ⊂ Cn .
Output: TRUE if p ∈ V and FALSE if p /∈ V .

1. Choose generic linear polynomials L′ with p ∈ V (L′) and dim(V (L′)) = dim(V (L)).
2. H(x, t) := [

F (x), tL(x) + (1− t)L′(x)
]
.

3. Track the finitely many homotopy paths of H(x, t) starting from the witness point set W for t = 1, obtaining the witness 
point set W ′ := V ∩ V (L′) at t = 0.

4. If p ∈ W ′ , return TRUE. Else, return FALSE.

2.6. Isosingular deflation

As we mentioned in the Introduction, one of the ingredients of our algorithm for computing 
smooth points on a real algebraic set V ∩ Rn is a polynomial g that vanishes on the singular points 
of V , but does not vanish identically on the irreducible components of V . We give an algorithm to 
compute such a g in Section 9 using isosingular deflation. This subsection summarizes the basic def-
initions and results that we use in Sections 8 and 9. Further details on isosingular deflation can be 
found in Hauenstein and Wampler (2013).

Definition 2.10. Let f1, . . . , f s ∈ C[x], F0 = { f1, . . . , f s}, and z ∈ V (F0) ⊂ Cn . The isosingular deflation 
operator D is defined via

(F1, z) :=D(F0, z)

where F1 ⊂ C[x] consists of F0 and all (r + 1) × (r + 1) minors of the Jacobian matrix J F0 for F0
where r = rank J F0(z). Thus, z ∈ V (F1), meaning that we can iterate this operator to construct a 
sequence of systems F j ⊂ C[x] with (F j, z) =D(F j−1, z) =D j(F0, z) for j ≥ 1.

We say that F ⊂C[x] is the isosingular deflation of F0 at z if there exists a minimal j ≥ 0 such that 
(F , z) =D j(F0, z) and dimNullSpace( J F (z)) = dimF (z), where dimF (z) is the maximal dimension of 
the irreducible components of V (F ) containing z (called the local dimension of z with respect to F ).

To compute the isosingular deflation of F0 at z we refer to (Hauenstein and Wampler, 2013, Algo-
rithm 6.3).

Using the deflation operator, we can now formally define the isosingular sets and singular points 
of our algebraic set in this context.

Definition 2.11. Let f1, . . . , f s ∈ C[x], F0 = { f1, . . . , f s}, and z ∈ V (F0) ⊂ Cn . Let D be the isosingular 
deflation operator defined in Definition 2.10. We define

• The deflation sequence of F0 at z is {dk(F0, z)}∞k=0 where

dk(F0, z) = dnull(Fk, z) := dimNullSpace J Fk(z)

with J Fk the Jacobian matrix of Fk with (Fk, z) =Dk(F0, z).
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• Let V ⊂ V (F0) be a non-empty irreducible algebraic set. Then V is an isosingular set of F0 if there 
exists a sequence {ck}∞k=1 such that V is an irreducible component of

{z ∈ V (F0) : dk(F0, z) = ck,k ∈N}.
• Let V ⊂ V (F0) be a non-empty irreducible algebraic set. Then IsoF0 (V ) is the unique isosingular 

set with respect to F0 containing V such that IsoF0(V ) and V have the same deflation sequence 
with respect to F0.

• Let V be an isosingular set for F0. The set of singular points of V with respect to F0 is

SingF0(V ) = {
z ∈ V : {dk(F0, z)}∞k=0 �= {dk(F0, V )}∞k=0

}
.

Here, dk(F0, V ) is meant for a generic point in V .
• The local dimension of z with respect to F0, denoted by dimF0(z), is the maximal dimension of 

the irreducible components of V (F0) containing z.

We next detail some particular results on isosingular sets which will be important to our methods 
going forward. The following theorem states that the singular points of an algebraic set are preserved 
under isosingular deflation. We use this result in the proof of Theorem 9.1.

Theorem 2.12. (Hauenstein and Wampler, 2013, Theorem 5.9) Let V be an isosingular set for F0 as in Defini-
tion 2.11. Then if z ∈ V and z ∈ Sing(V (F0)) then z ∈ SingF0 (V ).

Finally, we have the following theorem which gives an isosingular deflation approach for construct-
ing witness sets of the intersection of a known witness set with another algebraic set. We use this 
result in the proof of Theorem 8.4.

Theorem 2.13. (Hauenstein and Wampler, 2017, Theorem 6.2) Given g1, . . . , gr ∈ C[x], let Z be a union of 
irreducible components of V (g1, . . . , gr). Suppose f1, . . . , f s ∈ C[y], F (x, y) = {g1(x), . . . , gr(x), f1(y), . . . ,
f s(y)}, � = {(x, x) : x ∈ Cn}, and π(x, y) = x. If A ⊂ Z ∩ V ( f1, . . . , f s) is an irreducible component, then 
there exists a nonempty Zariski open set U ⊂ A such that for all p ∈ U , A is an irreducible component of 

π

(
IsoF ((p, p)) ∩ �

)
.

We provide the following illustrative example for the theorem.

Example 2.14. Let g(x, y, z) := (x + y + z)y defining a witness system for Z := V (x + y + z). Let 
f (x, y, z) := y and note that Z ∩ V ( f ) = V (x + z, y) is irreducible. We construct

F0(x, y, z, x
′, y′, z′) = [g(x, y, z) = (x+ y + z)y, f (x′, y′, z′) = y′].

Choose a generic witness point p = (a, 0, −a) ∈ A = Z ∩ V ( f ) for some fixed a ∈C. Then we compute 
the deflation sequence of F0 at (a, 0, −a, a, 0, −a) as 5, 3, 3, . . . such that

IsoF0((p, p)) = {(b,0,−b, c,0,d) : b, c,d ∈C}.
The polynomial system defining this 3-dimensional isosingular set is given by adding the 2 ×2 minors 
of the Jacobian of F0 to F0, giving

F1(x, y, z, x
′, y′, z′) =

⎡
⎢⎢⎢⎣

(x+ y + z)y
y′
y

x+ 2y + z
y

⎤
⎥⎥⎥⎦ .
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By Theorem 2.13, Z ∩ V ( f ) is an irreducible component of V (F1(x, y, z, x, y, z)) and G(x, y, z) :=
F1(x, y, z, x, y, z) suffices as a witness system for Z ∩ V ( f ). We note that in this example, removing 
the redundancies in G would in fact show that [x + z, y] is sufficient as a witness system for Z ∩ V ( f ).

3. Computation of real smooth points – equidimensional case

This section contains our main results for the special case when the complex algebraic variety is 
equidimensional. In subsequent sections we consider the general case, where we use deformations 
and limits of algebraic sets.

Theorem 3.1. Let f1, . . . , f s ∈ R[x1, . . . , xn] and assume that V := V ( f1, . . . , f s) ⊂ Cn is equidimensional 
of dimension n − s. Suppose that g ∈ R[x1, . . . , xn] satisfies the following conditions:

1. Sing(V ) ∩Rn ⊂ V (g);
2. dim (V ∩ V (g)) < n − s.

Then the set of points where g restricted to V ∩ Rn attains its extreme values intersects each bounded con-
nected component of (V \ Sing(V )) ∩Rn.

The proof of this theorem is based on the following lemma.

Lemma 3.2. Let V be as in Theorem 3.1. Let g ∈R[x1, . . . , xn] such that dim (V ∩ V (g)) < n − s. Then, either 
(V \ V (g)) ∩Rn = ∅ or g restricted to V ∩Rn attains a non-zero extreme value on each bounded connected 
component of (V \ V (g)) ∩Rn.

Proof. Assume that (V \ V (g)) ∩ Rn �= ∅ and let C be a bounded connected component of the set 
(V \ V (g)) ∩Rn . Since C �⊂ V (g), there exists x ∈ C with g(x) �= 0. Let C be the Euclidean closure of C
so that C ⊂ V ∩Rn is closed and bounded, and g vanishes identically on C \ C . By the extreme value 
theorem, g attains both a minimum and a maximum on C . Since g is not identically zero on C , either 
the minimum or the maximum value of g on C must be nonzero, so g attains a non-zero extreme 
value on C . �
Proof of Theorem 3.1. Assume that (V \ Sing(V )) ∩ Rn �= ∅. By Theorem 2.4, dimR V ∩ Rn = n − s. 
By (2), (V \ V (g)) ∩ Rn �= ∅. By (1), (V \ V (g)) ∩ Rn ⊂ (V \ Sing(V )) ∩ Rn , so the bounded con-
nected components of (V \ V (g)) ∩ Rn are subsets of the bounded connected components of 
(V \ Sing(V )) ∩ Rn . By Lemma 3.2, g restricted to V ∩ Rn attains a non-zero extreme value on each 
bounded connected component of (V \ V (g))∩Rn , thus yielding a point in every bounded connected 
component of (V \ Sing(V )) ∩Rn . �

Algorithm 5 in Section 11 computes real smooth points when V ( f1, . . . , f s) is not equidimen-
sional by using deformations and limits. However, the same algorithm can be used in the equidimen-
sional case with input f1, . . . , f s and a = 0 ∈ Rs , i.e. without deformation.

Example 3.3. An example of a real curve with two singular cusps called “Thom’s lips” defined by 
f = y2 − (x(1 − x))3 is shown in Fig. 1. An obvious choice of g which satisfies the conditions of Theo-
rem 3.1 is g = x(1 − x). Using Lagrange multipliers to optimize with respect to g results in two points 
(0.5, ±0.125) plotted as red diamonds. Alternatively, the polynomial g can be constructed algorithmi-
cally (see Section 9) yielding, e.g., g = 3(2x − 1)(x(1 − x))2 + 2y which produces two points plotted as 
black circles, approximately (0.5987, 0.1178) and (0.4013, −0.1178). Both yield a real smooth point 
on each of the two connected components of (V \ Sing(V )) ∩Rn . We note that the first choice of g
demonstrates that when Sing(V) is 0-dimensional, defining g as a product of a coordinate of these 
points is a simple way to satisfy the conditions of Theorem 3.1. The second choice of g demonstrates 
the general method described in Section 9 which works in every dimension.
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Fig. 1. “Thom’s lips”. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Application to Kuramoto model

The Kuramoto model from Kuramoto (1975) is a dynamical system used to model synchronization 
amongst n coupled oscillators. The maximum number of equilibria (i.e. real solutions to steady-state 
equations) for n ≥ 4 remains an open problem with details discussed in Coss et al. (2018). The fol-
lowing confirms the conjecture in Xin et al. (2016) for n = 4.

Theorem 4.1. The maximum number of equilibria for the Kuramoto model with n = 4 oscillators is 10.

The steady-state equations for the n = 4 Kuramoto model are

f i(θ;ω) = ωi − 1

4

4∑
j=1

sin(θi − θ j) = 0, for i = 1, . . . ,4

parameterized by the natural frequencies ωi ∈ R. Since only the angle differences matter, one can 
assume θ4 = 0 and observe a necessary condition for equilibria is

0 = f1 + f2 + f3 + f4 = ω1 + ω2 + ω3 + ω4,

i.e., assume ω4 = −(ω1 + ω2 + ω3). Substituting si = sin(θi) and ci = cos(θi) yields

F (s, c;ω) =
⎧⎨
⎩ωi − 1

4

4∑
j=1

(sic j − s jci), s
2
i + c2i − 1, for i = 1,2,3

⎫⎬
⎭

which is a polynomial system with variables s = (s1, s2, s3) and c = (c1, c2, c3), parameters ω =
(ω1, ω2, ω3), and constants s4 = 0 and c4 = 1.

