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Abstract

Two-stage object detectors generate object proposals

and classify them to detect objects in images. These pro-

posals often do not contain the objects perfectly but overlap

with them in many possible ways, exhibiting great variabil-

ity in the difficulty levels of the proposals. Training a ro-

bust classifier against this crop-related variability requires

abundant training data, which is not available in few-shot

settings. To mitigate this issue, we propose a novel vari-

ational autoencoder (VAE) based data generation model,

which is capable of generating data with increased crop-

related diversity. The main idea is to transform the latent

space such latent codes with different norms represent dif-

ferent crop-related variations. This allows us to generate

features with increased crop-related diversity in difficulty

levels by simply varying the latent norm. In particular, each

latent code is rescaled such that its norm linearly correlates

with the IoU score of the input crop w.r.t. the ground-truth

box. Here the IoU score is a proxy that represents the dif-

ficulty level of the crop. We train this VAE model on base

classes conditioned on the semantic code of each class and

then use the trained model to generate features for novel

classes. In our experiments our generated features con-

sistently improve state-of-the-art few-shot object detection

methods on the PASCAL VOC and MS COCO datasets.

1. Introduction

Object detection plays a vital role in many computer vi-

sion systems. However, training a robust object detector

often requires a large amount of training data with accurate

bounding box annotations. Thus, there has been increas-

ing attention on few-shot object detection (FSOD), which

learns to detect novel object categories from just a few an-

notated training samples. It is particularly useful for prob-

lems where annotated data can be hard and costly to ob-

tain such as rare medical conditions [31, 41], rare animal

species [20, 44], satellite images [2, 19], or failure cases in
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(a) DeFRCN [33] (b) Ours

Figure 1. Robustness to different object crops of the same ob-

ject instance. (a) The classifier head of the state-of-the-art FSOD

method [33] classifies correctly a simple crop of the bird but mis-

classifies a hard crop where some parts are missing. (b) Our

method can handle this case since it is trained with additional gen-

erated features with increased crop-related diversity. We show the

class with the highest confidence score.

autonomous driving systems [27, 28, 36].

For the most part, state-of-the-art FSOD methods are

built on top of a two-stage framework [35], which includes

a region proposal network that generates multiple image

crops from the input image and a classifier that labels these

proposals. While the region proposal network generalizes

well to novel classes, the classifier is more error-prone due

to the lack of training data diversity [40]. To mitigate this is-

sue, a natural approach is to generate additional features for

novel classes [12, 55, 57]. For example, Zhang et al. [55]

propose a feature hallucination network to use the varia-

tion from base classes to diversify training data for novel

classes. For zero-shot detection (ZSD), Zhu et al. [57] pro-

pose to synthesize visual features for unseen objects based

on a conditional variational auto-encoder. Although much

progress has been made, the lack of data diversity is still a

challenging issue for FSOD methods.
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Here we discuss a specific type of data diversity that

greatly affects the accuracy of FSOD algorithms. Specifi-

cally, given a test image, the classifier needs to accurately

classify multiple object proposals1 that overlap the object

instance in various ways. The features of these image crops

exhibit great variability induced by different object scales,

object parts included in the crops, object positions within

the crops, and backgrounds. We observe a typical scenario

where the state-of-the-art FSOD method, DeFRCN [33],

only classifies correctly a few among many proposals over-

lapping an object instance of a few-shot class. In fact, dif-

ferent ways of cropping an object can result in features with

various difficulty levels. An example is shown in Figure 1a

where the image crop shown in the top row is classified cor-

rectly while another crop shown in the bottom row confuses

the classifier due to some missing object parts. In general,

the performance of the method on those hard cases is signif-

icantly worse than on easy cases (see section 5.4). However,

building a classifier robust against crop-related variation is

challenging since there are only a few images per few-shot

class.

In this paper, we propose a novel data generation method

to mitigate this issue. Our goal is to generate features

with diverse crop-related variations for the few-shot classes

and use them as additional training data to train the classi-

fier. Specifically, we aim to obtain a diverse set of features

whose difficulty levels vary from easy to hard w.r.t. how

the object is cropped.2 To achieve this goal, we design our

generative model such that it allows us to control the diffi-

culty levels of the generated samples. Given a model that

generates features from a latent space, our main idea is to

enforce that the magnitude of the latent code linearly corre-

lates with the difficulty level of the generated feature, i.e.,

the latent code of a harder feature is placed further away

from the origin and vice versa. In this way, we can con-

trol the difficulty level by simply changing the norm of the

corresponding latent code.

