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Abstract

Class-agnostic object counting aims to count object in-
stances of an arbitrary class at test time. Current methods
for this challenging problem require human-annotated ex-
emplars as inputs, which are often unavailable for novel
categories, especially for autonomous systems. Thus, we
propose zero-shot object counting (ZSC), a new setting
where only the class name is available during test time.
Such a counting system does not require human annotators
in the loop and can operate automatically. Starting from a
class name, we propose a method that can accurately iden-
tify the optimal patches which can then be used as counting
exemplars. Specifically, we first construct a class prototype
to select the patches that are likely to contain the objects
of interest, namely class-relevant patches. Furthermore, we
introduce a model that can quantitatively measure how suit-
able an arbitrary patch is as a counting exemplar. By ap-
plying this model to all the candidate patches, we can se-
lect the most suitable patches as exemplars for counting.
Experimental results on a recent class-agnostic counting
dataset, FSC-147, validate the effectiveness of our method.
Code is available at https://github.com/cvliab-
stonybrook/zero-shot—-counting.

1. Introduction

Object counting aims to infer the number of objects in
an image. Most of the existing methods focus on counting
objects from specialized categories such as human crowds
[37], cars [29], animals [4], and cells [46]. These meth-
ods count only a single category at a time. Recently, class-
agnostic counting [28, 34, 38] has been proposed to count
objects of arbitrary categories. Several human-annotated
bounding boxes of objects are required to specify the ob-
jects of interest (see Figure l1a). However, having humans
in the loop is not practical for many real-world applications,
such as fully automated wildlife monitoring systems or vi-
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Figure 1. Our proposed task of zero-shot object counting (ZSC).
Traditional few-shot counting methods require a few exemplars of
the object category (a). We propose zero-shot counting where the
counter only needs the class name to count the number of object
instances. (b). Few-shot counting methods require human annota-
tors at test time while zero-shot counters can be fully automatic.

sual anomaly detection systems.

A more practical setting, exemplar-free class-agnostic
counting, has been proposed recently by Ranjan et al. [33].
They introduce RepRPN, which first identifies the objects
that occur most frequently in the image, and then uses them
as exemplars for object counting. Even though RepRPN
does not require any annotated boxes at test time, the
method simply counts objects from the class with the high-
est number of instances. Thus, it can not be used for count-
ing a specific class of interest. The method is only suitable
for counting images with a single dominant object class,
which limits the potential applicability.

Our goal is to build an exemplar-free object counter
where we can specify what to count. To this end, we in-
troduce a new counting task in which the user only needs
to provide the name of the class for counting rather than the
exemplars (see Figure 1b). In this way, the counting model
can not only operate in an automatic manner but also allow
the user to define what to count by simply providing the
class name. Note that the class to count during test time can
be arbitrary. For cases where the test class is completely
unseen to the trained model, the counter needs to adapt to
the unseen class without any annotated data. Hence, we
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name this setting zero-shot object counting (ZSC), inspired
by previous zero-shot learning approaches [6,57].

To count without any annotated exemplars, our idea is
to identify a few patches in the input image containing the
target object that can be used as counting exemplars. Here
the challenges are twofold: 1) how to localize patches that
contain the object of interest based on the provided class
name, and 2) how to select good exemplars for counting.
Ideally, good object exemplars are visually representative
for most instances in the image, which can benefit the object
counter. In addition, we want to avoid selecting patches that
contain irrelevant objects or backgrounds, which likely lead
to incorrect object counts.

To this end, we propose a two-step method that first lo-
calizes the class-relevant patches which contain the objects
of interest based on the given class name, and then selects
among these patches the optimal exemplars for counting.
We use these selected exemplars, together with a pre-trained
exemplar-based counting model, to achieve exemplar-free
object counting.

In particular, to localize the patches containing the ob-
jects of interest, we first construct a class prototype in a pre-
trained embedding space based on the given class name. To
construct the class prototype, we train a conditional vari-
ational autoencoder (VAE) to generate features for an ar-
bitrary class conditioned on its semantic embedding. The
class prototype is computed by taking the average of the
generated features. We then select the patches whose em-
beddings are the k-nearest neighbors of the class prototype
as the class-relevant patches.

