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Abstract

Class-agnostic object counting aims to count object in-

stances of an arbitrary class at test time. Current methods

for this challenging problem require human-annotated ex-

emplars as inputs, which are often unavailable for novel

categories, especially for autonomous systems. Thus, we

propose zero-shot object counting (ZSC), a new setting

where only the class name is available during test time.

Such a counting system does not require human annotators

in the loop and can operate automatically. Starting from a

class name, we propose a method that can accurately iden-

tify the optimal patches which can then be used as counting

exemplars. Specifically, we first construct a class prototype

to select the patches that are likely to contain the objects

of interest, namely class-relevant patches. Furthermore, we

introduce a model that can quantitatively measure how suit-

able an arbitrary patch is as a counting exemplar. By ap-

plying this model to all the candidate patches, we can se-

lect the most suitable patches as exemplars for counting.

Experimental results on a recent class-agnostic counting

dataset, FSC-147, validate the effectiveness of our method.

Code is available at https://github.com/cvlab-

stonybrook/zero-shot-counting.

1. Introduction

Object counting aims to infer the number of objects in

an image. Most of the existing methods focus on counting

objects from specialized categories such as human crowds

[37], cars [29], animals [4], and cells [46]. These meth-

ods count only a single category at a time. Recently, class-

agnostic counting [28, 34, 38] has been proposed to count

objects of arbitrary categories. Several human-annotated

bounding boxes of objects are required to specify the ob-

jects of interest (see Figure 1a). However, having humans

in the loop is not practical for many real-world applications,

such as fully automated wildlife monitoring systems or vi-
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(a) Few-shot Counting (b) Zero-Shot Counting

Figure 1. Our proposed task of zero-shot object counting (ZSC).

Traditional few-shot counting methods require a few exemplars of

the object category (a). We propose zero-shot counting where the

counter only needs the class name to count the number of object

instances. (b). Few-shot counting methods require human annota-

tors at test time while zero-shot counters can be fully automatic.

sual anomaly detection systems.

A more practical setting, exemplar-free class-agnostic

counting, has been proposed recently by Ranjan et al. [33].

They introduce RepRPN, which first identifies the objects

that occur most frequently in the image, and then uses them

as exemplars for object counting. Even though RepRPN

does not require any annotated boxes at test time, the

method simply counts objects from the class with the high-

est number of instances. Thus, it can not be used for count-

ing a specific class of interest. The method is only suitable

for counting images with a single dominant object class,

which limits the potential applicability.

Our goal is to build an exemplar-free object counter

where we can specify what to count. To this end, we in-

troduce a new counting task in which the user only needs

to provide the name of the class for counting rather than the

exemplars (see Figure 1b). In this way, the counting model

can not only operate in an automatic manner but also allow

the user to define what to count by simply providing the

class name. Note that the class to count during test time can

be arbitrary. For cases where the test class is completely

unseen to the trained model, the counter needs to adapt to

the unseen class without any annotated data. Hence, we
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name this setting zero-shot object counting (ZSC), inspired

by previous zero-shot learning approaches [6, 57].

To count without any annotated exemplars, our idea is

to identify a few patches in the input image containing the

target object that can be used as counting exemplars. Here

the challenges are twofold: 1) how to localize patches that

contain the object of interest based on the provided class

name, and 2) how to select good exemplars for counting.

Ideally, good object exemplars are visually representative

for most instances in the image, which can benefit the object

counter. In addition, we want to avoid selecting patches that

contain irrelevant objects or backgrounds, which likely lead

to incorrect object counts.

To this end, we propose a two-step method that first lo-

calizes the class-relevant patches which contain the objects

of interest based on the given class name, and then selects

among these patches the optimal exemplars for counting.

We use these selected exemplars, together with a pre-trained

exemplar-based counting model, to achieve exemplar-free

object counting.

In particular, to localize the patches containing the ob-

jects of interest, we first construct a class prototype in a pre-

trained embedding space based on the given class name. To

construct the class prototype, we train a conditional vari-

ational autoencoder (VAE) to generate features for an ar-

bitrary class conditioned on its semantic embedding. The

class prototype is computed by taking the average of the

generated features. We then select the patches whose em-

beddings are the k-nearest neighbors of the class prototype

as the class-relevant patches.

