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Abstract

The maximum function, on vectors of real numbers, is not differentiable. Conse-
quently, several differentiable approximations of this function are popular substitutes.
We survey three smooth functions which approximate the maximum function and ana-
lyze their convergence rates. We interpret these functions through the lens of tropical
geometry, where their performance differences are geometrically salient. As an appli-
cation, we provide an algorithm which computes the max-convolution of two integer
vectors in quasi-linear time. We show this algorithm’s power in computing adjacent
sums within a vector as well as computing service curves in a network analysis appli-
cation.

Keywords Numerics - Tropical geometry - Amoebas - Max-convolution -
LogSumExp - Maximum approximation

1 Introduction

Given v = (v1, ..., v,) € R, although computing the maximum M = maxi<;<, V;
is an elementary task, the function v — max(v) is not differentiable. A common
technique used in optimization [1, 2] and machine learning [3, 4] is to replace the pre-
cise computation of M with an approximate computation. This article investigates
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Numerical Algorithms

three standard ways to smoothly approximate the maximum function. Equipped
with

n F n »
Fo)="1", Ly(0)=log,(F(t)), Rv(r>=th"((t’)), and (o], = [ Y117 |

j=1 j=1

we consider the approximations:
(LogSumExp) : M = lim L,(¢) and (Ratio) : M = lim R,(t) (1)
—00 — 00
and, if each entry of v is non-negative,

(p-norm) : M = lim |[[v]], = [[v]]oo- @)
p—00

We drop the subscript v when the vector of interest is clear from context (Fig. 1).

When ¢t > 0, the functions L,(¢) and R,(t) are smooth as a function of v and
approximate M as shown by the limits above. For p € R.o, the function ||v]|,
smoothly approximates M provided that each element of v is non-negative. Each of
these functions can be expressed in terms of

Ly(1) = log(Fy(1)). 3)
Proposition 1.1 Forv = (vy,...,v,) € R", t € Rwitht > 1, we have u = log(t) >
0, and
u 1 u
Ly(t) = Ly(e") = ;Eu(e ), “4)
d
Ry(t) = Ry(e") = —Ly(e"), (5)
du
[10ll10g) = 1]l = eFretl @ = e Crstune) ©)
11 16}
L, (t) 15} =L, (£)
10 || V3] | 1‘; I || V3] |,
9 —Rvg(t) 12} —sz(t)
11t
8 10}
9 =
7 5 k
6L ; ; W ; . .
5 10 20 10 20 25

15 15
log(T)) log(T)
Fig. 1 Plots of the values of the smooth approximations L(?), [[v][p, and R(t) for the vectors v| =
(1,2,3,4,5,6,7) and v = (1,2,3,4,5,6,7,7,7,7,7,7). These values are plotted against the natural
logarithm of the largest absolute value T of a floating point number involved in the numerical evalutation
of each function
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where log| - | : R" — R" is the componentwise log-absolute value map.

Throughout, we omit the proofs of statements, like Proposition 1.1, which follow from
a direct calculation.

After providing some basic notation in Section 2, we derive convergence rates for
each of these functions in Section 3 by analyzing £, (¢). Namely, for § > 0, we give
bounds on ¢ for which the absolute error of these approximations is smaller than §. As
a consequence, when the vector v is integral, one may use a rounding procedure, such
as the floor or ceiling function, to provably compute M via a single evaluation of an
approximating function.

In practice, when the entries of v are selected from a discrete set, such as the
integers Z, the maximum M is often obtained more than once. The number of times
M is attained is the multiplicity of M in v, namely

uy = #{i | v = M}.

When the multiplicity of M is large, the ratio approximation (1) significantly out-
performs the other approximations (see Section5). In Section 3, we express ftys as a
limit of the aforementioned functions and derive analogous convergence rates result
for computing pipy.

In light of part (5) of Proposition 1.1, we generalize the approximation R, (¢) using
higher-order derivatives. In particular, for k > 1, we define

G A A

(k) _
R0 = (k — D) dt*

Ly(1). (N

Observe that R (1) = RSV (e") = L L,(e") = Ru(e") = Ry(r), and that RY" is
related, but not equal, to %Rv (see also Remark 3.13). We show, in Section 3, that

every Rf)k) (t) for k > 1 converges to M at the same rate. We discuss how to use these
higher-order derivatives to numerically approximate other information about v (see
Theorem 3.11).

In Section 4, we explore the geometry of L, (¢) and Rl()k) (t) in terms of objects called
amoebas from the world of tropical geometry. We realize the graph of the function
u — L,(e") as the upper boundary of a certain amoeba and provide a geometric
interpretation of the performance differences of R, (¢) and L, (¢) when s is large.

In Section 5, we conduct a series of experiments showcasing our theoretical results
and the performance differences of the approximation techniques discussed. In partic-
ular, we provide empirical evidence showing the extent to which the bounds derived
in Section 3 are tight. We illustrate how the ratio approximations perform significantly
better than the others when the maximum appears with non-trivial multiplicity and
that this feature persists in the presence of a noisy model.
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In Section 6, we propose an algorithm for the max-convolution problem:

MAXCON: Givena = (ag, ..., ay) € Z' ' and b = (by, ..., b,) € Z",
compute ¢ = (cq, ..., o) € 77+ where )
ck = max }(ai + br_i).

" max{0,k—n)<i <min{k,n

Since each ¢y is a maximum of the integer vector vk = (a; + bk_i)?iﬁﬁ;?(}) k—n) its

value may be determined by an (appropriately large) evaluation of an approximation
of that maximum. In particular, any algorithm which computes classical convolution
coefficients may be used as an oracle for evaluating L« (t). The fast Fourier transform,
for example, performs such a computation using O (n log(n)) operations. By combin-
ing this fact with our bounds from Section 3, we obtain a quasi-linear time algorithm,
i.e., the number of operations is O (nlog(n)), for the max-convolution problem (8).
We end by applying our numerical approach to the maximum consecutive subsums
problem and the computation of service curve constraints.
A short conclusion is provided in Section 7.

2 Notation and fundamental results
We begin by fixing the following notation

v = (vi,...,V,) :an n-tuple of real numbers
M : max(v)
e multiplicity of a real number ¢ in v, i.e., #{i | v; = ¢}
£ : number of distinct elements in v
w = (wy, ..., wp) : decreasing list of unique elements in v i.e., M =w; >---> wy
g=(g1,..,8): & =M—w;with0=g; <gr <--- <gy.

Additionally, ¢ will denote a variable which takes on positive real values whereas
u = log(t) is its image under the natural logarithm.