After obtaining the class-relevant patches, we further se-
lect among them the optimal patches to be used as counting
exemplars. Here we observe that the feature maps obtained
using good exemplars and bad exemplars often exhibit dis-
tinguishable differences. An example of the feature maps
obtained with different exemplars is shown in Figure 2. The
feature map from a good exemplar typically exhibits some
repetitive patterns (e.g., the dots on the feature map) that
center around the object areas while the patterns from a bad
exemplar are more irregular and occur randomly across the
image. Based on this observation, we train a model to mea-
sure the goodness of an input patch based on its correspond-
ing feature maps. Specifically, given an arbitrary patch and
a pre-trained exemplar-based object counter, we train this
model to predict the counting error of the counter when us-
ing the patch as the exemplar. Here the counting error can
indicate the goodness of the exemplar. After this error pre-
dictor is trained, we use it to select those patches with the
smallest predicted errors as the final exemplars for counting.

Experiments on the FSC-147 dataset show that our
method outperforms the previous exemplar-free counting
method [33] by a large margin. We also provide analy-
ses to show that patches selected by our method can be

Good Exemplar

a Pre-trained

Counter

4 -
Query Image 0 . ‘( '
.,_ Sy TO0 |

Bad Exemplar

Figure 2. Feature maps obtained using different exemplars given
a pre-trained exemplar-based counting model. The feature maps
obtained using good exemplars typically exhibit some repetitive
patterns while the patterns from bad exemplars are more irregular.

used in other exemplar-based counting methods to achieve
exemplar-free counting. In short, our main contributions
can be summarized as follows:

* We introduce the task of zero-shot object counting that
counts the number of instances of a specific class in
the input image, given only the class name and without
relying on any human-annotated exemplars.

e We propose a simple yet effective patch selec-
tion method that can accurately localize the optimal
patches across the query image as exemplars for zero-
shot object counting.

e We verify the effectiveness of our method on the FSC-
147 dataset, through extensive ablation studies and vi-
sualization results.

2. Related Work
2.1. Class-specific Object Counting

Class-specific object counting focuses on counting pre-
defined categories, such as humans [ 1, 15,24,26,37,39,40,
42,47,52,53,55,56], animals [4], cells [46], or cars [14,29].
Generally, existing methods can be categorized into two
groups: detection-based methods [, 14, 18] and regression-
based methods [7, 10, 11,27,41, 53, 56]. Detection-based
methods apply an object detector on the image and count the
number of objects based on the detected boxes. Regression-
based methods predict a density map for each input image,
and the final result is obtained by summing up the pixel val-
ues. Both types of methods require abundant training data
to learn a good model. Class-specific counters can perform
well on trained categories. However, they can not be used
to count objects of arbitrary categories at test time.

2.2. Class-agnostic Object Counting

Class-agnostic object counting aims to count arbitrary
categories given only a few exemplars [3, 13,25,28,31,34,
38,50,51]. GMN [28] uses a shared embedding module to
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Figure 3. Overview of the proposed method. We first use a generative model to obtain a class prototype for the given class (e.g. grape) in
a pre-trained feature space. Then given an input query image, we randomly sample a number of patches of various sizes and extract the
corresponding feature embedding for each patch. We select the patches whose embeddings are the nearest neighbors of the class prototype
as class-relevant patches. Then for each of the selected class-relevant patches, we use a pre-trained exemplar-based counting model to
obtain the intermediate feature maps. Our proposed error predictor then takes the feature maps as input and predicts the counting error
(here we use normalized counting errors). We select the patches with the smallest predicted errors as the final exemplar patches and use

them for counting.

extract feature maps for both query images and exemplars,
which are then concatenated and fed into a matching mod-
ule to regress the object count. FamNet [34] adopts a simi-
lar way to do correlation matching and further applies test-
time adaptation. These methods require human-annotated
exemplars as inputs. Recently, Ranjan ez al. have proposed
RepRPN [33], which achieves exemplar-free counting by
identifying exemplars from the most frequent objects via a
Region Proposal Network (RPN)-based model. However,
the class of interest can not be explicitly specified for the
RepRPN. In comparison, our proposed method can count
instances of a specific class given only the class name.

