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Abstract. We address the asymptotic properties for the Boussinesq equations with vanishing thermal

diffusivity in a bounded domain with no-slip boundary conditions. We show the dissipation of the L2 norm
of the velocity and its gradient, convergence of the L2 norm of Au, and an o(1)-type exponential growth

for ‖A3/2u‖L2 . We also obtain that in the interior of the domain the gradient of the vorticity is bounded
by a polynomial function of time.
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1. Introduction
sec01

In this paper, we address the asymptotic behavior of the Boussinesq equations

ut − ν∆u+ u · ∇u+∇p = ρe2

ρt + u · ∇ρ = 0

∇ · u = 0

(1.1) EQ58

with vanishing thermal/density diffusivity, in a smooth bounded domain Ω ⊆ R
2 with the Dirichlet boundary

condition

u
∣

∣

∂Ω
= 0 (1.2) EQ126

and subject to the initial condition (u(0), ρ(0)) = (u0, ρ0). Here, u represents the velocity, p the pressure,

and ρ the density or the temperature, depending on the physical context. The 2D Boussinesq system of

equations is used in a wide range of physical contexts, from large scale oceanic and atmospheric flows

where rotation and stratification are significant to microfluids and biophysics. It also relates closely to

fundamental models in fluid dynamics. In particular, the vorticity formulation of the incompressible Euler
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equations away from the singularity can be described by the 2D Boussinesq equations (see [DWZZ]). For

simplicity of exposition, we shall refer to the variable ρ as the density, although it may also represent a

temperature.

While global existence results have been well-known in the case of positive viscosity and positive thermal

diffusivity, i.e., when adding the term −κ∆ρ in the equation for the density/temperature, we address here

the case of vanishing thermal diffusivity. In the case when both viscosity ν and diffusion coefficients κ

vanish, the global existence and uniqueness remain open questions, although results on the local existence,

blow-up criteria, explicit solutions, and finite time singularities have been proven; see the blow-up results

in [CH,EJ], based on the singularity creation theorem for the Euler equations by Elgindi [E]. The case ν > 0

and κ = 0, considered here, was initially considered by Chae [C] and Hou and Li [HL]. In particular, Hou

and Li obtained the global existence and persistence of regularity in Hs × Hs−1 for integer valued s ≥ 3

in the case of periodic boundary conditions. The paper [LLT] by Lai et al extended the result in [HL] to

the Dirichlet boundary conditions. The persistence of regularity for the lower value s = 2 in the case of

Dirichlet or periodic boundary conditions was addressed in [HKZ1]. Subsequently, Ju obtained in [J] that

CeCt2 is an upper bound for the H1 norm for the density, also for the Dirichlet boundary conditions. The

bound was lowered to eCt in [KW2], where also more precise results were obtained for periodic boundary

conditions. In particular, [KW2, Theorem 2.1] contains a uniform in time upper bound for the quantity

‖D2u‖Lp for all p ≥ 2 in the periodic case. In a recent paper by Doering et al [DWZZ], the global existence,

uniqueness, and regularity for the Boussinesq for the Lions boundary condition on a Lipschitz domain Ω,

was proven along with the dissipation of the L2 norm of the velocity and its gradient. For other papers on

the global existence and the regularity in Sobolev and Besov spaces, see [ACW,ACS.., BFL,BS,BrS,CD,

CG,CN,CW,DP,HK1,HK2,HKR,HKZ2,HS,JMWZ,KTW,KW2,KWZ,LPZ,SW].

In this paper, we prove several results on the asymptotic behavior of solutions of the Boussinesq system

(1.1) with the Dirichlet boundary conditions (1.2). In our first main theorem, Theorem 2.1, we show that

the H1 norm of the velocity dissipates. We also establish a balanced convergence of Au (see (2.7) below),

where A is the Stokes operator. Regarding the growth of the density, we prove that the first Sobolev

norm of the density is bounded, up to a constant, by eǫt for an arbitrarily small ǫ > 0, thus improving a

result from [KW2] where the bound of the type eCt was proven. Since the growth of the Sobolev norms

of the density is controlled by the time integral of ‖∇u‖L∞ , it is reasonable to expect that the bound was

optimal; however, here we prove that the optimal bound is in fact eǫt. It remains an open problem if one

can achieve the estimate of the type eCtα , where α ∈ [0, 1); it seems that such an improvement would

require the Lipschitz norm of u to decay, which may not be reasonable to expect. The theorem holds under

the assumption that (u0, ρ0) belongs to H2 ×H1. The ideas for the proof of Theorems 2.1 draw from the

approaches in [DWZZ], [HKZ1], [LLT], [HKZ1], [J], [KW1], and [KW2].

In the second main theorem, Theorem 2.2, we address the behavior of the solution in a higher regularity

norm. We prove that, under the H3 ×H2 assumption on the initial data, that for every ǫ > 0 the norm of

(u, ρ) in the H3 ×H2 norm is bounded by eǫt, up to a constant depending on ǫ > 0. This holds under the

H3 ×H2 regularity of the initial data (u0, ρ0).

In the last main theorem, Theorem 2.3, we consider the upper bound for the Lp norm of the second

derivatives of the velocity. As shown in [HKZ1], one may obtain a uniform bound when p = 2. When p > 2,
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this is not known except in the case of periodic boundary condition, which is a result obtained in [KW1].

Here, we prove that we can obtain a polynomial in time bound in the interior of a domain when considering

the Dirichlet boundary condition, which is considerably lower than eǫt type bound that would result from

applying the Gagliardo-Sobolev inequality on the conclusions of Theorem 2.2. The proof is obtained by the

change of variable from [KW1] combined with new localization arguments controlling the nonlocal nature

of the transformation in [KW1] (see the double cut-off strategy in the proof of Theorem 2.3 below).

We emphasize that all our results extend also in the often-studied problem of the channel with Dirichlet

boundary conditions on top and the bottom and periodic boundary conditions on the sides. Also, our proofs

are completely self-contained.

2. Main theorems
sec02

We consider the asymptotic behavior of the Boussinesq equations

ut −∆u+ u · ∇u+∇p = ρe2

ρt + u · ∇ρ = 0

∇ · u = 0

(2.1) EQ01

and

u
∣

∣

∂Ω
= 0, (2.2) EQ02

coupling the Navier-Stokes equations [CF, DG, R, K1, K2, T1–T3] for the velocity u = (u1, u2) and the

pressure p with the equation for the density ρ. The system is set on a smooth, bounded, and connected

domain Ω ⊆ R
2 and supplemented with the initial condition

(u, ρ)(0) = (u0, ρ0) in Ω. (EQ03)

Here, u denotes the velocity, p the pressure, and ρ the density. Note that we set ν = 1 for simplicity of

exposition; all the results extend to other values of ν with constants depending additionally on ν.

From [CF,T1], we recall the classical spaces

H = {u ∈ L2(Ω) : ∇ · u = 0 in Ω, u · n = 0 on ∂Ω}, (EQ04)

where n denotes the outward unit normal, and

V = {u ∈ H1
0 (Ω) : ∇ · u = 0 in Ω}, (EQ05)

utilized in the study of the Navier-Stokes equations. With P : L2 → H the Leray projector, denote by

A = −P∆, (EQ06)

the Stokes operator with the domain D(A) = H2(Ω) ∩ V .

It is known that for a sufficiently regular initial condition there exists a unique, global in time solution

for (2.1)–(2.2) (see [C,HL]). In the first theorem, we obtain the asymptotic properties of A1/2u and Au in

the L2 norm.