In particular, our data generation model is based on

a conditional variational autoencoder (VAE) architecture.

The VAE consists of an encoder that maps the input to a

latent representation and a decoder that reconstructs the in-

put from this latent code. In our case, inputs to the VAE are

object proposal features, extracted from a pre-trained ob-

ject detector. The goal is to associate the norm (magnitude)

of the latent code with the difficulty level of the object pro-

posal. To do so, we rescale the latent code such that its norm

linearly correlates with the Intersection-Over-Union (IoU)

score of the input object proposal w.r.t. the ground-truth ob-

ject box. This IoU score is a proxy that partially indicates

the difficulty level: A high IoU score indicates that the ob-

1Note that an RPN typically outputs 1000 object proposals per image.
2In this paper, the difficulty level is strictly related to how the object is

cropped.

ject proposal significantly overlaps with the object instance

while a low IoU score indicates a harder case where a part of

the object can be missing. With this rescaling step, we can

bias the decoder to generate harder samples by increasing

the latent code magnitude and vice versa. In this paper, we

use latent codes with different norms varying from small to

large to obtain a diverse set of features which can then serve

as additional training data for the few-shot classifier.

To apply our model to FSOD, we first train our VAE

model using abundant data from the base classes. The VAE

is conditioned on the semantic code of the input instance

category. After the VAE model is trained, we use the se-

mantic embedding of the few-shot class as the conditional

code to synthesize new features for the corresponding class.

In our experiments, we use our generated samples to fine-

tune the baseline few-shot object detector - DeFRCN [33].

Surprisingly, a vanilla conditional VAE model trained with

only ground-truth box features brings a 3.7% nAP50 im-

provement over the DeFRCN baseline in the 1-shot setting

of the PASCAL VOC dataset [4]. Note that we are the first

FSOD method using VAE-generated features to support the

training of the classifier. Our proposed Norm-VAE can fur-

ther improve this new state-of-the-art by another 2.1%, i.e.,

from 60% to 62.1%. In general, the generated features from

Norm-VAE consistently improve the state-of-the-art few-

shot object detector [33] for both PASCAL VOC and MS

COCO [24] datasets.

Our main contributions can be summarized as follows:

• We show that lack of crop-related diversity in training

data of novel classes is a crucial problem for FSOD.

• We propose Norm-VAE, a novel VAE architecture that

can effectively increase crop-related diversity in diffi-

culty levels into the generated samples to support the

training of FSOD classifiers.

• Our experiments show that the object detectors trained

with our additional features achieve state-of-the-art

FSOD in both PASCAL VOC and MS COCO datasets.

2. Related Work

Few-shot Object Detection Few-shot object detection

aims to detect novel classes from limited annotated exam-

ples of previously unseen classes. A number of prior meth-

ods [5, 7, 8, 10, 11, 17, 17, 21, 23, 25, 26, 32, 40, 45–47, 56]

have been proposed to address this challenging task. One

line of work focuses on the meta-learning paradigm, which

has been widely explored in few-shot classification [6, 16,

37, 43, 50, 52–54]. Meta-learning based approaches intro-

duce a meta-learner to acquire meta-knowledge that can

be then transferred to novel classes. [16] propose a meta

feature learner and a reweighting module to fully exploit

generalizable features from base classes and quickly adapt

the prediction network to predict novel classes. [43] pro-

19714

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 31,2023 at 06:49:47 UTC from IEEE Xplore.  Restrictions apply. 



pose specialized meta-strategies to disentangle the learning

of category-agnostic and category-specific components in a

CNN based detection model. Another line of work adopts a

two-stage fine-tuning strategy and has shown great poten-

tial recently [3,33,40,42,48]. [42] propose to fine-tune only

box classifier and box regressor with novel data while freez-

ing the other paramters of the model. This simple stragetegy

outperforms previous meta-learners. FSCE [40] leverages

a contrastive proposal encoding loss to promote instance

level intra-class compactness and inter-class variance. Or-

thogonal to existing work, we propose to generate new sam-

ples for FSOD. Another data generation based method for

FSOD is Halluc [55]. However, their method learns to trans-

fer the shared within-class variation from base classes while

we focus on the crop-related variance.