2.3. Zero-shot Image Classification

Zero-shot classification aims to classify unseen cate-
gories for which data is not available during training [5, 9,
12,16,19,21,23,35,36]. Semantic descriptors are mostly
leveraged as a bridge to enable the knowledge transfer be-
tween seen and unseen classes. Earlier zero-shot learning
(ZSL) works relate the semantic descriptors with visual fea-
tures in an embedding space and recognize unseen samples
by searching their nearest class-level semantic descriptor in
this embedding space [17,36,43,54]. Recently, generative
models [20,22,48,49] have been widely employed to syn-
thesize unseen class data to facilitate ZSL [30,44,45]. Xian
et al. [44] use a conditional Wasserstein Generative Ad-
versarial Network (GAN) [2] to generate unseen features
which can then be used to train a discriminative classifier
for ZSL. In our method, we also train a generative model
conditioned on class-specific semantic embedding. Instead

of using this generative model to hallucinate data, we use it
to compute a prototype for each class. This class prototype
is then used to select patches that contain objects of interest.

3. Method

Figure 3 summarizes our proposed method. Given an in-
put query image and a class label, we first use a generative
model to construct a class prototype for the given class in a
pre-trained feature space. We then randomly sample a num-
ber of patches of various sizes and extract the feature em-
bedding for each patch. The class-relevant patches are those
patches whose embeddings are the nearest neighbors of the
class prototype in the embedding space. We further use an
error predictor to select the patches with the smallest pre-
dicted errors as the final exemplars for counting. We use the
selected exemplars in an exemplar-based object counter to
infer the object counts. For the rest of the paper, we denote
this exemplar-based counter as the “base counting model”.
We will first describe how we train this base counting model
and then present the details of our patch selection method.

3.1. Training Base Counting Model

We train our base counting model using abundant train-
ing images with annotations. Similar to previous works
[34,38], the base counting model uses the input image and
the exemplars to obtain a density map for object counting.
The model consists of a feature extractor /" and a counter C'.
Given a query image I and an exemplar B of an arbitrary
class ¢, we input [ and B to the feature extractor to obtain
the corresponding output, denoted as F'(I) and F'(B) re-
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spectively. F(I) is a feature map of size d * h; % wy and
F(B) is a feature map of size d * hp * wp. We further
perform global average pooling on F(B) to form a feature
vector b of d dimensions.

After feature extraction, we obtain the similarity map S
by correlating the exemplar feature vector b with the image
feature map F'(I). Specifically, if w;; = Fj;([) is the chan-
nel feature at spatial position (i, j), S can be computed by:

Sij(I,B) = wi;b. (1)

In the case where n exemplars are given, we use Eq. 1 to
calculate n similarity maps, and the final similarity map is
the average of these n similarity maps.

We then concatenate the image feature map F'(I) with
the similarity map S, and input them into the counter C' to
predict a density map D. The final predicted count NV is
obtained by summing over the predicted density map D:

N = ZD(i,j)a 2
4,7

where D; ;) denotes the density value for pixel (3, j). The
supervision signal for training the counting model is the Lo
loss between the predicted density map and the ground truth
density map:

Leount = HD(LB)_D*(I)”% 3)
where D* denotes the ground truth density map.

3.2. Zero-shot Object Counting

In this section, we describe how we count objects of any
unseen category given only the class name without access
to any exemplar. Our strategy is to select a few patches in
the image that can be used as exemplars for the base count-
ing model. These patches are selected such that: 1) they
contain the objects that we are counting and 2) they benefit
the counting model, i.e., lead to small counting errors.