Example 2.1 To illustrate notation, consider
v=(7,7,—-1,0,1,1,2.5,2.5,7,7) € RO,

Then we have,
M=7 £=5,

/¢L7=4’s M2.5:2s //L1=2’ M():lv M—lzlv
w=(7,25,1,0,-1), g=1(0,45,6,7,8).
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In principle, the elements of v can be any real numbers; however, in practice, they are
usually some floating point approximations. A floating point number, mathematically,
may be interpretted as a rational number, even though it is not explicitly represented
this way on a computer. Hence, we may take v € Q". Moreover, we may assume for
our analyses that v € Z" since evaluating £, (¢) at a power X of ¢ corresponds to
scaling v by k:

Ly(t*) = Ly(@) = Lin(€") = Lin (). ©)

Remark 2.2 We note that £, (¢) = L, (e). The function Ise(v) = L, (e) is a popular
activation function in the field of machine learning traditionally called the log-sum-exp
function [5]. Numerical methods for accurately evaluating it may be found in [6].
The following expansion of £, (¢) about t = oo is fundamental for our analysis.
Proposition 2.3 For v € 7", L(t) has the following expansion:
a
Ly(1) = log(t)M + log(ipr) + log <Z ﬂté’f) (10)

io] MM

where the first term inside the logarithm is %

the logarithmic term, there exist nonnegative real numbers {« j}?ozl such that

t—8' = 1. In particular, by expanding

o0
Ly(t) = log(t)M + log(jpr) + Zajz—f' (11)
j=1
0 .
= uM +log(um) + Y aje /" (12)
j=1
P,
where ) = -+ =ag,—1 =0and ag, = —.
12974

We obtain similar expressions for L, (), Ry(t), and Rf,k) (t) by combining Propo-
sitions 1.1 and 2.3.

Proposition 2.4 Forv € 7", let {aj};?ozl be as in Proposition 2.3. Then,

4
Ly (1) = M +log,(m) + log, <Z %tg[) (13)
i=1

1 — :
=M+ ——11 T
+ foe® og(uM>+;aj
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1 ©
:M—}—; log(MM)+ZOl]e Ju ,
j=1
OO .
Ry(t) = M — Zjajt_f (14)
j=1
o0
=M — Zjajeﬂ”,
j=1
o0 .
fj+k—1 .
Rf,")(z):M—ZJ( o )ajt J (15)
j=1
o0 .
M- j j+k—1 —ju
, k—1 /
j=1

In particular, R, (t) and, more generally, Rl()k) (t) are analytic at t = oco. Additionally,
if each v; > 0,

[1V]l10g) = eH1o210) = M - s =loxhD, (16)

Clearly, L, () > M and the log, (1 p) term from (13) is responsible for a slow con-
vergence rate of L, () to M. This logarithmic term is eliminated in R, (#) and, more
generally, in R,(,k) (7). See Section4 for a geometric explanation of this fact.

Remark 2.5 Since R,(¢) and, more generally, Rl()k) (t) are analytic at t = oo when
v € Z", Cauchy’s integral formula yields that for each k > 1 there exists » > 0 such

that
1

2w /=1 Jyt|=r

Numerically, one can use the trapezoid rule [7] to approximate M from this integral.

"L RPEY dr = M. (17)

Since R, (¢) depends on F)(t) which may be difficult to evaluate in practice (see
Section 6), we show below how to approximate R, (¢) from evaluations of L,(¢).

Proposition2.6 Forv e R", t > 1, and o > 0 with o # 1, define

(18)

Du(t, o) = log, (Fv<“ ' ”) _ Lo@-n = L)

Fy(1) log(a)

Then,
lim Dy(f, @) = Ry(t).
a—1

Proof Applying I’Hopital’s rule yields limy— | Dy (¢, ) = limy— | Ry(a-t) = Ry (2).
O
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3 Approximating quantities associated to v

Equipped with the expansions (13)~(16) and (18), the functions L,(t), RS (),
Dy (t, ), and [|v||, may each be used to approximate certain information about v,
such as M, 1), and g.

For each such approximation of M, we derive alower bound on # so that the absolute
error is less than a given value § > 0. For integer vectors, we pay particular attention
to the case where § = 1, since one can use the floor |-] and ceiling [-] functions to
provably compute these values from their approximations.

3.1 Computing the maximum

We derive bounds on the absolute errors of L,(t), Ry(t), Dy(t, &), and ||v||, in The-
orems 3.1, 3.3, 3.6, and 3.7 respectively.

Theorem 3.1 Fixv € Q" and § > 0. Then 0 < L,(t) — M < § whenevert > 1 and

o8 182 — (n— ) > 0.

Ifv € Z" and § = 1, the above bound is obtained when

UM +\/Mﬁ4 +4(n — pum)

>
2

1
If additionally 1y = 1 then this bound further simplifies to t > 7 + /1.

Proof Assume, after reindexing, that vy = - -- = vy, = M. Thus,
n
Lyt)—M=log, | uy+ Y 9™

J=nm+1

Hence, L,(t) — M < & provided that the expression within the logarithm is smaller
than #°. Since the function x > #* is monotonic for 7 > 1,

n
pwt Y M <+ (= ™,
J=nm+1

completing the proof of the first statement since this value is less than % when
>y + (n— e,

For v € Z", we have that g» > 1 so that a sufficient condition when § = 1 is
1 =t — (0 — pp) > 0
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yielding the second statement. The third statement follows immediately. O

When v consists of integers and gy is known, Theorem 3.1 suggests an algorithm
which provably computes M using one evaluation of L,(¢):

Return | L, (t)] for t satisfying the inequality 2t > [y + \/,u%,[ +4(n — up).

The largest ¢ value required is when s = n for which one can take t = n + 1. In
particular, for any v € Z", one always has |[L,(n + 1)] = M.
The following example illustrates Theorem 3.1 on qualitatively different input.

Example 3.2 Consider the following integer vectors:
vy =(1,2,3,4,5,6,7) and v =(1,2,3,4,506,7,7,7,7,7).

The maximum of both vectors is 7 which has multiplicity 1 and 5 in vy and v,
respectively. By Theorem 3.1, Ly, (¢) € [7,8) whent > 3 and L,,(t) € [7, 8) when
t > 6. Figure 2 is consistent with these bounds and illustrates the reduced convergence
rate for vy due to the increased multiplicity of the maximum. O

The worst-case scenario analysis for R,(¢) is qualitatively distinct from that
of L, (¢). The fact which distinguishes these cases is that for a fixed ¢ > 1, the function
x — xt~—* is decreasing only after reaching its maximum on R.g at x = log(t)_l.