T01 Theorem 2.1. Let (u0, ρ0) ∈ (H2(Ω) ∩ V )×H1(Ω). Then the solution

(u, ρ) ∈ (C([0,∞);V ) ∩ L2
loc([0,∞);D(A)))× L∞

loc([0,∞), H1(Ω)) (EQ07)
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of (2.1)–(2.2) satisfies

‖Au(t)‖L2 ≤ C, t ≥ 0, (2.3) EQ08

where C depends on the size of the initial data, i.e., on the norms ‖Au0‖L2 and ‖ρ0‖H1 , as well as
∫ t+t0

t

‖u‖2H3 ≤ C, t ≥ 0 (2.4) EQ82

for every t0 > 0, where C depends additionally on t0 and

lim
t→∞

∫ t+t0

t

‖u‖2H3 = 0, t0 > 0. (2.5) EQ87

Moreover,

‖A1/2u(t)‖L2 = ‖∇u(t)‖L2 → 0 as t→ ∞, (2.6) EQ09

and

‖Au(t)− P(ρ(t)e2)‖L2 → 0 as t→ ∞, (2.7) EQ10

and for every ǫ > 0 we have

‖ρ(t)‖H1 ≤ Cǫe
ǫt, t ≥ 0, (2.8) EQ11

where Cǫ is a constant depending on ǫ and the size of initial data.

Above and in the sequel, we allow all constants to depend on Ω.

One of the main conclusions of the above theorem is that the persistence holds for initial data in D(A)×
H1. It is not known whether persistence holds in the space D(A1/2)×H1. Note that in the case of Navier

boundary conditions, this is possible due to better continuity properties of the bilinear term. The persistence

in L∞ ×H1 in the case of Navier boundary conditions was established in [HWW+] (see also [HW]).

In the next statement, we obtain the asymptotic behavior of the H3 × H2 norm of the solution (u, ρ).

By [LLT,T5], the local existence requires the initial data to satisfy the compatibility condition

(−∆u0 −∇p0 − ρ0e2)|∂Ω = 0, (2.9) EQ12

where p0 denotes the initial pressure, which solves the Neumann boundary problem

∆p0 = ∇ · (ρ0e2 − u0 · ∇u0) in ∂Ω,

−∇p0 · n
∣

∣

∂Ω
= (∆u0 + ρ0e2) · n

∣

∣

∂Ω

(EQ12b)

with n denoting the outward unit normal.

T02 Theorem 2.2. Assume that (u0, ρ0) ∈ (H3(Ω)∩V )×H2(Ω) satisfies the compatibility condition (2.9), and

let (u, ρ) be the corresponding solution of (2.1)–(2.2). Then for every ǫ > 0, we have

‖u(t)‖H3 ≤ Cǫe
ǫt, t ≥ 0 (EQ13)

and

‖ρ(t)‖H2 ≤ Cǫe
ǫt, t ≥ 0, (2.10) EQ14

where Cǫ is a constant depending on ǫ and the size of initial data.

In the next theorem, we obtain the interior bounds for the Lp norm of the Hessian D2u of the velocity

in the interior, for any p ≥ 2.
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T04 Theorem 2.3. Let (u0, ρ0) ∈ (H2(Ω) ∩ V ) × H1(Ω) and p ∈ [2,∞), and suppose that Ω′ ⊆ Ω is open

and relatively compact. Then for the corresponding solution (u, ρ) of (2.1)–(2.2) and all t0 > 0 we have a

space-time bound

‖D2u‖Lp([t0,T ];Lp(Ω′)) ≤ CT 1/p, (2.11) EQ15

for T ≥ t0 > 0, while in addition we have a pointwise in time bound

‖D2u(t)‖Lp(Ω′) ≤ Ct(p+2)/4p, t ≥ t0, (2.12) EQ16

where the constants in (2.11) and (2.12) depend on t0, p, and dist(Ω′, ∂Ω).

3. Proofs for the global bounds
sec03

First, we recall prior results on the L2 norms corresponding to Theorem 2.1. Let (u0, ρ0) ∈ (H2(Ω) ∩
V ) × H1(Ω). Then there exists a unique global solution (u, ρ) such that u ∈ L∞((0,∞), H2(Ω)) ∩
L2
loc((0,∞), H3(Ω)) and ρ ∈ L∞

loc((0,∞), H1(Ω)) of (2.1)–(2.2). Furthermore, the solution (u, ρ) satisfies

‖u(t)‖L2 + ‖ρ(t)‖L2 . 1, t ≥ 0. (3.1) EQ17

Here and below, the notation a . b means a ≤ Cb, where C is a constant, which is allowed to depend on

the size of the initial data in the pertinent norms. We denote by

B(u, v) = P(u · ∇v) u, v ∈ V (EQ18)

the bilinear term corresponding to the Navier-Stokes equations. This allows us to rewrite (2.1) as

ut +Au+B(u, u) = P(ρe2)

ρt + u · ∇ρ = 0.
(3.2) EQ19

We now turn to the proof of the first theorem.

Proof of Theorem 2.1. We begin by proving that ‖u‖L2 dissipates. Inspired by [DWZZ], we shift the density

by x2, i.e., introduce

θ(x1, x2, t) = ρ(x1, x2, t)− x2, (3.3) EQ123

and compensate with P = p(x1, x2, t)− x22/2 to derive an equivalent system of equations

ut −∆u+ u · ∇u+∇P = θe2

θt + u · ∇θ = −u · e2
∇ · u = 0,

(3.4) EQ20

with u
∣

∣

∂Ω
= 0. Multiplying the first equation of (3.4) with u and the second by θ, integrating, and applying

the Dirichlet boundary conditions and incompressibility, we obtain

1

2

d

dt
(‖u‖2L2 + ‖θ‖2L2) + ‖∇u‖2L2 = 0. (3.5) EQ21

Observe that the norm ‖θ‖L2 may increase, and thus no direct conclusion on decay rates can be reached

from (3.5). The identity (3.5) implies ‖u‖2L2 and ‖θ‖2L2 are uniformly bounded in time and
∫

∞

0

‖∇u‖2L2 . 1, (EQ22)
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where we allow all constants to depend on ‖u0‖H2 and ‖ρ0‖H1 . Also, ‖ρ(t)‖Lp =‖ρ0‖Lp for t ≥ 0 for any

p ∈ [1,∞); note that ‖ρ0‖Lp <∞ by ρ0 ∈ H1(Ω). Utilizing the Poincaré inequality, we also get
∫

∞

0

‖u‖2L2 . 1. (3.6) EQ23

To prove the uniform continuity from above of the L2 norm of u, we multiply the first equation in (3.4)

with u and integrate by parts to find that

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 =

∫

Ω

θu · e2 ≤ ‖u‖L2‖θ‖L2 . ‖u‖L2 , (EQ24)

which, by Poincaré and Young’s inequalities, implies

d

dt
‖u‖2L2 + ‖∇u‖2L2 . 1. (3.7) EQ139

It is elementary to show that if a differentiable function f : [0,∞) → [0,∞) satisfies
∫

∞

0
f(s) ds < ∞ and

f ′(t) . 1, then limt→∞ f(t) = 0. Applying the statement with f(t) = ‖u‖2L2 , the inequalities (3.6) and (3.7)

imply

‖u‖L2 → 0 as t→ ∞. (3.8) EQ26

Next, we aim to prove that ‖∇u‖2L2 → 0. We take the L2 inner product of (3.2)1 with Au to find that

