ASYMPTOTIC PROPERTIES OF THE BOUSSINESQ EQUATIONS WITH
DIRICHLET BOUNDARY CONDITIONS
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ABSTRACT. We address the asymptotic properties for the Boussinesq equations with vanishing thermal
diffusivity in a bounded domain with no-slip boundary conditions. We show the dissipation of the L? norm
of the velocity and its gradient, convergence of the L? norm of Au, and an o(1)-type exponential growth
for || A3/2u|| ;2. We also obtain that in the interior of the domain the gradient of the vorticity is bounded
by a polynomial function of time.
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1. INTRODUCTION

In this paper, we address the asymptotic behavior of the Boussinesq equations

upr — VAU +u - Vu+ Vp = pesy

condition

12
18
20
20

(1.1)

pr+u-Vp=20
V-u=0
with vanishing thermal /density diffusivity, in a smooth bounded domain Q C R? with the Dirichlet boundary
ufgo=0

(1.2)

and subject to the initial condition (u(0), p(0)) = (ug, po). Here, u represents the velocity, p the pressure,

and p the density or the temperature, depending on the physical context. The 2D Boussinesq system of

equations is used in a wide range of physical contexts, from large scale oceanic and atmospheric flows

where rotation and stratification are significant to microfluids and biophysics. It also relates closely to

fundamental models in fluid dynamics. In particular, the vorticity formulation of the incompressible Euler
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equations away from the singularity can be described by the 2D Boussinesq equations (see [DWZZ]). For
simplicity of exposition, we shall refer to the variable p as the density, although it may also represent a
temperature.

While global existence results have been well-known in the case of positive viscosity and positive thermal
diffusivity, i.e., when adding the term —xAp in the equation for the density/temperature, we address here
the case of vanishing thermal diffusivity. In the case when both viscosity v and diffusion coeflicients &
vanish, the global existence and uniqueness remain open questions, although results on the local existence,
blow-up criteria, explicit solutions, and finite time singularities have been proven; see the blow-up results
in [CH,EJ], based on the singularity creation theorem for the Euler equations by Elgindi [E]. The case v > 0
and k = 0, considered here, was initially considered by Chae [C] and Hou and Li [HL]. In particular, Hou
and Li obtained the global existence and persistence of regularity in H® x H*~! for integer valued s > 3
in the case of periodic boundary conditions. The paper [LLT] by Lai et al extended the result in [HL] to
the Dirichlet boundary conditions. The persistence of regularity for the lower value s = 2 in the case of
Dirichlet or periodic boundary conditions was addressed in [HKZ1]. Subsequently, Ju obtained in [J] that
CeCt is an upper bound for the H' norm for the density, also for the Dirichlet boundary conditions. The
bound was lowered to e“* in [KW2], where also more precise results were obtained for periodic boundary
conditions. In particular, [KW2, Theorem 2.1] contains a uniform in time upper bound for the quantity
|| D?ul|» for all p > 2 in the periodic case. In a recent paper by Doering et al [DWZZ], the global existence,
uniqueness, and regularity for the Boussinesq for the Lions boundary condition on a Lipschitz domain £2,
was proven along with the dissipation of the L? norm of the velocity and its gradient. For other papers on
the global existence and the regularity in Sobolev and Besov spaces, see [ACW, ACS.., BFL, BS, BrS, CD,
CG,CN,CW,DP,HK1,HK2,HKR, HKZ2, HS, IMWZ, KTW,KW2, KWZ,LPZ, SW].

In this paper, we prove several results on the asymptotic behavior of solutions of the Boussinesq system
(1.1) with the Dirichlet boundary conditions (1.2). In our first main theorem, Theorem 2.1, we show that
the H! norm of the velocity dissipates. We also establish a balanced convergence of Au (see (2.7) below),
where A is the Stokes operator. Regarding the growth of the density, we prove that the first Sobolev
norm of the density is bounded, up to a constant, by e for an arbitrarily small ¢ > 0, thus improving a
result from [KW2] where the bound of the type e“* was proven. Since the growth of the Sobolev norms
of the density is controlled by the time integral of ||Vul|e, it is reasonable to expect that the bound was
optimal; however, here we prove that the optimal bound is in fact e€. It remains an open problem if one
can achieve the estimate of the type e“*”, where o € [0,1); it seems that such an improvement would
require the Lipschitz norm of u to decay, which may not be reasonable to expect. The theorem holds under
the assumption that (ug, po) belongs to H? x H'. The ideas for the proof of Theorems 2.1 draw from the
approaches in [DWZZ], [HKZ1], [LLT], [HKZ1], [J], [KW1], and [KW2].

In the second main theorem, Theorem 2.2, we address the behavior of the solution in a higher regularity
norm. We prove that, under the H® x H? assumption on the initial data, that for every e > 0 the norm of
(u, p) in the H3® x H? norm is bounded by e, up to a constant depending on € > 0. This holds under the
H?3 x H? regularity of the initial data (ug, po).

In the last main theorem, Theorem 2.3, we consider the upper bound for the LP norm of the second
derivatives of the velocity. As shown in [HKZ1], one may obtain a uniform bound when p = 2. When p > 2,
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this is not known except in the case of periodic boundary condition, which is a result obtained in [KW1].
Here, we prove that we can obtain a polynomial in time bound in the interior of a domain when considering
the Dirichlet boundary condition, which is considerably lower than e type bound that would result from
applying the Gagliardo-Sobolev inequality on the conclusions of Theorem 2.2. The proof is obtained by the
change of variable from [KW1] combined with new localization arguments controlling the nonlocal nature
of the transformation in [KW1] (see the double cut-off strategy in the proof of Theorem 2.3 below).