3.2.1 Selecting Class-relevant Patches

To select patches that contain the objects of interest, we first
generate a class prototype based on the given class name
using a conditional VAE model. Then we randomly sample
a number of patches across the query image and select the
class-relevant patches based on the generated prototype.
Class prototype generation. Inspired by previous zero-
shot learning approaches [44, 45], we train a conditional
VAE model to generate features for an arbitrary class based
on the semantic embedding of the class. The semantic em-
bedding is obtained from a pre-trained text-vision model
[32] given the corresponding class name. Specifically, we
train the VAE model to reconstruct features in a pre-trained
ImageNet feature space. The VAE is composed of an En-
coder E, which maps a visual feature = to a latent code z,

and a decoder G which reconstructs x from z. Both E and
G are conditioned on the semantic embedding a .The loss
function for training this VAE for an input feature x can be
defined as:

Ly (x) = KL (q(z|z, a)||p(z[a))

(4)
_Eq(z|x,a) [log p($|2, a)] .

The first term is the Kullback-Leibler divergence be-
tween the VAE posterior ¢(z|x, a) and a prior distribution
p(z]a). The second term is the decoder’s reconstruction er-
ror. q(z|z,a) is modeled as F(x,a) and p(x|z,a) is equal
to G(z,a). The prior distribution is assumed to be N (0, I)
for all classes.

We can use the trained VAE to generate the class proto-
type for an arbitrary target class for counting. Specifically,
given the target class name y, we first generate a set of fea-
tures by inputting the respective semantic vector a¥ and a
noise vector z to the decoder G:

GY = {2|2 = G(z,y),2 ~ N(0,1)}. (5)

The class prototype p? is computed by taking the mean of
all the features generated by VAE:

1 Z
y = — T
P |GY| ser” ©

Class-relevant patch selection. The generated class
prototype can be considered as a class center representing
the distribution of features of the corresponding class in the
embedding space. Using the class prototype, we can select
the class-relevant patches across the query image. Specifi-
cally, we first randomly sample M patches of various sizes
{b1, b, ..., by, } across the query image and extract their cor-
responding ImageNet features {f1, fa, ..., fm}. To select
the class-relevant patches, we calculate the Lo distance be-
tween the class prototype and the patch embedding, namely
d; = ||fi — pY||2. Then we select the patches whose em-
beddings are the k-nearest neighbors of the class prototype
as the class-relevant patches. Since the ImageNet feature
space is highly discriminative, i.e., features close to each
other typically belong to the same class, the selected patches
are likely to contain the objects of the target class.

3.2.2 Selecting Exemplars for Counting

Given a set of class-relevant patches and a pre-trained
exemplar-based object counter, we aim to select a few ex-
emplars from these patches that are optimal for counting. To
do so, we introduce an error prediction network that predicts
the counting error of an arbitrary patch when the patch is
used as the exemplar. The counting error is calculated from
the pre-trained counting model. Specifically, to train this er-
ror predictor, given a query image I and an arbitrary patch
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B cropped from I, we first use the base counting model to
get the image feature map F(I), similarity map S, and the
final predicted density map D. The counting error of the
base counting model can be written as:

e=|> Dy —N*, (7)
4,J

where N* denotes the ground truth object count in image 1.
¢ can be used to measure the goodness of B as an exemplar
for I, i.e., a small ¢ indicates that B is a suitable exemplar
for counting and vice versa.

The error predictor R is trained to regress the counting
error produced by the base counting model. The input of R
is the channel-wise concatenation of the image feature map
F(I) and the similarity map S. The training objective is the
minimization of the mean squared error between the output
of the predictor R(F(I),S) and the actual counting error
produced by the base counting model e.

After the error predictor is trained, we can use it to select
the optimal patches for counting. The candidates for selec-
tion here are the class-relevant patches selected by the class
prototype in the previous step. For each candidate patch,
we use the trained error predictor to infer the counting er-
ror when it is being used as the exemplar. The final se-
lected patches for counting are the patches that yield the
top-s smallest counting errors.

3.2.3 Using the Selected Patches as Exemplars

Using the error predictor, we predict the error for each can-
didate patch and select the patches that lead to the smallest
counting errors. The selected patches can then be used as
exemplars for the base counting model to get the density
map and the final count. We also conduct experiments to
show that these selected patches can serve as exemplars for
other exemplar-based counting models to achieve exemplar-
free class-agnostic counting.

