
Topology-Guided Multi-Class Cell Context Generation for Digital Pathology

Shahira Abousamra1, Rajarsi Gupta2, Tahsin Kurc2, Dimitris Samaras1, Joel Saltz2 and Chao Chen2

1Stony Brook University, Department of Computer Science, USA

2Stony Brook University, Department of Biomedical Informatics, USA

Abstract

In digital pathology, the spatial context of cells is impor-

tant for cell classification, cancer diagnosis and prognosis.

To model such complex cell context, however, is challeng-

ing. Cells form different mixtures, lineages, clusters and

holes. To model such structural patterns in a learnable

fashion, we introduce several mathematical tools from spa-

tial statistics and topological data analysis. We incorporate

such structural descriptors into a deep generative model as

both conditional inputs and a differentiable loss. This way,

we are able to generate high quality multi-class cell layouts

for the first time. We show that the topology-rich cell layouts

can be used for data augmentation and improve the perfor-

mance of downstream tasks such as cell classification.

1. Introduction

Deep learning has advanced our learning ability in digital

pathology. Deep-learning-based methods have achieved im-

pressive performance in various tasks including but not lim-

ited to: cell detection and classification [2,23,24,52], nuclei

instance segmentation [8, 18, 19, 21, 26, 32–34, 42, 51], sur-

vival prediction and patient outcome [1,28,30,49], interpre-

tation of multiplex immunohistochemistry and immunoflu-

orescence imagery [3, 14–16] and many others.

Despite the rapid progress in recent years, pathology

image analysis is still suffering from limited observations.

The available annotated images are still scarce relative to

the highly heterogeneous and complex tumor microenviron-

ment driven by numerous biological factors. The limitation

in training data constraints a learning algorithm’s predic-

tion power. To this end, one solution is to train generative

models that can generate realistic pathology images to aug-

ment existing data. Generative models have been proposed

to help learning methods in various tasks such as nuclei seg-

mentation [7, 21], survival prediction [44] and cancer grade

prediction [47].

Generating pathology images usually involves two steps:

(1) generating spatial layout of cells and (2) filling in stains

and textures inside and outside cell nuclei masks. Most ex-

Figure 1. Overview of our multi-class cell context generator.

isting methods only focus on the second step. They either

generate random cell positions [21] or directly copy nuclei

masks from existing images [17]. These methods miss the

opportunity to learn the rich cell spatial context carrying

critical information about cancer biology.

Spatial context includes how different types of cells (tu-

mor, lymphocyte, stromal, etc) are distributed around each

other, as well as how they form different structural patterns

such as clusters, holes and lineages. Plenty of evidence

have demonstrated the importance of spatial context in can-

cer diagnosis and prognosis [31, 53]. One good example is

the clinical significance of tumor infiltrating lymphocytes

(TILs), i.e., lymphocytes residing within the border of in-

vasive tumors [37–40]. The spatial distribution of stromal

cells in the vicinity of tumor has been shown to be directly

related to cancer outcomes [35,53]. Tumor budding, i.e., the

presence of isolated or small clusters of tumor cells at the

invasive tumor front, is a prognosis biomarker associated

with an increased risk of lymph node metastasis in colorec-

tal carcinoma and other solid malignancies [29]. In prostate

cancer tissue samples, plenty of loopy cellular structures are

formed corresponding to glands. Their integrity, known as

the Gleason score, is a good indicator of cancer progres-

sion [48].
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Figure 2. Sample results from our cell layout generator. Our generated samples have similar spatial characteristics as the corresponding

reference layouts.

Given the biological significance of cell spatial context,

we hypothesize that being able to model and generate cell

configurations will benefit various downstream tasks. To

model the complex cell spatial context, the main challenge

is the limited information one can rely on –coordinates and

types of cells. This makes it hard for even powerful deep

learning methods [27] to learn the underlying distribution.

To better model the spatial context, we argue that princi-

pled mathematical machinery has to be incorporated into

the deep learning framework. Formally, we introduce the

classic K-function from spatial statistics [5], as well as the

theory of persistent homology [13], to model the spatial dis-

tribution of multi-class cells and their structural patterns.