1

2

d

dt
‖A1/2u‖2L2 + ‖Au‖2L2 = −〈B(u, u), Au〉L2 + 〈P(θe2), Au〉L2

≤ ‖B(u, u)‖L2‖Au‖L2 + ‖θ‖L2‖Au‖L2 . ‖u‖1/2L2 ‖A1/2u‖L2‖Au‖3/2L2 + ‖Au‖L2 ,

(3.9) EQ28

where we used

‖B(u, u)‖L2 . ‖u‖L4‖∇u‖L4 . ‖u‖1/2L2 ‖u‖H1‖u‖1/2H2 . ‖u‖1/2L2 ‖A1/2u‖L2‖Au‖1/2L2 . (3.10) EQ131

In (3.9), we apply Young’s inequality and absorb the factors ‖Au‖L2 into the second term on the left side,

obtaining

d

dt
‖A1/2u‖2L2 + ‖Au‖2L2 . ‖u‖2L2‖A1/2u‖4L2 + 1 . ‖A1/2u‖4L2 + 1. (EQ29)

Utilizing Lemma A.1 in the Appendix, we obtain

‖A1/2u(t)‖L2 . 1, t ≥ 0 (3.11) EQ122

and

‖A1/2u(t)‖L2 → 0 as t→ ∞, (EQ138)

giving (2.6). In addition, by the same lemma,
∫ t+t0

t

‖Au‖2L2 . 1, t, t0 ≥ 0, (3.12) EQ173

where the constant depends on t0 and

lim sup
t→∞

∫ t+t0

t

‖Au‖2L2 . t0, t0 ≥ 0. (3.13) EQ30
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We note in passing, and since it is needed in the proof of Theorem 2.3, that the inequality of type (3.13)

also holds with Au replaced with ut. To show that ut dissipates in the L2 norm, we take the time derivative

of (3.4)1, multiply by ut, and integrate by parts, to get the equation

1

2

d

dt
‖ut‖2L2 + ‖∇ut‖2L2 = 〈θte2, ut〉L2 − 〈ut · ∇u, ut〉L2 . (3.14) EQ33

For the first term on the right, we apply (3.4)2 to obtain

〈θte2, ut〉L2 = −
∫

Ω

(u · ∇θ)(∂tu2)−
∫

Ω

u2∂tu2 =

∫

Ω

θu · ∇∂tu2 −
∫

Ω

u2∂tu2

. ‖θ‖L4‖u‖1/2L2 ‖A1/2u‖1/2L2 ‖∇ut‖L2 + ‖u‖L2‖ut‖L2

. ‖A1/2u‖1/2L2 ‖∇ut‖L2 + ‖u‖L2‖∇ut‖L2 ,

(3.15) EQ34

where we used ‖θ‖L4 . 1, by ‖ρ‖L4 . 1, and ‖ut‖L2 . ‖∇ut‖L2 in the last inequality. For the second term

on the right-hand side of (3.14), we write

− 〈ut · ∇u, ut〉L2 . ‖ut‖2L4‖∇u‖L2 . ‖ut‖L2‖∇ut‖L2‖A1/2u‖L2 . (3.16) EQ35

Using (3.15) and (3.16) in (3.14) and then absorbing the factors ‖∇ut‖L2 by Young’s inequality, we get

d

dt
‖ut‖2L2 + ‖∇ut‖2L2 . ‖A1/2u‖L2 + ‖u‖2L2 + ‖ut‖2L2‖A1/2u‖2L2 . φ(t)(1 + ‖ut‖2L2), (3.17) EQ36

where φ : [0,∞) → [0,∞) is a bounded function, which satisfies limt→∞ φ(t) = 0. Also, note that u0(0),

defined as ut(0) = −Au0 −B(u0, u0) + P(ρ0x2), satisfies

‖ut(0)‖L2 . ‖Au0‖L2 + ‖u0‖1/2L2 ‖Au0‖1/2L2 ‖A1/2u0‖L2 . 1. (3.18) EQ91

By Lemma A.2, we get

‖ut(t)‖L2 . 1, t ∈ [0,∞) (3.19) EQ163

and

‖ut(t)‖L2 → 0 as t→ ∞ (3.20) EQ37

as well as
∫ t+t0

t

‖∇ut‖2L2 ≤ C, t, t0 ≥ 0 (3.21) EQ82

and

lim sup
t→∞

∫ t+t0

t

‖∇ut‖2L2 = 0, t0 ≥ 0, (3.22) EQ38

where the constant in (3.21) depends on t0. Using the H3 regularity on the stationary Stokes formulation

Au = −ut −B(u, u) + P(ρe2), we obtain

‖u‖H3 . ‖ut‖H1 + ‖B(u, u)‖H1 + ‖P(ρe2)‖H1 . ‖ut‖H1 + ‖u · ∇u‖H1 + ‖ρ‖H1 , (EQ174)

where we used the continuity of P on H
1. Since

‖u · ∇u‖H1 . ‖u‖1/2L2 ‖Au‖3/2H2 , (EQ175)

we get

‖u‖H3 . ‖∇ut‖L2 + ‖u‖1/2L2 + ‖u‖1/2L2 ‖Au‖3/2L2 + 1, (3.23) EQ176

and the assertions (3.21) and (2.5) follow from (3.12) and (3.13), respectively.
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Next, from (3.2)1, we obtain

‖Au‖L2 . ‖ut‖L2 + ‖B(u, u)‖L2 + ‖ρ‖L2 . ‖ut‖L2 + ‖u‖1/2L2 ‖A1/2u‖L2‖Au‖1/2L2 + 1. (EQ39)

Absorbing the factor ‖Au‖1/2L2 in the left-hand side by using Young’s inequality, we get

‖Au‖L2 . ‖ut‖L2 + ‖u‖L2‖A1/2u‖2L2 + 1, (EQ40)

from where, by (2.6) and (3.20), we get (2.3). Note, in passing, that (2.3) and (3.8) imply

‖u(t)‖L∞ → 0 as t→ ∞, (3.24) EQ41

by Agmon’s inequality. From (3.2)1, we get

‖Au− P(ρe2)‖L2 . ‖ut‖L2 + ‖B(u, u)‖L2 . ‖ut‖L2 + ‖u‖L∞‖A1/2u‖L2 . (3.25) EQ42

By (3.20) and (3.24), the right-hand side of (3.25) converges to 0 as t→ ∞, and we obtain (2.7).

We lastly proceed to prove the o(1)-type exponential estimate on the growth of ‖∇θ‖L2 . For this, we first

need to prove the local in time boundedness of ‖θ‖H1 , which in turn requires us to first bound
∫ T

0
‖∇u‖L∞

for some T > 0. From (3.17) and (3.18), we have
∫ T

0

‖∇ut‖2L2 . 1, (EQ155)

for all T > 0, where the constant depends on T . Now, consider the Stokes problem

ut −∆u+∇p = −u · ∇u+ ρe2

∇ · u = 0

u|∂Ω = 0.