The goal is to compute the maximum number of isolated real solutions of F = 0 as ω varies over 
R3. Let D(ω) be the discriminant polynomial of the system F , a polynomial in ω of degree 48. The 
number of real solutions of F is constant in each connected component of R3 \ V (D). Since it is 
easy to see that there can be no real solutions if |ωi | ≥ n−1

n = 0.75, we need to compute at least one 
interior point in each of the bounded connected components of R3 \ V (D). Applying Lemma 3.2 with 
f = 0 and g = D , i.e., by computing the real solutions of ∇D = 0 and D �= 0, accomplishes this task. 
Exploiting symmetry and utilizing Bertini (Bates et al. (2006)), alphaCertified (Hauenstein 
and Sottile (2012)), and Macaulay2 (Grayson and Stillman (2002)) all solutions have been found 
and certified. In fact, this computation showed that all real critical points of D arose, up to symmetry, 
along two slices shown in Fig. 2. A similar computation then counted the number of real solutions to 
F = 0 showing that the maximum number of equilibria is 10. All code used in these computations is 
available at dx .doi .org /10 .7274 /r0 -5c1t -jw53.

5. Perturbations and limits of real hypersurfaces

In this section, we begin to construct the tools for an algorithm using the same ideas as in Sec-
tion 3, but in full generality so the results will hold when V ( f1, . . . , f s) is not equidimensional, i.e. 
there are some components of dimension greater than n − s. To do this, a standard approach (which 
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Fig. 2. Compact connected regions and critical points for the Kuramoto model with n = 4.

can be seen in Safey El Din and Tsigaridas (2013) and Bannwarth and Safey El Din (2015)) is to 
perturb the defining polynomials of the algebraic set by infinitesimals to obtain an equidimensional 
variety, which has a limit as the infinitesimals approach zero that is equidimensional and contains 
the n − s dimensional components of V ( f1, . . . , f s).

First, we need the definition of Puiseux series.

Definition 5.1. Let K = R or C and denote by K〈ε〉 the field of Puiseux series over K, i.e.

K〈ε〉 :=
⎧⎨
⎩
∑
i≥i0

aiε
i/q : i0 ∈Z,q ∈Z>0,ai ∈ K

⎫⎬
⎭ .

A Puiseux series z =∑
i≥i0

aiεi/q ∈K〈ε〉 is called bounded if i0 ≥ 0.

We note that the field of real Puiseux series R〈ε〉 is a real closed field, thus the intermediate value 
theorem holds (cf. (Basu et al., 2006a, Theorem 2.11)).

We also note that for complex Puiseux series C〈ε〉, similar results hold when we replace real 
closed with algebraically closed (cf. (Basu et al., 2006b, Theorem 2.92)).
192



K. Harris, J.D. Hauenstein and A. Szanto Journal of Symbolic Computation 116 (2023) 183–212
We establish a notation for the concept of an extension of a semi-algebraic set S ⊂ Rn to R〈ε〉.

Definition 5.2. Given a semi-algebraic set S ⊂ Rn , the extension of S to R〈ε〉n , denoted Ext(S), is the 
semi-algebraic subset S ′ ⊂ R〈ε〉n defined by the same equations and inequalities as S , but considering 
their solutions in R〈ε〉n . For a polynomial map ϕ : S → S ′ where S ⊂ Rn , S ′ ⊂ Rm semialgebraic sets, 
Ext(ϕ) denotes the map ϕ′ : Ext(S) → Ext(S ′) defined by the same polynomials as φ.

Assume f1, . . . , f s ∈ R[x] and ε > 0 a real infinitesimal. Let F = f 21 + · · · + f 2s and note that 
V ( f1, . . . , f s) ∩ Rn = V (F ) ∩ Rn . Consider Vε := V (F − ε) ⊂ C〈ε〉 as the perturbed version of the 
algebraic set V (F ). One reason for us to perturb our algebraic set is to obtain smoothness.

Lemma 5.3. (Rouillier et al., 2000, Lemma 3.5) Vε is a smooth hypersurface.

The following result (Basu et al., 2006a, Proposition 12.36) states that semi-algebraicity is pre-
served as ε limits to 0.

Lemma 5.4. Let S ⊂ R〈ε〉n be a semi-algebraic set. Then limε→0(S) is a closed semi-algebraic set. Further-
more, if S is bounded and connected, then limε→0(S) is connected.

The next proposition on the limits of perturbed connected components of a real algebraic set 
appeared in the unpublished work Safey El Din and Tsigaridas (2013). We restate and prove it here 
for completeness.

Proposition 5.5. Assume f1, . . . , f s ∈R[x], F = f 21 +· · · f 2s , and ε > 0 a real infinitesimal. Let Vε := V (F −
ε) ⊂ C〈ε〉n and V := limε→0 Vε ⊂ Cn. Suppose C is a connected component of V ∩Rn. Then:

1. there exist connected components Cε,1, . . . , Cε,l of Vε ∩R〈ε〉n such that

C =
l⋃

i=1

lim
ε→0

Cε,i

2. if C is bounded by some open ball B ⊂Rn and does not intersect the boundary of B, then Cε,i is bounded 
by and does not intersect the boundary of Ext(B, R〈ε〉n) for 1 ≤ i ≤ l.

Proof. Let z ∈ C . Then there exists a connected component S ⊂ Rn \ V (F ) such that z ∈ S . Then 
there exists some p ∈ S such that p ∈ B(z, r) for r > 0. We note that since F is nonnegative over 
Rn , F (p) > 0. By (Basu et al., 2006a, Theorem 3.19), there exists a continuous semi-algebraic function 
γ : [0, 1] → S with γ (0) = z, γ (1) = p and γ (t) ∈ S for all t ∈ (0, 1]. Note that we have (F ◦ γ )(0) =
F (z) = 0 and (F ◦ γ )(1) = F (p) > 0.

Let F ′ := Ext(F ) and γ ′ := Ext(γ ), where Ext is the extension as in Definition 5.2. By the infinitesi-
mal property of ε, Ext([0, 1]) includes all Puiseux series with constant term in [0, 1]. The Intermediate 
Value Theorem applied to F ′ ◦ γ ′ gives some tε ∈ Ext([0, 1], R〈ε〉) such that (F ′ ◦ γ ′)(tε) = ε. Let 
zε := γ ′(tε). Then limε→0(zε) = z. Let Czε be the connected component of Vε ∩ R〈ε〉n contain-
ing zε , and associate z to that component. Since there are finitely many connected components of 
Vε ∩R〈ε〉n , as we run through all z ∈ C , a subset of these connected components are of the form Czε
with limε→0(zε) = z for some z ∈ C . We denote these components of Vε ∩ R〈ε〉n by Cε,1, . . . , Cε,l . 
Clearly C ⊂ ∪l

i=1 limε→0 Cε,i .
Now suppose z′ ∈ limε→0 Cε,i for some 1 ≤ i ≤ l. Then there exists some z′ε ∈ Cε,i such that 

limε→0 z′ε = z′ . We recall that Cε,i is associated to some z ∈ C , i.e. there exists some zε ∈ Cε,i such 
that limε→0 zε = z. Since Cε,i is connected, there exists some continuous semi-algebraic function 
γ : [0, 1] → Cε,i such that γ (0) = z′ε and γ (1) = z and � := γ ([0, 1]) is a connected semi-algebraic 
set. By the preservation of closed and boundedness under semi-algebraic mapping, � is closed 
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and bounded and by Lemma 5.4, limε→0 � is connected. Furthermore, we note that limε→0 � ⊂
V ∩ Rn, limε→0(γ (0)) = z′ , and limε→0(γ (1)) = z. Hence z′ ∈ C and ∪l

i=1 limε→0 Cε,i ⊂ C , thus we 
have shown (1) as required.

Now suppose C is bounded by some ball B ⊂ Rn and does not intersect the boundary of B . Let 
zε ∈ Cε,i such that limε→0 zε ∈ C . For sake of contradiction, suppose z′ε ∈ Cε,i \ Ext(B). Since Cε,i

is connected, there exists a continuous semi-algebraic function γ : Ext[0, 1] → Cε,i such that γ (0) =
zε, γ (1) = z′ε and � := γ (Ext[0, 1]) is a connected semi-algebraic set. The Intermediate Value Theorem 
applied to the polynomial defining the boundary of B composed by γ gives some tε ∈ Ext[0, 1] such 
that γ (tε) is in the boundary of Ext(B). Then limε→0 γ (tε) is in the boundary of B .

By the preservation of closed and boundedness under semi-algebraic mappings, � is closed and 
bounded. By Lemma 5.4, limε→0 � is connected. Then limε→0 � ⊂ C and limε→0 γ (tε) ∈ C . However, 
this contradicts C intersecting the boundary of B . Thus Cε,i is bounded by (and does not intersect the 
boundary of) Ext(B, R〈ε〉n). �

A natural question arises: Why it is necessary for us to perturb the sum of squares of the poly-
nomials, rather than each polynomial separately, when we are working in this context over the real 
numbers? The following example illustrates what can go wrong over the reals, as opposed to the 
complex numbers.

Example 5.6. This example illustrates that for s > 1 with Vε := V ( f1 −a1ε, . . . , f s −asε) ⊂C〈ε〉n and 
V := limε→0 Vε ⊂ Cn , we may have connected components C ⊂ V ∩Rn that can only be extended to 
the complex part of Vε , i.e. C �⊂ limε→0

(
Vε ∩R〈ε〉n).

Let s = n = 2, f1 = x21 + x22 −1, f2 = −(x1 −2)2 − x22 +1. Then with Vε := V ( f1 −ε, f2 −ε) ⊂ C〈ε〉2
we have(

lim
ε→0

Vε

)
∩R2 = {(1,0)}

is a single point, so this point is the only connected component. Note that any points in Vε have to 
satisfy f1 = f2, so in particular they will correspond to points on the intersections of the graphs of 
f1 and f2. The graphs of f1 and f2 are the surfaces P1 := V (x3 − x21 − x22 + 1) and P2 := V (x3 + (x1 −
2)2 + x22 − 1)), respectively, which are two 3-dimensional parabolas.

Over the complex numbers, P1 and P2 intersect in two complex lines

V (x2 ± i(x1 − 1), x3 − 2x1 + 2) ⊂C3

so whenever x3 = ε, i.e. x1 = ε
2 + 1, the points 

(
ε
2 + 1,±i ε2

)
are in Vε and

lim
ε→0

(ε

2
+ 1,±i

ε

2

)
= (1,0).

This also shows that

lim
ε→0

(
Vε ∩R〈ε〉n)= ∅.