After obtaining the class-relevant patches, we further se-

lect among them the optimal patches to be used as counting

exemplars. Here we observe that the feature maps obtained

using good exemplars and bad exemplars often exhibit dis-

tinguishable differences. An example of the feature maps

obtained with different exemplars is shown in Figure 2. The

feature map from a good exemplar typically exhibits some

repetitive patterns (e.g., the dots on the feature map) that

center around the object areas while the patterns from a bad

exemplar are more irregular and occur randomly across the

image. Based on this observation, we train a model to mea-

sure the goodness of an input patch based on its correspond-

ing feature maps. Specifically, given an arbitrary patch and

a pre-trained exemplar-based object counter, we train this

model to predict the counting error of the counter when us-

ing the patch as the exemplar. Here the counting error can

indicate the goodness of the exemplar. After this error pre-

dictor is trained, we use it to select those patches with the

smallest predicted errors as the final exemplars for counting.

Experiments on the FSC-147 dataset show that our

method outperforms the previous exemplar-free counting

method [33] by a large margin. We also provide analy-

ses to show that patches selected by our method can be
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Figure 2. Feature maps obtained using different exemplars given

a pre-trained exemplar-based counting model. The feature maps

obtained using good exemplars typically exhibit some repetitive

patterns while the patterns from bad exemplars are more irregular.

used in other exemplar-based counting methods to achieve

exemplar-free counting. In short, our main contributions

can be summarized as follows:

• We introduce the task of zero-shot object counting that

counts the number of instances of a specific class in

the input image, given only the class name and without

relying on any human-annotated exemplars.

• We propose a simple yet effective patch selec-

tion method that can accurately localize the optimal

patches across the query image as exemplars for zero-

shot object counting.

• We verify the effectiveness of our method on the FSC-

147 dataset, through extensive ablation studies and vi-

sualization results.

2. Related Work

2.1. Class-specific Object Counting

Class-specific object counting focuses on counting pre-

defined categories, such as humans [1, 15, 24, 26, 37, 39, 40,

42,47,52,53,55,56], animals [4], cells [46], or cars [14,29].

Generally, existing methods can be categorized into two

groups: detection-based methods [8,14,18] and regression-

based methods [7, 10, 11, 27, 41, 53, 56]. Detection-based

methods apply an object detector on the image and count the

number of objects based on the detected boxes. Regression-

based methods predict a density map for each input image,

and the final result is obtained by summing up the pixel val-

ues. Both types of methods require abundant training data

to learn a good model. Class-specific counters can perform

well on trained categories. However, they can not be used

to count objects of arbitrary categories at test time.

2.2. Class-agnostic Object Counting

Class-agnostic object counting aims to count arbitrary

categories given only a few exemplars [3, 13, 25, 28, 31, 34,

38, 50, 51]. GMN [28] uses a shared embedding module to

15549

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 31,2023 at 06:31:53 UTC from IEEE Xplore.  Restrictions apply. 



“grape” PrototypeG

R

0.1

0.4

0.2

0.4

Class-relevant 

Patches

Pre-trained 

Feature Space

Selected 

Exemplar

Generator

Error

Predictor

Query 

Image

Pre-trained

Counter

F

K-nearest 

neighbors

Estimated

Counting Errors

Figure 3. Overview of the proposed method. We first use a generative model to obtain a class prototype for the given class (e.g. grape) in

a pre-trained feature space. Then given an input query image, we randomly sample a number of patches of various sizes and extract the

corresponding feature embedding for each patch. We select the patches whose embeddings are the nearest neighbors of the class prototype

as class-relevant patches. Then for each of the selected class-relevant patches, we use a pre-trained exemplar-based counting model to

obtain the intermediate feature maps. Our proposed error predictor then takes the feature maps as input and predicts the counting error

(here we use normalized counting errors). We select the patches with the smallest predicted errors as the final exemplar patches and use

them for counting.

extract feature maps for both query images and exemplars,

which are then concatenated and fed into a matching mod-

ule to regress the object count. FamNet [34] adopts a simi-

lar way to do correlation matching and further applies test-

time adaptation. These methods require human-annotated

exemplars as inputs. Recently, Ranjan et al. have proposed

RepRPN [33], which achieves exemplar-free counting by

identifying exemplars from the most frequent objects via a

Region Proposal Network (RPN)-based model. However,

the class of interest can not be explicitly specified for the

RepRPN. In comparison, our proposed method can count

instances of a specific class given only the class name.