Feature Generation Feature generation has been widely

used in low-shot learning tasks. The common goal is to gen-

erate reliable and diverse additional data. For example, in

image classification, [51] propose to generate representative

samples using a VAE model conditioned on the semantic

embedding of each class. The generated samples are then

used together with the original samples to construct class

prototypes for few-shot learning. In spirit, their conditional-

VAE system is similar to ours. [49] propose to combine

a VAE and a Generative Adversarial Network (GAN) by

sharing the decoder of VAE and generator of GAN to syn-

thesize features for zero-shot learning. In the context of

object detection, [55] propose to transfer the shared modes

of within-class variation from base classes to novel classes

to hallucinate new samples. [56] propose to synthesize vi-

sual features for unseen objects from semantic information

and augment existing training algorithms to incorporate un-

seen object detection. Recently, [15] propose to synthesize

samples which are both intra-class diverse and inter-class

separable to support the training of zero-shot object detec-

tor. However, these methods do not take into consideration

the variation induced by different crops of the same object,

which is the main focus of our proposed method.

Variational Autoencoder Different VAE variants have

been proposed to generate diverse data [9, 14, 18, 38]. β-

VAE [14] imposes a heavy penalty on the KL divergence

term to enhance the disentanglement of the latent dimen-

sions. By traversing the values of latent variables, β-

VAE can generate data with disentangled variations. Con-

trolVAE [38] improves upon β-VAE by introducing a con-

troller to automatically tune the hyperparameter added in

the VAE objective. However, disentangled representation

learning can not capture the desired properties without su-

pervision. Some VAE methods allow explicitly controllable

feature generation including CSVAE [18] and PCVAE [9].

CSVAE [18] learns latent dimensions associated with bi-

nary properties. The learned latent subspace can easily be

inspected and independently manipulated. PCVAE [9] uses

a Bayesian model to inductively bias the latent represen-

tation. Thus, moving along the learned latent dimensions

can control specific properties of the generated data. Both

CSVAE and PCVAE use additional latent variables and en-

force additional constrains to control properties. In contrast,

our Norm-VAE directly encodes a variational factor into the

norm of the latent code. Experiments show that our strategy

outperforms other VAE architectures, while being simpler

and without any additional training components.

3. Method

In this section, we first review the problem setting of

few-shot object detection and the conventional two-stage

fine-tuning framework. Then we introduce our method that

tackles few-shot object detection via generating features

with increased crop-related diversity.

3.1. Preliminaries

In few-shot object detection, the training set is divided

into a base set DB with abundant annotated instances of

classes CB , and a novel set DN with few-shot data of

classes CN , where CB and CN are non-overlapping. For a

sample (x, y) ∈ DB ∪ DN , x is the input image and y =
{(ci, bi), i = 1, ..., n} denotes the categories c ∈ CB ∪CN

and bounding box coordinates b of the n object instances in

the image x. The number of objects for each class in CN

is K for K-shot detection. We aim to obtain a few-shot de-

tection model with the ability to detect objects in the test set

with classes in CB ∪ CN .

Recently, two-stage fine-tuning methods have shown

great potential in improving few-shot detection. In these

two-stage detection frameworks, a Region Proposal Net-

work (RPN) takes the output feature maps from a backbone

feature extractor as inputs and generates region proposals.

A Region-of-Interest (RoI) head feature extractor first pools

the region proposals to a fixed size and then encodes them

as vector embeddings, known as the RoI features. A clas-

sifier is trained on top of the RoI features to classify the

categories of the region proposals.

The fine-tuning often follows a simple two-stage train-

ing pipeline, i.e., the data-abundant base training stage and

the novel fine-tuning stage. In the base training stage, the

model collects transferable knowledge across a large base

set with sufficient annotated data. Then in the fine-tuning

stage, it performs quick adaptation on the novel classes with

limited data. Our method aims to generate features with di-

verse crop-related variations to enrich the training data for

the classifier head during the fine-tuning stage. In our ex-

periments, we show that our generated features significantly

improve the performance of DeFRCN [33].
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Figure 2. Norm-VAE for modelling crop-related variations. The original latent code z is rescaled to ẑ such that the norm of ẑ linearly

correlates with the IoU score of the input crop (w.r.t. the ground truth box). The original latent codes are colored in blue while the rescaled

ones are colored in yellow. The norm of the new latent code is the output of a simple linear function g(·) taking the IoU score as the single

input. As can be seen, the two points whose IoU = 0.7 are both rescaled to norm g(0.7) while another point whose IoU = 0.9 is mapped to

norm g(0.9). As a result, different latent norms represent different crop-related variations, enabling diverse feature generation.