These mathematical constructs have been shown to corre-

late with clinical outcomes [4]. However, they have not

been used in the generation of pathology images.

We incorporate these spatial topological descriptors into

a deep generative model. Our generative model takes an in-

put pathology image and generates a new cell layout with

similar spatial and topological characteristics. To enforce

the expected spatial characteristics, we propose a novel cell

configuration loss based on the persistent homology and

spatial statistics of input cell spatial configuration. The loss

compares the generated and the reference cell configura-

tions and match their topology in view of a topological mea-

sure called persistence diagram. The loss enforces holes in

the generated cell configuration to be one-to-one matched to

holes in the reference cell configuration, i.e., having similar

shapes and density.

A direct topological matching via persistence diagrams

is agnostic of the cell type composition. This is undesirable;

we do not want to match a tumor cell hole to a stromal cell

hole. To this end, we also incorporate spatial statistics mea-

sure, i.e., cross K-functions, into the loss. This way, holes

composed of different types of cells are matched properly.

Using the generated cell spatial configuration, we generate

the nuclei mask, staining and texture.

See Fig. 1 for an illustration of the generation pipeline.

Also see Fig. 2 for examples of the generated cell lay-

outs. The generated cell layouts have very similar spatial

and structural characteristics as the reference/input image.

This is not guaranteed with previous methods using ran-

domly generated masks. In the experiment section, we pro-

vide comprehensive comparisons to verify the benefit of our

method. We will also show that the augmented images can

be used to train downstream tasks such as cell classification.

To summarize, our contributions are as follows:

• We propose the first generative model to learn cell spa-

tial context from pathology images.

• We introduce multi-class spatial context descriptors

based on spatial statistics and topology. These descrip-

tors are used as conditional input for the generator.

• We propose a novel cell configuration loss function to

enforce the desired behavior of spatial distribution and

topology. The loss matches holes of generated cell lay-

out and holes of the reference cell layout, in shape,

density, and cell type composition.

• We show that the generated layouts can be used to

generate synthetic H&E images for data augmenta-

tion. We show the efficacy of the augmentation data

in downstream tasks such as cell classification.
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Figure 3. Illustration of the filtration process of the distance transform map to obtain the persistence homology. Red dots are the tumor

cells in the original image. The blue dots in the last figure (f) are the centers for the holes, the saddle points which are obtained once a hole

dies or disappears.

We stress that the benefit of modeling cell spatial con-

text is beyond data augmentation. Modeling the spatial

context will provide the foundation for better understand-

ing and quantifying the heterogeneous tumor microenviron-

ment, and correlate with genomics and clinical outcomes.

This work is one step towards such direction.

2. Related Work

Generative models have been broadly used in medical

imaging. Within the context of digital pathology, differ-

ent methods [7, 21, 43] have been proposed to use gener-

ated images as an augmentation for nuclei or tissue struc-

ture segmentation. Most of these methods, however, over-

look generating spatial configuration of cells. Several meth-

ods [7,20,21] creates randomly distributed nuclei masks be-

fore generating staining and texture. When the downstream

task is not nuclei segmentation, one may generate randomly

distributed masks of other structures, e.g., glands [12]. An-

other category of methods generates new images using nu-

clei masks from reference images and only synthesize the

staining and textures [6, 43, 46]. Gong et al. [17] randomly

deform the nuclei mask from a reference image. These

methods, however, still use the same cell positions. All

these methods either use the original cell spatial configu-

ration or generate random configurations. To the best of our

knowledge, our method is the first to learn to generate the

cell spatial and structural configurations.

Topology-aware losses. Persistent-homology-based losses

have been used to enforce topological constraints in im-

age segmentation and generation [22, 45, 50]. These meth-

ods focus on thin structures like vessels and road networks.