Theorem 3.3 Fixv e Q" and 8 > 0. Then 0 < M — R,(t) < 8 whent > ¢'/82 and

1

((n - MM)gz)gz

r> [ ————=2)
8- um

Ifv e Z" and § = 1, this bound is attained when

t > max | e, .
Mm

L, (1)
11+ Y
T, ()
10+
9t
8t
T . ! : . :
2 4 6 8 10

t

Fig.2 The graphs of Ly, (¢) and Ly, (¢) as in Example 3.2
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1
Proof From (14), a worst-case analysis with t > e#2 shows that

e¢]

M—Ry(t)=)jot™/ < I
j=1 129%
Therefore, the main result follows from
M — Ry(1) <8  whenever 1% > (= pmgr
8- um

When v € Z" and § = 1, this simplifies to 152 > %. Sincet > eand go > 1,
this holds if additionally
n—pum

wm

t >
O
Example 3.4 For v; and v, as in Example 3.2, Fig. 3 compares the graphs of L(¢) and

R(t). Note that Theorems 3.1 and 3.3 guarantee that L,,(¢) € [7, 8) when ¢ > 6 and
Ry, (t) € (6, 7] whent > e ~ 2.718. O

Remark 3.5 For v € Z", one has

o1/log(t))  ifum > 1,

04 % log)) ifpy =1, M M- R(O=00".

L,,(z)—M:{

When pp = 1, Thereom 3.1 requires ¢+ = O(y/n) while Theorem 3.3 requires

t = O(n). However, the bound ";‘A;M from Theorem 3.3 is smaller than the bound

10+

O N 0o ©

Fig.3 The graphs of L(¢) and R(¢) applied to v| and vy from Example 3.2
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tpHy 34 m— )
il M2 i from Theorem 3.1 whenever uy > Al—t(\/ 8n + 1 — 1). For refer-
ence, this means that

(n, ) € {(10,2), (105, 7), (1081, 23), (10153, 71), (100576, 224), ...}

are afforded equal 7-bounds for L, (¢) or R, (¢) via Theorems 3.1 and 3.3, respectively.
These bounds are derived from the worst-case scenarios where M — 1 appears with
multiplicity n—u 5s. However, on input vectors v sampled from the uniform distribution
on {0, ..., M} with varying multiplicities s, L, (¢) consistently performs worse than
R, (t). For more details, see the experiments in Section 5.

Based on the relationship between D, (¢, «) and R,(t) summarized in Proposi-
tion 2.6, the error is similar to Theorem 3.3. Here, the worst case analysis yields the

(1 —aq*
function x — % which is decreasing after reaching its maximum on R ¢
og(a
log(1 1)) — log(log(t
x = og(log(ar)) — log(log(®)) which limits to log(t)_1 asa — 1.
log(x)

Theorem3.6 Fixv € Q% 8§ > 0, anda > 1. Then, 0 < M — D,(t,a) < § when
t>el/e,

( a_gz
1l —a 8] a1
>« 275 eV, and

I

. <n—,uM 1—a‘g2>82 a—1 ((n—uM)gz)g]z

- ) )
§-uy  log(a) 8- um

Ifv € Z" and § = 1, this bound is obtained when o > 1 and

t > max | e, .
MM

Proof The worst case analysis using the three assumptions on « and 7 that are inde-
pendent of § show that

n—uyl—a
5w log@)

M — D,(t,a) <8  whenever 152 >

When v € Z" and § = 1, this simplifies to £82 > =M -0 %2 Gincet >e,a> 1,
um  log(e)
and g, > 1, this holds if additionally ¢ > % O

To analyze the p-norm case, following [8, 9], we assume the vector v has undergone
a linear transformation so that each v; € [0, 1].
Theorem 3.7 Ifv € [0, 11" and § > 0O, then 0 < ||v||, — M < 8 whenu > 1 and

8
et(A+g) e"uy —(m—uy) >0  where A =log (1 + M) .
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Proof By (16), |[v]|, = M - ™ where €(u) = Liog |v)(e") — log(M) which is the
error when using Liog v|(€") to approximate log(M). Hence, ||v||, — M < § if and
only if e(u) < log (1 + ) =: A. By Theorem 3.1, this occurs whenever ¢ > 1 and

1A 82— (n— ) > 0.

Since u = log(t), changing coordinates gives the result. O

Example 3.8 The following illustrates the differences between the approximations
L(t), R(t), D(t,a), and || - ||, of M on our running examples of v; and v, from
Example 3.2. First, similar to previous plots, Fig. 4 shows the difference of convergence
rate for the p-norm approximation due to higher multiplicity. Next, Fig. 5 compares
Ry(t) with Dy(z,2) and Dy(t, 1.5) for v = vy and v = v showing comparable
convergence rates. Finally, we compare the values of ||v]| 5, Ly (t), Ry(?), and Dy (¢, )
when they require comparably large (in absolute value) floating point number for
evaluation. Setting 7 to be the largest floating point number required, we plot these
functions against log(7") in Figs. 6 and 7 for v = v; and v = vy, respectively. O

3.2 Computing the multiplicity

Due to the simplistic nature of the expansion in (13) for L, (¢), we consider computing
the multiplicity s for the maximum M. In particular, it is easy to see from (13) that

wy = lim (LM (19)

t—0o0

Of course, using this expression requires a priori knowledge of M which can be
attained, for example, in the integer case by applying Theorem 3.1.

350 ol | 0,/7] |,
3.0 || 05/7] |,
2.5}

2.0t

1.5}

1.0L | . ‘ ‘

2 4 6 8 10
t

Fig.4 The graphs of the p-norms of the vectors vy /7 and v /7 with entries in [0, 1], where v; and vy are
from Example 3.2

@ Springer



Numerical Algorithms

7.0
6.75} 6.9
6.50| 6.8
6.25} 6.7
6.00} 6.6 2, (1)
5.75¢ 6.5 —sz(t, 2)
5o 64 e D, (t,1.5)

2 4 6 8 10 2 4 6 8 10

t t

Fig.5 Comparison of Dy (¢, «) for vy and v, from Example 3.2 with various values of «

11+
e L, (£)
10+t e=| v,
9l —R. (1
=D, (t,2)
8 B —D,,I(t,15)
7 L
6 L
5t ; i ;
5 10 15 20

log(T)

Fig.6 A comparison of the smooth approximations Ly, (1), Ry, (t), |[vi||p, Dy, (,2), and Dy, (¢, 1.5) of
the maximum of vy, plotted against the natural logarithm of 7', the required absolute value of floating point
numbers for evaluation

16
15
14
13
12

1 L L L

10 15 20 25
log(T")
Fig.7 A comparison of the smooth approximations Ly, (1), Ry, (t), |[[v1|lp, Dy, (,2), and Dy, (¢, 1.5) of

the maximum of vy, plotted against the natural logarithm of 7', the required absolute value of floating point
numbers for evaluation
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Theorem 3.9 Given v € Z", [tL@~LLv@O] | = 11/ whenever

wm +\/Mﬁ4 +4(n — pum)
2

t>max yn— um,

+y/ 13 +4n—
Proof When t > MM2 o MM), Theorem 3.1 provides that | L(t)] = M. Using

a worst-case analysis, one has

Lo(t)—M

0<t — iy < (=t ™!

with the worst-case upper bound below 1 when ¢ > n — . O

Example 3.10 Continuing with v; and v, from Example 3.2, Theorem 3.9 provides
Lo @=L D) ¢ 11,2) for t > 6 and L@~ Lw®) ¢ [5 6) for r > 6 with Fig. 8
showing convergence in advance of such worst-case bounds.