3.2. Overall Pipeline

Figure 2 summarizes the main idea of our proposed VAE

model. For each input object crop, we first use a pre-trained

object detector to obtain its RoI feature. The encoder takes

as input the RoI feature and the semantic embedding of the

input class to output a latent code z. We then transform z

such that its norm linearly correlates with the IoU score of

the input object crop w.r.t. the ground-truth box. The new

norm is the output of a simple linear function g(·) taking

the IoU score as the single input. The decoder takes as in-

put the new latent code and the class semantic embedding to

output the reconstructed feature. Once the VAE is trained,

we use the semantic embedding of the few-shot class as the

conditional code to synthesize new features for the class. To

ensure the diversity w.r.t. object crop in generated samples,

we vary the norm of the latent code when generating fea-

tures. The generated features are then used together with

the few-shot samples to fine-tune the object detector.

3.2.1 Norm-VAE for Feature Generation

We develop our feature generator based on a conditional

VAE architecture [39]. Given an input object crop, we

first obtain its Region-of-Interest (RoI) feature f via a pre-

trained object detector. The RoI feature f is the input for the

VAE. The VAE is composed of an Encoder E(f, a), which

maps a visual feature f to a latent code z, and a decoder

G(z, a) which reconstructs the feature f from z. Both E

and G are conditioned on the class semantic embedding a.

We obtain this class semantic embedding a by inputting the

class name into a semantic model [30,34]. It contains class-

specific information and serves as a controller to determine

the categories of the generated samples. Conditioning on

these semantic embeddings allows reliably generating fea-

tures for the novel classes based on the learned information

from the base classes [51]. Here we assume that the class

names of both base and novel classes are available and we

can obtain the semantic embedding of all classes.

We first start from a vanilla conditional VAE model. The

loss function for training this VAE for a feature fi of class

j can be defined as:

LV (fi) = KL
(

q(zi|fi, aj)||p(z|aj)
)

−
Eq(zi|fi,aj)[log p(fi|zi, aj)],

(1)

where aj is the semantic embedding of class j. The first

term is the Kullback-Leibler divergence between the VAE

posterior q(z|f, a) and a prior distribution p(z|a). The sec-

ond term is the decoder’s reconstruction error. q(z|f, a) is

modeled as E(f, a) and p(f |z, a) is equal to G(z, a). The

prior distribution is assumed to be N (0, I) for all classes.

The goal is to control the crop-related variation in a gen-

erated sample. Thus, we establish a direct correspondence

between the latent norm and the crop-related variation. To

accomplish this, we transform the latent code such that its

norm correlates with the IoU score of the input crop. Given

an input RoI feature fi of a region with an IoU score si, we

first input this RoI feature to the encoder to obtain its latent

code zi. We then transform zi to z̃i such that the norm of z̃i
correlates to si. The new latent code z̃i is the output of the

transformation function T (·, ·):

z̃i = T (zi, si) =
zi

‖zi‖
∗ g(si), (2)

where ‖zi‖ is the L2 norm of zi, si is the IoU score of the

input proposal w.r.t. its ground-truth object box, and g(·) is

a simple pre-defined linear function that maps an IoU score

to a norm value. With this new transformation step, the loss

function of the VAE from equation 1 for an input feature fi
from class j with an IoU score si thus can be rewritten as:

LV (fi, si) = KL
(

q(zi|fi, aj)||p(z|aj)
)

−
Eq(zi|fi,aj)

[

log p(fi|T (zi, si), a
j)
]

.
(3)
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3.2.2 Generating Diverse Data for Improving Few-shot

Object Detection

After the VAE is trained on the base set, we generate a set

of features with the trained decoder. Given a class y with a

semantic vector ay and a noise vector z, we generate a set

of augmented features Gy:

G
y = {f̂ |f̂ = G(

z

‖z‖ ∗ β, ay)}, (4)

where we vary β to obtain generated features with more

crop-related variations. The value range of β is chosen

based on the mapping function g(·). The augmented fea-

tures are used together with the few-shot samples to fine-

tune the object detector. We fine-tune the whole system us-

ing an additional classification loss computed on the gener-

ated features together with the original losses computed on

real images. This is much simpler than the previous method

of [55] where they fine-tune their system via an EM-like

(expectation-maximization) manner.