They are not applicable to modeling structural patterns in

cells configuration. Perhaps the closest work to ours is To-

poGAN [45]. It learns to generate thin structures whose

numbers of holes/loops match those of the real images. The

key difference of our method is that our topological features

Figure 4. Ripley’s K function. The K-function considers the num-

ber of neighboring target points (cells) of different classes at in-

creasing radii from a source. The K-function can indicate the spa-

tial distribution clustering or scattering. Left: an illustration of

the computation of K-function at radius ri. Right: An observed

K-function (purple) and a K-function of a Poisson random point

process (blue). The distribution is clustered/scattered when the ob-

served K-function is higher/lower than the K-function of the ran-

dom process, respectively.

are adapted to the cell layout setting. The persistence dia-

gram is enriched with cell density and multi-class cell com-

position information. The loss is also based on the enriched

persistence diagrams. This is critical to our success.

3. Method

Assume we are given a cell layout, i.e., a set of multi-

class cells distributed in the image domain. The spatial

configuration of these cells includes their structural orga-

nization, as well as the spatial distribution of different cell

classes. Given a reference layout, our method generates

a multi-class cell layout with a similar configuration. The

generated layout can be used for different purposes includ-

ing data augmentation. Our model takes as input not only

the reference layout, but also a set of spatial descriptors col-
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Figure 5. Illustration of the multi-scale density maps generated from a dot map of cells with different Gaussian kernel standard deviations.

lected from the reference layout. Furthermore, for the train-

ing of the generator, we propose a loss function to match

topological features in the generated and reference layouts.

Minimizing such loss will ensure the generated layout has

similar structural patterns as the reference layout.

In Section 3.1, we will introduce different spatial de-

scriptors we will use, based on the theory of persistent ho-

mology and the classic spatial statistics. In Section 3.2,

we will introduce the proposed neural network generator,

as well as how these spatial descriptors are incorporated to

ensure that the generated layout has a desired configuration.

3.1. Cell Configuration Descriptors

Our configuration descriptors should capture (1) struc-

tural patterns such as clusters and holes of a reference cell

layout; and (2) how different types of cells are distributed

with regard to other types. These structural and multi-class

distribution is part of what pathologists study when they in-

spect a histology image. We formalize such information

into two descriptors: cross K-function features and enriched

persistence diagram features.

Spatial statistics features: cross K-functions of cells. We

first characterize the relative distribution across different

classes of cells, e.g., how close are lymphocytes distributed

surrounding tumor cells. We use the cross K-function from

the classic spatial statistics [5]. See Fig. 4. Given two cell

classes (source class and target class), the cross K-function

measures the expected number of neighboring target class

cells within different radii of a source class cell. Formally,

denote by Cs and Ct the set of source cells and the set of

target cells, respectively. The cross K-function at radius r

is defined as:

Kt
s(r) = A

∑

cs∈Cs

∑

ct∈Ct

✶{dist(cs, ct) < r} (1)

where A is a normalization term depending on the image

area and the sizes of Cs and Ct. ✶{·} is the indicator func-

tion.1 The cross K-function is computed for each pair of

1We simplify the definition of K-function by ignoring the edge correc-

tion term.

classes. Note that when the source and target represent the

same class, the K-function is measuring how much a par-

ticular class of cells is clustered. In practice, we vectorize

the K-function by sampling at a finite set of radii. We note

that K-function has previously been used in cell classifica-

tion task [2], but it has not been used for cell configuration

characterization and cell layout generation.

We also use a location-specific K-function,

Kt(r, x) = A′
∑

ct∈Ct

✶{dist(x, ct) < r}. (2)

It describes the distribution of target class cells surrounding

a specific location x. This will be used for the characteriza-

tion of holes identified by persistent homology.

Topological features: enriched cell persistence dia-

grams. We propose topological features characterizing

gaps and holes distributed in a cell layout. These topo-

logical structures provide unique structural characterization

of the cell layout, as evident in sample cell layouts (see

Fig. 2 second row). We use the theory of persistent homol-

ogy which captures holes and gaps of various scales in a

robust manner. To adapt to cell configuration characteriza-

tion, we propose to enrich the output of persistent homology

with spatial distribution information, so that the topological

structures are better characterized.