In particular, over the reals P1 is a convex parabola with vertex (0, 0, −1), P2 is a concave parabola 
with vertex (2, 0, 1), and they tangentially intersect at (1, 0, 0). So for any real ε �= 0 we have

P1 ∩ P2 ∩ V (x3 − ε) ∩R3 = ∅.

Alternatively, for F := f 21 + f 22 , if we define Vε := V (F − ε), then we proved above that(
lim
ε→0

Vε

)
∩R2 = lim

ε→0

(
Vε ∩R〈ε〉2

)
.
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6. Perturbations and limits polar varieties

There are many different definitions of polar varieties; for a survey and comparison of different 
notions see Harris (2021). In this paper we reduce to the hypersurface case by taking the sum of 
squares of the given real polynomials. For this case, without loss of generality (in particular, when we 
apply a change of variables later in our paper), we can choose the appropriate number of partials to 
obtain a simplified definition of polar varieties. In practice, other notions of polar varieties may work 
better. We chose this presentation for its simplified notation and presentation, following the approach 
of Safey El Din and Tsigaridas (2013), for conciseness.

Definition 6.1. Let F ∈ C[x] be square-free and V = V (F ) ⊂ Cn . Consider the projections πi(x1, . . . , xn)
= (x1, . . . , xi) for i = 1, . . . , n. The polar variety associated to πi of V is defined as

crit(V ,πi) := V

(
F ,

∂ F

∂xi+1
, . . . ,

∂ F

∂xn

)
⊂ Cn i = 1, . . . ,n,

based on how the polynomials defining this algebraic set correspond to the notion of critical points 
of a map.

We note that a significant difference in how this definition is stated compared to other notions of 
polar varieties is that it does not exclude the singular locus of an algebraic set V from the polar va-
rieties associated to V . We will address the smoothness of V going forward via a change of variables 
and perturbations, so in fact it is natural to make this simplified modification for our context.

We use the following notation to perform a change of variables.

Definition 6.2. Let F ∈ R[x], V = V (F ) ⊂ Cn , and A ∈ GLn(R). Then, we denote F A(x) := F (Ax), i.e. 
V A := V (F A) is the image of V via the map x �→ A−1x.

Next, we state some known results on polar varieties which will be used in the proofs of our 
algorithms. In particular, polar varieties provide a nice way for us to lower the complex dimension of 
an algebraic set without losing the real points in the set.

Theorem 6.3. (Bank et al., 1997, Proposition 3) Let F ∈R[x] be non-constant, square-free, and define a smooth 
algebraic set V := V (F ) ⊂ Cn. Then there exists a non-empty Zariski open set A ⊂ GLn(C) such that for all 
A ∈ GLn(R) ∩A and 1 ≤ i ≤ n, crit(V A, πi) is either empty or equidimensional of complex dimension i − 1.

We note that in the above reference, the proof of this theorem consists of characterizing the set 
of matrices for which the result does not hold and showing that those matrices make up a Zariski 
closed set GLn(C) \A, i.e. the complement of A.

Corollary 6.4. Let F and V be as in Theorem 6.3. Suppose ε is an infinitesimal and Vε := V (F − ε) ⊂ C〈ε〉n
is a smooth algebraic set on the field of Puiseux series as in Definition 5.1. Then there exists a non-empty Zariski 
open set A ⊂ GLn(C〈ε〉) such that for all A ∈ GLn(R) ∩A and 1 ≤ i ≤ n, crit(V A

ε , πi) is either empty or 
equidimensional of complex dimension i − 1.

The proof of 6.4 follows from the following lemma.

Lemma 6.5. Let A := GLn(C〈ε〉) \ V (Q ) be a non-empty Zariski open subset of GLn(C〈ε〉) defined by some 
polynomial Q ∈ R〈ε〉[ai, j]ni, j=1 . Then limε→0A ∩GLn(R) is also a non-empty Zariski open subset of GLn(R).

Proof. Since A is non-empty, Q �= 0. Q is a polynomial in the variables {ai, j}ni, j=1 with coefficients 

in R〈ε〉. We can assume, without loss of generality, that these coefficients are polynomials in ε
1
q for 
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some q ∈N (by multiplying with a possible common denominator of these coefficients). Also, we can 
assume that Q has minimal degree in ε

1
q among all such polynomials defining GLn(C〈ε〉) \A. Thus

Q = Q 0 + ε
t
q Q 1

where t ∈Z+, Q 0 ∈ R[ai, j], and Q 1 ∈ R[ε 1
q ][ai, j]. If Q 0 = 0, then Q 1 has lower degree than Q in ε

1
q

and still defines GLn(C〈ε〉) \A, a contradiction. Therefore, Q 0 �= 0 and

V (Q 0) = lim
ε→0

V (Q ) �= GLn(C)

so limε→0A ∩ GLn(R) is also a non-empty Zariski open subset of GLn(R). �
The statements of the next two propositions follow the approach of the unpublished work Safey 

El Din and Tsigaridas (2013), so we restate and prove them here.

Proposition 6.6. Suppose F ∈R[x] and V (F ) ∩Rn is bounded. There exists a non-empty Zariski open set O  ∈
GLn(C) such that for A ∈ O  ∩ GLn(R), if V A = V (F A) and V A

ε := V (F A − ε) ⊂ C〈ε〉n for ε infinitesimal, 
then

(i) for all 1 ≤ i ≤ n, crit(V A
ε , πi) is either empty or is smooth and equidimensional with complex dimension 

i − 1;
(ii) for all p ∈ V A ∩Rn, π−1

d (πd(p)) ∩ (V A ∩Rn) is finite, where d is greater than or equal to the local real 
dimension of V A at p.

Proof. (i) First note that Vε is smooth by Lemma 5.3. By Corollary 6.4, we obtain a non-empty Zariski 
open set O 1 ∈ GLn(C〈ε〉) such that for A ∈ O 1 ∩GLn(R), and 1 ≤ i ≤ n crit(V A

ε , πi) is either empty or 
equidimensional with complex dimension i − 1.
(ii) Let V := V (F ). Since V ∩ Rn is semi-algebraic, we can consider it as a union of connected com-
ponents C1, . . . , Cl with corresponding real dimension d1, . . . , dl , as in Definition 2.2. Then the local 
real dimension of V ∩Rn at p is given by maxp∈Ci

di , as in Definition 2.3.
Let Vi represent the Zariski closure of each Ci for 1 ≤ i ≤ l. Then the corresponding complex 

dimensions of V1, . . . , Vl are also d1, . . . , dl . By a version of Noether’s normalization lemma (see for 
example Logar (1989)), there exists a non-empty Zariski open set O 2,i ∈ GLn(C) such that for A ∈
O 2,i ∩ GLn(R) and q ∈Cdi , π−1

di
(q) ∩ V A

i is finite. Then for q ∈ Rdi , π−1
di

(q) ∩ Ci is finite.
Let p ∈ V A ∩ Rn where A ∈ O 2 = ∩l

i=1O 2,i . Suppose d ≥ maxp∈Ci
di . Then πd(p) ∈ Rd . For any 

di = d, taking O 2 as defined above guarantees π−1
d (πd(p)) ∩ (V A ∩ Rn) is finite. Furthermore, for 

any di strictly less than d, π−1
d (πd(p)) ∩ (V A ∩ Rn) is still finite for A ∈ O 2 because π−1

d (πd(p)) ⊂
π−1
di

(πdi (p)). Taking O  = O 1 ∩ O 2 completes the proof. �
Now we are ready to state the main result of this section, again emphasizing that it was originally 

proven in the unpublished paper Safey El Din and Tsigaridas (2013).

Proposition 6.7. Let F , g1, . . . , gm ∈ R[x] and let ε be infinitesimal. Suppose F ≥ 0 on Rn, V (F ) ∩ Rn is 
bounded, and suppose that (i) and (ii) from Proposition 6.6 hold with A = I ∈ GLn(R) for V = V (F ) and 
Vε := V (F − ε) ⊂ C〈ε〉n. Then for i = 0, . . . , n, limε→0 crit(Vε, πi) is equidimensional of dimension i − 1
and for

U := {x ∈Rn : g1(x) > 0, . . . , gm(x) > 0} ⊂Rn

and S := V (F ) ∩ U we have(
lim
ε→0

crit(Vε,πi)

)
∩ U = S ⇔ dimR(S) ≤ i − 1.
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Proof. (⇒) Fix some 0 ≤ i ≤ n and suppose(
lim
ε→0

crit(Vε,πi)

)
∩ U = S.

If S = ∅, then dimR(S) = −1 ≤ i − 1 and we are done. So assume S �= ∅. Since S := V (F ) ∩ U , V (F ) ∩
Rn �= ∅ and S is bounded by our initial assumption of V (F ) ∩Rn being bounded.

By Lemma 6.9, for 1 ≤ i ≤ n, crit(Vε, πi) �= ∅. Then by Proposition 6.6, crit(Vε, πi) is equidimen-
sional of complex dimension i − 1. Then limε→0(crit(Vε, πi)) has complex dimension i − 1. So the 
real dimension of limε→0(crit(Vε, πi)) is ≤ i − 1 and thus(

lim
ε→0

crit(Vε,πi)

)
∩ U = S

has real dimension ≤ i − 1.
(⇐) Now suppose dimR(S) ≤ i − 1. Since crit(Vε, πi) ⊂ Vε, limε→0 Vε = V (F ), and V (F ) ∩ U = S ,(

lim
ε→0

crit(Vε,πi)

)
∩ U ⊂ S.

If S = ∅,

S ⊂
(
lim
ε→0

crit(Vε,πi)

)
∩ U

and we are done. So suppose S �= ∅ and take z = (z1, . . . , zn) ∈ S . Since S = V (F ) ∩ U , z ∈ U and 
z ∈ V (F ) ∩Rn . Furthermore, the local real dimension of S at z is ≤ i − 1, so the local real dimension 
of V (F ) ∩Rn at z is also ≤ i − 1.

Define F ′ as the function F where the first i − 1 coordinates have been evaluated at the first i − 1
coordinate values of z, i.e.

F ′ := F (xi, . . . , xn) = F (z1, . . . , zi−1, xi, . . . , xn).

We note that since F is nonnegative over Rn , F ′ is nonnegative over Rn−i+1. Also define z′ :=
(zi, . . . , zn), V ′ := V (F ′) and V ′

ε := V (F ′ − ε) ⊂ C〈ε〉n−i+1, and the canonical projection ϕi(x) = xi
and the respective ϕ′

i (xi, . . . , xn) = xi . Note that z′ is isolated in V ′ ∩ Rn−i+1 since π−1
i−1(πi−1(z)) ∩

V (F ) ∩Rn is finite by (ii) of Proposition 6.6.
Applying Lemma 6.8 to z′ and V ′ we get some z′ε ∈ crit(V ′

ε, ϕ′
i ) such that limε→0 z′ε = z′ =

(zi, . . . , zn). Define zε := (z1, . . . , zi−1, z′ε) and V ∗
ε = Vε ∩ Ext(π−1

i−1(z1, . . . , zi−1)), where Ext is the ex-
tension from Definition 5.2. Then zε ∈ crit(V ∗

ε , ϕi). By Lemma 6.10, zε ∈ crit(Vε, πi). Since limε→0 zε =
z,

S ⊂
(
lim
ε→0

crit(Vε,πi)

)
∩ U . �

The following lemmas were used in the proof of the above proposition.