2.3. Zero-shot Image Classification

Zero-shot classification aims to classify unseen cate-

gories for which data is not available during training [5, 9,

12, 16, 19, 21, 23, 35, 36]. Semantic descriptors are mostly

leveraged as a bridge to enable the knowledge transfer be-

tween seen and unseen classes. Earlier zero-shot learning

(ZSL) works relate the semantic descriptors with visual fea-

tures in an embedding space and recognize unseen samples

by searching their nearest class-level semantic descriptor in

this embedding space [17, 36, 43, 54]. Recently, generative

models [20, 22, 48, 49] have been widely employed to syn-

thesize unseen class data to facilitate ZSL [30,44,45]. Xian

et al. [44] use a conditional Wasserstein Generative Ad-

versarial Network (GAN) [2] to generate unseen features

which can then be used to train a discriminative classifier

for ZSL. In our method, we also train a generative model

conditioned on class-specific semantic embedding. Instead

of using this generative model to hallucinate data, we use it

to compute a prototype for each class. This class prototype

is then used to select patches that contain objects of interest.

3. Method

Figure 3 summarizes our proposed method. Given an in-

put query image and a class label, we first use a generative

model to construct a class prototype for the given class in a

pre-trained feature space. We then randomly sample a num-

ber of patches of various sizes and extract the feature em-

bedding for each patch. The class-relevant patches are those

patches whose embeddings are the nearest neighbors of the

class prototype in the embedding space. We further use an

error predictor to select the patches with the smallest pre-

dicted errors as the final exemplars for counting. We use the

selected exemplars in an exemplar-based object counter to

infer the object counts. For the rest of the paper, we denote

this exemplar-based counter as the “base counting model”.

We will first describe how we train this base counting model

and then present the details of our patch selection method.

3.1. Training Base Counting Model

We train our base counting model using abundant train-

ing images with annotations. Similar to previous works

[34, 38], the base counting model uses the input image and

the exemplars to obtain a density map for object counting.

The model consists of a feature extractor F and a counter C.

Given a query image I and an exemplar B of an arbitrary

class c, we input I and B to the feature extractor to obtain

the corresponding output, denoted as F (I) and F (B) re-
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spectively. F (I) is a feature map of size d ∗ hI ∗ wI and

F (B) is a feature map of size d ∗ hB ∗ wB . We further

perform global average pooling on F (B) to form a feature

vector b of d dimensions.

After feature extraction, we obtain the similarity map S

by correlating the exemplar feature vector b with the image

feature map F (I). Specifically, if wij = Fij(I) is the chan-

nel feature at spatial position (i, j), S can be computed by:

Sij(I, B) = wT
ijb. (1)

In the case where n exemplars are given, we use Eq. 1 to

calculate n similarity maps, and the final similarity map is

the average of these n similarity maps.

We then concatenate the image feature map F (I) with

the similarity map S, and input them into the counter C to

predict a density map D. The final predicted count N is

obtained by summing over the predicted density map D:

N =
∑

i,j

D(i,j), (2)

where D(i,j) denotes the density value for pixel (i, j). The

supervision signal for training the counting model is the L2

loss between the predicted density map and the ground truth

density map:

Lcount = ‖D(I, B)−D∗(I)‖22, (3)

where D∗ denotes the ground truth density map.

3.2. Zero-shot Object Counting

In this section, we describe how we count objects of any

unseen category given only the class name without access

to any exemplar. Our strategy is to select a few patches in

the image that can be used as exemplars for the base count-

ing model. These patches are selected such that: 1) they

contain the objects that we are counting and 2) they benefit

the counting model, i.e., lead to small counting errors.

3.2.1 Selecting Class-relevant Patches

To select patches that contain the objects of interest, we first

generate a class prototype based on the given class name

using a conditional VAE model. Then we randomly sample

a number of patches across the query image and select the

class-relevant patches based on the generated prototype.