We emphasize that all our results extend also in the often-studied problem of the channel with Dirichlet
boundary conditions on top and the bottom and periodic boundary conditions on the sides. Also, our proofs
are completely self-contained.

2. MAIN THEOREMS
We consider the asymptotic behavior of the Boussinesq equations
ug — Au+u - Vu+ Vp = pesy
pr+u-Vp=0 (2.1)
V-u=0
and

ul =0, (2.2)

coupling the Navier-Stokes equations [CF, DG, R, K1, K2, T1-T3] for the velocity u = (u1,us) and the
pressure p with the equation for the density p. The system is set on a smooth, bounded, and connected
domain 2 C R? and supplemented with the initial condition

(u, £)(0) = (uo; po) in .

Here, u denotes the velocity, p the pressure, and p the density. Note that we set v = 1 for simplicity of
exposition; all the results extend to other values of v with constants depending additionally on v.
From [CF,T1], we recall the classical spaces

H={uecLl*(Q):V-u=0inQu-n=0on N},
where n denotes the outward unit normal, and
V={u€H;jQ):V-u=0inQ},
utilized in the study of the Navier-Stokes equations. With P: L? — H the Leray projector, denote by
A=-PA

)

the Stokes operator with the domain D(A) = H2(Q2) N V.

It is known that for a sufficiently regular initial condition there exists a unique, global in time solution
for (2.1)-(2.2) (see [C,HL]). In the first theorem, we obtain the asymptotic properties of A'/2y and Au in
the L? norm.

Theorem 2.1. Let (ug,po) € (H2(Q)NV) x HY(Q). Then the solution
(u, p) € (C([0,00); V) N LE,.([0,00); D(A))) x LE5.([0,00), H' ()

loc
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of (2.1)(2.2) satisfies

[Au(®)|lz <C,  t>0, (2.3)
where C' depends on the size of the initial data, i.e., on the norms ||Augl|r2 and ||po|lg:, as well as
/Hto e <C, t>0 (2.4)
for every to > 0, where C' depends additi:mally on tg and
t+to
Jim t |ullZs =0,  to>0. (2.5)
Moreover,
JAY2u(t)|| 12 = |Vu(t)||pz = 0 ast — oo, (2.6)
and
[Au(t) — P(p(t)ea)|lrz2 = 0 ast — oo, (2.7)
and for every € > 0 we have
o))l < Ceet,  t>0, (2.8)

where C¢ is a constant depending on € and the size of initial data.

Above and in the sequel, we allow all constants to depend on Q.

One of the main conclusions of the above theorem is that the persistence holds for initial data in D(A) x
H'. Tt is not known whether persistence holds in the space D(A'/?) x H'. Note that in the case of Navier
boundary conditions, this is possible due to better continuity properties of the bilinear term. The persistence
in L® x H! in the case of Navier boundary conditions was established in [HWW-+] (see also [HW]).

In the next statement, we obtain the asymptotic behavior of the H® x H? norm of the solution (u, p).
By [LLT, T5], the local existence requires the initial data to satisfy the compatibility condition

(—Aug — Vpy — poe2)lon = 0, (2.9)

where pg denotes the initial pressure, which solves the Neumann boundary problem
Apo =V - (poea — ug - Vuo) in 052,
— Vpo - n| 5= (Aug + poez) - 1| o,
with n denoting the outward unit normal.
Theorem 2.2. Assume that (ug, po) € (H3(Q)NV) x H%(Q) satisfies the compatibility condition (2.9), and
let (u, p) be the corresponding solution of (2.1)—(2.2). Then for every e > 0, we have
[u(®)l| s < Cee, >0
and
o))z < Ceet, >0, (2.10)

where C¢ is a constant depending on € and the size of initial data.

In the next theorem, we obtain the interior bounds for the L? norm of the Hessian D?u of the velocity

in the interior, for any p > 2.
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Theorem 2.3. Let (ug,po) € (H2(Q)NV) x HY(Q) and p € [2,00), and suppose that Q' C Q is open
and relatively compact. Then for the corresponding solution (u, p) of (2.1)=(2.2) and all to > 0 we have a

space-time bound
ID?ull Lot Y20 () < CTH, (2.11)
for T >ty > 0, while in addition we have a pointwise in time bound
||D2u(t)||LP(Q') < ot/ t > to, (2.12)
where the constants in (2.11) and (2.12) depend on to, p, and dist(€Y',00).

3. PROOFS FOR THE GLOBAL BOUNDS

First, we recall prior results on the L? norms corresponding to Theorem 2.1. Let (ug,po) € (H?(2) N
V) x HY(Q). Then there exists a unique global solution (u,p) such that u € L>((0,00), H*(Q)) N
L2 ((0,00), H3(Q2)) and p € L2 ((0,00), H'(Q2)) of (2.1)—(2.2). Furthermore, the solution (u, p) satisfies

loc loc
lu@)llrz + lp®)|lz S, t>0. (3.1)

Here and below, the notation a < b means a < Cb, where C is a constant, which is allowed to depend on

the size of the initial data in the pertinent norms. We denote by
B(u,v) =P(u - Vv) u,veV
the bilinear term corresponding to the Navier-Stokes equations. This allows us to rewrite (2.1) as
uy + Au + B(u,u) = P(pes)

3.2
pt+u-Vp=0. (3:2)

We now turn to the proof of the first theorem.