Lemma 6.8. Assume f1, . . . , f s ∈R[x], F = f 21 +· · · f 2s , and ε > 0 a real infinitesimal. Let Vε := V (F −ε) ⊂
C〈ε〉n and V := limε→0 Vε ⊂ Cn. Suppose z ∈ V ∩ Rn and there exists a neighborhood B(z, r) ⊂ Rn for 
some r > 0 such that B(z, r) ∩ V ∩Rn is a finite set. Then there exists zε ∈ crit(Vε, π1) such that limε→0 zε =
z.

Proof. Since B(z, r) ∩ V ∩Rn is a finite set, there exists some r′ > 0 such that z is the only point in 
B(z, r′) ∩ V ∩Rn . So {z} is a bounded connected component of V ∩Rn . Then by Proposition 5.5, there 
exist connected components Cε,1, . . . , Cε,l of Vε ∩ R〈ε〉n such that {z} = ∪l

i=1 limε→0 Cε,i and Cε,i is 
bounded by and does not intersect the boundary of Ext(B(z, r′)) ⊂R〈ε〉n for 1 ≤ i ≤ l.
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Then for 1 ≤ i ≤ l, we have Cε,i ⊂ Ext(B(z, r′)) and is closed and bounded. By the extreme value 
theorem, Cε,i ∩ crit(Vε, π1) �= ∅. Since limε→0 Cε,i = {z}, all zε ∈ Cε,i ∩ crit(Vε, π1) �= ∅ are such that 
limε→0 zε = z, and we are done. �
Lemma 6.9. Assume f1, . . . , f s ∈R[x], F = f 21 +· · · f 2s , and ε > 0 a real infinitesimal. Let Vε := V (F −ε) ⊂
C〈ε〉n and V := limε→0 Vε ⊂ Cn with V ∩ Rn nonempty and bounded. Then crit(Vε, πi) is nonempty and 
intersects each bounded connected components of Vε ∩R〈ε〉n for all 1 ≤ i ≤ n.

Proof. Since V ∩ Rn is nonempty, there exists some nonempty connected component C ⊂ V ∩ Rn . 
Let z ∈ C . Since V ∩ Rn is bounded, there exists some r > 0 such that the C ⊂ B(z, r) ⊂ Rn and C
does not intersect the boundary of B(z, r). So by Proposition 5.5, there exist connected components 
Cε,1, . . . , Cε,l of Vε ∩ R〈ε〉n such that C = ∪l

j=1 limε→0 Cε, j and Cε, j is bounded by and does not 
intersect the boundary of Ext(B(z, r)) ⊂ R〈ε〉n for 1 ≤ j ≤ l. Thus, for 1 ≤ j ≤ l, we have Cε, j is 
closed and bounded. Hence, by Lemma 6.8, Cε, j ∩ crit(Vε, π1) �= ∅. Since by definition crit(Vε, π1) ⊂
crit(Vε, πi), we are done. �
Lemma 6.10. Let F ∈ C[x] and α = (α1, . . . , αi−1) ∈ Ci . Suppose Vi,α is the algebraic set V (F ) ∩ π−1

i−1(α)

and ϕi is the projection defined by ϕi(x) = xi . Then

crit(Vi,α,ϕi) ⊂ crit(V (F ),πi).

Proof. We recall that by definition

crit(V (F ),πi) = V

(
F ,

∂ F

∂xi+1
, . . . ,

∂ F

∂xn

)
.

By how we have defined Vi,α , crit(Vi,α, ϕi) is the algebraic set defined by the polynomials F , x1 −
α1, . . . , xi−1 − αi−1 and the maximal minors of the Jacobian matrix of the polynomials. Then in fact,

crit(Vi,α,ϕi) = V

(
F , x1 − α1, . . . , xi−1 − αi−1,

∂ F

∂xi+1
, . . . ,

∂ F

∂xn

)
and we are done. �
7. Shifting from infinitesimals to complex perturbations

In this section, we establish results in order to formulate our algorithms so they can be imple-
mented not only purely symbolically, but also in a numerical algebraic geometry context. Here we 
track our perturbed set to its limit variety by employing homotopy continuation while our perturba-
tion constant follows a complex arc towards zero.

To this end, we first shift from the paradigm of real infinitesimals to arbitrarily small real numbers, 
as established by the following result from real algebraic geometry.

Theorem 7.1. (Basu et al., 2006a, Proposition 3.17) A result holds over R〈ε〉 if and only if there exists some 
e0 ∈R such that it also holds for all e ∈ (0, e0) ∩R.

For our purposes, we also want to establish that we are able to make this switch in terms of 
witness set computations, which are done over the complex numbers. Therefore, the results in this 
section can be formulated in terms of a more general perturbation setup, based on the following 
result from Faugére et al. on perturbing the defining polynomials of an algebraic set.

Lemma 7.2. (Faugère et al., 2008, Lemma 1) Let f1, . . . , f s ∈ R[x] and fix l ≤ s and {i1, . . . , il} ⊂ {1, . . . , s}. 
Then there exists a Zariski closed subset A × E ⊂ Cs × C such that for all a := (a1, . . . , as) ∈ Rs \A and 
e ∈ R \ E, the ideal generated by the polynomials f i1 − eai1 , . . . , f il − eail is a radical equidimensional ideal 
and V ( f i1 − eai1 , . . . , f il − eail ) is either empty or smooth of dimension n − l.
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Remark 7.3. We will use these more general deformations in Sections 7, 8 and 9, where the results 
are valid over C. In the previous sections and in Section 11 we need to use a more specialized 
perturbation of the polar varieties for our results to hold over the reals. See Example 5.6 why the 
more general deformations may not work over the reals.

Using Lemma 7.2, we define a genericity assumption which holds over the complex numbers.

Definition 7.4. Consider polynomials f1, . . . , f s ∈ R[x] and point a = (a1, . . . ,as) ∈Rs . We say that 
f1, . . . f s and a satisfy Assumption (A) if

(A): There exists e0 > 0 such that for all 0 < e ≤ e0, the polynomials f1 − ea1, . . . , f s − eas generate 
a radical equidimensional ideal and V a

e := V ( f1 − ea1, . . . , f s − eas) is smooth and has dimension 
n − s.

Assumption (A) in Definition 7.4 guarantees the existence of some e0 > 0; however, in practice this 
number can be arbitrarily small. Instead of trying to compute an e0 that works for a given system 
f1, . . . , f s , the next result shows that we can choose a generic ξ ∈ C with |ξ | = 1 to replace e0 with 
ξ and e with tξ , where t ∈ (0, 1].

Proposition 7.5. Let f1, f2, . . . , f s ∈ R[x], a = (a1, . . . , as) ∈ Rs and let ε be infinitesimal. Assume that 
V a

ε := V ( f1 − εa1, . . . , f s − εas) ⊂C〈ε〉n is smooth and equidimensional of dimension n − s. Then for all but 
finitely many ξ ∈ C with |ξ | = 1 and for all t ∈ (0, 1], V a

tξ := V ( f1 − tξa1, . . . , f s − tξas) ⊂ Cn is smooth 
and equidimensional of dimension n − s and in that case we have

lim
ε→0

V a
ε = lim

t→0
V a
tξ .

Proof. First, we show that for all but a finite number of choices of ξ ∈ C, V a
ξ = V ( f1 − ξa1, . . . , f s −

ξas) is smooth by proving that the set of “bad” choices ξ is a proper Zariski closed subset of C, thus 
finite. Note that from our assumptions on V a

ε we get that f1, . . . , f s and a satisfy Assumption (A) for 
some e0 > 0. Consider the ideal using new variables x0, z and λ1, . . . , λs:

I := 〈 f (h)
1 − a1zx

deg( f1)
0 , . . . , f (h)

s − aszx
deg( fs)
0 〉

+〈(λ1∇( f1) + . . . + λs∇( f s))
(h)〉.

Here g(h) denotes the homogenization of g ∈ R[x1, . . . , xn] by the variable x0 and ∇ is the differ-
ential operator in the variables x1, . . . , xn . Thus I is bi-homogeneous in the variables (λ1, . . . λs) and 
(x0, . . . , xn). Then the projection of X(I) ⊂ Pn ×P s ×C onto C is a Zariski closed subset of C, and 
since e0 is not in the projection, the projection is not C, thus a finite set Z . Clearly, for ξ ∈ C \ Z
and for all p ∈ V a

ξ , the Jacobian of f1 − ξa1, . . . , f s − ξas at p has rank s, thus V a
ξ is smooth and 

equidimensional of dimension n − s. This also implies that for all but finitely many ξ ∈C with |ξ | = 1
and for all t ∈ (0, 1] we have that V a

tξ = V ( f1 − tξa1, . . . , f s − tξas) is smooth and equidimensional.
Fix ξ ∈ C \ Z with |ξ | = 1 so V a

tξ is smooth and equidimensional. To prove the second claim, let 
L1, . . . , Ln−s ∈ C[x] be linear polynomials such that L := V (L1, . . . , Ln−s) is a generic linear space of 
codimension n − s which intersects both lim

ε→0
V a

ε and lim
t→0

V a
tξ transversely. By our assumptions, both 

V a
ε ∩L ⊂C〈ε〉n and V a

tξ ∩L ⊂Cn are finite for any fixed t ∈ (0, 1].
Then since L does not depend on either ε or t ,

lim
ε→0

(
V a

ε ∩L
)

= lim
ε→0

V a
ε ∩L and

lim
t→0

(
V a
tξ ∩L

)
= lim

t→0
V a
tξ ∩L.
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Since L is a generic linear space which intersects both lim
ε→0

V a
ε and lim

t→0
Vtξ transversely, limε→0 V a

ε ∩
L = limt→0 V a

tξ ∩L implies limε→0 V a
ε = limt→0 V a

tξ .
So it is sufficient to prove that

lim
ε→0

(
V a

ε ∩L
)

= lim
t→0

(
V a
tξ ∩L

)
to achieve the desired result.

Let H ⊂ R[x, ε] be the system

H := H(x, ε) = [ f1 − εa1, . . . , f s − εas, L1, . . . , Ln−s] .

Let S ⊂ C〈ε〉n be the finite set of bounded solutions of H = 0, where bounded is as defined for 
Puiseux series in Definition 5.1. Then for all x(ε) ∈ S , let limε→0 x(ε) = x0 ∈ Cn . Furthermore, by the 

definition of H , limε→0 S = limε→0

(
V a

ε ∩L
)
.

Using Puiseux’s Theorem (e.g., see (Fischer, 2001, Chap. 7) and (Sommese and Wampler, 2005, 
§ 10.2, Thm. A.3.2, Cor. A.3.3)), one can ensure that each of the finitely many Puiseux series under 
consideration has a positive radius of convergence. In particular, since ε > 0 is a real infinitesimal and 
x(ε) ∈ S is bounded, each x(ε) ∈ S has an interval of convergence (0, ex) ⊂ R for some ex > 0. Choose 
e0 > 0 such that e0 < min

x∈S
ex . Now we make a switch, and instead of considering x(ε) ∈ S an element 

C〈ε〉n , we consider x as a function C → Cn which is well-defined for z ∈ C with |z| ≤ e0. Abusing 
the notation, we denote by x both the Puiseux series and the corresponding complex function.