Class prototype generation. Inspired by previous zero-

shot learning approaches [44, 45], we train a conditional

VAE model to generate features for an arbitrary class based

on the semantic embedding of the class. The semantic em-

bedding is obtained from a pre-trained text-vision model

[32] given the corresponding class name. Specifically, we

train the VAE model to reconstruct features in a pre-trained

ImageNet feature space. The VAE is composed of an En-

coder E, which maps a visual feature x to a latent code z,

and a decoder G which reconstructs x from z. Both E and

G are conditioned on the semantic embedding a .The loss

function for training this VAE for an input feature x can be

defined as:

LV (x) = KL (q(z|x, a)||p(z|a))

−Eq(z|x,a)[log p(x|z, a)].
(4)

The first term is the Kullback-Leibler divergence be-

tween the VAE posterior q(z|x, a) and a prior distribution

p(z|a). The second term is the decoder’s reconstruction er-

ror. q(z|x, a) is modeled as E(x, a) and p(x|z, a) is equal

to G(z, a). The prior distribution is assumed to be N (0, I)
for all classes.

We can use the trained VAE to generate the class proto-

type for an arbitrary target class for counting. Specifically,

given the target class name y, we first generate a set of fea-

tures by inputting the respective semantic vector ay and a

noise vector z to the decoder G:

G
y = {x̂|x̂ = G(z, y), z ∼ N (0, I)}. (5)

The class prototype py is computed by taking the mean of

all the features generated by VAE:

py =
1

|Gy|

∑

x̂∈Gy
x̂ (6)

Class-relevant patch selection. The generated class

prototype can be considered as a class center representing

the distribution of features of the corresponding class in the

embedding space. Using the class prototype, we can select

the class-relevant patches across the query image. Specifi-

cally, we first randomly sample M patches of various sizes

{b1, b2, ..., bm} across the query image and extract their cor-

responding ImageNet features {f1, f2, ..., fm}. To select

the class-relevant patches, we calculate the L2 distance be-

tween the class prototype and the patch embedding, namely

di = ‖fi − py‖2. Then we select the patches whose em-

beddings are the k-nearest neighbors of the class prototype

as the class-relevant patches. Since the ImageNet feature

space is highly discriminative, i.e., features close to each

other typically belong to the same class, the selected patches

are likely to contain the objects of the target class.

3.2.2 Selecting Exemplars for Counting

Given a set of class-relevant patches and a pre-trained

exemplar-based object counter, we aim to select a few ex-

emplars from these patches that are optimal for counting. To

do so, we introduce an error prediction network that predicts

the counting error of an arbitrary patch when the patch is

used as the exemplar. The counting error is calculated from

the pre-trained counting model. Specifically, to train this er-

ror predictor, given a query image Ī and an arbitrary patch
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B̄ cropped from Ī , we first use the base counting model to

get the image feature map F (Ī), similarity map S̄, and the

final predicted density map D̄. The counting error of the

base counting model can be written as:

ε = |
∑

i,j

D̄(i,j) − N̄∗|, (7)

where N̄∗ denotes the ground truth object count in image Ī .

ε can be used to measure the goodness of B̄ as an exemplar

for Ī , i.e., a small ε indicates that B̄ is a suitable exemplar

for counting and vice versa.

The error predictor R is trained to regress the counting

error produced by the base counting model. The input of R

is the channel-wise concatenation of the image feature map

F (Ī) and the similarity map S̄. The training objective is the

minimization of the mean squared error between the output

of the predictor R(F (Ī), S̄) and the actual counting error

produced by the base counting model ε.

After the error predictor is trained, we can use it to select

the optimal patches for counting. The candidates for selec-

tion here are the class-relevant patches selected by the class

prototype in the previous step. For each candidate patch,

we use the trained error predictor to infer the counting er-

ror when it is being used as the exemplar. The final se-

lected patches for counting are the patches that yield the

top-s smallest counting errors.

3.2.3 Using the Selected Patches as Exemplars

Using the error predictor, we predict the error for each can-

didate patch and select the patches that lead to the smallest

counting errors. The selected patches can then be used as

exemplars for the base counting model to get the density

map and the final count. We also conduct experiments to

show that these selected patches can serve as exemplars for

other exemplar-based counting models to achieve exemplar-

free class-agnostic counting.