Proof of Theorem 2.1. We begin by proving that ||u||z= dissipates. Inspired by [DWZZ], we shift the density
by xs, i.e., introduce

0(z1,22,t) = p(z1,22,¢) — 22, (3.3)
and compensate with P = p(x1,x2,t) — 23/2 to derive an equivalent system of equations

ug — Au+u-Vu+ VP = feqy

O +u-VO0=—u-ey (3.4)
V-u=0,
with u|,,= 0. Multiplying the first equation of (3.4) with u and the second by 0, integrating, and applying
the Dirichlet boundary conditions and incompressibility, we obtain
1d
Sl + 10132) + [ Vul32 = 0. (35)

Observe that the norm ||#]/;2 may increase, and thus no direct conclusion on decay rates can be reached
from (3.5). The identity (3.5) implies [u||7. and ||0]|3. are uniformly bounded in time and

o0
/ IVul2, < 1,
0
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where we allow all constants to depend on |lug|| gz and ||pol||g:. Also, ||p(t)|lLr =||pollrr for ¢ > 0 for any
p € [1,00); note that ||po|lLr < oo by po € H'(Q). Utilizing the Poincaré inequality, we also get

/ Jul2, < 1. (3.6)
0

To prove the uniform continuity from above of the L? norm of u, we multiply the first equation in (3.4)
with v and integrate by parts to find that

1d

3l + IVl = [ 6u-ca < Julla s S e
Q

which, by Poincaré and Young’s inequalities, implies

~

d

Zlullze + [1Vulz S 1. (3.7)
It is elementary to show that if a differentiable function f: [0,00) — [0, 00) satisfies [~ f(s)ds < co and
f'(t) £ 1, then limy_, o f(t) = 0. Applying the statement with f(t) = ||u/|3, the inequalities (3.6) and (3.7)

imply
llullzz — O as t — oo. (3.8)

Next, we aim to prove that ||[Vul|?, — 0. We take the L? inner product of (3.2); with Au to find that

1d
5 1A ullie + | Aullfz = —(B(u,u), Au)rz + (B(fez), Au) s 59)
1/2 3/2 '
< ||Bu, w)|| g2 | Aul 2 + 18]l 2| Aullz S [l 12 I AY 2ul| 2 | Aul[35 + | Aull 2,
where we used
1/2 1/2 1/2 1/2
1B(us )2 S llullpalVul o S ol o2 Nl ae full b S [l 362 1A 2ul| g2 || Aul 27 (3.10)

In (3.9), we apply Young’s inequality and absorb the factors ||Au||z2 into the second term on the left side,

obtaining
d
%HAI/QUHQL? + | AulFe S JulZallAVullz: +1 S A2 ull7e + 1.
Utilizing Lemma A.1 in the Appendix, we obtain
|AY 2u(t)]|2 <1, t>0 (3.11)
and
A2y |2 — 0 ast — oo,
|
giving (2.6). In addition, by the same lemma,
t+to
[t sn w0 (3.12)
t

where the constant depends on ty and

t+to
limsup/ |Aul32 Sto,  to>0. (3.13)
t—o00 ¢
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We note in passing, and since it is needed in the proof of Theorem 2.3, that the inequality of type (3.13)
also holds with Au replaced with u;. To show that u; dissipates in the L? norm, we take the time derivative
of (3.4)1, multiply by wu;, and integrate by parts, to get the equation
1d
2 dt
For the first term on the right, we apply (3.4)5 to obtain

(Orea,ut)p2 = —/(u -VO)(Oruz) — / U OsUy = / Ou - VOyus — / U2 OsUs
Q Q Q Q

||Ut||2Lz + ||VUtH%2 = <9t62,ut>L2 — <ut . Vu,ut>Lz. (3.14)

1/2 1/2 3.15
161 o ol A2 AV 200 2 e o + e e 2 (3.15)

S
1/2
SIAY2ull 21V 2 + 2 [ Vel 2,
where we used ||0]|+ S 1, by ||pllrs S 1, and |lug|| 2 < [[Vuel/ g2 in the last inequality. For the second term
on the right-hand side of (3.14), we write
—(ue - Vuyug) gz S | 7o | Vall e S lluell 2 | Val| 2| AT 2ul| 2. (3.16)

Using (3.15) and (3.16) in (3.14) and then absorbing the factors ||Vu||r2 by Young’s inequality, we get
d
Zllwlze +IVeelze S 1A 2u) g2 + ulge + lluel g2 | A 2ulFe S G(E)(L + IlullZ2), (3.17)

where ¢: [0,00) — [0,00) is a bounded function, which satisfies lim;_, . ¢(t) = 0. Also, note that ug(0),
defined as u;(0) = —Aug — B(ug, ug) + P(pox2), satisfies

lue(0) |2 S lAuoll = + ol 12 [l Auol | 27| A 2uo | 2 S 1. (3.18)
L L
By Lemma A.2, we get
Hut(t)||L2 S ]-7 te [Oa OO) (319)
and
[lug(®)]lzz — 0 ast — oo (3.20)
as well as
t+to
/ |Vug||2. <C,  t,tg>0 (3.21)
t
and
t+to
limsup/ [Vuel|32 = 0, to > 0, (3.22)
t—o0 t

where the constant in (3.21) depends on ty. Using the H® regularity on the stationary Stokes formulation
Au = —uy — B(u,u) + P(pey), we obtain
lullers < el + (1B, )l + [1P(pe2) e S Nuellen + [lw - Vel ze + llpllee
where we used the continuity of P on H!. Since
- ulln Sl Aul3f,