3.3 Combining R,(,k) (t) to improve convergence and compute g,

Since all of the higher-order derivatives R,Sk) (t) have the same convergence rate, one
can combine them in various ways to increase the convergence rate as well as extract
other information about v. The following demonstrates a higher-order approximation
of M along with approximating g>. The computation of go and M produces, as a
byproduct, the second largest element of v, namely wy = M — g3.

Theorem 3.11 Forv € Z", we have

2R ORY 1) = R @) (R (1) + RE 1))
=M+008h (0

RV () = 3RP (1) + 2R (1)

—tLvl(t) -7
P~

N W b U1 OO NN

2 3 4 5
t

(L0-M applied to vy and v, from Example 3.2

Fig.8 The graphs of
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and (1 (2) 3)
R (1) = 3Ry (1) + 2Ry (1) _
o =&+ 00, @1
R (1) = Ry (1)

Proof From Proposition 2.3 and (15),

Moy
puo
RP () =M — g2(g2 + 1)M—"’2t—g2 +o@ &),

M
_ 8282+ D(g2+2) puy L oueh
2 757,

RV(1) =M — =217 4 07",

RO () =M

and so the result follows by direct symbolic elimination. O

Example 3.12 We illustrate Theorem 3.11 using v; and v, from Example 3.2. Figure 9
compares the convergence of Rf,l)(t), R,(jz) (1), Rl(,3) (1), and the combined formula in
(20) for v = vy and v = vy to M = 7 for both. For both cases, one sees faster
convergence as expected from (20). Additionally, Fig. 10 shows the convergence of
the combined formula in (21) for v; and v, to g2 = 1 for both.

Remark 3.13 The functions R,(,k)(t) are linear combinations of the derivatives
k
DO(1) = Lo L, ("), e.g.,

RV 1) =D @),
RP @) =-DV )+ D),
2DWD (1) = 3D (1) + DO (1)
2 9
—6DV (1) + 11D (1) — 6D (1) + DY (1)
< .

RY(1) =

R (1) =

In particular, the linear transformation that maps the first » values of DO (1) to the
first 7 values of R%®(¢) is represented by an r x r lower triangular matrix A", For

12 7
10 5
8
6 3
4 — 7 (1) 1 —R. (1)
(2) ®)
=R, () =R, (1)
2 @ -1 6]
=R, (1) =R, (1)
0 ===Combined -3 ===Combined
-2
2 4 6 8 10 2 4 6 8 10
t t

Fig.9 Comparison of various methods to approximate M for vy and vy
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3 L
U
a— Uy
2 L
1t L L L L L L
5 10 15 20 25 30

t

Fig. 10 The graphs of (21) for v| and v, which converge to g = 1 for both cases

j <i,the (i, j)-entry of AT g
(1!

i—1)! Sij

where S;; is a Stirling number of the first kind. For example,

(=D21 0 0 0
(=D31  (=D3(=D 0 0
AW = ﬂ) < = >( <—21)4)1 0

& 1)5) (( 61)5> (—11) <—61)5)6 ((—61)5)(_1)

4 The tropical viewpoint

We interpret our previous results geometrically using tools from fropical geometry.
We stress that throughout this section, we consider specific families of tropical con-
structions which exist more generally. Namely, the varieties we consider are graphs
of univariate Laurent polynomials with positive coefficients. Such varieties are quite
special and so the results of this section may not hold in the more general setting.
For an introduction to tropical geometry, we invite the interested reader to consult the
standard reference [10].

To utilize the tropical geometry framework, we assume throughout this section that
v € Z", define C* = C\{0}, and consider the function

p:C* - C?
t > Fy(r).
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Let X, be the graph of ¢ intersected with ((CX)Z. We note that X, is the set of zeros
of the polynomial F, (¢, y) = y — Fy(?):

Xy = {(1,y) € (C)? | Fylt, y) = 0} C (C)2.

The Newton polygon of F,(t,y) is the convex hull N'(F,(t, y)) of the exponent
vectors of F, (¢, y). In this case, N (F, (¢, y)) is simply the triangle A, with vertices
(M, 0), (min(v), 0), and (0, 1) as illustrated in Fig. 11a. The union of the outer normal
rays of A, along with the origin form a polyhedral fan called the tropicalization of
X, denoted trop(X,) and illustrated in Fig. 11c. The fan trop(X,) is a tropical curve
which encodes the asymptotic behavior of X, near the coordinate axes C2\(C*)>2.
Note that in our specific situation, the Newton polytope A (F,(t, y)), and hence the
tropical curve trop(X,), depends only on min(v) and max(v).

An alternative construction of trop(X,), due to Bergman [11], involves the image
A+ (Xy) of X, under the log-absolute value map:

Log,||: (C*? - ]Rﬁ‘s
(#, y) = (log. (It]), log (|y]).

The set A;(X,) is called the t-amoeba of X,. We remark that we use u and s for
coordinates of the codomain and that the overlap of the symbol # with previous sections
is intentional. Undecorated, the notation A(X,) < Rﬁ’ ¢ Tefers to the e-amoeba of X, as

Amoeba Newton Polygon

12

10 |

—4 -2 0 2 4

u -1 0 1

Fig. 11 a The Newton polygon of Fy, (¢, y) where vy is as in Example 3.2. b The amoeba A(Xy, ). ¢ The
tropical variety trop(Xy, )
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illustrated in Fig. 11b. Since A, (X,) = log%A(X v), the set A(X,) contains all of the
information about all of the amoebas of X,. Since the absolute values of coordinates of
points in X, may be arbitrarily large or small, the set A(X,) is unbounded. The portions
which approach infinity are loosely referred to as the fentacles of the amoeba. As
T — 00, these tentacles limit to the rays of trop(X,). In this sense, trop(X,) contains
asymptotic information about X, and is sometimes referred to as the logarithmic limit
set of the amoeba of X,,.

We call lines which intersect an amoeba A(X,) in a ray tentacle lines. Up to
translation, these rays are exactly those in trop(X,). Note that many tentacle lines
may be associated to the same tropical ray (e.g., the two vertical lines of Fig. 12 both
correspond to the ray (0, —1)). The following elementary facts relate the Newton
polygon N (Fy(t, y)), amoeba A(X,), and tropical curve trop(X,). We encourage the
reader to refer to Fig. 12. These facts are specializations of a more general relationship
between these three objects (see [10] for more details).

(1) The tentacle lines of A(X,) corresponding to the ray in trop(X,) spanned by
(0, —1) correspond to distinct moduli of complex roots of F (7).

(2) When the lowest order term of the Laurent polynomial F,(¢) is a constant c,
trop(X ) contains the ray spanned by (—1, 0). There is one tentacle line of A(X )
associated to that ray, which occurs at height log(c).