We briefly introduce persistent homology in the con-

text of cell layout characterization. Please refer to [13]

for more details. Given a cell layout C with holes in

it, we first compute a distance transform from the cells,

f(x) = minc∈C dist(x, c) (see Fig. 3). Holes essentially

correspond to salient local maxima of the distance trans-

form. To capture these salient holes, we threshold the im-

age domain Ω ⊂ R
2 with a progressively increasing thresh-

old t. As the threshold increases, the thresholded domain

Ωt = {x ∈ Ω | f(x) ≤ t} monotonically grows from

empty to the whole image domain. It essentially simulates

the progress of growing disks centered at all cells with an

increasing radius t. Through the process, different holes

will appear (be born) and eventually are sealed up (die).
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Figure 6. Training of our Cell Layout Generator.

Persistent homology captures all these holes and encodes

their information into a 2D point set called a persistence di-

agram. Each hole in the cell layout corresponds to a 2D

point within the diagram, whose coordinates are the birth

and death times (thresholds) of the hole. Holes with long

life spans are considered more salient. See Fig. 3 for an il-

lustration of the filtration and the corresponding persistence

diagram. Note we only focus on 1D topology, i.e., holes.

Clusters of cells can also be described with 0D topology

(connected components in the growing Ωt). We do not think

0D topology is necessary as the spatial statistics feature im-

plicitly characterizes the cell cluster structures.

While persistent homology captures all possible holes in

a cell layout, the persistence diagram alone does not really

describe the holes in full details. Intuitively, the birth and

death times of a point in the diagram only measure the com-

pactness along the boundary and the size of the hole. We

propose to enrich the diagram with additional information

regarding density and spatial statistics. In particular, for

each hole, we focus on its corresponding local maximum of

the distance transform. Note this local maximum is the lo-

cation at which the hole disappears (dies), and its function

value is the death time of the hole. It roughly represents

the center of the hole. We compute the location-specific

K-function (Eq. (2)) for the local maximum. It essentially

characterizes cell class composition surrounding the hole.

Furthermore, we compute the multi-scale cell density func-

tion at the local maximum, namely, the cell kernel density

function estimated with different bandwidths. As shown in

Fig. 5, these multi-scale density functions characterize cell

distribution at different scales regarding the hole of interest.

By attaching the spatial statistic and multi-scale density

with each persistent point, we compute an enriched cell per-

sistence diagram. See Fig. 3 for an illustration. This di-

agram will be used in our cell configuration loss. Details

will be introduced in Sec. 3.2.

3.2. Deep Cell Layout Generator

Next, we introduce our deep cell layout generator. The

framework is illustrated in Fig. 6. From a reference cell

layout, we extract spatial descriptors, including persistence

diagrams and spatial statistics. We compute different dia-

grams for different cell classes separately. These diagrams

are all used. The generator takes in vectorized spatial de-

scriptors and style noise, and outputs the coordinates of

points in the generated layout. To vectorize a persistence

diagram, we convert it into a histogram with predefined

buckets of persistence range values. This takes care of the

variation in persistence diagram size across different point

sets. Since larger 1D topological features (i.e. holes) usu-

ally have smaller frequency compared to smaller ones, we

use the log of the histogram to account for the tail effect.

The generator backbone model is a modified version of

a state-of-the-art point cloud generative model called SP-

GAN [27]. SP-GAN is trained with global and local priors.

The global prior is the initial input point coordinates which

are a fixed set of points sampled from a unit sphere. The lo-

cal prior is a latent encoding that determines the style. The

generator architecture consists of a set of graph attention

modules that act on the global prior or points coordinates,

intervened with adaptive instance normalization blocks us-

ing the local prior or the style embedding. The final gen-

erated point coordinates are the output of an MLP block.

Note that our method is agnostic to the backbone. In prin-

ciple, we can use any other conditional generative model.

Next we introduce a novel loss function that enforces the

generated layout to have a matching configuration with the

reference layout.