(EQ25)

By [SvW, Theorem 2.7] (see also [GS]) applied with s = p = 3, we obtain that for any ǫ̃ > 0
∫ T

0

‖u‖3W 2,3 . ‖A2/3+ǫ̃
3 u0‖3L3 +

∫ T

0

‖u · ∇u− ρe2‖3L3 , (3.26) EQ167

for all T > 0, where the constant depends on T and ǫ̃. In (3.26), A3 denotes the L3 version of the Stokes

operator (see [GS,SvW]). For the first term on the right-hand side in (3.26), we use

‖A2/3+ǫ̃
3 u0‖L3 . ‖Au0‖L2 . 1 (3.27) EQ169

with ǫ̃ = 1/6 from the embedding property on [SvW, p. 430], while for the second term we estimate

‖u · ∇u− ρe2‖3L3 . ‖u‖3L6‖∇u‖3L6 + ‖ρ‖3L3 . ‖u‖L2‖A1/2u‖3L2‖Au‖2L2 + 1 . 1. (3.28) EQ168

Applying (3.27) and (3.28) in (3.26), we get
∫ T

0

‖D2u‖3L3 . 1, (3.29) EQ170

where the constant depends on T and consequently
∫ T

0

‖∇u‖L∞ . 1 (3.30) EQ159

for all T > 0, where the constant depends on T , due to the Gagliardo-Nirenberg type inequality

‖v‖L∞ . ‖v‖1/4L2 ‖∇v‖3/4L3 + ‖v‖L2 . (3.31) EQ32
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By applying the gradient to (3.4)2 and taking the inner product with ∇θ, we find that

1

2

d

dt
‖∇θ‖2L2 = −〈∇(u · ∇θ),∇θ〉L2 − 〈∇(u · e2),∇θ〉L2 . (3.32) EQ44

The second term is estimated by C‖∇u‖L2‖∇θ‖L2 , while the first term is likewise bounded as

−〈∇(u · ∇θ),∇θ〉L2 = −
∫

Ω

∂j(ui∂iθ)∂jθ = −
∫

Ω

∂jui∂iθ∂jθ −
1

2

∫

Ω

ui∂i|∇θ|2 . ‖∇u‖L∞‖∇θ‖2L2 , (EQ45)

by (3.4)3 and u
∣

∣

∂Ω
= 0. Thus, estimating the two terms in (3.32) as indicated and canceling a factor of

‖∇θ‖L2 , we conclude that

d

dt
‖∇θ‖L2 . ‖∇u‖L∞‖∇θ‖L2 + ‖∇u‖L2 . ‖∇u‖L∞(‖∇θ‖L2 + 1), (3.33) EQ46

which implies that the exponential growth of ‖∇θ‖L2 is determined by the time integral of ‖∇u‖L∞ . In

particular, applying (3.30) to (3.33) yields

‖θ‖H1 . 1, t ∈ [0, T ], (3.34) EQ160

for all T > 0, where the constant depends on T .

Next, we fix ǫ ∈ (0, 1] and claim that

‖θ(t)‖H1 . eǫt, t ≥ 0, (3.35) EQ43

where we allow all constants to depend on ǫ. Note that (3.35) directly implies (2.8) by the definition (3.3).

To prove (3.35), we need to estimate the time integral of ‖∇u‖L∞ . Let 0 < t0 ≤ t1, where t0 ≥ 2 is a large

time to be determined based on ǫ. By the Gagliardo-Nirenberg in space and Hölder’s inequalities in time,

we have, using (3.31)
∫ t1+1

t1

‖∇u‖L∞ ≤
∫ t1+1

t1

(

‖∇u‖1/4L2 ‖∆u‖3/4L3 + ‖∇u‖L2

)

≤ C

(
∫ t1+1

t1

‖∇u‖1/3L2

)3/4 (∫ t1+1

t1

‖∆u‖3L3

)1/4

+
1

2
ǫ,

(3.36) EQ47

provided t0 is sufficiently large (recall that t1 ≥ t0 is arbitrary). To bound the L3L3 norm of ∆u, we

introduce a smooth cut-off function φ : [0,∞) → [0, 1], where φ(t) = 0 on [0, t1 − 1] and φ(t) = 1 on [t1,∞]

with |φ′| . 1. Now we consider the equation

(φu)t −∆(φu) +∇(φp) = φ′u− u · ∇(φu) + φρe2 (3.37) EQ164

which follows from (2.1)1; note that ∇ · (φu) = 0 since φ is a function of time only, and also, for the same

reason, there are no additional terms resulting from the nonlinearity. Using the W 2,3 estimate due to Sohr

and Von Wahl [SvW] we have, similarly to (3.26)–(3.29),
∫ t1+1

t1

‖D2u‖3L3 .

∫ t1+1

t1−1

‖u · ∇(φu)‖3L3 +

∫ t1+1

t1−1

‖φ′u‖3L3 +

∫ t1+1

t1−1

‖ρ‖3L3

.

∫ t1+1

t1−1

‖u‖3L6‖∇u‖3L6 +

∫ t1+1

t1−1

‖u‖3L3 + 1

.

∫ t1+1

t1−1

‖u‖L2‖∇u‖3L2‖Au‖2L2 +

∫ t1+1

t1−1

‖u‖2L2‖∇u‖L2 + 1 . 1,

(3.38) EQ48
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where we used (2.3), (3.1), and (3.11). Also, for the first factor of the first term in (3.36), we use (2.6) to

obtain that for any ǫ0 > 0 there exists t0 ≥ 1 sufficiently large so that

(
∫ t1+1

t1−1

‖∇u‖1/3L2

)3/4

≤ ǫ0ǫ. (3.39) EQ50

Thus, using (3.38) and (3.39) in (3.36), we obtain
∫ t1+1

t1

‖∇u‖L∞ ≤ Cǫ0ǫ+
1

2
ǫ, (EQ51)

for t0 ≥ 1 sufficiently large, which in turn implies
∫ t

t0

‖∇u‖L∞ ≤ ǫ(t− t0), t ≥ t0 + 1 (3.40) EQ165

if we choose ǫ0 to be a sufficiently small constant. Note that (3.40) is obtained by adding the integrals of

unit length. Returning to (3.33), we find that Gronwall’s inequality implies

‖∇θ(t)‖L2 ≤ (‖∇θ(t0)‖L2 + 1)eǫ(t−t0). (3.41) EQ52

Finally, we use (3.34) implying

‖θ(t0)‖H1 . 1, (3.42) EQ162

where the constant depends on t0, which in turn only depends on ǫ. Combining (3.41) and (3.42) leads to

the claimed inequality (3.35). �

Next, we address a higher regularity norm.

Proof of Theorem 2.2. We start with a priori estimates and at the end of the proof we provide a sketch of

the justification. Taking a time derivative of (2.1)1, we obtain

utt −∆ut + ut · ∇u+ u · ∇ut +∇pt = ρte2, (EQ59)

which, after testing with utt gives

1

2

d

dt
‖∇ut‖2L2 + ‖utt‖2L2

= −
∫

Ω

ut · ∇uj∂ttuj −
∫

Ω

u · ∇∂tuj∂ttuj +
∫

Ω

(ρte2) · utt

. ‖ut‖1/2L2 ‖∇ut‖1/2L2 ‖∇u‖1/2L2 ‖Au‖1/2L2 ‖utt‖L2 + ‖u‖L∞‖∇ut‖L2‖utt‖L2 + ‖ρt‖L2‖utt‖L2 .