we get

1/2 1/2 3/2
lull s S [Vuellzz + llull 27+ [l 17l Aul35 + 1, (3.23)

and the assertions (3.21) and (2.5) follow from (3.12) and (3.13), respectively.
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Next, from (3.2)1, we obtain
14wz S lluell o2 + 1B, w) |2 + llollze S ez + ull | A2 2 | Aul| 22 + 1.
Absorbing the factor ||Au||1L/22 in the left-hand side by using Young’s inequality, we get
lAullze S luellze + llull el AY2u)2: + 1,
from where, by (2.6) and (3.20), we get (2.3). Note, in passing, that (2.3) and (3.8) imply
lu(®) ||z — 0 as t — oo, (3.24)

by Agmon’s inequality. From (3.2);, we get

lAu — P(pes)lze S lurlle + 1B w2 S luollze + ul e [ A2l . (3.25)

By (3.20) and (3.24), the right-hand side of (3.25) converges to 0 as t — oo, and we obtain (2.7).

We lastly proceed to prove the o(1)-type exponential estimate on the growth of || V|| 2. For this, we first
need to prove the local in time boundedness of ||6]| g1, which in turn requires us to first bound fOT IVull s
for some T' > 0. From (3.17) and (3.18), we have

T
/HWM;SL
0

for all T' > 0, where the constant depends on T'. Now, consider the Stokes problem
ur — Au+ Vp = —u - Vu + peg
V.ou=0
ulopq = 0.

By [SvW, Theorem 2.7] (see also [GS]) applied with s = p = 3, we obtain that for any € > 0

T . T
/ lulzs S 1145+ uoll3s +/ [u- Vu — pesl|is, (3.26)
0 0

for all T > 0, where the constant depends on T and €. In (3.26), A3 denotes the L? version of the Stokes
operator (see [GS,SvW]). For the first term on the right-hand side in (3.26), we use
145 “uollzs < | Auo|z2 <1 (3.27)
with € = 1/6 from the embedding property on [SvW, p. 430], while for the second term we estimate
lu- Vu = peslfa S JullfallVullZe + lIpl2s S llullez | A 2ull 22| AulZ: +1 < 1. (3.28)

Applying (3.27) and (3.28) in (3.26), we get
T
/ [D%ull7s S 1, (3.29)
0
where the constant depends on T" and consequently

T
/ [Vulze $ 1 (3.30)
0

for all T' > 0, where the constant depends on 7', due to the Gagliardo-Nirenberg type inequality

1/4 3/4
o]l S I0lE V0250 + (o]l . (3.31)
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By applying the gradient to (3.4); and taking the inner product with V6, we find that
1d
2dt

The second term is estimated by C||Vul|r2]|V] L2, while the first term is likewise bounded as

[VO||2. = —(V(u-V0),VO) 2 — (V(u-e),VO) L. (3.32)

1
—<V('LL . V@),VG>L2 = —/ @(uﬁﬂ)@ﬂ = —/ 8J’U418298J9 - 5/ u181|V9|2 g ||Vu||Loo||v9||%2,
Q Q Q

by (3.4)s and u|8Q: 0. Thus, estimating the two terms in (3.32) as indicated and canceling a factor of
IV L2, we conclude that

d
5 IVOlze S IVl L= IVOl|z2 + Va2 S [[Vullz= (VO] 22 + 1), (3.33)
which implies that the exponential growth of ||[V||r2 is determined by the time integral of |Vu||p~. In
particular, applying (3.30) to (3.33) yields
||0HH1 S 1, le [07T]a (334)
for all T' > 0, where the constant depends on T'.
Next, we fix € € (0,1] and claim that
102 Sets, >0, (3.35)
where we allow all constants to depend on e. Note that (3.35) directly implies (2.8) by the definition (3.3).
To prove (3.35), we need to estimate the time integral of ||Vu||p~. Let 0 < tg < ¢1, where ¢y > 2 is a large

time to be determined based on e. By the Gagliardo-Nirenberg in space and Holder’s inequalities in time,

we have, using (3.31)

it it 1/4 3/4
[ vales < [ (Va8 + 1 9lz2)

t1 t1
1/4

t1+1 1/3 t14+1 3 1
<o [T vaie) (7 1aug) v ge
t1 t1

provided to is sufficiently large (recall that ¢; > to is arbitrary). To bound the L3L? norm of Au, we
introduce a smooth cut-off function ¢: [0,00) — [0, 1], where ¢(t) = 0 on [0,¢; — 1] and ¢(¢) = 1 on [t1, 0]
with |¢'| < 1. Now we consider the equation

(u)e — A(¢u) + V(dp) = ¢'u — u- V(¢u) + dpe; (3.37)

which follows from (2.1)1; note that V - (¢u) = 0 since ¢ is a function of time only, and also, for the same

3/4 (3.36)

reason, there are no additional terms resulting from the nonlinearity. Using the W23 estimate due to Sohr
and Von Wahl [SvW] we have, similarly to (3.26)—(3.29),

t1+1 t1+1 t1+1 t1+1
[t s [ e vl [ sl [l

t1 t1—1 t1—1 t1—1
t1+1 ) . t1+1
5/ [ullZe Vel 2o +/ lullzs +1 (3.38)
t1—1 t1—1

t1+1 t1+1
<[ vl [ vl 151
t1—

t1—1
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where we used (2.3), (3.1), and (3.11). Also, for the first factor of the first term in (3.36), we use (2.6) to
obtain that for any €y > 0 there exists ¢y > 1 sufficiently large so that
3/4

t1+1
(/ ||Vu||1L/23) < cpe. (3.39)
t

-1
Thus, using (3.38) and (3.39) in (3.36), we obtain
t1+1 1
/ [Vl < Ceoe + 56,
ty

for tp > 1 sufficiently large, which in turn implies
t
/ HVUHLO@ < E(t—to), t>tg+1 (340)
to

if we choose ¢y to be a sufficiently small constant. Note that (3.40) is obtained by adding the integrals of
unit length. Returning to (3.33), we find that Gronwall’s inequality implies