Recall that if a pair (x∗, z∗) ∈ Cn × C has the property that H(x∗, z∗) = 0 and det J H(x∗, z∗) = 0, 
where J H is the Jacobian matrix of H with respect to the x variables, then z∗ is a critical point and 
x∗ is a branch point for H(x, z) = 0. Let C denote the set of all critical points of H(x, z) = 0. Then, 
since |S| < ∞, we know |C| < ∞.

Now let z ∈ C. Then there exists some ξz ∈C with |ξz| = 1 such that for t ∈ R, the path ξzt passes 
through z, so that x(tξz) ∈ Cn has some branching point. Let Z = {ξz : z ∈ C}, a subset of the unit 
circle in C. Since |C| < ∞, |Z | < ∞. Then, for any ξ ∈C \ Z with |ξ | = 1, we have that x(tξ) ∈ Cn for 
t ∈ (0, 1] does not pass through branching points. Since C \ Z is Zariski dense in C, the same holds 
for generic ξ ∈ C with |ξ | = 1.

So let ξ ∈C \ Z with |ξ | = 1 and Hξ ⊂Cn+1 be the homotopy defined by the system

Hξ := Hξ (x, t) = [ f1 − tξa1, . . . , f s − tξas, L1 . . . , Ln−s] .

The limit points of the solutions of Hξ are lim
t→0

(
V a
tξ ∩L

)
. Let T ⊂ Cn be the roots of Hξ (x, 1). Then 

|T | = |V a
ε ∩ L| < ∞. Furthermore, by the above argument, the homotopy paths for Hξ are exactly 

described by the points in V a
ε ∩L ⊂C〈ε〉n by replacing ε with tξ . Hence,

lim
ε→0

(
V a

ε ∩L
)

= lim
t→0

(
V a
tξ ∩L

)
. �

The following illustrates why we take ξ ∈C \R, a process generally known as the “gamma trick,” 
e.g., see (Sommese and Wampler, 2005, Chap. 7)

Example 7.6. Let f (x) = x3 − 3x2 + 2x, a = 1, and Hξ (x, t) = f (x) − tξ . For ξ = 1, since Hξ (x, 0) =
x(x −1)(x −2) = 0 has three real solutions, Hξ (x, 1) = f (x) −1 = 0 has one real solution, and Hξ (x, t)
has real coefficients, there must be a value of t ∈ (0, 1) such that H1(x, t) = 0 has a singular solution, 
namely t ≈ 0.3849. However, for, say, ξ = 1 + √−1, then Hξ (x, t) = 0 has three nonsingular solutions 
for all t ∈ [0, 1]. A similar statement holds for ξ ∈C \R with algebraic probability one.

Proposition 7.5 gives a proof of correctness for Witness Points in Limits Algorithm 2 which com-
putes a witness point set (as in Definition 2.9) of a limit with algebraic probability one. In Step (iv) 
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of Algorithm 2 we use numerical homotopy continuation method, see Bates et al. (2013) for more 
details.

Algorithm 2 WitnessPointsInLimits.
Input: f1, . . . , f s ∈R[x1, . . . , xn], a = (a1, . . . , as) ∈Rs and L = {L1, . . . , Ln−s} ⊂R[x1, . . . , xn] generic linear polynomials.
Output: flag =TRUE if V ( f1 − a1e, . . . , f s − ase) ∩ V (L) is 0-dimensional for all sufficiently small e > 0 and the finite set of 

points in W := lime→0+ (V ( f1 − a1e, . . . , f s − ase) ∩ V (L)), flag =FALSE otherwise and W = ∅.
1. Loop

(i) Choose generic ξ ∈C with |ξ | = 1.
(ii) Define Hξ (x, t) := [ f1 − tξa1, . . . , f s − tξas, L1, . . . , Ln−s].
(iii) If |V (Hξ (x, 1))| = ∞, exit loop and return flag= FALSE, W = ∅.
(iv) Compute limt→0 V (Hξ (x, t)) via a homotopy continuation, starting at t = 1.
(v) If no branch points were hit during homotopy tracking, exit loop and return flag= TRUE, W = limt→0 V (Hξ (x, t)).

8. Deflated witness systems for limits

In this section, we apply some of the main ideas from numerical algebraic geometry following 
Bates et al. (2013) to complex algebraic sets obtained as limits of perturbed positive dimensional 
algebraic set. We will use the notion of a deflated witness system:

Definition 8.1. Let V ⊂ Cn be an equidimensional algebraic set and (F , L, W ) a witness set for V as 
in Definition 2.9. Then if each irreducible component of V has multiplicity one with respect to F , F
is called a deflated witness system and (F , L, W ) is a deflated witness set for V .

When trying to compute a deflated witness system for a variety defined by a limit, difficulties 
that arise are that the limit points may be singular, arising from multiple paths converging to the 
same limit point, or that the witness system f = ( f1, . . . , f s) for the original algebraic set V ( f ) is 
not a witness system for limt→0 V a

tξ = limt→0 V ( f1 − a1tξ, . . . , f s − astξ). This is demonstrated in the 
following example.

Example 8.2. Consider f (x, y) = (xy, xy − x) ⊂ C[x, y] and a = (1, 0). Then for ξ = 1 we get 
V a
tξ = V (xy − t, xy − x), so for all fixed t ∈ (0, 1] we get V a

tξ = {(t, 1)}, so limt→0 V a
tξ = {(0, 1)}. But 

V ( f (x, y)) = V (x) is not a witness system for {(0, 1)}. We show that applying a straightforward isosin-
gular deflation to f does not provide a deflated witness system for limt→0 V a

tξ = {(0, 1)}. We compute

J f (x, y) =
[

y x
y − 1 x

]
.

For p = (0, 1), rank( J f (0, 1)) = 1, so the determinant of J f (0, 1). Thus isosingular deflation gives 
F = [xy, xy − x, x]. But V (F ) = V (x), so F is not a witness system for {(0, 1)}.

To overcome these difficulties, we will use Theorem 2.13 to compute a deflated witness system 
for the intersection of V ( f1 − a1tξ, . . . , f s − astξ) ∩ V (t) ⊂ Cn+1 (considering t as an extra complex 
variable, but ξ ∈ C is fixed). The Deflated Witness System Algorithm 3 computes a deflated witness 
system for irreducible components of a variety defined as a limit.

Example 8.3 (Example 8.2 cont). We apply Algorithm 3 for this example. We have to do isosingular 
deflation of F0(x, y, t) := (xy − t, xy − x), as in Steps (1) and (2). Here, we compute

J F0(x, y, t) =
[

y x −1
y − 1 x 0

]
.

For q = (0, 1, 0), rank( J F0(0, 1, 0)) = 1. We get in Step (2) a deflated system F (x, y, t) = [xy, xy −
x, x, y − 1]. Since G0(x, y) := F is already deflated for p = (0, 1), G = G0 is the output.
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Algorithm 3 DeflatedWitnessSystem.
Input: f1, . . . , f s ∈ R[x], a = (a1, . . . , as) ∈ Rs , and p ∈ V := lime→0+ V ( f1 − a1e, . . . , f s − ase), a generic point on a unique 

irreducible component V p of V .
Output: A deflated witness system G ⊂R[x] for V p .

1. Define F0(x, t) := ( f1 − a1t, . . . , f s − ast) ∈R[x, t]s and q := (p, 0) ∈Rn+1.
2. F := IsosingularDeflation(F0, q). // See (Hauenstein and Wampler, 2013, Alg. 6.3)
3. Define G0(x) := F (x, 0).
4. G := IsosingularDeflation(G0, p). // See (Hauenstein and Wampler, 2013, Alg. 6.3)
5. Return G .

Theorem 8.4. Let f1, . . . , f s , a, and p as in the input of Algorithm 3. Then G, computed by Algorithm 3, 
satisfies the output specifications.

Proof. Since V p is an irreducible component of V , there exists an irreducible component Z ⊂
V (F0(x, t)) ⊂ Cn+1 such that V p × {0} is an irreducible component of Z ∩ V (t) which is an intersec-
tion. Hence, one can apply the isosingular deflation approach applied to intersections in Theorem 2.13. 
Although Theorem 2.13 would deflate H0(x, t, t′) := (F0(x, t), t′) at q′ := (p, 0, 0), the simplicity of the 
intersection together with t′ contained in H0 easily shows that one obtains an equivalent deflation as 
deflating F0(x, t) at q = (p, 0), resulting in the system F (x, t). Therefore, V p must be an irreducible 
component of V (F (x, 0)) so G0(x) := F (x, 0) is a witness system for V p . Since G0 need not be a 
deflated witness system for V p , one deflates G0 at p to yield a deflated witness system G for V p . �
9. Computation of g

The final key tool required to compute a real smooth point on every bounded connected compo-
nent of an algebraic set V is a “well-chosen” polynomial g that satisfies the conditions of Theorem 3.1, 
i.e., Sing(V ) ∩ Rn ⊂ V (g) and dim(V ∩ V (g)) < dim(V ). There exist symbolic methods to compute 
such a g for an equidimensional variety V with dim(V ) = n − s. For example, (Safey El Din et al., 2018, 
Lemma 4.3) computes the defining equation ω ∈ R[x1, . . . , xn−s+1] of the projection πn−s+1(V A) of 
a generic linear transformation V A of V such that this projection is a hypersurface. Then, g can be 
taken to be one of the partial derivatives of ω. This idea could be extended to the case when V is not 
equidimensional using infinitesimal deformations and limits (cf., Safey El Din and Tsigaridas (2018)). 
In our Computation of g Algorithm 4, we provide a new approach based on isosingular deflation, 
as discussed in Subsection 2.6, which computes several g ’s depending on the isosingular deflation 
sequence of the irreducible components.

Theorem 9.1. Let f1, . . . , f s , a, V a
e , and V be as in the input and output specifications of Algorithm 4. 

Assume that V a
e := V ( f1 − a1e, . . . , f s − ase) satisfies Assumption (A). Then Algorithm 4 is correct.