The cell configuration loss. We define the cell configura-

tion loss as the matching distance between the enriched cell

persistence diagrams of the generated layout and the refer-
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Figure 7. Sample Results from Cells’ Layout-to-Image Generator

ence layout. This is an extension of the classic Wasserstein

distance between persistence diagrams [10, 11].

Recall in an enriched diagram, each point (representing

a hole) has not only birth/death times, but also additional

attributes including location-specific cross K-function and

multi-scale density function. We use K-function to match

generated holes and reference holes. Then we use the den-

sity function between matched holes as a loss to control

the generated points. This design choice is well justified;

K-function helps identify holes with matching contexts.

Meanwhile, for matched holes, using multi-scale density

functions as the loss can more efficiently push generated

points, thus improving the generator.

In particular, we compute the persistence diagrams

Dgmgen and Dgmref from the generated and reference

layouts, respectively. Next, we find an optimal matching

between the two diagrams. Assume the two diagrams have

the same cardinality. We compute

γ∗ = argmin
γ∈Γ

∑
p∈Dgmgen

distK(p, γ(p)), (3)

where Γ is the set of all one-to-one mapping between the

two diagrams. The distance distK(p, γ(p)) is the Euclidean

distance between the K-function vectors of the two holes

represented by the persistence points p ∈ Dgmgen and

γ(p) ∈ Dgmref . In other words, we find an optimal match-

ing between the diagrams using the K-function distance be-

tween holes. If the two diagrams have different cardinali-

ties, the unmatched holes will be matched to a dummy hole

with zero persistence.

Once the optimal matching is found, we define the con-

figuration loss as

LCC =
∑

p∈Dgmgen

distden(p, γ
∗(p)), (4)

in which distden(p, γ
∗(p)) is the distance between the

multi-scale density of the two matched holes.

During training, for each pair of generated and reference

layouts, we compute their enriched diagrams and find the

optimal matching γ∗ using Hungarian method. Then we

optimize the loss in Eq. 4. This essentially moves points in

the generated layout so that each hole has a similar multi-

scale density as its matched hole. Fig. 6 illustrates the loss.

4. Experiments

4.1. Implementation Details

Layout generator. Our cell layout generator model is based

on the point cloud generator SP-GAN [27]. We make sev-

eral changes to the model to make it suitable for the condi-

tional cell layout generation task. SP-GAN takes as input a

fixed 3D point cloud in the form of a unit sphere. Instead,

We have varying size 2D points with their pre-assigned

classes. The coordinates for the points in each class are

equally distributed in a mesh grid in the range (−1, 1) with

a small normal perturbation. The mesh size varies for each

class based on the number of points in the class so the points

end up covering the space. The conditioning spatial descrip-

tors are transformed to a 32 dimensional vector embedding

before being attached to every point. Last, to account for the

variation in input sizes, we employ instance norm instead of

batch norm. We use 2 discriminators; D and Dc for adver-

sarial training. D discriminates a layout or a set of coordi-
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PD - EMD ↓ PD - CCMD ↓

Method Infl. Epi. Stro. Mean Infl. Epi. Stro. Mean

w/o Spatial Descriptors

+w/o Matching Loss

0.28 0.082 0.19 0.184 0.80 1.74 1.66 1.4

w/o Matching Loss 0.249 0.203 0.156 0.202 0.90 1.69 1.79 1.46

w/o K-function Descriptor 0.237 0.167 0.17 0.191 0.75 1.74 1.77 1.42

Ours 0.246 0.141 0.165 0.184 0.74 1.64 1.71 1.36

Table 1. Evaluation of persistence diagram of generated cell layout compared to reference layouts in BRCA-M2C dataset.