(EQ60)

Now we apply ‖u‖L∞ . ‖u‖1/2L2 ‖Au‖1/2L2 for the second term and

‖ρt‖L2 = ‖u · ∇ρ‖L2 . ‖u‖L∞‖∇ρ‖L2 , (EQ55)

by (2.1)2, on the last. Absorbing the factors of ‖utt‖L2 , we obtain

1

2

d

dt
‖∇ut‖2L2 + ‖utt‖2L2

. ‖ut‖L2‖∇ut‖L2‖∇u‖L2‖Au‖L2 + ‖u‖2L∞‖∇ut‖2L2 + ‖u‖2L∞‖∇ρ‖2L2

. 1 + ‖∇ut‖2L2 + Cǫe
2ǫt,

(3.43) EQ61
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where ǫ > 0 is arbitrarily small. In (3.43), we also used (2.3). For the initial norm, we have

‖∇ut(0)‖L2 . ‖Au0‖H1 + ‖B(u0, u0)‖H1 + ‖P(ρ0x2)‖H1 . ‖u0‖H3 + ‖u0 · ∇u0‖H1 + ‖ρ0‖H1

. ‖u0‖1/2L2 ‖Au0‖3/2L2 + ‖∇u0‖2L4‖Au0‖L2‖Au0‖L2 . 1,
(3.44) EQ116

where we used the continuity of P on H1. Combining (3.22), (3.44), and (3.43) with a uniform Gronwall

argument, we get

‖∇ut(t)‖L2 . eǫt, t ≥ 0 (3.45) EQ62

and
∫ t

0

‖utt‖2L2 . eǫt, t ≥ 0, (EQ63)

where we allow constants to depend on ǫ. Now, consider the stationary, i.e., pointwise in time, Stokes

problem

−∆u+∇p = −u · ∇u− ut + ρe2

u|∂Ω = 0.
(3.46) EQ156

Note that

‖u · ∇u+ ut − ρe2‖H1 . ‖D(u · ∇u− ut)‖L2 + ‖ρ‖H1

. ‖Du‖2L4 + ‖u‖L∞‖D2u‖L2 + ‖∇ut‖L2 + eǫt

. ‖A1/2u‖L2‖Au‖L2 + ‖u‖L∞‖Au‖L2 + ‖∇ut‖L2 + eǫt . eǫt,

(EQ157)

using (3.45) in the last step. Applying the H3 regularity for the Stokes problem (3.46) (see [T4, Proposi-

tion 3.3]), leads to

‖u‖H3 + ‖∇p‖H1 . eǫt. (3.47) EQ166

In order to obtain (2.10), we apply ∂ij , for i, j = 1, 2, to (2.1)2, test with ∂ijρ, and sum which leads to

1

2

d

dt
‖∂ijρ‖2L2 = 〈∂ij(u · ∇ρ), ∂ijρ〉L2 =

∫

Ω

∂ijuk∂kρ∂ijρ+ 2

∫

Ω

∂iuk∂jkρ∂ijρ+

∫

Ω

uk∂ijkρ∂ijρ, (3.48) EQ67

which holds for all t ≥ 0. The last term vanishes by the incompressibility of u, while the second is bounded

by C‖∇u‖L∞‖D2ρ‖2L2 . For the first term on the far right side of (3.48), we write
∫

Ω

∂ijuk∂kρ∂ijρ . ‖∆u‖L4‖∇ρ‖L4‖D2ρ‖L2

. (‖∆u‖1/2L2 ‖D3u‖1/2L2 + ‖∆u‖L2)(‖∇ρ‖1/2L2 ‖D2ρ‖1/2L2 + ‖∇ρ‖L2)‖D2ρ‖L2 ,

(3.49) EQ68

where we utilized the Gagliardo-Nirenberg inequalities. Now, we use (2.8) and (3.47) in (3.49), sum in i

and j, and cancel a factor of ‖D2ρ‖L2 on both sides to obtain

1

2

d

dt
‖D2ρ‖L2 . Cǫe

3ǫt/2 + Cǫe
ǫt‖D2ρ‖1/2L2 + ‖∇u‖L∞‖D2ρ‖L2 , (EQ66)

whence, applying Young’s inequality

1

2

d

dt
‖D2ρ‖L2 . e2ǫt + (ǫ+ ‖∇u‖L∞)‖D2ρ‖L2 , (EQ158)

for all t ≥ 0. Applying a Gronwall argument and using (3.40), which holds for t0 > 0 sufficiently large

depending on ǫ, we get

‖D2ρ(t)‖L2 ≤ Cǫe
Cǫt(‖D2ρ(t0)‖L2 + 1), t ≥ t0. (3.50) EQ171
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On the other hand, using Gronwall’s argument on [0, t0] with (3.30) for T = t0, we get

‖D2ρ(t)‖L2 . ‖D2ρ0‖L2 + 1, t ∈ [0, t0], (3.51) EQ172

where the constant depends on t0 and thus on ǫ. Combining (3.50) and (3.51), we finally obtain (2.10) with

Cǫ replacing ǫ.

To justify the a priori bounds above, we consider the sequence of solutions

u
(n+1)
t −∆u(n+1) + u(n) · ∇u(n+1) +∇P (n+1) = θ(n+1)e2

θ
(n+1)
t + u(n) · ∇θ(n+1) = −u(n+1) · e2
∇ · u(n+1) = 0,

(3.52) EQ71

with the boundary condition u(n+1)|∂Ω = 0 and with the initial data

(u(n+1)(0), θ(n+1)(0)) = (u0, ρ0 − x2) (EQ72),

for n ∈ N0. For n = 0, we define

u
(0)
t −∆u(0) +∇P (0) = θ(0)e2

θ
(0)
t = −u(0) · e2
∇ · u(0) = 0,

(EQ73)

with the boundary condition u(0)|∂Ω = 0 and with the initial data

(u(0)(0), θ(0)(0)) = (u0, ρ0 − x2) (EQ74).

Since the system (3.52) is linear in (u(n+1), θ(n+1)), it is easy to construct a local solution (u(n+1), θ(n+1)).

Also, our a priori estimates apply to the sequence and one may pass uniform bounds to the limit. The

detailed construction of solutions will be provided in [AKZ]. �

4. Interior bounds
sec04

In this section, we establish the final result on the interior regularity of the second order derivatives.

Proof of Theorem 2.3. In the proof, we work in the interior of the domain and thus localize the vorticity

equation using a smooth cut-off function. Fix T ≥ 1 ≥ t0 > 0, and with Ω′ as in the statement, consider a

smooth function η : R2 × [0,∞) → [0, 1] such that supp η ⊆ Ω × (t0/2, 4T ) with η = 1 on Ω′′ × [3t0/4, 2T ],

where Ω′′ is an open set such that Ω′ ⋐ Ω′′ ⋐ Ω, with dist(Ω′, ∂Ω) and dist(Ω′′, ∂Ω′) comparable with a

multiplicative constant. In order to prove (2.11), we first claim that the vorticity ω = curlu satisfies

‖∇ω‖Lp([t0,T ]:Lp(Ω′)) . T 1/p, (4.1) EQ75

where we allow all the constants in the proof to depend on t0, p, and dist(Ω′, ∂Ω). Since (2.11) and (2.12)

for p = 2 follow from (2.3), we fix p > 2. We allow all constants to depend on p and t0, where t0 ∈ (0, 1]

should be considered small.