4. Experiments

4.1. Datasets and Evaluation Protocols

We conduct experiments on both PASCAL VOC (07

+ 12) [4] and MS COCO datasets [24]. For fair com-

parison, we follow the data split construction and evalua-

tion protocol used in previous works [16]. The PASCAL

VOC dataset contains 20 categories. We use the same 3

base/novel splits with TFA [42] and refer them as Novel

Split 1,2, 3. Each split contains 15 base classes and 5 novel

classes. Each novel class has K annotated instances, where

K = 1, 2, 3, 5, 10. We report AP50 of the novel categories

(nAP50) on VOC07 test set. For MS COCO, the 60 cate-

gories disjoint with PASCAL VOC are used as base classes

while the remaining 20 classes are used as novel classes.

We evaluate our method on shot 1,2,3,5,10,30 and COCO-

style AP of the novel classes is adopted as the evaluation

metrics.

4.2. Implementation Details

Feature generation methods like ours in theory can be

built on top of many few-shot object detectors. In our ex-

periments, we use the pre-trained Faster-RCNN [35] with

ResNet-101 [13] following previous work DeFRCN [33].

The dimension of the extracted RoI feature is 2048. For

our feature generation model, the encoder consists of three

fully-connected (FC) layers and the decoder consists of two

FC layers, both with 4096 hidden units. LeakyReLU and

ReLU are the non-linear activation functions in the hidden

and output layers, respectively. The dimensions of the la-

tent space and the semantic vector are both set to be 512.

Our semantic embeddings are extracted from a pre-trained

CLIP [34] model in all main experiments. An additional

experiment using Word2Vec [29] embeddings is reported in

Section 5.2. After the VAE is trained on the base set with

various augmented object boxes , we use the trained de-

coder to generate k = 30 features per class and incorporate

them into the fine-tuning stage of the DeFRCN model. We

set the function g(·) in Equation 2 to a simple linear func-

tion g(x) = w ∗ x + b which maps an input IoU score x

to the norm of the new latent code. Note that x is in range

[0.5, 1] and the norm of the latent code of our VAE before

the rescaling typically centers around
√
512 (512 is the di-

mension of the latent code). We empirically choose g(·)
such that the new norm ranges from

√
512 to 5 ∗

√
512. We

provide further analyses on the choice of g(·) in the supple-

mentary material. For each feature generation iteration, we

gradually increase the value of the controlling parameter β

in Equation 4 with an interval of 0.75.

4.3. Few-shot Detection Results

We use the generated features from our VAE model to-

gether with the few-shot samples to fine-tune DeFRCN.

We report the performance of two models: “Vanilla-VAE”

denotes the performance of the model trained with gener-

ated features from a vanilla VAE trained on the base set of

ground-truth bounding boxes and “Norm-VAE” denotes the

performance of the model trained with features generated

from our proposed Norm-VAE model.

PASCAL VOC Table 1 shows our results for all three

random novel splits from PASCAL VOC. Simply using a

VAE model trained with the original data outperforms the

state-of-the-art method DeFRCN in all shot and split on

PASCAL VOC benchmark. In particular, vanilla-VAE im-

proves DeFRCN by 3.7% for 1-shot and 4.3% for 3-shot

on Novel Split 1. Using additional data from our proposed

Norm-VAE model consistently improves the results across

all settings. We provide qualitative examples in the supple-

mentary material.

MS COCO Table 2 shows the FSOD results on MS

COCO dataset. Our generated features bring significant im-

provements in most cases, especially in low-shot settings

(K ≤ 10). For example, Norm-VAE brings a 2.9% and a

2.0% nAP improvement over DeFRCN in 1-shot and 2-shot

settings, respectively. Pseudo-Labeling is better than our

method in higher shot settings. However, they apply mo-

saic data augmentation [1] during fine-tuning.

5. Analyses

5.1. Effectiveness of Norm-VAE

We compare the performance of Norm-VAE with a base-

line vanilla VAE model that is trained with the same set of

augmented data. As shown in Table 4, using the vanilla

VAE with more training data does not bring performance

improvement compared to the VAE model trained with the

19717

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 31,2023 at 06:49:47 UTC from IEEE Xplore.  Restrictions apply. 