4. Experiments

4.1. Implementation Details

Network architecture For the base counting model, we

use ResNet-50 as the backbone of the feature extractor, ini-

tialized with the weights of a pre-trained ImageNet model.

The backbone outputs feature maps of 1024 channels. For

each query image, the number of channels is reduced to 256
using an 1 × 1 convolution. For each exemplar, the fea-

ture maps are first processed with global average pooling

and then linearly mapped to obtain a 256-d feature vector.

The counter consists of 5 convolutional and bilinear upsam-

pling layers to regress a density map of the same size as

the query image. For the feature generation model, both

the encoder and the decoder are two-layer fully-connected

(FC) networks with 4096 hidden units. LeakyReLU and

ReLU are the non-linear activation functions in the hidden

and output layers, respectively. The dimensions of the la-

tent space and the semantic embeddings are both set to be

512. For the error predictor, 5 convolutional and bilinear

upsampling layers are followed by a linear layer to output

the counting error.

Dataset We use the FSC-147 dataset [34] to train the

base counting model and the error predictor. FSC-147 is

the first large-scale dataset for class-agnostic counting. It

includes 6135 images from 147 categories varying from an-

imals, kitchen utensils, to vehicles. The categories in the

training, validation, and test sets do not overlap. The feature

generator is trained on the MS-COCO detection dataset.

Note that the previous exemplar-free method [33] also uses

MS-COCO to pre-train their counter.

Training details Both the base counting model and the

error predictor are trained using the AdamW optimizer with

a fixed learning rate of 10−5. The base counting model is

trained for 300 epochs with a batch size of 8. We resize the

input query image to a fixed height of 384, and the width

is adjusted accordingly to preserve the aspect ratio of the

original image. Exemplars are resized to 128 × 128 before

being input into the feature extractor. The feature gener-

ation model is trained using the Adam optimizer and the

learning rate is set to be 10−4. The semantic embeddings

are extracted from CLIP [32]. To select the class-relevant

patches, we randomly sample 450 boxes of various sizes

across the input query image and select 10 patches whose

embeddings are the 10-nearest neighbors of the class proto-

type. The final selected patches are those that yield the top-3
smallest counting errors predicted by the error predictor.

4.2. Evaluation Metrics

We use Mean Average Error (MAE) and Root Mean

Squared Error (RMSE) to measure the performance of dif-

ferent object counters. Besides, we follow [31] to report the

Normalized Relative Error (NAE) and Squared Relative Er-

ror (SRE). In particular, MAE = 1
n

∑n

i=1 |yi − ŷi|; RMSE

=

√

1
n

∑n

i=1(yi − ŷi)2; NAE = 1
n

∑n

i=1
|yi−ŷi|

yi
; SRE =

√

1
n

∑n

i=1
(yi−ŷi)2

yi
where n is the number of test images,

and yi and ŷi are the ground truth and the predicted number

of objects for image i respectively.

4.3. Comparing Methods

We compare our method with the previous works on

class-agnostic counting. RepRPN-Counter [33] is the only

previous class-agnostic counting method that does not re-

quire human-annotated exemplars as input. In order to

make other exemplar based class-agnostic methods includ-

ing GMN (General Matching Network [28]), FamNet (Few-

shot adaptation and matching Network [34]) and BMNet
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Method Exemplars
Val Set Test Set

MAE RMSE NAE SRE MAE RMSE NAE SRE

GMN [28]
GT 29.66 89.81 - - 26.52 124.57 - -

RPN 40.96 108.47 - - 39.72 142.81 - -

FamNet+ [34]
GT 23.75 69.07 0.52 4.25 22.08 99.54 0.44 6.45

RPN 42.85 121.59 0.75 6.94 42.70 146.08 0.74 7.14

BMNet [38]
GT 19.06 67.95 0.26 4.39 16.71 103.31 0.26 3.32

RPN 37.26 108.54 0.42 5.43 37.22 143.13 0.41 5.31

BMNet+ [38]
GT 15.74 58.53 0.27 6.57 14.62 91.83 0.25 2.74

RPN 35.15 106.07 0.41 5.28 34.52 132.64 0.39 5.26

RepRPN-Counter [33] - 30.40 98.73 - - 27.45 129.69 - -

Ours (Base)