IVO(0)]| 2 < (IVO(to) | 22 + 1)e 1. (3.41)
Finally, we use (3.34) implying
16Cto)llmr <1, (3.42)

where the constant depends on tg, which in turn only depends on e. Combining (3.41) and (3.42) leads to
the claimed inequality (3.35). O

Next, we address a higher regularity norm.

Proof of Theorem 2.2. We start with a priori estimates and at the end of the proof we provide a sketch of
the justification. Taking a time derivative of (2.1);, we obtain

Uy — Aug +ug - Vu+u - Vuy + Vpp = prea,

which, after testing with u;; gives
1d
iallvw\lifz + [fuage | 22
= —/ Ut - VUjattUj — / U - V@tujattuj + / (pteg) - Upt
Q Q Q

1/2 1/2 1/2 1/2
< el o NV |2 IV ull 2 Al o e | 22 4 el poe [[Fe 22 el 22 + [1oel| 22 lutee | 2

1/2||Au||1/2 for the second term and

Now we apply |lullz~ < [|ull % I
lpellrz = llu-Vpllre < llullz= Vol Lz,

by (2.1)2, on the last. Absorbing the factors of ||ul||r2, we obtain
1d
5 g IVuellZa + Il

S el 2 1Vl 2 [ Vull 2 | Aul 2 + [l 2o [ Va2 + [ull 2 [ Vo]l 22 (3.43)

S+ || Vw22 + Cee®,
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where ¢ > 0 is arbitrarily small. In (3.43), we also used (2.3). For the initial norm, we have
Ve (0)|l 2 < [ Auollzr + (| B(uo, wo)llzr + P(poz2) ||zt < luollzs + [luo - Vol gy + [l poll
S luoll 7 Auol |52 + | Vuol|3 4| Auo|l 2 | Auo 2 S 1,

where we used the continuity of P on H'. Combining (3.22), (3.44), and (3.43) with a uniform Gronwall

argument, we get

(3.44)

IVui ()2 Se’, >0 (3.45)
and .

[l g et ez
where we allow constants to depend onoe. Now, consider the stationary, i.e., pointwise in time, Stokes

problem
—Au+Vp=—u-Vu—u;+ pey
(3.46)
U‘aQ =0.
Note that
- Vu+ue — peallpr S [|D(u- Vu —ue)llrz2 + ||pll
S IDullFs + [[ull o< | D?ul| 2 + [[Vuel| 2 + e
S NAY2ul| 2| Aul| g2 + [lull oo || Aul 2 + ([ V]| 2 + e S e,
using (3.45) in the last step. Applying the H? regularity for the Stokes problem (3.46) (see [T4, Proposi-
tion 3.3]), leads to
[ull s + ([ Vol S e (3.47)
In order to obtain (2.10), we apply 0;;, for 4,5 = 1,2, to (2.1)2, test with 0;;p, and sum which leads to

1d

5 7 19upllie = (@i(u-Vp), dijp) 12 = /Qaijwakpaijp +2 /Q diur0;kpdijp + /Q urOijepdijp,  (3.48)

which holds for all ¢ > 0. The last term vanishes by the incompressibility of u, while the second is bounded

by C||Vul|r||D?p||3.. For the first term on the far right side of (3.48), we write
R PN P P L

1/2 1/2 1/2 1/2
< (1Aull D% a5 + | Aul 1) IV ol 2 D3l 35 + 190l 22) D30l 2,
where we utilized the Gagliardo-Nirenberg inequalities. Now, we use (2.8) and (3.47) in (3.49), sum in ¢

(3.49)

and j, and cancel a factor of || D?p||;2 on both sides to obtain

1d . . 1/2
5 D%l S Cee®*/? 4 Cee |Dp| 2 + |Vl 1= | D 2,
whence, applying Young’s inequality
1d .
5%\\D2PHL2 S (e + [Vl =) 1D pl| 2,

for all ¢ > 0. Applying a Gronwall argument and using (3.40), which holds for ¢, > 0 sufficiently large

depending on ¢, we get

ID?p(t)l|z2 < Cee““(IDp(to)ll 2 + 1), t = to. (3.50)
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On the other hand, using Gronwall’s argument on [0, tg] with (3.30) for T = tg, we get
ID?p(t)llz2 S ID?pollrz + 1, t€[0,t], (3.51)
where the constant depends on ¢y and thus on e. Combining (3.50) and (3.51), we finally obtain (2.10) with

Ce replacing e.
To justify the a priori bounds above, we consider the sequence of solutions

u{"Y Ay oy () gy (D) g pntl) = g(ntl) g,
ol 4y gt — gyt e, (3.52)
V-t =,
with the boundary condition u(®*1|sq = 0 and with the initial data
(@™ (0),07+D(0)) = (uo, po — w2),
for n € Ny. For n = 0, we define
ul® — Au©® 4+ VPO = g0,
9750) — —u©® ¢
Va0 = 0,
with the boundary condition u(?)|5g = 0 and with the initial data
(w!(0),0(0)) = (uo, po — w2).