Novel Split 1 Novel Split 2 Novel Split 3

Method 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA w/ fc [42] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/ cos [42] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

MPSR [48] 41.7 - 51.4 55.2 61.8 24.4 - 39.2 35.1 39.9 47.8 - 42.3 48.0 49.7

FsDetView [50] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

FSCE [40] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5

CME [22] 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5

SRR-FSD [56] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4

Halluc. [55] 45.1 44.0 44.7 55.0 55.9 23.2 27.5 35.1 34.9 39.0 30.5 35.1 41.4 49.0 49.3

FSOD-MC [5] 40.1 44.2 51.2 62.0 63.0 33.3 33.1 42.3 46.3 52.3 36.1 43.1 43.5 52.0 56.0

FADI [3] 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 48.3 51.5

CoCo-RCNN [25] 43.9 44.5 53.1 64.6 65.5 29.4 31.3 43.8 44.3 51.8 39.1 43.9 47.2 54.7 60.3

MRSN [26] 47.6 48.6 57.8 61.9 62.6 31.2 38.3 46.7 47.1 50.6 35.5 30.9 45.6 54.4 57.4

FCT [11] 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7

Pseudo-Labelling [17] 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6

DeFRCN [33] 56.3 60.3 62.0 67.0 66.1 35.7 45.2 51.5 54.1 53.3 54.5 55.6 56.6 60.8 62.7

Vanila-VAE (Ours) 60.0 63.3 66.3 68.3 67.1 39.3 46.2 52.7 53.5 53.4 56.0 58.8 57.1 62.6 63.6

Norm-VAE (Ours) 62.1 64.9 67.8 69.2 67.5 39.9 46.8 54.4 54.2 53.6 58.2 60.3 61.0 64.0 65.5

Table 1. Few-shot object detection performance (nAP50) on PASCAL VOC dataset. We evaluate the performance on three different

splits. Our method consistently improves upon the baseline for all three splits across all shots. Best performance in bold.

nAP nAP75

Method 1 2 3 5 10 30 1 2 3 5 10 30

TFA w/ fc [42] 2.9 4.3 6.7 8.4 10.0 13.4 2.8 4.1 6.6 8.4 9.2 13.2

TFA w/ cos [42] 3.4 4.6 6.6 8.3 10.0 13.7 3.8 4.8 6.5 8.0 9.3 13.2

MPSR [48] 2.3 3.5 5.2 6.7 9.8 14.1 2.3 3.4 5.1 6.4 9.7 14.2

FADI [3] 5.7 7.0 8.6 10.1 12.2 16.1 6.0 7.0 8.3 9.7 11.9 15.8

FCT [11] - 7.9 - - 17.1 21.4 - 7.9 - - 17.0 22.1

Pseudo-Labelling [17] † - - - - 17.8 24.5 - - - - 17.8 25.0

DeFRCN [33] 6.6 11.7 13.3 15.6 18.7 22.4 7.0 12.2 13.6 15.1 17.6 22.2

Vanilla-VAE (ours) 8.8 13.0 14.1 15.9 18.7 22.5 7.9 12.5 13.4 15.1 17.6 22.2

Norm-VAE (ours) 9.5 13.7 14.3 15.9 18.7 22.5 8.8 13.7 14.2 15.3 17.8 22.4

Table 2. Few-shot detection performance for the novel classes on MS COCO dataset. Our approach outperforms baseline methods

in most cases, especially in low-shot settings (K < 10). † applies mosaic data augmentation introduced in [1] during fine-tuning. Best

performance in bold.

base set. This suggests that training with more diverse data

does not guarantee diversity in generated samples w.r.t. a

specific property. Our method, by contrast, improves the

baseline model by 1.3% ∼ 1.9%, which demonstrates the

effectiveness of our proposed Norm-VAE.

5.2. Performance Using Different Semantic Embed-
dings

We use CLIP [34] features in our main experiments. In

Table 3, we compare this model with another model trained

with Word2Vec [29] on PASCAL VOC dataset. Note that

CLIP model is trained with 400M pairs (image and its text

title) collected from the web while Word2Vec is trained with

only text data. Our Norm-VAE trained with Word2Vec em-

bedding achieves similar performance to the model trained

with CLIP embedding. In both cases, the model outperform

the state-of-the-art FSOD method in all settings.

5.3. Robustness against Inaccurate Localization

In this section, we conduct experiments to show that

our object detector trained with features with diverse crop-

related variation is more robust against inaccurate bound-

ing box localization. Specifically, we randomly select 1000

testing instances from PASCAL VOC test set and create

30 augmented boxes for each ground-truth box. Each aug-

mented box is created by enlarging the ground-truth boxes

by x% for each dimension where x ranges from 0 to 30.