4. Experiments
4.1. Implementation Details

Network architecture For the base counting model, we
use ResNet-50 as the backbone of the feature extractor, ini-
tialized with the weights of a pre-trained ImageNet model.
The backbone outputs feature maps of 1024 channels. For
each query image, the number of channels is reduced to 256
using an 1 x 1 convolution. For each exemplar, the fea-
ture maps are first processed with global average pooling
and then linearly mapped to obtain a 256-d feature vector.
The counter consists of 5 convolutional and bilinear upsam-
pling layers to regress a density map of the same size as
the query image. For the feature generation model, both
the encoder and the decoder are two-layer fully-connected

(FC) networks with 4096 hidden units. LeakyReLU and
ReLU are the non-linear activation functions in the hidden
and output layers, respectively. The dimensions of the la-
tent space and the semantic embeddings are both set to be
512. For the error predictor, 5 convolutional and bilinear
upsampling layers are followed by a linear layer to output
the counting error.

Dataset We use the FSC-147 dataset [34] to train the
base counting model and the error predictor. FSC-147 is
the first large-scale dataset for class-agnostic counting. It
includes 6135 images from 147 categories varying from an-
imals, kitchen utensils, to vehicles. The categories in the
training, validation, and test sets do not overlap. The feature
generator is trained on the MS-COCO detection dataset.
Note that the previous exemplar-free method [33] also uses
MS-COCO to pre-train their counter.

Training details Both the base counting model and the
error predictor are trained using the AdamW optimizer with
a fixed learning rate of 10~°. The base counting model is
trained for 300 epochs with a batch size of 8. We resize the
input query image to a fixed height of 384, and the width
is adjusted accordingly to preserve the aspect ratio of the
original image. Exemplars are resized to 128 x 128 before
being input into the feature extractor. The feature gener-
ation model is trained using the Adam optimizer and the
learning rate is set to be 10~*. The semantic embeddings
are extracted from CLIP [32]. To select the class-relevant
patches, we randomly sample 450 boxes of various sizes
across the input query image and select 10 patches whose
embeddings are the 10-nearest neighbors of the class proto-
type. The final selected patches are those that yield the top-3
smallest counting errors predicted by the error predictor.

4.2. Evaluation Metrics

We use Mean Average Error (MAE) and Root Mean
Squared Error (RMSE) to measure the performance of dif-
ferent object counters. Besides, we follow [3 1] to report the
Normalized Relative Error (NAE) and Squared Relative Er-
ror (SRE). In particular, MAE = %Z?:l ly; — vi|; RMSE

= \/% Sy (v — §:)% NAE = Ly luisdils oRE =

AT . .
L~ Wi=U)® where n is the number of test images,
n i=1 Yi

and y; and y; are the ground truth and the predicted number
of objects for image ¢ respectively.

4.3. Comparing Methods

We compare our method with the previous works on
class-agnostic counting. RepRPN-Counter [33] is the only
previous class-agnostic counting method that does not re-
quire human-annotated exemplars as input. In order to
make other exemplar based class-agnostic methods includ-
ing GMN (General Matching Network [28]), FamNet (Few-
shot adaptation and matching Network [34]) and BMNet
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Method E ! Val Set Test Set

etho XemplArS | MJAE RMSE NAE SRE | MAE RMSE NAE SRE

GT 29.66  89.81 - - | 2652 12457 - -

.

GMN [28] RPN 4096 10847 - - 3972 14281 - -
FamNet+ [34] GT 2375 69.07 052 425 ]2208 9954 044 645
: RPN 4285 12159 075 694 | 4270 146.08 0.74 7.14
BMNet [3] GT 19.06 6795 026 439 |16.71 10331 026 3.32
a RPN 3726 10854 042 543 | 3722 14313 041 531
BMNet+ [34] GT 1574 5853 027 657 | 1462 9183 025 274
o RPN 3515 10607 041 528 | 3452 13264 039 526

RepRPN-Counter [33] | - | 3040 98.73 - - 2745 12969 - -
GT 1855 61.12 030 3.18 | 2068 109.14 036 7.63
Ours (Base) RPN 3219 9921 038 4.80 | 2925 130.65 035 4.35
Patch-Selection | 26.93 88.63  0.36 4.26 | 22.09 115.17 034 3.74

Table 1. Quantitative comparisons on the FSC-147 dataset. “GT” denotes using human-annotated boxes as exemplars. “RPN” denotes
using the top-3 RPN proposals with the highest objectness scores as exemplars. “Patch-Selection” denotes using our selected patches as
exemplars.