Since the system (3.52) is linear in (u("+1), #("+1)) it is easy to construct a local solution (u("+1) g(+1)),
Also, our a priori estimates apply to the sequence and one may pass uniform bounds to the limit. The
detailed construction of solutions will be provided in [AKZ]. O

4. INTERIOR BOUNDS

In this section, we establish the final result on the interior regularity of the second order derivatives.

Proof of Theorem 2.3. In the proof, we work in the interior of the domain and thus localize the vorticity
equation using a smooth cut-off function. Fix T' > 1 > tg > 0, and with ' as in the statement, consider a
smooth function n: R? x [0,00) — [0, 1] such that suppn C Q x (t0/2,4T) with n =1 on Q" x [3to/4, 2T,
where " is an open set such that Q' € Q" € Q, with dist(Q’,09) and dist(2”,9Q’) comparable with a

multiplicative constant. In order to prove (2.11), we first claim that the vorticity w = curl u satisfies
IVl Lo (fto, 120 (2 S T, (4.1)

where we allow all the constants in the proof to depend on ¢, p, and dist(€2’,0€2). Since (2.11) and (2.12)
for p = 2 follow from (2.3), we fix p > 2. We allow all constants to depend on p and ¢y, where tg € (0,1]
should be considered small.

As in [KW2], we introduce the operator

R=0,(I1-A)""
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and a change of variable

¢ =wn — R(pn). (4.2)
We shall apply R to functions which are compactly supported in 0, and we consider such functions extended
to R? by setting them identically to zero on Q°. Recalling the vorticity formulation for (2.1),

wi — Aw + u - Vw = 01 p,

we have, as in [KW2], that
G — AC+u- V(= [R,u-V](pn) = N(pn) — porn — 20;(w0;n) (43)
+w(ne + An+u-Vn) — R(p(u- Vn)), '

where

N=—((I-A)"A+ 1), (4.4)
which has the property that VN is in the Calderén-Zygmund class. The equation (4.3) is obtained by a
direct computation from

(wn)e = Alwn) +u - V(wn) = wi + wAn = 20;(wd;n) + wu - Vi + d1(pn) — pdin

and

(pm)e +u-V(pn) = pu-Vn
and then using the identity 0; — AR = —N. Note that both operators R and N commute with translations

(and hence derivatives) and they are smoothing of order one, i.e., they satisfy

IRfllwe, IN fllwre S Ifllze, — f € LP(R?), (4.5)

for p € (1, 00), where the constant depends on p; the property (4.5) can be verified by computing the Fourier
multiplier symbols corresponding to R and N (or see [KW2]). Since u is divergence free, we may rewrite

[, u;05)(pn) = R(u;d;(pn)) — u;0; R(pn) = 0;R(ujpn) — u;0; R(pn).
To acquire LP space-time estimates, we rewrite our solution as ¢ = (V) + ¢(®) where ¢(V) satisfies
GV —agh =g
C(l) ‘t:oz 0
with
f=w+An+u-Vn) = R(p(u-Vn)) = N(pn) —u- VR(pn) — poin,
while for ¢ we have
G = AP =Y.y
C(Q) ’t:O: 0,
where
g = —uC — 2wVn + R(upn).

Using the LPW?P regularity for the nonhomogeneous heat equation and the Gagliardo-Nirenberg inequality,

we have

DD Lo o Rex (0,00)) S 1D £20/0+2) (B2 3 (0,00)) S N1 Lo 120/ 042) (B2 x (0,00 (4.6)



ASYMPTOTIC PROPERTIES OF THE BOUSSINESQ EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS 14

observe that 2p/(p + 2) > 1 since p > 2. Similarly, using the LPW P regularity for the nonhomogeneous
heat equation in divergence form, we have

IDCP ) Lo Lo (B2 x (0,00)) S 191127 Lo (82 (0,00))- (4.7)
For the right-hand side of (4.6), we use (4.5) to obtain

[fllp2es vy S wllpz(lmellze + [|A9l e + [lullze [Vallze) + ol 2 lull < V0l e
+lolzalinlize + llullzellpll2lnllze + llollz2 1017 > (4.8)
Slwllze +151,
for every t > 0, where the domains are understood to be R2. For the right-hand side in (4.7), we estimate

lgllze S llwllzelCllzze + lwllzze VAl z2e + [lullzee ol o 7] o

(4.9)
S lullzee Cllzer + [lwl e +1
for every t > 0, by (4.5). To bound the right-hand side of (4.9), we write
[Cllze S Nlwnllza + 1R(om) e S llonllze + [l S 1, g € [2,00). (4.10)

Therefore, we obtain ||g||r» < 1 for all ¢ > 0. This fact and (4.8) imply by integration that the left-hand

sides of (4.6) and (4.7) are bounded by T'/? for T > ty, from where

IDC]I Lo Lo R2 x 0,00)) S TP (4.11)

and thus

IV ()| o Lo (82 % (0,00)) S IV Lo Lo ®2x(0,00)) + 1BV (00)|| Lo Lo (2 x 0,00y S TP,

which proves (4.1). The bound (2.11) then follows by a simple application of the interior elliptic estimate
connecting v and w.