Additionally, the following facts relate A(X,) and the function u +— L, (e").

(3) The upper boundary U of A(X,) is the graph of L, (e").
@) Ly(t) = Ly(e") = Lu@) s the slope of the ray from the origin to the point

u

(u, Ly(e") € A(Xy).

10
Amoeba
g | |===1log(F'(e"))
s=log(p )+ Mu
6 |——u=1log(| )
——u=log(| )
w | /
2 F ///
3 2 — 0 1 2
u

Fig. 12 The amoeba A(Xy) of the graph X, where v is as in Example 4.2 along with its tentacle lines
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5) DX () = %ﬁv(e“) is the k' derivative of the function u > L, (e").

(6) Dgl) (e") = R,(,l) (e") is the slope of the tangent line to the boundary of the amoeba
at (u, Ly(e")).

We point out that (3)follows from the fact that all of the coefficients of F,(¢) are
non-negative. In general, describing the boundaries of amoebas is challenging [12].

Proposition 4.1 Let v € Z". The tentacle lines of A(X,) are given by

(a) s = log(u) + M - u
(b) s =log(um) + m - u where m = min(v).
(c) u =log(|&;]) where {E,-};lzl C C are the roots of F(t).

Proof As observed already, the tentacles in the (0, —1) direction correspond to roots
& of Fy(t) and they occur at u = log(|&;|) which establishes (c). To see (a) and
(b), suppose m = min(v) = 0. Then, F(¢) has a constant term of u, and hence
lim;_, ¢ log(F(t)) = log(i,)- This limit indicates that A4 (X,) has a horizontal tentacle
occurring at s = log(u,). However, translating v by @ € Z amounts to sheering the
Newton polygon space by («, 8) — («, ac + ) and the amoeba space by (u, s) —
(u — as, s). In particular, this transformation does not change the s-intercepts of the
tentacle lines. Hence, the tentacle line associated to the minimum of v has the equation
s = log(u,,) + m - u whereas the line associated to the maximum M has the equation
s =log(upy) + M - u. O

Proposition 4.1 gives a geometric interpretation of how the multiplicity of M in
v contributes to a slower convergence rate of L, (¢) but not for R, (¢): multiplicity
corresponds to a translation of the tentacle line of LA(X,) associated to the tropical ray
spanned by (1, M). This is geometrically displayed in Fig. 13.

Example 4.2 Let v = [0g, 15, 240, 35, 440], where a subscript indicates multiplicity.
The amoeba A(X,) is shown in Fig. 12. The polynomial

Fy(t) = 8 + 5t + 401 + 53 + 40¢*

has two pairs &1, £ and &, & of conjugate roots. Hence, there are two vertical tentacle
lines of A(X,). The tentacle line corresponding to the minimum multiplicity w,, =
1o = 8 is horizontal at height log(8) and the equation of the remaining tentacle line
is s = log(40) + 4u. The upper boundary of the amoeba is the image of the positive
part of X, under the log-absolute value map.

Figure 12 illustrates a geometric interpretation of the values of L (¢*) and R,Sl) (")
as slopes of rays. O

One may also interpret the Cauchy integral in Remark 2.5:

1
2w /=1 Jyt|=r

7RO cdr = M,
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10

Amoeba
8 r |——slope: L,(e%)

—slope: RS) (e¥)

Fig. 13 The amoeba .A(Xy) of the graph Xy for v as in Example 4.2 along with the ray from the (0, 0) to
(u, Ly(e")) and the ray from (u, Ly (e")) with slope R,(Jl)(e“) = Dl(,l)(e“)

in terms of tropical geometry when k£ = 1. This is done via the order map:

ord : R? - R?

@ s) 1 / tF)(t)  dtdy 1 / y dtdy
u, )= | ————= . , —_— .
Qry/=D2 Juositze y — Fo() 1y " Qay/=D)? Jleshi=e y — Fy@0) 1y

The function ord is constant and Z2-valued on connected components of the comple-
ment R?\A(X,) of the amoeba [13]. In fact, ord maps these components to distinct
integer points in the Newton polygon A,. In particular, for any point (u, s) in the
bottom right complement component, the first integral

1 [ tF) (1) . @
Qm/—1)?

Loglt|l=u y —
Loy — Rty
degenerates as |y| — 0 (or s — —o00) to the integral

1 tF)(¢) dt 1 1
e T'RV@) di =M
27/ =1 Joogtj=u Fv (@) t  27/—1 Jrogiti=u ’

for sufficiently large u as in (17). The second integral, on the other hand, evaluates
to zero. Since this value of ord on (u, s) is constant on connected components of the
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complement of the amoeba, this shows that ord(u, s) evaluates to the vertex (M, 0)
of A, when (u, s) is in the bottom-right component of R?\ /A(X,), in agreement with
Remark 2.5.

5 Experiments

We compare each of the approximations discussed on a gallery of qualitatively different
inputs v. In each of the following sections, we sample vectors v from some prescribed
distribution. We then compare the approximations of M on these samples on average.

5.1 Integer numbers

We compared L,(#) and R,(¢) in the integer case by defining a maximum M with
multiplicity p for an integer-valued vector v € [1, M]". Thatis, we defined v of varying
lengthn = 1, ..., 100 with M appearing p times, where ;& < n and the remaining
n— w values of v were random integers sampled from [1, M —1]. Figure 14 displays the
four experiments comparing the performance of L, (¢) and R, (¢) for approximating a

M=10 M=50

100
80
60

2
1 40

1
0 20

0

W NaN W NaN
o o o o o o o o o o

IS
IS

w
W

T

n n
M=100 M=500
100
4 4
80
3 3
60
2 é 2
1 40 ;
20
o 0
[ EW I NaN
o o o o o o o o o o
N < © © o o < © @ o
n n

Fig. 14 Average results of the integer-valued vector v experiments. The x-axis and y-axis correspond to
n=1,...,100and u = 1, ..., n respectively. Each pixel is the average of 100 subexperiments measuring
log(1 + tzv - t;’;,v) where tiu and t,’sv are the 7-values such that the absolute error of the corresponding
function is less than 1. The maximum, M, are a 10, b 50, ¢ 100, and d 500. Black pixels above the diagonal
are when . > n
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given maximum M, namely M = 10, 50, 100, and 500, respectively. Performance is
measured by ¢*, the first value of ¢ to approximate M up to an absolute error of 1, so
that the maximum is obtained from L, (t*) or R, (¢+*) through use of the floor or ceiling
function, respectively. Each experiment consists of 100 subexperiments averaged over
log(1+15 L, -t &,)- The plotted values are logarithmic and offset by 1 since, if ty L, t,*ev ,
then log(l + tL - tR ) =log(1) = 0.