Cross K-function MAE ↓ Cross K-function RMSE ↓

Method Infl. Epi. Stro. Mean Infl. Epi. Stro. Mean

w/o Spatial Descriptors

+w/o Matching Loss

0.555 0.096 0.424 0.359 0.829 0.127 0.666 0.541

w/o Matching Loss 0.592 0.126 0.402 0.373 0.861 0.176 0.683 0.573

w/o K-function Descriptor 0.417 0.154 0.431 0.334 0.602 0.226 0.583 0.470

Ours 0.413 0.146 0.357 0.306 0.611 0.201 0.509 0.440

Table 2. Evaluation of Cross K-function of generated cell layout compared to the reference layouts in BRCA-M2C dataset.

nates as real/fake and is ignorant of the points classes. Dc is

similar but takes also the points classes into account. Using

least squares GAN loss, the Generator loss is a weighted

sum of the GAN losses and the cell configuration loss.

LG =
1

2
[(D(P̂ )− 1)2 + (Dc(P̂c)− 1)2

+ (LCC(P̂c, Pc))]
(5)

where P and P̂ are the reference real, and generated point

sets, respectively. PcandP̂c are the reference real, and gen-

erated point sets along with the class assigned to each point.

Layout to Image Generator. The trained cells’ layout gen-

erator provides realistic cell layouts that can be used by

themselves as augmentations to train a machine learning

model on multi-class point patterns. However, to use the

generated layouts to provide more complex image augmen-

tation than flipping, rotation, or stain/style transfer, we need

to transform the layouts into images. To do that, we cre-

ate a layout-to-image generator model based on the pix2pix

model [25], and its variation in the biomedical domain [9].

There are 3 main differences from [25] in our setting, first

we do not have an exact mask of the cell shapes, we only

have their coordinates. Second, while [25] learns a specific

mapping from one domain to the other, here the generated

images are expected to have a similar texture as a reference

input H&E image, and last, there are relatively few anno-

tated images for training with biomedical data.

To generate an image from the cells coordinates, we first

create binary images; one per class with a point at each cell

location and dilate these points to give us a visible layout.

These multi-channel cell layout together with a reference

H&E image are the input to the Layout-to-Image generator.

The output is an image with the similar texture as the ref-

erence H&E image and has the same cells distribution as

the layout image. The model is trained adversarially with

multi-scale discriminators that classify whether an image

is real or fake and whether 2 images come from the same

slide. For annotated images, we use L1 reconstruction loss,

in addition to a perceptual loss, similar to [9].

4.2. Dataset

We use the breast cancer dataset, BRCA-M2C [2]. It

consists of 120 patches belonging to 113 patients, collected

from TCGA [41]. The patches are ≈ 500 × 500 pixels at

20x magnification, which is large enough to provide spatial

context. The annotations are in the form of dot annotations

at the approximate centers of cells. Each dot is assigned one

of 3 main cell classes: inflammatory, epithelial, or stromal.

4.3. Evaluation of Cell Layout Generation

To evaluate the quality of the generated cell layouts, we

propose a set of metrics to measure the similarity of the spa-

tial distributions of the generated and the reference layouts.

We focus on both topology and spatial statistics.

For topology, we compare a generated layout and its ref-

erence layout by comparing their persistence diagrams. Our

evaluation is carried out class-by-class. We compare dia-

grams for each class of cells, and aggregate the scores. To

compare two diagrams, we use two metrics: Earth Mover’s

Distance (PD-EMD) and Cell Configuration Matching Dis-

tance (PD-CCMD). PD-EMD is agnostic to the multi-class

spatial configuration surrounding each hole and so it may

not give an accurate evaluation. To get a better evaluation,

we propose to use the cell configuration matching distance
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in PD-CCMD, which is designed to take into account the

spatial configuration. It matches the holes in the generated

and reference layouts using the optimal K-function match-

ing γ∗ as in Eq. (3). Next, PD-CCMD computes the mean

distance between the persistence of the matched holes. Note

that the persistence distance is ignored when the number of

cells in the class is very small (less than 5), and is assumed

to be zero. This is because when there are very few points,

the distance is unreliable and greatly affected by where the

points are located with respect to the border and hence can

result in very large unreasonable distance values. Table 1

shows the PD-EMD and PD-CCMD metrics for each class

of cells and their mean.