The pointwise in time bound in (2.12) follows once we obtain
IVl S P/, g <t <T, (4.12)

with an agreement that all the constants depend on tg, p, and dist(Q)’, 9Q), and dist(Q”, 9Q'); we assume
T > max{2tp, 1} that is arbitrary. To prove (4.12), we begin by introducing a second smooth cut-off function
¢: R? x [0,00) — [0, 1] for which supp ¢ C Q" x (to,27T) with ¢ = 1 on Q' x [3to/4,T], Denote

¢=(o.
Using (4.3), we find that
G — ACHu-VE
= ([R,u-V](pn) = N(pn))é — R(p(u - Vn))d —2V( -V + (¢ — Ao +u - V);

note that the terms in (4.3) containing derivatives of 1 vanish after multiplication with ¢, except for the

(4.13)

term involving R, which is a non-local operator. The main reason for introducing the second cut-off function
¢ is that ¢ does not vanish on the boundary 92 due to nonlocality of R; see the definition (4.2). In order
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to estimate V¢, we apply 9y to (4.13) for k = 1, 2, multiply by |8;(|2P~20,C, integrate, and sum in k to

acquire

% dthakcuw > [ sadadpr o
k
B *Z/ 005010720 + 3 [ Ou(6lR.u- il ol

k k

-3 / Ok (ON (o)) [0kC P20 =) / O (DR (p(u - Vn)))|0C[*P~201C (4.14)
k k
_QZ/ak(8j48j¢)|ak§|2p_28kf
k

£ [ ou(cto - 0+ u- voNIaTas
k
The second term on the left-hand side of (4.14) is estimated as

> [ 2ododiral =2 Z [ oo ade) = 5p. (4.15)

p

where we denoted D = ", [|V(|0k(|?)||2.. For the first term on the right-hand side of (4.14), we use the
incompressibility of u to determine that

- Z / O (u;0;C) |0kC*P~20kC = — Z / ;05 C|0kC P 201

S IVl IVEI1 T, S o1 )IIVCHL4p,

where o(1) denotes a function which is bounded on [0,00) and converges to 0 as ¢ — oo. Applying the

(4.16)

estimate
10xC11750 = 10kCIP 170 S NORCIP N L2 IV (10kCIP) 22 S D210k 0
for k =1,2 in (4.16), we obtain

—Z / Ok (1;0;C)|0kC P20 < of D”ZZHMHW < Z +o(1)|| V][5, (4.17)

For the second term on the right-hand side of (4.14), we use integration by parts and write

S [ oulotru Vo) 6200 =~ - 1)Y [ 6lR u- ipmlond 0
k

- J(pmIowCI" 2 0rCon(101CI7)
(4.18)
S o[R, w- V](en) | z2r Z 110kC1P~ | L2ws -0 [V (|0kC[P) | 2
< DV2||9[R, u- V](Pﬂ)||L2pHVC||L2p-
For the second factor in the last expression, we have
[¢[R,w- V](pn)llLze S |l Loe [ R(u;0;(pn)) — w05 R(pn)|| 2w (419)

S 1105 R(ui (om) L2v + [lullp=10; R(pn) [ 20 < lpunllzze + llonllzzr <
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using the incompressibility of u and

o)Lz S 1, (4.20)

which follows from ||pol|r2» < ||pollgr < 1 and the LP conservation for p. (Recall that all constants depend
on p.) Thus, by (4.18)-(4.19), we have

D _
/ On(o[R, - V](pm) |0k ~204C < CDYV||VCITe, < 5+ ClIVEIE” (4.21)
For the third term on the right-hand side of (4.14), we obtain

-y / (ON (o) WCIP20kC S S 10k (SN (o) |20 101 | 2o
k k

S IVl IN (on)llzzr + Il VN (o) | 2n) IV S Nonllzn IVCIE" S IVEITE
For the fourth term on the right-hand side of (4.14), we observe that

- Z/ak(¢3(p(u - V)IOKCIPP 2 0kC S IV (@R (p(w - V)| zzn [V EPP | 2oy
k

S (181l [V R(p(u - V) 220 + V]| Lo | R(p(w - V)| 20) |V 72
S lpllzas lull = IV nll = IV CI75, " S IVCIE
where we used (4.20). For the fifth term on the right—hand side of (4.14), we determine that

3 [ aoscopioncerra - 2= Z [ acoviancraonad)

< 11056056l > N1CIP~ 1\|L4Hv<|akcwp>||m < DYV [V EPY P
k

By the Gagliardo-Nirenberg inequality, we have for the last fact
o.c|P||\P- /P p|p/(2p—2 p (r=1)/p
b v 2)/(2p—2

LA(p=1)/p ~

= —-2)/2 = (p— Z1p/2
S MBI IV (0CIP)IE277 5 D@2/ |97
for k = 1,2. Therefore, by Young’s inequality, we conclude that

-2 / O(0;€0; 0|0k 20C S DO/ |V (|1 VI < T D s et I, sl o,
k

For the final term of (4.14), we integrate by parts and obtain

Z/ak(C(cbt — Ap+u-Vp))|0el|P20C
k

- _2pp_ : Z/<(¢t — D¢+ u- V)|0kCP > 0rCOk (|0kCI")
k

SCllzznllge = A¢ 4w Vozoe Y 106 2o IV (0L 22 S DIV
k

using (2.3) and (4.10). Therefore, we have

- - D -
> / On(C(d0 = Ap+u- VO)|OkCIP20:C < T + CIVCIE” (4.22)
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Introducing
=3 [,
k

we may rewrite (4.14) by applying the above bounds as

(140 + 2 o(0)(1 ) 4+ (14 )P 4 (1) O/ 4 /2 e/ 092, (423)