The result is summarized in Figure 3 where “Baseline” de-

notes the performance of DeFRCN [33], “VAE” is the per-

formance of the model trained with features generated from

a vanilla VAE, and “Norm-VAE” is the model trained with

generated features from our proposed model.
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Method
Semantic Novel Split 1 Novel Split 2 Novel Split 3

Embedding 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot 1-shot 2-shot 3-shot

DeFRCN [33] - 56.3 60.3 62.0 35.7 45.2 51.5 54.5 55.6 56.6

Vanilla VAE
Word2Vec

60.4 62.9 66.7 38.7 45.2 52.9 55.6 58.7 57.9

Norm-VAE 61.6 63.4 66.3 40.7 46.4 53.3 56.8 59.0 60.2

Vanilla VAE
CLIP

60.0 63.3 66.3 39.3 46.2 52.7 56.0 58.8 57.1

Norm-VAE 62.1 64.9 67.8 39.9 46.8 54.4 58.2 60.3 61.0

Table 3. FSOD Performance of VAE models trained with different class semantic embeddings. CLIP [34] is trained with 400M pairs

(image and its text title) collected from the web while Word2Vec [29] is trained with only text data.

Data 1-shot 2-shot 3-shot

DeFRCN [33] - 56.3 60.3 62.0

VAE Orginal 60.0 63.3 66.3

VAE Augmented 60.1 62.7 66.4

Norm-VAE Augmented 62.1 64.9 67.8

Table 4. Performance comparisons between vanilla VAE and

Norm-VAE on PASCAL VOC dataset. Training a the vanilla

VAE with the augmented data does not bring performance im-

provement. One possible reason is that the generated samples are

not guaranteed to be diverse even with sufficient data.

Figure 3 (a) shows the classification accuracy of the ob-

ject detector on the augmented box as the IoU score be-

tween the augmented bounding box and the ground-truth

box decreases. For both the baseline method DeFRCN and

the model trained with features from a vanilla VAE, the ac-

curacy drops by ∼ 10% as the IoU score decreases from

1.0 to 0.5. These results suggest that these models per-

form much better for boxes that have higher IoU score w.r.t.

the ground-truth boxes. Our proposed method has higher

robustness to these inaccurate boxes: the accuracy of the

model trained with features from Norm-VAE only drops by

∼ 5% when IoU score decreases from 1 to 0.5.

Figure 3 (b) plots the average probability score of the

classifier on the ground-truth category as the IoU score de-

creases. Similarly, the probability score of both baseline

DeFRCN and the model trained with features from a vanilla

VAE drops around 0.08 as the IoU score decreases from 1.0

to 0.5. The model trained with features from Norm-VAE,

in comparison, has more stable probability score as the IoU

threshold decreases.

5.4. Performance on Hard Cases

In Table 5, we show AP 50∼75 of our method on PAS-

CAL VOC dataset (Novel Split 1) in comparison with the

state-of-the-art method DeFRCN. Here AP 50∼75 refers to

the average precision computed on the proposals with the

IoU thresholds between 50% and 75% and discard the pro-

posals with IoU scores (w.r.t. the ground-truth box) larger

(a) Accuracy (b) Probability score

Figure 3. Classification accuracy and probability score of the

object detector on the augmented box. We compare between

the baseline DeFRCN [33], the model trained with features from

vanilla VAE and our proposed Norm-VAE. By generating features

with diverse crop-related variations, we increase the object detec-

tor’s robustness against inaccurate object box localization.

Method 1-shot 2-shot 3-shot

DeFRCN [33] 16.6 13.3 15.2

Ours (↑ Improvement) 18.8 (↑2.2) 16.4 (↑ 3.1) 19.2 (↑4.0)

Table 5. AP50∼75 of our method and DeFRCN on PASCAL

VOC dataset. AP 50∼75 refers to the average precision computed

on the proposals with the IoU thresholds between 50% and 75%
and discard the proposals with IoU scores larger than 0.75, i.e.,

only “hard” cases.