As in [KW2], we introduce the operator

R = ∂1(I −∆)−1 (EQ76)
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and a change of variable

ζ = ωη −R(ρη). (4.2) EQ77

We shall apply R to functions which are compactly supported in Ω, and we consider such functions extended

to R
2 by setting them identically to zero on Ωc. Recalling the vorticity formulation for (2.1),

ωt −∆ω + u · ∇ω = ∂1ρ, (EQ78)

we have, as in [KW2], that

ζt −∆ζ + u · ∇ζ = [R, u · ∇](ρη)−N(ρη)− ρ∂1η − 2∂j(ω∂jη)

+ ω(ηt +∆η + u · ∇η)−R(ρ(u · ∇η)),
(4.3) EQ79

where

N = −((I −∆)−1∆+ I)∂1, (4.4) EQ80

which has the property that ∇N is in the Calderón-Zygmund class. The equation (4.3) is obtained by a

direct computation from

(ωη)t −∆(ωη) + u · ∇(ωη) = ωηt + ω∆η − 2∂j(ω∂jη) + ωu · ∇η + ∂1(ρη)− ρ∂1η (EQ69)

and

(ρη)t + u · ∇(ρη) = ρu · ∇η (EQ70)

and then using the identity ∂1 −∆R = −N . Note that both operators R and N commute with translations

(and hence derivatives) and they are smoothing of order one, i.e., they satisfy

‖Rf‖W 1,p , ‖Nf‖W 1,p . ‖f‖Lp , f ∈ Lp(R2), (4.5) EQ64

for p ∈ (1,∞), where the constant depends on p; the property (4.5) can be verified by computing the Fourier

multiplier symbols corresponding to R and N (or see [KW2]). Since u is divergence free, we may rewrite

[R, uj∂j ](ρη) = R(uj∂j(ρη))− uj∂jR(ρη) = ∂jR(ujρη)− uj∂jR(ρη). (EQ81)

To acquire Lp space-time estimates, we rewrite our solution as ζ = ζ(1) + ζ(2), where ζ(1) satisfies

ζ
(1)
t −∆ζ(1) = f

ζ(1)
∣

∣

t=0
= 0

(EQ83)

with

f = ω(ηt +∆η + u · ∇η)−R(ρ(u · ∇η))−N(ρη)− u · ∇R(ρη)− ρ∂1η, (EQ84)

while for ζ(2) we have

ζ
(2)
t −∆ζ(2) = ∇ · g
ζ(2)

∣

∣

t=0
= 0,

(EQ85)

where

g = −uζ − 2ω∇η +R(uρη). (EQ86)

Using the LpW 2,p regularity for the nonhomogeneous heat equation and the Gagliardo-Nirenberg inequality,

we have

‖Dζ(1)‖LpLp(R2×(0,∞)) . ‖D2ζ(1)‖LpL2p/(p+2)(R2×(0,∞)) . ‖f‖LpL2p/(p+2)(R2×(0,∞)); (4.6) EQ27
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observe that 2p/(p + 2) > 1 since p > 2. Similarly, using the LpW 1,p regularity for the nonhomogeneous

heat equation in divergence form, we have

‖Dζ(2)‖LpLp(R2×(0,∞)) . ‖g‖LpLp(R2×(0,∞)). (4.7) EQ49

For the right-hand side of (4.6), we use (4.5) to obtain

‖f‖L2p/(p+2) . ‖ω‖L2(‖ηt‖Lp + ‖∆η‖Lp + ‖u‖L∞‖∇η‖Lp) + ‖ρ‖L2‖u‖L∞‖∇η‖Lp

+ ‖ρ‖L2‖η‖Lp + ‖u‖L∞‖ρ‖L2‖η‖Lp + ‖ρ‖L2‖∂1η‖Lp

. ‖ω‖L2 + 1 . 1,

(4.8) EQ88

for every t ≥ 0, where the domains are understood to be R
2. For the right-hand side in (4.7), we estimate

‖g‖Lp . ‖u‖L2p‖ζ‖L2p + ‖ω‖L2p‖∇η‖L2p + ‖u‖L∞‖ρ‖Lp‖η‖L∞

. ‖u‖L2p‖ζ‖L2p + ‖ω‖L2p + 1
(4.9) EQ90

for every t ≥ 0, by (4.5). To bound the right-hand side of (4.9), we write

‖ζ‖Lq . ‖ωη‖Lq + ‖R(ρη)‖Lq . ‖ωη‖Lq + ‖ρ‖L2 . 1, q ∈ [2,∞). (4.10) EQ92

Therefore, we obtain ‖g‖Lp . 1 for all t ≥ 0. This fact and (4.8) imply by integration that the left-hand

sides of (4.6) and (4.7) are bounded by T 1/p for T ≥ t0, from where

‖Dζ‖LpLp(R2×(0,∞)) . T 1/p (4.11) EQ65

and thus

‖∇(ωη)‖LpLp(R2×(0,∞)) . ‖∇ζ‖LpLp(R2×(0,∞)) + ‖R∇(ρη)‖LpLp(R2×(0,∞)) . T 1/p, (EQ93)

which proves (4.1). The bound (2.11) then follows by a simple application of the interior elliptic estimate

connecting u and ω.

The pointwise in time bound in (2.12) follows once we obtain

‖∇ω(t)‖Lp(Ω′) . t(p+2)/4p, t0 ≤ t ≤ T, (4.12) EQ94

with an agreement that all the constants depend on t0, p, and dist(Ω′, ∂Ω), and dist(Ω′′, ∂Ω′); we assume

T ≥ max{2t0, 1} that is arbitrary. To prove (4.12), we begin by introducing a second smooth cut-off function

φ : R2 × [0,∞) → [0, 1] for which suppφ ⊆ Ω′′ × (t0, 2T ) with φ = 1 on Ω′ × [3t0/4, T ], Denote

ζ̃ = ζφ. (EQ96)

Using (4.3), we find that

ζ̃t −∆ζ̃ + u · ∇ζ̃
=

(

[R, u · ∇](ρη)−N(ρη)
)

φ−R(ρ(u · ∇η))φ− 2∇ζ · ∇φ+ ζ(φt −∆φ+ u · ∇φ);
(4.13) EQ97

note that the terms in (4.3) containing derivatives of η vanish after multiplication with φ, except for the

term involving R, which is a non-local operator. The main reason for introducing the second cut-off function

φ is that ζ does not vanish on the boundary ∂Ω due to nonlocality of R; see the definition (4.2). In order
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to estimate ∇ζ̃, we apply ∂k to (4.13) for k = 1, 2, multiply by |∂k ζ̃|2p−2∂k ζ̃, integrate, and sum in k to

acquire

1

2p

d

dt

∑

k

‖∂k ζ̃‖2pL2p −
∑

k

∫

∆∂k ζ̃|∂k ζ̃|2p−2∂k ζ̃

= −
∑

k

∫

∂k(uj∂j ζ̃)|∂k ζ̃|2p−2∂k ζ̃ +
∑

k

∫

∂k(φ[R, u · ∇](ρη))|∂k ζ̃|2p−2∂k ζ̃

−
∑

k

∫

∂k(φN(ρη))|∂k ζ̃|2p−2∂k ζ̃ −
∑

k

∫

∂k(φR(ρ(u · ∇η)))|∂k ζ̃|2p−2∂k ζ̃

− 2
∑

k

∫

∂k(∂jζ∂jφ)|∂k ζ̃|2p−2∂k ζ̃

+
∑

k

∫

∂k(ζ(φt −∆φ+ u · ∇φ))|∂k ζ̃|2p−2∂k ζ̃.