It may seem that the first term in (4.23) causes an exponential increase of 1), but importantly we have the
property

t
/0 (1 + w) S t + ||VC||L2P [Ot L2p) 1 + t7 t 2 07 (424)

where we used (4.11) in the second step. Now we show that the inequality (4.24) implies that the growth
of 14 1) is algebraic. We divide the inequality (4.23) by (1 + )?/(*+2)| obtaining

(14 9P S o(1)(1+ ) P 4 (14 )P =2/P0E) g (14 ) Cp=2/2052) |8/ 09,

which upon integration and applying Jensen’s (or Holder’s) inequality yields for ¢ > 0,
(1+ ¢)2/(p+2)

t t t
<140(1) / (14 )2/ @+2) 4 / (14 )@ =D/ p+2) 4 / (14 ) BP=2)/20(+2)

0 0
+ [ Iweo

t 2/(p+2) t

<1+ 0(1)t1*2/(p+2) (/ (1+ w)) + 1= 0*=2)/p(p+2) (/ (1+)
0 0

) (3p—2)/2p(p+2)

>(P22)/P(P+2) (425)

t
L - (r-2)/2p(p+2) ( / (1+ )
0

t p/(p+2)
n ( / ||v<||%4) () (+2),
0

where we also used 1(0) = 0 since ¢ vanishes in a neighborhood of {t = 0}. Therefore, recalling (4.24), we
have for ¢ > tg the inequality

(1+ 77[,)2/(p+2) < t,

where we used f; [V¢||74 So ¢ for 8 > 0 on the last term in (4.25). Raising the resulting inequality to
(p+2)/2, we obtain

1+ < Cpt(p+2)/2.
By the support properties of ¢ and 7, we get for p > 1
IV@llL2r @y SIVCILor ) + %% S IV IIee + 1 S 12 +1 S ¢ F2)/4p, (4.26)

for t > tg concluding the proof. O
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APPENDIX A. UNIFORM GRONWALL INEQUALITIES

In the appendix, we state and prove two Gronwall inequalities needed in the proof of Theorem 2.1. The
following lemma is used to show (3.8).

Lemma A.1l. Assume that x,y: [0,00) — [0,00) are measurable functions with z differentiable, which

satisfy
T+y < Co(x? +1) (A1)
and
for some positive constant Cy. If
/ z(s) ds < o0, (A.3)
0
then
tlgglo x(t) = 0. (A.4)
Moreover,
t+a
/ y(s)ds < C, t>0 (A.5)
t
for every a, where the constant depends on a and Cy and
t+a
lim sup/ y(s)ds < Ca (A.6)
t—o00 t

for every a > 0, where the constant in depends on Cy.

Proof of Lemma A.1. In the proof, we allow all constants to depend on Cy. Let € € (0,1], and denote
b= /e. Based on (A.3), there exists ¢y > 0 such that

420
/ z(s)ds < e, t > to. (A.7)
t

Integrating the inequality @ < Cp(22 4+ 1) and using (A.7), we obtain
x(ty) < e9¢(2(t) + Cb) S a(ty) +b (A.8)
for all ¢; and ¢, such that 0 < t; <ty < t; + 2b. By (A.7), for every t > tg, there exists ¢ € [t,¢ + b] such

that
z(t) S

3

S

and thus applying (A.8) with ¢; = £ leads to
2(ts) STHbS Ve  I<t<ti+2, (A.9)

where we used b = /e in the last step. The inequality (A.9) holds for all ¢t > ¢y + b, and since € > 0 is
arbitrarily small, (A.4) follows. The inequalities (A.5) and (A.6) are obtained by integrating y < 22 + 1
and, for (A.6), we also use (A.4). O

The next Gronwall-type lemma is needed to establish (3.19) and (3.20), which are necessary for the proofs
of (2.3) and (2.7).
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Lemma A.2. Assume that z,y: [0,00) — [0,00) are measurable functions with x differentiable, which

satisfy
ity <o) (z+1) (A.10)
and
x < Cyy, (A.11)
where ¢: [0,00) — [0,00) is such that ¢(t) < Cy fort € [0,00) and ¢(t) — 0, ast — oco. If also z(0) < Cy,
then
z(t) 1, t € [0, 00), (A.12)

where the constant in (A.12) depends on Cy, and

tlggo x(t) = 0. (A.13)
Moreover,
t+1
/ y(s)ds < C, t>0, (A.14)
t
where C' depends on Cy and
t+a
lim sup/ y(s)ds =0, (A.15)
t—o00 t

for every a > 0.

Proof of Lemma A.2. First, by the boundedness of ¢, we have
z(t) S 1, te[0,7]
and then also
T
/ y(s)ds <1 (A.16)
0

for every T' > 0, where the constant depends on 7. Next, there exists tg > 0 such that

1

which is obtained by choosing ¢ so large that the term containing = on the right-hand side of (A.10) is
absorbed in the half of the second term on the left-hand side; see (A.11).
Let € > 0. Then there exists t; > tg such that
. 1 €
T+ aw < > t >,
where C; depends on Cy. This shows that as long as « > Cie, we have & + (1/2C1)z < 0, implying an
exponential decay of x. Therefore, by increasing t;, we can assume that

x(t) < Che, t>t. (A.17)
Since € > 0 was arbitrary, we obtain (A.13). To prove (A.15), note that we may assume

1
Ptgy<e izt (A.18)
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by increasing t; if necessary. Integrating (A.18) between ¢t and t+a, where a > 0 is fixed as in the statement,
we get
t+a
/ y(s)ds S x(t) + ea S €(1 + a), t>t,
t

where we used (A.17) in the last step. Since € > 0 was arbitrary, we obtain (A.14) and (A.15). O
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