5.2 Uniformly distributed floating point numbers

We repeat the experiments of the above section with floating point vectors v € [0, 1]”
with M = 1. Figure 15 displays the results of comparing L, () and R, (¢) on vectors
whose elements are sampled from the uniform distribution on [0, 1]. As with the
previous experiments, each pixel at coordinates (n, w) represents the value of log(o +
tzv — tj;v) — log(a), where t* is the first value of ¢ to approximate M up to a given
absolute error. To model a significant g gap, we constructed these vectors by choosing
n — w vectors uniformly from [0, 1], multiplying them by (n — 1)/n and appending
them to a vector of length p with coordinates all equal to 1. The figures differ only in
the absolute tolerance used to define t*. The value & = min(tzU — tjgv) + 1 offsets the
results so that when the results are averaged and plotted logarithmically, the minimum

Tol=exp(1 Tol=1
100 p(1) 100
35
80 80
3
60 _, 60 25
0 g ,
40 40
15
20 20 .
Il NaN
o o o o o o o o o
n n
Tol=1/n Tol=1/100

o o o o o
N < © © o
—
n n

Fig. 15 Average results of the floating point-valued vector v experiments. Each pixel at position (n, @)
represents the value of log(c + tzv - t;év) — log(«) averaged over 100 subexperiments. The x-axis and

y-axis correspond ton = 1,...,100 and u = 1, ..., n respectively. The tolerance used to define t* are
absolute error less than: a exp(1), b 1, ¢ 1/n, and d 1/100. Black pixels above the diagonal are when & > n

@ Springer



Numerical Algorithms

Average Error Successes

100 16 500
1.4
80 400
1.2
60 1 300
o)) 0.8
40 0.6 200
20 o4 100
0.2
0
o o o o o
N < © o o

Fig. 16 For each (g, €) and for 500 tries, (left) average error of Ry (¢*) for t* from Theorem 3.3 (right)
number of approximations Ry (t*) within € for t* from Theorem 3.3

difference remains log(1) = 0. The subtraction of the log(«) term then better illustrates
the subexperiments where L, (¢) outperforms R, (¢). This adjustment is accounted for
in the uniform distribution examples as there are select instances in which L, ()
performs better than R, (#) by converging at a lesser ¢ value, thus the difference is non-
positive and less than —1. This occurs most notably in the experiments with tolerance
1/n and 1/100 of Fig. 15.

5.3 Clustering floating point numbers

We repeat a similar experiment with floating point numbers in the presence of noise.
Our goal is to identify the scenarios where it is appropriate to apply Theorem 3.3
heuristically. Our setup is as follows. Suppose that 5 measurements, with values in
[0, 1], are to be taken, but the measuring device incurs some error €. To rectify
this, each measurement is performed 20 times. Heuristically, one may choose to apply
Theorem 3.3 with the interpretation that v consists of 5 numbers, each occurring
with multiplicity 20, with the goal oflobtaining max(v) up to error €. In this case,

Theorem 3.3 specializes to r > (%) ‘ where g is the gap between the top two true

measurements.
After fixing € and g, we model such a situation by the following procedure.

1. Pick 5 true measurements wi, ..., ws € [0, 1] by setting ws = 1, wg =1 —g
and wy, wy and w3, sampled uniformly at random from [0, 1 — g].

2. For each w;, sample 20 numbers uniformly from [w; — €, w; 4 €]. Collect all 100
numbers in v.

1
3. Evaluate R, (t*) for t* = (%g) ¥ to obtain the absolute error err, = |1 — R(1*)]

For each pair (g, €), where g = 0.01,...,1ande = 0, ..., 1, we repeat the above
procedure 500 times and average the error obtained in step 3. Additionally, we deem
an approximation a success if the error is smaller than €. The two figures in Fig. 16
display, for each pair (g, €), the average error and number of successes.
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As indicated by the experiments summarized in Fig. 16, a small gap g and large €
produces the largest errors with the fewest numbers of successes, as expected. Interest-
ingly, a large gap and small €, corresponding to the upper left corner of the figures also
impacts the effectiveness of the heuristic. The large gap size means that wo, ..., ws
are all chosen within a small interval [0, 1 — g], and we suspect that this cluster behaves
like the value 1_Tg appearing with high multiplicity. Additionally, the small € value
means it is difficult to achieve a “success” by having absolute error less than €.

For these noisy experiments, there are two natural interpretations of what should be
considered N and . The first is that N should be 5, the number of true measurements,
whereas p should be 1. The second interpretation is that N should be 20 - 5 = 100,
the true length of v while u should be 20, the size of the top cluster. In the R, ()
case, these distinctions cancel out in the bound provided by Theorem 3.3. In the L, (¢)
case, however, these interpretations give drastically different bounds when applying
Theorem 3.1. The later interpretation often yields such enormous ¢ bounds that an
application of that resultis not useful. In Fig. 17, we display the results of an experiment
using the former interpretation. It did not happen that the L, (¢) approximation with the
interpreted bound from Theorem 3.1 achieved the expected accuracy. This suggests
that the later interpretation, despite its lack of utility, is likely more appropriate. Our
experiments also showcase the advantage of using the R, (¢) approximation over L, (),
especially in noisy situations with high (approximate) multiplicity.

6 Max-convolution and applications

One way to use smooth approximations of the maximum function is to approximate
the max-convolution of two vectors [9]. To that end, consider two integer vectors

Average Error

100
4
80 35
3
60 25
(@]
2
40
1.5
20 1
0.5

o o o o
Al < © [ee]

€

Fig. 17 For each (g, €), over 500 tries, the average error of L, (¢*) from Theorem 3.1

100
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a = (ag,...,ay) and b = (by, ..., b,). The classical convolution problem asks to
determine the vector of convolution coefficients axb where

k min(k,n)
(axb)y = Zai bp_j = Z ai - br_i. (22)
i=0 i=max(0,k—n)

We remark that the middle description is sufficient if one takes a; = 0 and b; = 0
whenever they are undefined. With the same input, the problem of max-convolution,
MAXCON, asks for the vector ¢ of max-convolution coefficients, where

cr = max (a; + br_;). (23)

max (0,k—n)<i<min(k,n)

These coefficients can be obtained via (22) by replacing the operations (-, +) with
(+, max), respectively. The form ¢y = maxo<;<x(a; + bx—;) may be used if one
replaces undefined a@; and b; with —oo. Equivalently, through constructing

A =) i, B =) Mk e Qulx],
i=0 i=0

the problem of MAXCON asks for the largest exponents in ¢ appearing in the coeffi-
cients of