(4.14) EQ98

The second term on the left-hand side of (4.14) is estimated as

−
∑

k

∫

∆∂k ζ̃|∂k ζ̃|2p−2∂k ζ̃ =
2p− 1

p2

∑

k

∫

∂j(|∂k ζ̃|p)∂j(|∂k ζ̃|p) ≥
1

p
D̄, (4.15) EQ99

where we denoted D̄ =
∑

k ‖∇(|∂k ζ̃|p)‖2L2 . For the first term on the right-hand side of (4.14), we use the

incompressibility of u to determine that

−
∑

k

∫

∂k(uj∂j ζ̃)|∂k ζ̃|2p−2∂k ζ̃ = −
∑

k

∫

∂kuj∂j ζ̃|∂k ζ̃|2p−2∂k ζ̃

. ‖∇u‖L2‖∇ζ̃‖2pL4p . o(1)‖∇ζ̃‖2pL4p ,

(4.16) EQ100

where o(1) denotes a function which is bounded on [0,∞) and converges to 0 as t → ∞. Applying the

estimate

‖∂k ζ̃‖2pL4p = ‖|∂k ζ̃|p‖2L4 . ‖|∂k ζ̃|p‖L2‖∇(|∂k ζ̃|p)‖L2 . D̄1/2‖∂k ζ̃‖pL2p (EQ101)

for k = 1, 2 in (4.16), we obtain

−
∑

k

∫

∂k(uj∂j ζ̃)|∂k ζ̃|2p−2∂k ζ̃ ≤ o(1)D̄1/2
∑

k

‖∂k ζ̃‖pL2p ≤ D̄

8
+ o(1)‖∇ζ̃‖2pL2p . (4.17) EQ102

For the second term on the right-hand side of (4.14), we use integration by parts and write
∑

k

∫

∂k(φ[R, u · ∇](ρη))|∂k ζ̃|2p−2∂k ζ̃ = −(2p− 1)
∑

k

∫

φ[R, u · ∇](ρη)|∂k ζ̃|2p−2∂kk ζ̃

= −2p− 1

p

∑

k

∫

φ[R, u · ∇](ρη)|∂k ζ̃|p−2∂k ζ̃∂k(|∂k ζ̃|p)

. ‖φ[R, u · ∇](ρη)‖L2p

∑

k

‖|∂k ζ̃|p−1‖L2p/(p−1)‖∇(|∂k ζ̃|p)‖L2

. D̄1/2‖φ[R, u · ∇](ρη)‖L2p‖∇ζ̃‖p−1
L2p .

(4.18) EQ103

For the second factor in the last expression, we have

‖φ[R, u · ∇](ρη)‖L2p . ‖φ‖L∞‖R(uj∂j(ρη))− uj∂jR(ρη)‖L2p

. ‖∂jR(uj(ρη))‖L2p + ‖u‖L∞‖∂jR(ρη)‖L2p . ‖ρuη‖L2p + ‖ρη‖L2p . 1,
(4.19) EQ104
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using the incompressibility of u and

‖ρ(t)‖L2p . 1, (4.20) EQ89

which follows from ‖ρ0‖L2p . ‖ρ0‖H1 . 1 and the Lp conservation for ρ. (Recall that all constants depend

on p.) Thus, by (4.18)–(4.19), we have

∑

k

∫

∂k(φ[R, u · ∇](ρη))|∂k ζ̃|2p−2∂k ζ̃ ≤ CD̄1/2‖∇ζ̃‖p−1
L2p ≤ D̄

8
+ C‖∇ζ̃‖2p−2

L2p . (4.21) EQ105

For the third term on the right-hand side of (4.14), we obtain

−
∑

k

∫

∂k(φN(ρη))|∂k ζ̃|2p−2∂k ζ̃ .
∑

k

‖∂k(φN(ρη))‖L2p‖|∂k ζ̃|2p−1‖L2p/(2p−1)

. (‖∇φ‖L∞‖N(ρη)‖L2p + ‖φ‖L∞‖∇N(ρη)‖L2p)‖∇ζ̃‖2p−1
L2p . ‖ρη‖L2p‖∇ζ̃‖2p−1

L2p . ‖∇ζ̃‖2p−1
L2p .

(EQ106)

For the fourth term on the right-hand side of (4.14), we observe that

−
∑

k

∫

∂k(φR(ρ(u · ∇η)))|∂k ζ̃|2p−2∂k ζ̃ . ‖∇(φR(ρ(u · ∇η)))‖L2p‖|∇ζ̃|2p−1‖L2p/(2p−1)

. (‖φ‖L∞‖∇R(ρ(u · ∇η))‖L2p + ‖∇φ‖L∞‖R(ρ(u · ∇η))‖L2p)‖∇ζ̃‖2p−1
L2p

. ‖ρ‖L2p‖u‖L∞‖∇η‖L∞‖∇ζ̃‖2p−1
L2p . ‖∇ζ̃‖2p−1

L2p ,

(EQ107)

where we used (4.20). For the fifth term on the right-hand side of (4.14), we determine that

− 2
∑

k

∫

∂k(∂jζ∂jφ)|∂k ζ̃|2p−2∂k ζ̃ =
2(2p− 1)

p

∑

k

∫

∂jζ∂jφ|∂k ζ̃|p−2∂k ζ̃∂k(|∂k ζ̃|p)

. ‖∂jζ∂jφ‖L4

∑

k

‖|∂k ζ̃|p−1‖L4‖∇(|∂k ζ̃|p)‖L2 . D̄1/2‖∇ζ‖L4‖|∇ζ̃|p‖(p−1)/p

L4(p−1)/p .
(EQ108)

By the Gagliardo-Nirenberg inequality, we have for the last factor

‖|∂k ζ̃|p‖(p−1)/p

L4(p−1)/p .
(

‖|∂k ζ̃|p‖p/(2p−2)
L2 ‖∇(|∂k ζ̃|p)‖(p−2)/(2p−2)

L2

)(p−1)/p

. ‖|∂k ζ̃|p‖1/2L2 ‖∇(|∂k ζ̃|p)‖(p−2)/2p
L2 . D̄(p−2)/4p‖∂k ζ̃‖p/2L2p ,

(EQ109)

for k = 1, 2. Therefore, by Young’s inequality, we conclude that

− 2
∑

k

∫

∂k(∂jζ∂jφ)|∂k ζ̃|2p−2∂k ζ̃ . D̄(3p−2)/4p|∇ζ|L4 |∇ζ̃|p/2L2p ≤ D̄

8
+ C|∇ζ|4p/(p+2)

L4 |∇k ζ̃|2p
2/(p+2)

L2p . (EQ110)

For the final term of (4.14), we integrate by parts and obtain
∑

k

∫

∂k(ζ(φt −∆φ+ u · ∇φ))|∂k ζ̃|2p−2∂k ζ̃

= −2p− 1

p

∑

k

∫

ζ(φt −∆φ+ u · ∇φ)|∂k ζ̃|p−2∂k ζ̃∂k(|∂k ζ̃|p)

. ‖ζ‖L2p‖φt −∆φ+ u · ∇φ‖L∞

∑

k

‖|∂k ζ̃|p−1‖L2p/(p−1)‖∇(|∂k ζ̃|p)‖L2 . D̄1/2‖∇ζ̃‖p−1
L2p ,

(EQ111)

using (2.3) and (4.10). Therefore, we have

∑

k

∫

∂k(ζ(φt −∆φ+ u · ∇φ))|∂k ζ̃|2p−2∂k ζ̃ ≤ D̄

8
+ C‖∇ζ̃‖2p−2

L2p . (4.22) EQ112
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Introducing

ψ(t) =
∑

k

∫

|∂k ζ̃|2p, (EQ113)

we may rewrite (4.14) by applying the above bounds as

(1 + ψ)′ +
D̄

2
. o(1)(1 + ψ) + (1 + ψ)(p−1)/p + (1 + ψ)(2p−1)/2p + ‖∇ζ‖4p/(p+2)