5. Analyses
5.1. Ablation Studies

(Bilinear Matching Network [38]) work in the exemplar-
free setup, we replace the human-provided exemplars with
the exemplars generated by a pre-trained object detector.
Specifically, we use the RPN of Faster RCNN pre-trained
on MS-COCO dataset and select the top-3 proposals with
the highest objectness score as the exemplars. We also
include the performance of these methods using human-
annotated exemplars for a complete comparison.

Our proposed patch selection method consists of two
steps: the selection of class-relevant patches via a generated
class prototype and the selection of the optimal patches via
an error predictor. We analyze the contribution of each step
quantitatively and qualitatively. Quantitative results are in
Table 2. We first evaluate the performance of our baseline,
i.e. using 3 randomly sampled patches as exemplars with-
out any selection step. As shown in Table 2, using the class
prototype to select class-relevant patches reduces the error
rate by 7.19 and 6.07 on the validation and test set of MAE,
respectively. Applying the error predictor can improve the
baseline performance by 7.22 on the validation MAE and
7.57 on the test MAE. Finally, applying the two compo-
nents together further boosts performance, achieving 26.93
on the validation MAE and 22.09 on the test MAE.

We provide further qualitative analysis by visualizing the
selected patches. As shown in Figure 5, for each input query
image, we show 10 class-relevant patches selected using our
generated prototype, ranked by their predicted counting er-
ror (from low to high). All the 10 selected class-relevant
patches exhibit some class specific features. However, not
all these patches are suitable to be used as counting exem-
plars, i.e., some patches only contain parts of the object, and
some patches contain some background. By further apply-
ing our proposed error predictor, we can identify the most
suitable patches with the smallest predicted counting errors.

4.4. Results

Quantitative results. As shown in Table 1, our proposed
method outperforms the previous exemplar-free counting
method [33] by a large margin, resulting in a reduction of
10.10 w.r.t. the validation RMSE and 14.52 w.r.t. the test
RMSE. We also notice that the performance of all exemplar-
based counting methods drops significantly when replacing
human-annotated exemplars with RPN generated proposals.
The state-of-the-art exemplar-based method BMNet+ [38],
for example, shows an 19.90 error increase w.r.t. the test
MAE and a 40.81 increase w.r.t. the test RMSE. In com-
parison, the performance gap is much smaller when using
our selected patches as exemplars, as reflected by a 1.41
increase w.r.t. the test MAE and a 6.03 increase w.r.z. the
test RMSE. Noticeably, the NAE and the SRE on the test set
are even reduced when using our selected patches compared
with the human-annotated exemplars.

Qualitative analysis. In Figure 4, we present a few input
images, the image patches selected by our method, and the
corresponding density maps. Our method effectively iden-
tifies the patches that are suitable for object counting. The

) 5.2. Generalization to Exemplar-based Methods
density maps produced by our selected patches are mean-

ingful and close to the density maps produced by human-
annotated patches. The counting model with random image
patches as exemplars, in comparison, fails to output mean-
ingful density maps and infers incorrect object counts.

Our proposed method can be considered as a general
patch selection method that is applicable to other visual
counters to achieve exemplar-free counting. To verify that,
we use our selected patches as the exemplars for three
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Ground Truth Random Ours
Figure 4. Qualitative results on the FSC-147 dataset. We show the counting exemplars and the corresponding density maps of ground truth
boxes, randomly selected patches, and our selected patches respectively. Predicted counting results are shown at the top-right corner. Our
method accurately identifies suitable patches for counting and the predicted density maps are close to the ground truth density maps.
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Figure 5. Qualitative ablation analysis. All the 10 selected class-relevant patches exhibit some class-specific attributes. They are ranked by
the predicted counting errors and the final selected patches with the smallest errors are framed in green.