Proof. By our assumption on the genericity of L and Assumption (A), W is finite and each point 
p ∈ W is a generic point of a unique irreducible components V p of V containing p. Based on the 
output of Algorithm 3, assume that for any p ∈ W , in Step (3d) we compute G j ⊂ R[x] such that the 
irreducible component V p ⊂ V containing p is an irreducible component of V (G j), f1, . . . , f s ∈ G j , 
G j(p) = 0 and rank J G j(p) = s. Then, G j ⊂ R[x] computed in Step (3d) deflates all generic points 
of V p . Step (4) adds all other points from W which are deflated by G j . In particular, every other 
point on V p contained in W will be added to W j . Hence, (G j, L, W j) is a deflated witness set for 
a union of irreducible components of V , denoted by V j , proving (ii). Since 

⋃
j W j = W , we also get ⋃

j V j = V , which proves (iii). If y ∈ Sing(V j), then rank( J G j(y)) < s so all s × s minors of J G j(y)
vanish. Hence, g j(y) = det(M(y)) = 0 proving (iv). Conversely, for any p′ ∈ W j , some s × s minor 
of J G j(p′) does not vanish at p′ . Since g j is a generic choice of combinations of all such minors, 
g j(p′) �= 0 for all p′ ∈ W j . By Assumption (A), V = lime→0 V a

e is equidimensional of dimension n − s, 
so for all p′ ∈ W , dim V p′ = n − s. Since g j does not vanish identically on V p′ for any p′ ∈ W j , we get 
dim(V j ∩ V (g j)) < n − s, proving (v).
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Algorithm 4 ComputationOfG.
Input: f1, . . . , f s ∈R[x], a = (a1, . . . , as) ∈Rs .
Output:

{(
g j , (G j , L,W j)

) : j = 1, . . . , r
}

such that for all i �= j ∈ {1, . . . , r}, V a
e := V ( f1 − a1e, . . . , f s − ase) and V :=

lime→0+ V a
e :

(i) g j ∈R[x], G j , L ⊂R[x], and W j ⊂ V .
(ii) (G j , L, W j) is a deflated witness set of some V j ⊂ V , where V j is a union of irreducible components of V ;
(iii) V =⋃r

j=1 V j

(iv) Sing(V j) ⊆ V (g j)

(v) dim(V j ∩ V (g j)) < n − s
(vi) dim(Vi ∩ V j) < n − s and Vi ∩ V j ⊆ V (g j).

1. Loop
(a) Choose a generic system L ⊂R[x] of n − s linear polynomials.
(b) (flag, W ) := WitnessPointsInLimits({ f1, . . . , f s}, a, L). // See Algorithm 2
(c) If flag =TRUE, exit loop.

2. Set j := 1.
3. Loop

(a) Pick some p ∈ W .
(b) W j := {p}.
(c) Update W := W \ {p}.
(d) G j := DeflatedWitnessSystem({ f1, . . . , f s}, a, p). // See Algorithm 3

// G j ⊂ R[x] is a witness system for the irreducible component V p ⊂ V con-
taining p such that f1, . . . , f s ∈ G j, G j(p) = 0 and rank J G j(p) = s.

(e) For all p′ ∈ W
If G j(p′) = 0 and rank J G j(p′) = s, then

Update W j := W j ∪ {p′} and W := W \ {p′}.
(f) Compute g j(x) := det(M(x)), where M is a generic rational linear combination of all s × s submatrices of J G j(x).
(g) If W �= ∅, increment j := j + 1.

To prove the first claim in (vi), note that each Vi is a union of (n − s)-dimensional irreducible 
components of V and sample points from the irreducible components of V are uniquely assigned to 
one W j . Then for i �= j, Vi and V j cannot share an irreducible component, so their intersection is 
lower dimensional.

To prove the second claim in (vi) we use Theorem 2.12 as follows. Let y ∈ Vi ∩ V j . Suppose 
that X is an irreducible component of Vi and Y is an irreducible component of V j such that 
y ∈ X ∩ Y . Let ξ ∈ C be generic with |ξ | = 1, t a complex variable, and denote f aξ = f aξ (x, t) :=
( f1 − a1tξ, . . . , f s − astξ). Then, X × {0} and Y × {0} are irreducible varieties of Cn+1 and both are 
subsets of V ( f aξ ) ⊂ Cn+1. Therefore, each is contained in a unique isosingular set of f aξ denoted by 
Iso f aξ

(X × {0}) and Iso f aξ
(Y × {0}), respectively. Let Fi(x, t) and F j(x, t) be their corresponding de-

flated witness systems, respectively. If Fi = F j , i.e. the two isosingular sets of f aξ are the same, then 
IsoF j(x,0)(X) �= IsoF j(x,0)(Y ) (otherwise X = Y ) so y ∈ SingF j(x,0)(Y ). Note that by the Deflated Wit-

ness System Algorithm 3, G j(x) is the deflation of F j(x, 0) at a generic point of V j . This implies by 
Theorem 2.12 that y ∈ SingG j

(Y ) and g j(y) = 0.
If Fi �= F j , then (y, 0) is in the intersection of two different isosingular sets so (y, 0) has a 

different deflation sequence than a generic point in Y × {0}, i.e., (y, 0) ∈ Sing f aξ
(Y × {0}). By The-

orem 2.12, we have that (y, 0) ∈ SingF j
(Y × {0}). Denoting the Jacobian by J := J F j(x, t), we have 

that rank J (y, 0) < s with rank J (y′, 0) = s for all generic y′ ∈ Y . Consider J ′ := J F j(x, 0). (i.e. col-
umn of J corresponding to ∂t removed). Note that J f (x) is a submatrix of J ′ , since f ⊂ F j(x, 0). If 
rank J ′(y′) = s for generic y′ ∈ Y , then G j = F j(x, 0), y ∈ SingG j

(Y ), and g j(y) = 0. If rank J ′(y′) < s

for generic y′ ∈ Y , we claim that rank J ′(y) < rank J ′(y′) for generic y′ ∈ Y . First note that both 
rank J f (y) ≤ s − 1 and rank J f (y′) ≤ s − 1 for f = ( f1, . . . , f s), so without loss of generality (after 
maybe some Gaussian elimination on these Jacobian matrices), we assume that ∇ f1(y) = ∇ f1(y′) = 0. 
Note that the ∂t column of J = J F j(x, t) has the only possibly non-zero constant entries in the rows 
corresponding to f1 − a1tξ, . . . , f s − astξ . Then for a generic y′ ∈ Y we have rank J ′(y′) = s − 1, since 
rank J (y′, 0) = s, thus among all s × s minors of J (y′, 0) some has to be non-zero, and the only 
possible non-zeros are the ones that are a1 times the (s − 1) × (s − 1) minors of J ′(y′), thus we 
must have a1 �= 0 and rank J ′(y′) = s − 1. On the other hand, the s × s minors of J (y, 0) contain all 
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(s − 1) × (s − 1) minors of J ′(y) times a1, so all these minors of J ′(y) must be zero. This implies that 
rank J ′(y) < s − 1. Thus, rank J ′(y) < rank J ′(y′). In particular, y ∈ SingF j(x,0)(Y ) and by Theorem 2.12, 
y ∈ SingG j

(Y ) which implies that g j(y) = 0. This proves (vi), and the theorem. �
One advantage of the approach using isosingular deflation is that, in many problems, the number 

of iterations in the deflation process is a small constant (zero or one). In this case, the degrees of 
the polynomials in the output of both Deflated Witness Set Algorithm 3 and Computation of g 
Algorithm 4 are comparable to the maximal degree of the input polynomials f1, . . . , f s . On the other 
hand, the degree of the polynomial ω ∈ R[x1, . . . , xn−s+1] computed in the symbolic approach in 
(Safey El Din et al., 2018, Lemma 4.3) mentioned at the beginning of this section is the degree of V
bounded by the product of the degrees of the input polynomials. Nonetheless, the disadvantage of 
our approach is that in the worst case, we need as many iterations in the deflation as the multiplicity 
of the points and this may result polynomials with higher degree than the degree of ω in (Safey El 
Din et al., 2018, Lemma 4.3). We have the following bound on the degree of g as a function on the 
number of iterations in the deflation:

Proposition 9.2. Let f = ( f1, . . . , f s) and a = (a1, . . . , as) ∈ Rs such that V a
e := V ( f1 − a1e, . . . , f s − ase)

satisfies Assumption (A). Let D := maxsi=1{deg( f i)} and fix p ∈ V := lime→0 V a
e . If Algorithm 3 takes k

iterations of the isosingular deflation to output G ⊂ R[x], the degrees of the polynomials in G are bounded 
by skD. Furthermore, if g(x) := det(M(x)) ∈ R[x] where M(x) is a s × s submatrix of J G(x), then deg(g) ≤
sk+1D.

Proof. The first claim follows from the fact that each iteration of the deflation algorithm adds the 
minors of the Jacobian of the polynomials in the previous iteration, and these minors have size less 
than s. Thus, the degrees of polynomials added to the system in each iteration are at most s times 
the degrees of the polynomials in the previous iteration. The second claim follows from the first. �
10. Finite critical points of g

In this section, we establish a key result characterizing when a function g will have a finite number 
of critical points over an algebraic set. This is an adaptation of Theorem 36 and Lemma 37 from Hong 
et al. (2020).

Definition 10.1. Given f1, . . . , f s, g ∈R[x]. We say that x ∈ Cn is a critical point of g for V ( f1, . . . , f s)
if x ∈ V ( f1, . . . , f s) and

∇g(x) ∈ spanC (∇ f1(x), . . . ,∇ f s(x)) ,

where ∇ denotes the gradient operation.

We give the following example to illustrate the possibility of a g having infinite critical points over 
a smooth V , to motivate why the rest of this section is necessary.

Example 10.2. Let f = x2 + 4y2 − 4xy + 2 and g = x. Then there are an infinite number critical points 

of g over the algebraic set V ( f ), defined by (x, y) =
(
x, x2

)
.

We need the following corollary of Sard’s theorem from (Sommese and Wampler, 2005, Theorem 
A.6.1). It uses the notion of quasi-projective sets, which are the intersections of a Zariski-open and a 
Zariski-closed subset inside some projective space. Let Xreg denote the set of smooth points in X .

Theorem 10.3. Let f (x) denote a system of n algebraic functions on an irreducible quasiprojective set X. Then 
there is a Zariski openset U ⊂ f (X) ⊂ Cn such that for y ∈ U , V ( f (x) − y) ∩ Xreg is smooth of dimension 
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equal to the corank of f , i.e. dim X −dim f (X). Moreover, the Jacobian matrix of f is of rank equal to dim X −
dim f (X) at all points of V ( f (x) − y) ∩ Xreg .

Theorem 10.4. Let f1, . . . , f s ∈ R[x] and assume that V ( f1, . . . , f s) ⊂ Cn is a smooth equidimensional al-
gebraic set of dimension n − s. Let g0 ∈ R[x]. Then there exists a Zariski closed proper subset S of Cn with 
dim(S) < n such that for all c = (c1, . . . , cn) ∈Rn \S the polynomial

g := g0 ·
(
(x1 − c1)

2 + · · · + (xn − cn)
2 + 1

)
∈R[x]

has finitely many critical points for V ( f1, . . . , f s) where g does not vanish.

Proof. Let V be an irreducible component of V ( f1, . . . , f s). By our assumptions, dim(V ) = n −s and V
is smooth. We will prove that g has finitely many critical points for V ( f1, . . . , f s) that lie in V \ V (g), 
and since this will be true for all irreducible components of V ( f1, . . . , f s), we get the claim of the 
theorem.

We can assume that

dim(V ∩ V (g)) < n − s

otherwise, since V is irreducible, V ⊂ V (g) and there is nothing to prove.
To simplify the notation, define for c = (c1, . . . , cn) ∈Rn

Uc(x) := (x1 − c1)
2 + · · · + (xn − cn)

2 + 1.