GT 18.55 61.12 0.30 3.18 20.68 109.14 0.36 7.63

RPN 32.19 99.21 0.38 4.80 29.25 130.65 0.35 4.35

Patch-Selection 26.93 88.63 0.36 4.26 22.09 115.17 0.34 3.74

Table 1. Quantitative comparisons on the FSC-147 dataset. “GT” denotes using human-annotated boxes as exemplars. “RPN” denotes

using the top-3 RPN proposals with the highest objectness scores as exemplars. “Patch-Selection” denotes using our selected patches as

exemplars.

(Bilinear Matching Network [38]) work in the exemplar-

free setup, we replace the human-provided exemplars with

the exemplars generated by a pre-trained object detector.

Specifically, we use the RPN of Faster RCNN pre-trained

on MS-COCO dataset and select the top-3 proposals with

the highest objectness score as the exemplars. We also

include the performance of these methods using human-

annotated exemplars for a complete comparison.

4.4. Results

Quantitative results. As shown in Table 1, our proposed

method outperforms the previous exemplar-free counting

method [33] by a large margin, resulting in a reduction of

10.10 w.r.t. the validation RMSE and 14.52 w.r.t. the test

RMSE. We also notice that the performance of all exemplar-

based counting methods drops significantly when replacing

human-annotated exemplars with RPN generated proposals.

The state-of-the-art exemplar-based method BMNet+ [38],

for example, shows an 19.90 error increase w.r.t. the test

MAE and a 40.81 increase w.r.t. the test RMSE. In com-

parison, the performance gap is much smaller when using

our selected patches as exemplars, as reflected by a 1.41
increase w.r.t. the test MAE and a 6.03 increase w.r.t. the

test RMSE. Noticeably, the NAE and the SRE on the test set

are even reduced when using our selected patches compared

with the human-annotated exemplars.

Qualitative analysis. In Figure 4, we present a few input

images, the image patches selected by our method, and the

corresponding density maps. Our method effectively iden-

tifies the patches that are suitable for object counting. The

density maps produced by our selected patches are mean-

ingful and close to the density maps produced by human-

annotated patches. The counting model with random image

patches as exemplars, in comparison, fails to output mean-

ingful density maps and infers incorrect object counts.

5. Analyses

5.1. Ablation Studies

Our proposed patch selection method consists of two

steps: the selection of class-relevant patches via a generated

class prototype and the selection of the optimal patches via

an error predictor. We analyze the contribution of each step

quantitatively and qualitatively. Quantitative results are in

Table 2. We first evaluate the performance of our baseline,

i.e. using 3 randomly sampled patches as exemplars with-

out any selection step. As shown in Table 2, using the class

prototype to select class-relevant patches reduces the error

rate by 7.19 and 6.07 on the validation and test set of MAE,

respectively. Applying the error predictor can improve the

baseline performance by 7.22 on the validation MAE and

7.57 on the test MAE. Finally, applying the two compo-

nents together further boosts performance, achieving 26.93
on the validation MAE and 22.09 on the test MAE.

We provide further qualitative analysis by visualizing the

selected patches. As shown in Figure 5, for each input query

image, we show 10 class-relevant patches selected using our

generated prototype, ranked by their predicted counting er-

ror (from low to high). All the 10 selected class-relevant

patches exhibit some class specific features. However, not

all these patches are suitable to be used as counting exem-

plars, i.e., some patches only contain parts of the object, and

some patches contain some background. By further apply-

ing our proposed error predictor, we can identify the most

suitable patches with the smallest predicted counting errors.

5.2. Generalization to Exemplar-based Methods

Our proposed method can be considered as a general

patch selection method that is applicable to other visual

counters to achieve exemplar-free counting. To verify that,

we use our selected patches as the exemplars for three
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Figure 4. Qualitative results on the FSC-147 dataset. We show the counting exemplars and the corresponding density maps of ground truth

boxes, randomly selected patches, and our selected patches respectively. Predicted counting results are shown at the top-right corner. Our

method accurately identifies suitable patches for counting and the predicted density maps are close to the ground truth density maps.