2n k
Ar(x) - Bi(x) = ) Y pithioink,

k=0 i=0

Setting v® = ((a; 4+ br—;) | max(0, k —n) <i < min(k, n)), we rewrite this as

2n
Ar(x) - Bi(x) = Z F,w ()xk.
k=0

For fixed ¢, the values of F,« (¢) are classical convolution coefficients
(20, (e, )

which can be computed by a quasi-linear time algorithm, e.g., using the fast Fourier
transform (FFT) [14] requires O(nlog(n)) operations. Applying log, provides an
O (nlog(n)) routine for evaluating L« (1), whereby with Theorem 3.1, this process
computes max(v®)) = ¢; when evaluated at a sufficiently large value of 7, e.g.,
t =n+ 1.If M, = max; |a;| and M}, = max; |b;|, then the largest value arising has
bit-size at most O (M, + M}, + 1) log,(n)) when ¢t = n + 1. The following algorithm
is a summary of this discussion.
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Algorithm 1 MaxCon

Input:Two integer vectors a = (ag, .. ., ap)and b = (by, ..., bmn).
Output:The max-convolution coefficients ¢ = (cg, .. ., Cntm)

1 Choose t* satisfying the bounds of Theorem 3.1 (e.g., t* > max(n, m)+1)
2 Compute n = ((r*)%, ..., (t*)ny and A = ((t*)bo, ..., (¢%)bm)

3 Compute £(1*) = nxA

4 Apply |log,« ()] component-wise to £(¢*) to obtain ¢ = [log, (£(t*))]

5 return ¢

Example 6.1 Consider applying Algorithm 1 to compute the max-convolution coeffi-
cients of the vectors

a=@3,1,2,4,1,2), b=(5,3,0,4).
Taking t* = 6, we obtain
n = (216, 6, 36, 1296, 6, 36), A = (7776,216, 1, 1296)

The classical convolution of n and A is

£(6) = nxA = (1679620, 93312, 281448, 10365400, 334404, 329184, 1687400, 7812, 46656)

which under logg evaluates to

loge (£(6))=(8, 6.38685,7.00301,9.01571, 7.09923, 7.09045, 8.00258, 5.00258, 6).

Finally, by applying | -], we obtain the max-convolution coefficents
c=(8,6,7,9,7,7,8,5,6).

For completeness and interpretation of ¢, we provide A, (x), B;(x) € Z[t][x] below
along with their product:

Ai(x) = t3x0+t1xl+t2x2+t3x3+t1x4+t2x5, Bi(x) = t5x0+t3x1+t0x2+t4x3,

A(x) - Bx) =330 + 260+ (T + A 4+ )P+ P+t P )X
+ @+ O+ (7 10+ 29 + (B OxOHE + a7 + 1048,
O

The key to Algorithm 1 lies in the ability to evaluate F,«) (¢) via the fast Fourier
transform in O (n log(n)) by interpreting these values as classical convolution coef-
ficients. A subsequent application of log, turns this into an evaluation of L « (1) =
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log, (F,,& (¢)) whereby one may apply Theorem 3.1. Similarly, with the aim to apply
Theorem 3.6, one may use the approximation of Proposition 2.6 to wrap the ability to
evaluate F,« (¢) into an algorithm which may require a smaller # evaluation.

Algorithm 2 MaxCon - using D, (t*, &™)

Input:Two integer vectors a = (ag, ..., ay) and b = (b, ..., by).

Output:The max-convolution coefficients ¢ = (cq, ..., Ch+m)

1 Choose t* and o* satisfying the bounds of Theorem 3.6 (e.g., «* > 1 and t* > max(e,n — 1, m — 1))
2 Compute n = ((1*)90, ..., (t*)% ) and A = ((*)P0, ..., (t%)bm)

3 Compute ' = ((@*1*)90, ..., (@*r*)%) and X = ((a*1*)P0, ..., (a*r*)bm)

4 Compute £(1*) = nxi

5 Compute £/ (t*) = '\ using FFT

6 Apply logg« (¢/(t%)/€(t*)) component-wise to obtain ¢ = [logg« (¢/(*)/€(t*))]

7 return ¢

Remark 6.2 Algorithms 1 and 2, paired with their corresponding bounds from Sec-
tion 3, give algorithms whose output constitute mathematical proofs provided that the
convolution coefficients computed via FFT, as well as the ceiling of the logarithm, are
computed exactly. Otherwise, the error introduced by the * operation must be bounded
by 1/2, § should be taken to be at most 1/2 in the relevant theorems, and a two-sided
rounding procedure should be applied rather than the ceiling or floor function.

Example 6.3 We apply Algorithm 2 to the vectors in Example 6.1 using t* = 6 and
a* = e. The values of £(6) and ¢/ (6) = £(e - 6) are

£(6) = (1679620, 93312, 281448, 10365400, 334404, 329184, 1687400, 7812, 46656),

2'(6) = (5006864730.36308, 37644747.57839, 307062197.51625, 81968557661.46344,
326963800.35823, 325950992.03191, 5008018807.39795, 1154326.73120, 18822373.78920)

so that ¢ = [log(£'(6)/£(6))] gives

c=[(8.0, 6.0, 6.99486, 8.97562, 6.88525, 6.89789, 7.99561, 4.99561, 6.0)1=(8,6,7,9,7,7,8,5,6).

We remark that if we use t* = 2 and o* = 1.05, which do not necessarily meet the
bounds of Theorem 3.6, we obtain the following results:

£(2) = (256, 128, 152, 674, 228, 224, 290, 36, 64),
£/(2) = (378.22859, 171.53224, 208.81795, 1017.32991, 311.12599, 304.77118, 421.16960, 45.25101,
85.76612),
c=[(8.0, 6.0,6.50915,8.43831, 6.37121,6.31101, 7.64815, 4.68754,6.0)1=(8,6,7,9,7,7, 8,5, 6).
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Hence, the correct max-convolution coefficients are recovered despite not satisfying
the bounds of Theorem 3.6. O

We conclude with two applications of max-convolution.

6.1 Maximum consecutive subsums problem

Given a single vector v = (vy, ..., v,) € R", the problem of determining the largest
consecutive sum Zf:l vj+i foreachk =1, ..., nisknown as the Maximum Consec-
utive Subsums Problem (MCSP). As outlined in [15, § 7.1], MCSP directly reduces
to an instance of MAXCON as follows. Taking a, b € R" to be ay = — Z?:l v; and
by—k+1 = Zle v;, the max-convolution coefficient ¢, _; describes the largest sum
of k consecutive entries of v.

Example 6.4 Forv = (1,4,2,3,8,1,1,5,6,7,5) € Z'!, we have

a=(-1,-5,-7,-10, —-18, —19, =20, —25, =31, —38, —43),
b = (43,38, 31, 25,20, 19, 18, 10,7, 5, 1).

The max-convolution of a and b is
c = (42,38, 36, 33,28,24,23,18,13,8,0, —1, =2, ...).