L4 (1 + ψ)p/(p+2). (4.23) EQ114

It may seem that the first term in (4.23) causes an exponential increase of ψ, but importantly we have the

property
∫ t

0

(1 + ψ) . t+ ‖∇ζ‖2pL2p([0,t];L2p) . 1 + t, t ≥ 0, (4.24) EQ115

where we used (4.11) in the second step. Now we show that the inequality (4.24) implies that the growth

of 1 + ψ is algebraic. We divide the inequality (4.23) by (1 + ψ)p/(p+2), obtaining

((1 + ψ)2/(p+2))′ . o(1)(1 + ψ)2/(p+2) + (1 + ψ)(p
2
−2)/p(p+2) + (1 + ψ)(3p−2)/2p(p+2) + ‖∇ζ‖4p/(p+2)

L4 , (EQ117)

which upon integration and applying Jensen’s (or Hölder’s) inequality yields for t ≥ 0,

(1 + ψ)2/(p+2)

. 1 + o(1)

∫ t

0

(1 + ψ)2/(p+2) +

∫ t

0

(1 + ψ)(p
2
−2)/p(p+2) +

∫ t

0

(1 + ψ)(3p−2)/2p(p+2)

+

∫ t

0

‖∇ζ‖4p/(p+2)
L4

. 1 + o(1)t1−2/(p+2)

(
∫ t

0

(1 + ψ)

)2/(p+2)

+ t1−(p2
−2)/p(p+2)

(
∫ t

0

(1 + ψ)

)(p2
−2)/p(p+2)

+ t1−(3p−2)/2p(p+2)

(
∫ t

0

(1 + ψ)

)(3p−2)/2p(p+2)

+

(
∫ t

0

‖∇ζ‖4L4

)p/(p+2)

t1−p/(p+2),

(4.25) EQ118

where we also used ψ(0) = 0 since φ vanishes in a neighborhood of {t = 0}. Therefore, recalling (4.24), we

have for t ≥ t0 the inequality

(1 + ψ)2/(p+2) . t, (EQ119)

where we used
∫ t

δ
‖∇ζ‖4L4 .δ t for δ > 0 on the last term in (4.25). Raising the resulting inequality to

(p+ 2)/2, we obtain

1 + ψ ≤ Cpt
(p+2)/2. (EQ120)

By the support properties of φ and η, we get for p ≥ 1

‖∇ω‖L2p(Ω′) . ‖∇ζ‖L2p(Ω′) + p3/2 . ‖∇ζ̃‖L2p + 1 . ψ1/2p + 1 . t(p+2)/4p, (4.26) EQ121

for t ≥ t0 concluding the proof. �
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Appendix A. Uniform Gronwall inequalities
seca

In the appendix, we state and prove two Gronwall inequalities needed in the proof of Theorem 2.1. The

following lemma is used to show (3.8).

L01 Lemma A.1. Assume that x, y : [0,∞) → [0,∞) are measurable functions with x differentiable, which

satisfy

ẋ+ y ≤ C0(x
2 + 1) (A.1) EQ133

and

x ≤ C0y, (A.2) EQ141

for some positive constant C0. If
∫

∞

0

x(s) ds <∞, (A.3) EQ134

then

lim
t→∞

x(t) = 0. (A.4) EQ135

Moreover,
∫ t+a

t

y(s) ds ≤ C, t ≥ 0 (A.5) EQ137

for every a, where the constant depends on a and C0 and

lim sup
t→∞

∫ t+a

t

y(s) ds ≤ Ca (A.6) EQ140

for every a > 0, where the constant in depends on C0.

Proof of Lemma A.1. In the proof, we allow all constants to depend on C0. Let ǫ ∈ (0, 1], and denote

b =
√
ǫ. Based on (A.3), there exists t0 > 0 such that

∫ t+2b

t

x(s) ds ≤ ǫ, t ≥ t0. (A.7) EQ148

Integrating the inequality ẋ ≤ C0(x
2 + 1) and using (A.7), we obtain

x(t2) ≤ eC0ǫ(x(t1) + Cb) . x(t1) + b (A.8) EQ152

for all t1 and t2 such that 0 ≤ t1 ≤ t2 ≤ t1 + 2b. By (A.7), for every t ≥ t0, there exists t̃ ∈ [t, t + b] such

that

x(t̃) .
ǫ

b
, (EQ153)

and thus applying (A.8) with t1 = t̃ leads to

x(t2) .
ǫ

b
+ b .

√
ǫ, t̃ ≤ t2 ≤ t1 + 2b, (A.9) EQ154

where we used b =
√
ǫ in the last step. The inequality (A.9) holds for all t2 ≥ t0 + b, and since ǫ > 0 is

arbitrarily small, (A.4) follows. The inequalities (A.5) and (A.6) are obtained by integrating y . x2 + 1

and, for (A.6), we also use (A.4). �

The next Gronwall-type lemma is needed to establish (3.19) and (3.20), which are necessary for the proofs

of (2.3) and (2.7).
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L02 Lemma A.2. Assume that x, y : [0,∞) → [0,∞) are measurable functions with x differentiable, which

satisfy

ẋ+ y ≤ φ(t)(x+ 1) (A.10) EQ143

and

x ≤ C0y, (A.11) EQ142

where φ : [0,∞) → [0,∞) is such that φ(t) ≤ C0 for t ∈ [0,∞) and φ(t) → 0, as t→ ∞. If also x(0) ≤ C0,

then

x(t) . 1, t ∈ [0,∞), (A.12) EQ53

where the constant in (A.12) depends on C0, and

lim
t→∞

x(t) = 0. (A.13) EQ145

Moreover,
∫ t+1

t

y(s) ds ≤ C, t ≥ 0, (A.14) EQ132

where C depends on C0 and

lim sup
t→∞

∫ t+a

t

y(s) ds = 0, (A.15) EQ146

for every a > 0.

Proof of Lemma A.2. First, by the boundedness of φ, we have

x(t) . 1, t ∈ [0, T ] (EQ161)

and then also
∫ T

0

y(s) ds . 1 (A.16) EQ136

for every T > 0, where the constant depends on T . Next, there exists t0 > 0 such that

ẋ+
1

2
y ≤ φ(t), t ≥ t0, (EQ144)

which is obtained by choosing t0 so large that the term containing x on the right-hand side of (A.10) is

absorbed in the half of the second term on the left-hand side; see (A.11).

Let ǫ > 0. Then there exists t1 ≥ t0 such that

ẋ+
1

C1
x ≤ ǫ

2
, t ≥ t1, (EQ149)

where C1 depends on C0. This shows that as long as x ≥ C1ǫ, we have ẋ + (1/2C1)x ≤ 0, implying an

exponential decay of x. Therefore, by increasing t1, we can assume that

x(t) ≤ C1ǫ, t ≥ t1. (A.17) EQ147

Since ǫ > 0 was arbitrary, we obtain (A.13). To prove (A.15), note that we may assume

ẋ+
1

2
y ≤ ǫ, t ≥ t1, (A.18) EQ150
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by increasing t1 if necessary. Integrating (A.18) between t and t+a, where a > 0 is fixed as in the statement,

we get
∫ t+a

t

y(s) ds . x(t) + ǫa . ǫ(1 + a), t ≥ t1, (EQ151)

where we used (A.17) in the last step. Since ǫ > 0 was arbitrary, we obtain (A.14) and (A.15). �
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