. Val Set Test Set
Prototype | Prediclor | \sp RMSE NAE SRE | MAE RMSE NAE SRE other different exemplar-based methods: FamNet [34], BM-
3520 10670 061 6.68|31.37 13498 052 592 Net and BMNet+ [38]. Figure 6 (a) shows the results on
- 2801 8829 039 466 |2530 113.82 040 4588 R .
V2708 8862 043 459 | 2380 19836 040 443 the FSC-147 validation set. The baseline uses three ran-
vV 2693 8863 036 4262209 11517 034 374 domly sampled patches as the exemplars for the pre-trained

exemplar-based counter. By using the generated class pro-

Table 2. Ablation study on each component’s contribution to the totype to select class-relevant patches, the error rate is re-
final results. We show the effectiveness of the two steps of our ~ duced by 5.18, 8.59 and 5.60 on FamNet, BMNet and BM-

framework: selecting class-relevant patches via a generated class Net+, respectively. In addition, as the error predictor is ad-
prototype and selecting optimal patches via an error predictor. ditionally adopted, the error rate is further reduced by 1.76,
1.00 and 1.08 on FamNet, BMNet and BMNet+, respec-
tively. Similarly, Figure 6 (b) shows the results on the FSC-
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147 test set. Our method achieves consistent performance
improvements for all three methods.

FSC147 Val Set

N Base
[ Base+Proto

N Base+Proto+Err
36.04 352

MAE

BMNet+ Ours
(a)
FSC147 Test Set

4621 = Base
m Base+Proto
mmm Base+Proto+Err -

FamNet BMNet

50

34.52
31.37

MAE

BMNet+ Ours

(b)

BMNet

Figure 6. Using our selected patches as exemplars for other
exemplar-based class-agnostic counting methods (FamNet, BM-
Net and BMNet+) on FSC-147 dataset. Blue bars are the MAEs
of using three randomly sampled patches. Orange bars are the
MAE:s of using the class prototype to select class-relevant patches
as exemplars. Green bars are the MAEs of using the class proto-
type and error predictor to select optimal patches as exemplars.

5.3. Multi-class Object Counting

Our method can count instances of a specific class given
the class name, which is particularly useful when there are
multiple classes in the same image. In this section, we show
some visualization results in this multi-class scenario. As
seen in Figure 7, our method selects patches according to
the given class name and count instances from that spe-
cific class in the input image. Correspondingly, the heatmap
highlights the image regions that are most relevant to the
specified class. Here the heatmaps are obtained by corre-
lating the exemplar feature vector with the image feature
map in a pre-trained ImageNet feature space. Note that
we mask out the image region where the activation value
in the heatmap is below a threshold for counting purpose.
We also show the patches selected using another exemplar-
free counting method, RepRPN [33]. The class of RepRPN
selected patches can not be explicitly specified. It simply
selects patches from the class with the highest number of
instances in the image according to the repetition score.

RepRPN

.

Pred: 10

P Y

“Broccoli”

i
~
“Carrot”
. .
(@)
RepRPN

!.

“Strawberry”

Broccoli: 19
Carrot: 25

“Banana”

[t d

(b)

R o

Banana: 31
Strawberry: 38

RepRPN
. .

-
“Green Bean” Pred: 29

_ W F
b

Tomato” Pred: 59

ERE o
\ B |
(©

Figure 7. Visualization results of our method in some multi-class
examples. Our method selects patches according to the given class
name and the corresponding heatmap highlights the relevant areas.

Pred: 55

S

Green Bean: 32
Tomato: 62

6. Conclusion

In this paper, we proposed a new task, zero-shot object
counting, to count instances of a specific class given only
the class name without access to any exemplars. To address
this, we developed a simple yet effective method that accu-
rately localizes the optimal patches across the query image
that can be used as counting exemplars. Specifically, we
construct a class prototype in a pre-trained feature space and
use the prototype to select patches that contain objects of in-
terest; then we use an error predictor to select those patches
with the smallest predicted errors as the final exemplars for
counting. Extensive results demonstrate the effectiveness
of our method. We also conduct experiments to show that
our selected patches can be used for other exemplar-based
counting methods to achieve exemplar-free counting.
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