For example, this shows that the largest sum of 2 and 5 consecutive entries of v is 13
and 24 obtained by 6 + 7 and 1 + 5+ 6 + 7 + 5, respectively. By convention, one may
choose to prepend ¢o = Y 7, v; to ¢ so as to include the subsum of n consecutive
integers in the output as well. O

We remark that even though Algorithms 1 and 2 are written for integer input,
the algorithms work for floating point input as well, subject to different bounds (see
Theorems 3.1 and 3.6). When using Algorithm 1, the output is an upper bound for
the true max-convolution coefficients, subject to any error introduced by the FFT
subroutine. Figure 18 shows the magnitude of error on the 100 outputs of a random
MCSP problemon a vector v € [0, 11" forn = 100and n = 1000 with each coordinate
selected uniformly at random.

6.2 Service curve constraints

Convolution algorithms are integral in network calculus where systems model the data
flow between networks [16]. The equation describing the incoming data is a monotonic
input function R(T), given in bits per second. The equation describing the outgoing
data (after a time delay) is an output function, R*(T), also in bits per second. The
function R*(T) is constrained by service constraints that state for any window of time,
additional data outputted is bounded. The curves formed by these constraints are the
result of a min-convolution between the service curve and input function R(T) [16].
That is, a system with an input function R(T') has an output function R*(T) that will
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Fig. 18 Heatmap of the absolute errors of the numerical computation of MCSP. The numerical com-
putations were performed on a vector of length 100 (top) and 1000 (bottom) with floating-point entries
uniformly chosen in [0, 1]. The vertical axis indicates the output error on subsums of length k after evalu-
ating at exp(¢) (horizontal axis)

lie in the area bounded below by a service curve S(7) and above by a maximum
service curve y (T) such that

inf {R(T) + B(T —9)} < RYT) < R$)+y(T —s), s=T (24)

Note that the input and output functions admit no subscript to avoid confusion with
the ratio function R, (¢). Additionally, we define the time variable for the service curve
to be T rather than # which is the variable base used for the MAXCON algorithms.

Although the prior focus was on the maximum, it is very simple to reformulate
everything to instead compute the minimum. That is, we take t — oo when converging
to the maximum while one can take t — 0T to converge to the minimum.

As an example, we sought to recreate [16, Fig. 5.1] using Algorithm 2 to compute
the discrete min-convolution of the input function and service curves. To obtain the
numerical data points for this example, we first fit a polynomial curve to R(T") from
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the figure. In particular, we used the fitted septic polynomial

R(T)=1.6738T —0.7492T2 — 0.08694T>+0.10857*—0.011017> — 0.001579T°
+0.0002085T .

. 0 if 7T <3 .
The service curves are defined as 8(T) = T and y(T) = ) which
T -3 if T > 3,
corresponds with a 3 s time delay. To create a discrete problem, we evaluated these
functions at equally spaced points.
We apply Algorithm 2 in the floating-point case, i.e., without rounding, for the
1

computations with « = 1.0l and ¢ = (ﬁ) o Figure 19 shows the results of our
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Fig. 19 Discretized service curves computed using Algorithm 2. The curve R(T) and service constraints
y(T) and B(T) are discretized into 10 (top) and 100 (bottom) equally spaced points
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Fig. 20 Plots error of the computed points minus the actual points of the minimum convolution between
the lines R(T) and B(T') for (left) 10 and (right) 100 discretized points

min-convolution using 10 and 100 discretized points to compute the corresponding
bounds on R*(T') given in (24).

One can see that even with numerical discretization, the resulting curves in Fig. 19
exhibit satisfactory behavior in recreating the bounds of [16, Fig. 5.1]. Even for 10
discretization points, the computation captures the essential behavior of the convolu-
tion. Furthermore, using 100 discretization points better captures sharp transitions as
well as flatter regions of the service curve bounds.

Note that this experiment employs two separate convolutions. We compared our
estimated values to the actual minima computed via brute force, i.e., we computed the
exact minima by computing the bounds given in (24) foreach 7;,i = 1, ..., N where
N is the number of discretized points. Figures 20 and 21 display the error between
the computed points via Algorithm 2 and the actual points for the min-convolution
between R(T") and B(T'),and R(T') and y (T'), respectively. When using a time delay of
3 seconds, non-zero values first occur when 7 > 3 resulting in nearly zero error before
then. Both discretizations have errors on the order of 103 or smaller. Additionally,

Discrete Service Curve Error, Rxy
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Fig. 21 Plots error of the computed points minus the actual points of the minimum convolution between
the lines R(T) and y (T) for (left) 10 and (right) 100 discretized points
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Table 1 Time, in seconds, to

calculate the min-convolution Number of discrete points Dy(t, o) Brute force

between R(T) and 5(T) 10 0.0003841 0.002666
50 0.0003392 0.006488
100 0.0005358 0.01067
500 0.001053 0.04643
1000 0.001647 0.1114
5000 0.01183 1.3957
10000 0.02939 10.5240
100000 1.1738 1546.2364

the errors are nonnegative which highlights that our method slightly overestimates the
values.

Tables 1 and 2 compare the time in seconds for one application of Algorithm 2 and
a brute force computation between R(7T) and 8(T), and R(T) and y (T), respectively,
using a single processor. The difference between quasi-linear and quadratic time algo-
rithms becomes apparent as n grows. Note that utilizing Algorithm 1 produced similar
error and computational time.

7 Conclusion

Smooth approximations of the non-differentiable maximum function on vectors of real
numbers are often used in optimization and machine learning. By using the lens of
tropical geometry, one is able to see the differences between various smooth approx-
imations. For example, Fig. 13 geometrically shows what slope is computed by a
LogSumExp approximation and by a ratio approximation. In particular, when the
maximum has multiplicity greater than 1, i.e., the maximum is repeated more than
once in the vector, the LogSumExp function has a logarithmic term associated with
the multiplicity that slows down convergence. A ratio approximation removes this
logarithmic term associated with the multiplicity and thus converges faster when the
multiplicity is greater than 1. Since ratio approximations may be difficult to evaluate

Table 2 Time, in seconds, to

caleulate the min-convolution Number of discrete points Dy(t, o) Brute force

between R(T) and y (') 10 0.0001468 0.002490
50 0.0001085 0.005987
100 0.0001927 0.007235
500 0.0007843 0.03623
1000 0.001421 0.1315
5000 0.006734 1.5642
10000 0.01953 5.2610
100000 0.7965 1239.4949

@ Springer



Numerical Algorithms

in practice, we propose a discretized approximation in (18) computed using two Log-
SumExp evaluations that maintains the faster convergence of the ratio approximation
when the multiplicity is greater than 1. In a noisy model where the values may not be
exact, an exact high multiplicity maximum is perturbed into a cluster of points around
the maximum. Experiments show that these results persist even with noise.

By reducing max-convolution (and min-convolution) to classical convolution,
Algorithms 1 and 2 compute the max-convolution in quasi-linear time using the Log-
SumExp and discretized approximation, respectively. Tables 1 and 2 clearly show the
advantage of using a quasi-linear time, O (nlog(n)), algorithm over the brute force
quadratic time, O (n?), algorithm as n increases when computing service curves.
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