Then

∇g(x) = Uc(x)∇g0(x) + g0(x)∇Uc(x)

Thus, a point x ∈ V is a critical point of g for V ( f1, . . . , f s) if and only if

Uc(x)∇g0(x) + g0(x)∇Uc(x) ∈ spanC (∇ f1(x), . . . ,∇ f s(x)) ,

This implies that x ∈ V is a critical point of g for V ( f1, . . . , f s) such that g(x) �= 0 if and only if there 
exists λ = (λ1, . . . , λs) ∈Cs such that⎡

⎢⎣
c1
...

cn

⎤
⎥⎦= Uc(x)

g0(x)

⎡
⎢⎣

∂x1 g0(x)
...

∂xn g0(x)

⎤
⎥⎦+ 2

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦− λ1

⎡
⎢⎣

∂x1 f1(x)
...

∂xn f1(x)

⎤
⎥⎦ · · · − λs

⎡
⎢⎣

∂x1 f s(x)
...

∂xn fs(x)

⎤
⎥⎦ .

Let

W := {(x, t, λ) ∈ V ×Cs+1 | g(x) �= 0, t �= 0}
and define pi : W →C for i = 1, . . . , n,

pi(x, t, λ) := t∂xi g0(x) + 2xi − λ1∂xi f1(x) − · · · − λs∂xi f s(x).

Thus, x ∈ V \ V (g) is a critical point of g for V ( f1, . . . , f s) if and only if there exists (t, λ) ∈ Cs+1

such that (x, t, λ) satisfies

t = Uc(x)

g0(x)
and pi(x, t, λ) = ci i = 1, . . . ,n.

First we prove that for p = (p1, . . . , pn) : W → Cn , p is dominant. For all x∗ ∈ V and for t = λ1 =
· · · = λs = 0 we have

JW p(x∗,0,0) = [2 · In−s|∇g0(x
∗)| − J f (x∗)],
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where JW p is the Jacobian of p in a local parametrization of W at (x∗, 0, 0). By our assumption on 
V , rank J f (x∗) = s, thus rank JW p(x∗, 0, 0) ≥ n. This implies that the image of p is n-dimensional, thus 
p is dominant. Since W inherits the irreducibility and smoothness of V , we get that p(W ) = Cn .

We can apply Theorem 10.3 for p, so there exists a Zariski closed subset S of Cn and such that 
for all c ∈ Cn \S for W1 := {(x, t, λ) ∈ W | p(x, t, λ) = c} we have

dim(W1) = dim(W ) − n = 1

using that dim(W ) = n − s + s + 1 = n + 1 by our assumption that dim(V ∩ V (g)) < n − s.
Fix c ∈ Rn \S. Next we show that

dim {(x, t, λ) ∈ W1 : Uc(x) − tg0(x) = 0} = 0.

If the above dimension is not 0 then 0 is a critical value of the function q(x, t) := Uc(x) − tg0(x) :
W1 →C. If we have such a critical value, then there exists (x∗, t∗, λ∗) ∈ W1 such that ∇q(x∗, t∗) = 0, 
i.e. [

∂x1q(x
∗, t∗), . . . ∂xnq(x∗, t∗), g0(x∗)

]= [0, . . . ,0,0] .

Thus we must have g0(x∗) = 0. However, W1 ⊂ W , so for (x∗, t∗, λ∗) ∈ W1 we have g0(x∗) �= 0, a 
contradiction.

This implies that for any c ∈ Rn \ S, the solution set of pi(x, t, λ) = ci for i = 1, . . . , n and the 
equation t = Uc(x)

g0(x)
is a zero dimensional subset Z ⊂ W . The set {x : (x, t, λ) ∈ Z} is the finite set of 

critical points of g for V ( f1, . . . , f s) in V \ V (g). �
11. Computation of real smooth points – general case

After introducing all necessary theory and subroutines for our purposes, now we are ready to 
return to our main topic, computing smooth points on general real algebraic varieties.

We first define two genericity assumptions, informed by our previous results, in particular Propo-
sition 6.6 and Theorem 10.4. Recall that crit(V , πi) is the polar variety of the algebraic set V with 
respect to the projection πi as in Definition 6.1.

Definition 11.1. Consider polynomial F ∈ R[x] with V (F ) ∩ Rn bounded, matrix A ∈ GLn(R). Define 
V A = V (F A) and V A

e := V (F A − e) ⊂ Cn for some constant e > 0. We say that F and A satisfy 
Assumption (B) if:

(1): there exists e0 > 0 such that for all 0 < e ≤ e0 and all 1 ≤ i ≤ n, crit(V A
e , πi) is either empty or 

is smooth and equidimensional with complex dimension i − 1;
(2): for all p ∈ V A ∩ Rn , π−1

d (πd(p)) ∩ (V A ∩ Rn) is finite, where d is greater than or equal to the 
local real dimension of V A at p;

Definition 11.2. Consider polynomials F , g ∈ R[x] and constant c = (c1, . . . , cn) ∈ Rn . Define Ve :=
V (F − e) ⊂ Cn for some constant e > 0. We say that F , g and c satisfy Assumption (C) if:

(C): There exists e0 > 0 such that for all 0 < e ≤ e0, all 1 ≤ i ≤ n, the polynomial

g := g ·
(
(x1 − c1)

2 + · · · + (xn − cn)
2 + 1

)
∈R[x]

has finitely many critical points for the polar variety crit(Ve, πi) where g does not vanish.

The following theorem and corresponding proof establish the correctness of the main algorithm of 
the paper, Real Smooth Point Algorithm 5.
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Theorem 11.3. Fix n, i, f1, . . . , f s as in the input of Algorithm 5 such that V ( f1, . . . , f s) ∩ Rn is bounded. 
Assume A ∈ GLn(R) such that A and F = f 21 + · · · + f 2s satisfy Assumption (B) as in Definition 11.1. Also, 
for each j = 1, . . . , r, in Step (4) of Algorithm 5 we assume that F A, g j and c satisfy Assumption (C) as in 
Definition 11.2. Then Algorithm 5 is correct. Furthermore, let Z the output of Algorithm 5. If Z = ∅, then 
V ( f1, . . . , f s) ∩Rn has no connected components of dimension i − 1. If Z �= ∅, then V ( f1, . . . , f s) ∩Rn has 
some connected components of dimension at least i − 1.

Proof. Fix 1 ≤ i ≤ n. Using the notation V A
e := V (F A − e), by Assumption (B), crit(V A

e , πi) is smooth 
and equidimensional of dimension i − 1 for all sufficiently small e > 0. Only locally in this proof we 
use the simplified notation

V := lim
e→0

crit(V A
e ,πi) ⊂Cn

without designating its dependence on i or A, otherwise the indices would become too involved. By 
Proposition 5.5 (over C instead of R), the set V is a Zariski closed set that is either equidimensional 
of dimension i −1 or empty. Assume that {(g j, (G j, L, W j)) : j = 1, ..., r} satisfies output specifications 
(i)-(vi) of Algorithm 4. Fix j ∈ {1, . . . , r} and let V j ⊂ V be the union of irreducible components of 
V with witness set (G j, L, W j). First we establish that U j defined in Step (4a) is finite. We note 
that crit(V A

e , πi) is smooth and equidimensional for all sufficiently small e > 0. If |U j | = ∞ then we 
redefine g j with a generic c ∈ Rn . Using Assumption (C), we get that the redefined U j is finite and 
the loop will terminate.

Next, since dim(V j ∩ V (g j)) < i − 1 by (v) in Algorithm 4, either (V j \ V (g j)) ∩ Rn = ∅ or for 
each bounded connected component C of V j ∩ Rn where g j is not identically zero, there exists z ∈
U j ∩ C such that g j(z) �= 0. Suppose (V j \ V (g j)) ∩Rn �= ∅. Let C1, . . . , Ct ⊂ V j ∩Rn be the bounded 
connected components of V j ∩ Rn where g j is not identically zero. Fix m ∈ {1, . . . , t}. Since each 
Cm is compact, the distance from Cm to Ck is positive for each m �= k. Also, for all sufficiently small 
e, V A

e ∩ Rn is also compact. Since Cm ⊂ V ∩ Rn is compact, Proposition 5.5 shows that there exist 
connected components C (e)

m,1, . . . , C
(e)
m,sm of V A

e ∩ Rn for all sufficiently small e > 0 such that Cm =⋃sm
l=1 lime→0+ C (e)

m,l , each C (e)
m,l is bounded, and since Cm and C j has positive distance for m �= j, also by 

Proposition 5.5 we have that

∪sm
l=1C

(e)
m,l ∩ ∪s j

l=1C
(e)
j,l = ∅

for all j �= m. For each l = 1, . . . , sm , let S(e)
m,l := πx(V (L( j))) ∩ C (e)

m,l . By Lemma 3.2, S(e)
m,l �= ∅ and it 

contains all points in C (e)
m,l where g j takes its extreme values. Let Sm :=⋃sm

l=1 lime→0S(e)
m,l . Since S

(e)
m,l

is bounded for all sufficiently small e, none of the limit points escape to infinity. Suppose that for 
all z ∈ Sm we have g j(z) = 0. Since Cm is compact, by the Extreme Value Theorem, g j attains both a 
minimum and a maximum on Cm . Since g j is not identically zero on Cm , either the minimum or the 
maximum value of g j on Cm must be nonzero. Let z∗ ∈ Cm such that |g j(z∗)| > 0. Let z∗e ∈ C (e)

m,l for 
some l = 1, . . . , sm such that lime→0 z∗e = z∗ . Then for any z ∈ Sm , if ze ∈ S(e)

m such that lime→0 ze = z, 
then for sufficiently small e we have that |g j(z∗e )| > |g j(ze)| by lime→0 g j(ze) = g j(z) = 0. Since Sm is 
finite, we can choose a common e0 value for all z ∈ Sm so that if 0 < e < e0 then |g j(z∗e )| > |g j(ze)|
for all ze ∈ S(e)

m . Thus, S(e)
m could not contain all points of C (e)

m,l for l = 1, . . . , si where g j takes its 

extreme values, a contradiction. This proves πx

(
lime→0 V (L( j)

e )
)

∩ Cm contains a point z ∈ Cm such 
that g j(z) �= 0, i.e. T j ∩ Cm �= ∅.

Next, let Z j = T j ∩ V j and Z =⋃r
j=1 Z j as in Steps (4) and (5). Since V =⋃r

j=1 V j and for each 
j = 1, . . . , r, Sing(V j) ⊂ V (g j), Vk ∩ V j ⊂ V (g j) for all k �= j by (iii)-(vi) in Algorithm 4, these points 
are smooth in V j ∩ Rn , and also smooth in V ∩ Rn . Thus if Z �= ∅, by Theorem 2.4 and Propo-
sition 6.7, V ( f1, . . . , f s) ∩ Rn must have dimension ≥ i − 1 connected components. Conversely, if 
V ( f1, . . . , f s) ∩ Rn = V (F ) ∩ Rn has a bounded connected component of dimension i − 1, then by 
Proposition 6.7 we have V (F ) ∩Rn = V , so there exists j ∈ {1, . . . , r} such that V j ∩Rn has a bounded 
207



K. Harris, J.D. Hauenstein and A. Szanto Journal of Symbolic Computation 116 (2023) 183–212
connected component of dimension i − 1. By Theorem 2.4, this component has real smooth points. 
In fact, these real smooth points form a semi-algebraic set that has also dimension i − 1. However, 
since dim

(
V j ∩ V (g j)

)
< i − 1, g j does not vanish on all real smooth points of this component, but it 

vanishes on the singular points. By the above argument T j ∩ V j must contain points where g j is not 
zero, thus Z j and Z are not empty. �
Example 11.4. Consider f1, f2 ∈ R[x1, x2, x3] where

f1 = (x2 + 1)(x2 + y2 + z2 − 1) and f2 = (x2 + 1)(x+ y + z − 1).