than 0.75. Thus, AP 50∼75 implies the performance of

the model in “hard” cases where the proposals do not sig-

nificantly overlap the ground-truth object boxes. In this

extreme test, the performance of both models are worse

than their AP50 counterparts (Table 1), showing that FSOD

methods are generally not robust to those hard cases. Our

method mitigates this issue, outperforming DeFRCN by

substantial margins. However, the performance is still far

from perfect. Addressing these challenging cases is a fruit-

ful venue for future FSOD work.
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Features 1-shot 2-shot 3-shot 5-shot

nAP50 nAP75 nAP50 nAP75 nAP50 nAP75 nAP50 nAP75

Low-IoU (Hard cases) 60.9 30.5 63.7 40.6 66.6 40.7 68.9 41.2

High-IoU (Easy cases) 60.2 31.6 63.2 41.0 66.3 41.5 68.3 42.1

Table 6. Comparison between models trained with different groups of generated features. The model trained with “Low-IoU” (hard

cases) features has better nAP50 scores while the “High-IoU” (easy cases) model has better nAP75 scores. Features corresponding to

different difficulty levels improve the performance differently in terms of nAP50 and nAP75.

5.5. Performance with Different Subsets of Gener-
ated Features

In this section, we conduct experiments to show that dif-

ferent groups of generated features affect the performance

of the object detector differently. Similar to Section 4.2,

we generate 30 new features per few-shot class with vari-

ous latent norms. However, instead of using all norms, we

only use large norms (top 30% highest values) to generate

the first group of features and only small norms (top 30%

lowest values) to generate the second group of features.

During training, larger norms correlate to input crops with

smaller IoU scores w.r.t. the ground-truth boxes and vice

versa. Thus, we denote these two groups as “Low-IoU” and

“High-IoU” correspondingly. We train two models using

these two sets of features and compare their performance in

Table 6. As can be seen, the model trained with “Low-IoU”

features has higher AP50 while the “High-IoU” model has

higher AP75 score. This suggests that different groups of

features affect the performance of the classifier differently.

The “Low-IoU” features tend to increase the model’s ro-

bustness to hard-cases while the “High-IoU” features can

improve the performance for easier cases. Note that the

performance of both of these models is not as good as the

model trained with diverse variations and interestingly, very

similar to the performance of the vanilla VAE model (Table

1).

5.6. Comparisons with Other VAE architectures

Our proposed Norm-VAE can increase diversity w.r.t.

image crops in generated samples. Here, we compare the

performance of our proposed Norm-VAE with other VAE

architectures, including β-VAE [14] and CSVAE [18]. We

train all models on image features of augmented object

crops on PASCAL VOC dataset using the same backbone

feature extractor. For β-VAE, we generate additional fea-

tures by traversing a randomly selected dimension of the

latent code. For CSVAE, we manipulate the learned la-

tent subspace to enforce variations in the generated sam-

ples. We use generated features from each method to fine-

tune DeFRCN. The results are summarized in Table 7. In

all cases, the generated features greatly benefit the baseline

DeFRCN. This shows that lacking crop-related variation is

a critical issue for FSOD, and augmenting features with in-

creased crop-related diversity can effectively alleviate the

problem. Our proposed Norm-VAE outperforms both β-

VAE and CSVAE in all settings. Note that CSVAE requires

additional encoders to learn a pre-defined subspace corre-

lated with the property, while our Norm-VAE directly en-

code this into the latent norm without any additional con-

straints.

1-shot 2-shot 3-shot

DeFRCN [33] 56.3 60.3 62.0

β-VAE [14] 61.3 64.0 67.3

CSVAE [18] 61.6 64.1 67.4

Norm-VAE 62.1 64.9 67.8

Table 7. Comparison between Norm-VAE and other VAE vari-

ants. Norm-VAE outperforms β-VAE and CSVAE on PASCAL

VOC dataset under all settings. Best performance in bold.

6. Conclusion and Future Works

We tackle the lack of crop-related variability in the train-

ing data of FSOD, which makes the model not robust to

different object proposals of the same object instance. To

this end, we propose a novel VAE model that can gener-

ate features with increased crop-related diversity. Experi-

ments show that such increased diversity in the generated

samples significantly improves the current state-of-the-art

FSOD performance for both PASCAL VOC and MS COCO

datasets. Our proposed VAE model is simple, easy to im-

plement, and allows modifying the difficulty levels of the

generated samples. In general, generative models whose

outputs can be manipulated according to different proper-

ties, are crucial to various frameworks and applications. In

future work, we plan to address the following limitations

of our work: 1) We bias the decoder to increase the diver-

sity in generated samples instead of explicitly enforcing it.

2) Our proposed method is designed to generate visual fea-

tures of object boxes for FSOD. Generating images might

be required in other applications. Another direction to ex-

tend our work is to represent other variational factors in the

embedding space to effectively diversify generated data.
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