To evaluate the spatial co-localization across different

classes, we use the cross K-function. For each class of

cells, cross K-functions are computed with that class as the

source and different target classes, creating a high dimen-

sional vector. The mean absolute error (MAE) and root

mean squared error (RMSE) are computed between the gen-

erated and real layouts vectors, as shown in Table 2. The

distance is normalized by the vector dimensions and the ex-

pected number of cells from one class in a patch.

We evaluate the generated layouts using our proposed

metrics in Table 1 and Table 2. We compare our proposed

method to models trained: (a) without spatial descriptors

and without the cell configuration loss, (b) with spatial de-

scriptors but without cell configuration loss, (c) with the

cell configuration loss but without the K-function spatial

descriptor. Adding the cell configuration loss improves per-

formance, and the best result uses both the K-functions and

the multi-scale densities. We also observe that without the

cell configuration loss, the model tends to collapse, gener-

ating almost identical layouts as the reference layouts.

4.4. Cell Layout Generation for Augmentation

We test the generated cell layouts on the downstream cell

classification task on the BRCA-M2C dataset. We use the

multi-class cell layouts generated by our cell layouts gen-

erator and use the layout-to-image generator to transform

into H&E images that can be used for data augmentation.

To train the layout-to-image generator, we use the labeled

patches in BRCA-M2C in the reconstruction and percep-

tual losses. We extract additional patches from TCGA;

some from nearby the annotation regions in the same slides

and others randomly sampled from different slides, and en-

sure that sampled patches do not belong to the background.

During training, the reference texture patch and the refer-

ence cell layout patch may belong to the same slide or may

come from different slides. The perceptual and reconstruc-

tion losses are only applied when they are from the same

slide, while the adversarial losses are applied in both cases.

To generate the H&E images for augmentation, we generate

cell layouts and apply a postprocessing to remove overlap-

ping cells. The final layout along with varying reference

H&E patches are transfomred into H&E patches with dif-

ferent styles, see Figure 7.

We train U-Net [36] and MCSpatNet [2] on the BRCA-

M2C dataset in addition to augmentation data generated

from our models and from random cell layouts. The loss

is weighted based on whether it is real or generated data,

giving the generated data a lower weight of 0.5. Table 3

shows the F-score comparing both models trained with and

without our data augmentation. We see that the augmenta-

tion improves the performance, especially with the U-Net

model, with greater improvement when using our generated

augmentation data. For MCSpatNet, the Stromal cells F-

score is below the F-score without the augmentation. We

attribute this to the quality of the image generation. The im-

age generation model needs to learn how each type of cells

appear and that is a challenging task specially with Stromal

cells. They are often hard to classify without uncertainty

even by expert pathologists.

Method Infl. Epi. Stro. Mean

U-Net 0.498 0.744 0.476 0.572

U-Net + Aug. (Rand.) 0.625 0.735 0.472 0.611

U-Net + Aug. (Ours) 0.65 0.768 0.511 0.644

MCSpatNet 0.635 0.785 0.553 0.658

MCSpatNet + Aug. (Rand.) 0.652 0.772 0.506 0.644

MCSpatNet + Aug. (Ours) 0.678 0.8 0.522 0.667

Table 3. F-scores on the cell classification task, comparing models

trained with only manually labeled data to models trained with

additional data augmentation from random cell layout (Rand.) and

from our generated cell layout (Ours).

5. Conclusion

In this paper, we propose the first generative model for

digital pathology to explicitly generate cell layout with de-

sirable configuration. We focus on topological pattern and

spatial distribution of multi-class cells, and compute con-

figuration descriptors based on classic spatial statistics and

theory of persistent homology. Using these descriptors, and

by proposing a novel cell configuration loss, our generator

can effectively generate new cell layouts based on a refer-

ence cell layout. We show through qualitative and quan-

titative results that our method generates cell layouts with

realistic spatial and structural distribution. We also use our

method to augment H&E images, thus improving the per-

formance in downstream tasks such as cell classification.
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