Clearly, V ( f1, f2) is not equidimensional, but V ( f1, f2) ∩ R3 is compact of dimension 1. With a =
(1, 1), the limit variety V is a curve with two irreducible components: V1 = V (x2 + y2 + z2 − 1, x +
y + z − 1) and V2 = V (x2 + 1, x2 + y2 + z2 − x − y − z). We utilize Algorithm 5 to compute a 
smooth point on this real curve. Using g1 = x − y and g2 = x(2y − 1), respectively, one obtains S1 =
{(1 ± √

3, 1 ∓ √
3, 1)/3} consisting of two smooth points on V1 ∩R3 and S2 = ∅.

Using Proposition 9.2, we can bound the number of homotopy paths followed in Step (3) in 
the Real Smooth Point Algorithm 5, which is the bottleneck of our method. Note that the num-
ber of iterations r is at most deg(V ) ≤ Dn where D := maxsi=1{deg( f i)}. Thus the Membership 
Test Algorithm 1 utilized in Step (4) of the Real Smooth Point Algorithm 5 follows at most 
|W j | = deg(V j) ≤ deg(V ) ≤ Dn homotopy paths.

Algorithm 5 RealSmoothPoint.
Input: f = ( f1, . . . , f s) ⊂R [x1, . . . , xn], i ∈ {1, . . . ,n}, n ≥ 2.
Output: Z ⊂Rn , a finite set containing smooth points in each (i − 1)-dimensional bounded connected component of VR ( f )

1. Define F := f 21 + · · · + f 2s and e1 := (1, 0, . . . , 0).
2. Choose generic A ∈ GLn

(
R
)
.

3. {(g1, D1) , . . . , (gr , Dr)} := ComputationOfG
(
F A , ∂ F A

∂xi+1
, . . . , ∂ F A

∂xn
,e1

)
. // See Algorithm 4

// D j is a deflated witness set for some V j a union of irreducible components 
of lime→0+ crit(V A

e , πi) where crit(V A
e , πi) := V (F A − e, ∂ F

∂xi+1
, . . . , ∂ F

∂xn
) for e a parameter.

4. For j = 1, . . . , r
(a) Loop

L( j) :=
{
F A , ∂ F A

∂xi+1
, . . . , ∂ F A

∂xn

}
∪
{

∂ g j
∂xk

+ λ0
∂ F A

∂xk
+

n∑
t=i+1

λt
∂2 F A

∂xt ∂xk
: k = 1, . . . ,n

}
.

// L( j) is the Lagrange multiplier system in variables
x1, . . . , xn, λ0, λ1, . . . , λs.
(flag, U j) :=WitnessPointsInLimits

(
L( j),e1,∅

)
. // See Algorithm 2

If flag =TRUE, exit loop.
Choose generic c ∈Rn .
g j := g j ·

(
(x1 − c1)2 + · · · (xn − cn)2 + 1

)
.

Restart loop with g j := g j .
(b) Compute T j := πx(U j) \ V (g j) ∩Rn . // πx projection onto x coordinates
(c) Set Z j := ∅.
(d) For each p ∈ T j

If MembershipTest
(
p, D j

)= TRUE, then // See Algorithm 1
Z j := Z j ∪ {p}.

5. Return Z :=⋃r
j=1 Z j .

Corollary 11.5. Fix i ∈ {1, . . . , n}. Let f1, . . . , f s ∈ R[x], A ∈ GLn(R) such that A and F = f 21 + · · · + f 2s
satisfy Assumption (B). Assume that for some fixed j ∈ {1, . . . , r}, the zero-dimensional polynomial system 
L( j) as in Algorithm 5 Step (4a) is zero-dimensional. Then, the number of complex roots of L( j) is bounded by 
deg(g j)

n(2D)n−i+1 ≤ (n − i +1)(k j+1)n(2D)2n−i+1 , where D := maxsi=1{deg( f i)}, assuming that deg(g j) ≥
2D, and k j is the number of iterations of the isosingular deflation needed to compute G j using Algorithm 3.
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Proof. In Step 3 we input n − i + 1 polynomials of degrees at most 2D to Algorithm 4. By Proposi-
tion 9.2 with s = n − i + 1, we get that deg(g j) ≤ (n − i + 1)k j+1(2D) for all j = 1, . . . , r. Then the 
defining equations of L( j) include n − i + 1 polynomials of degree at most 2D and n polynomials of 
degree at most deg(g j) (assuming that deg(g j) ≥ 2D). The Bezout bound for the number of common 
roots of L( j) gives the claim of the Corollary. �
12. Numerical real dimension algorithm

Our real dimension algorithm is as follows.

Algorithm 6 NumericalRealDimension.
Input: f1, . . . , f s ∈R[x1, . . . , xn] not all zero, such that V ( f1, . . . , f s) ∩Rn is bounded and n ≥ 2.
Output: The real dimension of V ( f1, . . . , f s) ∩Rn .

1. Let i := n.
2. Loop

(a) S := RealSmoothPoint( f1, . . . , f s, i). // See Algorithm 5
// S ⊂Rn contains smooth points in V ( f1, . . . , f s) ∩Rn.

(b) If S �= ∅, exit loop and return i − 1.
(c) Increment i := i − 1.
(d) If i = 0, exit loop and return −1.

Theorem 12.1. Let n ≥ 2, f1, . . . , f s ∈ R[x] such that V ( f1, . . . , f s) ∩ Rn is bounded. Assume that the con-
ditions of Theorem 11.3 are satisfied for 1 ≤ i ≤ n. Then Algorithm 6 is correct.

Proof. By assumption, Theorem 11.3 gives the correctness of Real Smooth Point Algorithm 5 in Step 
(2a). We prove by induction on n − i < n that we have the following loop invariant in Step (2): 
dim(V ( f1, . . . , f s) ∩ Rn) ≤ i − 1. This is true when n − i = 0. Assume it is true for 0 ≤ n − i < n, i.e. 
dim(V ( f1, . . . , f s) ∩ Rn) ≤ i − 1. In Step (2b) if S �= ∅ then by Theorem 11.3, V ( f1, . . . , f s) ∩ Rn has 
some connected components of dimension at least i − 1. By the inductive hypothesis, we get that this 
dimension must be equal to i − 1, so that is the real dimension of V ( f1, . . . , f s) that we return and 
exit the loop. Otherwise, we have S = ∅. We claim that in this case if i > 1 then dim(V ( f1, . . . , f s) ∩
Rn) < i − 1. Since S = ∅, Theorem 11.3 implies that there are no connected components of dimension 
i −1 in V ( f1, . . . , f s) ∩Rn . Again, by the inductive hypothesis, we get that dim(V ( f1, . . . , f s) ∩Rn) <
i − 1, maintaining the loop invariant. In particular, if i = 1 this implies that V ( f1, . . . , f s) ∩ Rn = ∅, 
i.e. the dimension is −1 by convention. �
Example 12.2. The Whitney umbrella is a real algebraic set consisting of a 2-dimensional umbrella-
like surface with a 1-dimensional handle along the z-axis and defined by f1 = x2 − y2z. Since the 
surface is not compact, we add f2 = x2 + y2 + z2 + w2 − 4 following Proposition 2.7. g = x satisfies 
the requirements of Theorem 3.1 and results in the red smooth points shown in Fig. 3(a), confirming 
the real dimension is two.

To instead determine the local real dimension of the handle of the umbrella, we localize our com-
putations by taking f2 = x2 + y2 + (z + 1)2 + w2 − 1

4 . As expected, an optimization using g = z + 1
results in no smooth real points. We return to Step 2 and add the equation defining our next polar 
variety, namely f3 = 2y3 − 4yz2 − 4yz. Optimizing the new system with respect to g = z + 1 yields 
the smooth real point on the handle shown in Fig. 3(b), confirming the real dimension of the handle 
is one.

13. Implementation on a benchmark family of problems

A benchmark family that appears in the papers Bannwarth and Safey El Din (2015) and Lairez and 
Safey El Din (2021) are hypersurfaces V ( fn) ⊂Cn for n ≥ 3 such that
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Fig. 3. Whitney umbrella.

Table 1
Summary of benchmark problem (2) for 
5 ≤ n ≤ 9.

n dim V ( fn) ∩Rn Time (min)
5 2 3.63
6 2 5.73
7 2 34.81
8 2 159.81
9 2 2675.25

fn(x) =
⎛
⎝ n∑

j=1

x2j

⎞
⎠

2

− 4
n∑
j=1

(
x jx j+1

)2 (2)

where xn+1 = x1. Since fn is homogeneous, one knows dim V ( fn) ∩ Rn = dim(V ( fn, sn) ∩ Rn) + 1
where sn =∑n

j=1 x
2
j − 1 in which V ( fn, sn) ∩Rn is compact. The cases 3 ≤ n ≤ 6 were solved in Ban-

nwarth and Safey El Din (2015), which were improved in Lairez and Safey El Din (2021) where they 
consider the cases 3 ≤ n ≤ 8. Here we consider the cases 3 ≤ n ≤ 9. All code used in these computa-
tions is available at dx .doi .org /10 .7274 /r0 -5c1t -jw53 with the timings reported using Bertini (Bates 
et al. (2006)) on an AMD Opteron 6378 2.4 GHz processor using one (serial) or 64 (parallel) cores.

For n = 3 with g = ∂ f3/∂x1, one obtains smooth points on V ( f3) ∩ R3 thereby showing 
dim V ( f3) ∩R3 = 2 in about a second in serial.

For n = 4, V ( f4) has multiplicity 2 with respect to f4 since

f4(x1, x2, x3, x4) =
(
x21 − x22 + x23 − x24

)2
.

Trivially, a deflated witness system for V ( f4) is G = x21−x22+x23−x24. For g = x1x2, one obtains smooth 
points on V ( f4) ∩R4 showing dim V ( f4) ∩R4 = 3 in about a second in serial.

For n = 5, . . . , 9, with g = ∂ fn/∂x1, one does not obtain smooth points on V ( fn) ∩ Rn showing 
dim V ( fn) ∩ Rn < n − 1. Therefore, one can move down the dimensions searching for real smooth 
points using perturbed polar varieties, similarly to Step (2) of Algorithm 6. Nonsingular real points are 
first found at dimension 2, i.e., dim V ( fn) ∩Rn = 2. In fact, at dimension 2, the polar variety contains 
various irreducible components of degree 2 and testing one is enough to confirm the existence of a 
smooth real point. Table 1 lists the total computation time using parallel processing.
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