Predicted Counting ErrorLow High

chicken 

wing

peach

red bean

Figure 5. Qualitative ablation analysis. All the 10 selected class-relevant patches exhibit some class-specific attributes. They are ranked by

the predicted counting errors and the final selected patches with the smallest errors are framed in green.

Prototype Predictor
Val Set Test Set

MAE RMSE NAE SRE MAE RMSE NAE SRE

- - 35.20 106.70 0.61 6.68 31.37 134.98 0.52 5.92

� - 28.01 88.29 0.39 4.66 25.30 113.82 0.40 4.88

- � 27.98 88.62 0.43 4.59 23.80 128.36 0.40 4.43

� � 26.93 88.63 0.36 4.26 22.09 115.17 0.34 3.74

Table 2. Ablation study on each component’s contribution to the

final results. We show the effectiveness of the two steps of our

framework: selecting class-relevant patches via a generated class

prototype and selecting optimal patches via an error predictor.

other different exemplar-based methods: FamNet [34], BM-

Net and BMNet+ [38]. Figure 6 (a) shows the results on

the FSC-147 validation set. The baseline uses three ran-

domly sampled patches as the exemplars for the pre-trained

exemplar-based counter. By using the generated class pro-

totype to select class-relevant patches, the error rate is re-

duced by 5.18, 8.59 and 5.60 on FamNet, BMNet and BM-

Net+, respectively. In addition, as the error predictor is ad-

ditionally adopted, the error rate is further reduced by 1.76,

1.00 and 1.08 on FamNet, BMNet and BMNet+, respec-

tively. Similarly, Figure 6 (b) shows the results on the FSC-
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147 test set. Our method achieves consistent performance

improvements for all three methods.

(a)

(b)

Figure 6. Using our selected patches as exemplars for other

exemplar-based class-agnostic counting methods (FamNet, BM-

Net and BMNet+) on FSC-147 dataset. Blue bars are the MAEs

of using three randomly sampled patches. Orange bars are the

MAEs of using the class prototype to select class-relevant patches

as exemplars. Green bars are the MAEs of using the class proto-

type and error predictor to select optimal patches as exemplars.

5.3. Multi-class Object Counting

Our method can count instances of a specific class given

the class name, which is particularly useful when there are

multiple classes in the same image. In this section, we show

some visualization results in this multi-class scenario. As

seen in Figure 7, our method selects patches according to

the given class name and count instances from that spe-

cific class in the input image. Correspondingly, the heatmap

highlights the image regions that are most relevant to the

specified class. Here the heatmaps are obtained by corre-

lating the exemplar feature vector with the image feature

map in a pre-trained ImageNet feature space. Note that

we mask out the image region where the activation value

in the heatmap is below a threshold for counting purpose.

We also show the patches selected using another exemplar-

free counting method, RepRPN [33]. The class of RepRPN

selected patches can not be explicitly specified. It simply

selects patches from the class with the highest number of

instances in the image according to the repetition score.
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(c)

Figure 7. Visualization results of our method in some multi-class

examples. Our method selects patches according to the given class

name and the corresponding heatmap highlights the relevant areas.

6. Conclusion

In this paper, we proposed a new task, zero-shot object

counting, to count instances of a specific class given only

the class name without access to any exemplars. To address

this, we developed a simple yet effective method that accu-

rately localizes the optimal patches across the query image

that can be used as counting exemplars. Specifically, we

construct a class prototype in a pre-trained feature space and

use the prototype to select patches that contain objects of in-

terest; then we use an error predictor to select those patches

with the smallest predicted errors as the final exemplars for

counting. Extensive results demonstrate the effectiveness

of our method. We also conduct experiments to show that

our selected patches can be used for other exemplar-based

counting methods to achieve exemplar-free counting.

Acknowledgements. This research was partially supported

by NSF grants IIS-2123920 and IIS-2212046 and the NASA

Biodiversity program (Award 80NSSC21K1027).

15555

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 31,2023 at 06:31:53 UTC from IEEE Xplore.  Restrictions apply. 



References

[1] Shahira Abousamra, Minh Hoai, Dimitris Samaras, and

Chao Chen. Localization in the crowd with topological con-

straints. In AAAI, 2021. 2

[2] Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.
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