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Abstract. This work presents PathAttFormer, a deep learning model
that predicts the visual attention of pathologists viewing whole slide
images (WSIs) while evaluating cancer. This model has two main com-
ponents: (1) a patch-wise attention prediction module using a Swin trans-
former backbone and (2) a self-attention based attention refinement mod-
ule to compute pairwise-similarity between patches to predict spatially
consistent attention heatmaps. We observed a high level of agreement
between model predictions and actual viewing behavior, collected by
capturing panning and zooming movements using a digital microscope
interface. Visual attention was analyzed in the evaluation of prostate can-
cer and gastrointestinal neuroendocrine tumors (GI-NETs), which differ
greatly in terms of diagnostic paradigms and the demands on attention.
Prostate cancer involves examining WSIs stained with Hematoxylin and
Eosin (H&E) to identify distinct growth patterns for Gleason grading.
In contrast, GI-NETs require a multi-step approach of identifying tumor
regions in H&E WSIs and grading by quantifying the number of Ki-67
positive tumor cells highlighted with immunohistochemistry (IHC) in a
separate image. We collected attention data from pathologists viewing
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prostate cancer H&E WSIs from The Cancer Genome Atlas (TCGA) and
21 H&E WSIs of GI-NETs with corresponding Ki-67 IHC WSIs. This is
the first work that utilizes the Swin transformer architecture to predict
visual attention in histopathology images of GI-NETs, which is gener-
alizable to predicting attention in the evaluation of multiple sequential
images in real world diagnostic pathology and IHC applications.

Keywords: Visual attention · Digital microscopy · Cognitive
pathology

1 Introduction

Attention tracking in digital histopathology images has been an evolving topic
of research in medical imaging [5–7]. The development of techniques to analyze
and predict the visual attention of pathologists during the examination of WSIs
is critical for developing computer-assisted training and clinical decision support
systems [4]. Interpretation of the attention behavior of pathologists has been con-
sidered in the early works of [8] that conducted eye tracking studies on grading
tumor architecture in prostate cancer images and [9] capturing mouse move-
ment as a reliable indicator of attention behavior. Other works [7,10] used eye
tracking to explore the complexity of diagnostic decision-making of pathologists
viewing WSIs. The attention behavior of pathologists has also been collected
using a web-based digital microscope and analyzed to reveal distinct scanning
and drilling diagnostic search patterns [10]. Recently, the work in [4] presented
ProstAttNet, a fine-tuned ResNet34 model [14], for analyzing and predicting
visual attention heatmaps of WSIs from prostate cancer.

Here we propose PathAttFormer, a deep learning model based on Swin trans-
former [13] that is able to predict visual attention for multiple cancer types. The
Swin transformer model more efficiently leverages the global contextual infor-
mation across cells and nuclei regions within sub-patches of a WSI patch com-
pared to other conventional models. This paper demonstrates the application
of PathAttFormer to predict the viewing behavior of pathologists in the task
of evaluating and grading Gastrointestinal Neuroendocrine tumors (GI-NETs).
GI-NETs require pathologists to examine H&E WSIs and corresponding salient
regions in additional tissue sections stained with Ki-67 immunohistochemistry
(IHC) to grade tumors by quantifying brown colored Ki-67 positive tumor cells.
In contrast, pathologists assign Gleason grades to prostate cancer based on the
primary and secondary patterns of tumor growth viewed in H&E images only.
Given that pathologists routinely examine multiple tissue sections, stained with
H&E and other IHC biomarkers, to evaluate numerous types of cancers, this
work represents a generalizable methodology that can be broadly useful in digi-
tal pathology. We depict the slide examination processes for the Prostate cancer
and GI-NETs WSIs in Fig. 1.

To the best of our knowledge, we are the first to analyze attention data
on GI-NET WSIs and to present a generalizable methodology to predict visual
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attention for multiple cancer types. Our study also represents a strong proof of
concept for collecting WSI navigation data to study visual attention in patholo-
gists evaluating cancer without the need for specialized eye-tracking equipment.
While [4] only analyzed the one-stage examination process in prostate cancer, we
also study attention in a two-stage examination with different sequential tasks
(tumor detection and nuclei counting) for the more complex GI-NETs, where we
show (Fig. 4, Table 2) that attended WSI regions at stage 1 influence attention
at the next stage. Lastly, our work is important because our framework can be
used to characterize and predict pathologist visual attention across cancer types
involving multiple stages of examination in real world digital pathology work-
flows. In clinical terms, our work can be used to develop clinical applications
for training residents and fellows and for reducing observer variability among
pathologists via clinical decision support.
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Fig. 1. Demonstration of visual attention heatmap generation by analyzing the viewing
behavior of pathologists in Prostate cancer (top) and GI-NET (bottom). The yellow
boxes indicate the viewport boxes and the scanpath is constructed by joining the
viewport centers. Greater attention is indicated by hotter (redder) color. (Color figure
online)

2 Methods

2.1 Data Collection and Processing

For Prostate cancer, we used the same dataset of 22 H&E WSIs as in [4]. Among
the 22 WSIs, attention data for 5 was collected from 13 pathologists and atten-
tion data for the remaining 17 was collected from a Genitourinary (GU) special-
ist. The GU specialist also annotated the Gleason grades on all the 22 WSIs.
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Following the procedure described in [4], we used QuIP caMicroscope [11], a
web-based toolset for digital pathology, data management and visualization to
record the attention data of pathologists as they viewed GI-NET WSIs [2,12]. We
collected the attention data from 21 resection H&E WSIs and the corresponding
21 Ki-67 IHC WSIs. Two pathologists participated in the GI-NET attention
data collection. They viewed the H&E and the Ki-67 IHC WSIs sequentially
and graded the tumors. The average viewing time per slide per pathologist was
37.67 s for the H&E WSIs and 131.98 s for the Ki-67 IHC WSIs.

We process attention data in terms of attention heatmap and attention scan-
path as shown in Fig. 4. The aggregate spatial distribution of the pathologist’s
attention is captured using the attention heatmap and the temporal information
is recorded in the attention scanpath. Following [4], a value of 1 is assigned at all
image pixels within a viewport and the values are summed up over all viewports
to construct the attention heatmap. The final attention heatmap is obtained
after map normalization as follows:

M ′I
Attn.(x, y) = Gσ ∗

V∑

v=1

(

ve
x∑

vs
x

ve
y∑

vs
y

1)

M I
Attn. =

M ′I
Attn. − min(M ′I

Attn.)

max(M ′I
Attn.) − min(M ′I

Attn.)

(1)

where, M ′I
Attn. is the intermediate attention heatmap, M I

Attn. is the final nor-
malized attention heatmap, V is the number of viewports on a WSI I, and vs

x,
ve

x, vs
y, ve

y are the starting and the ending x and y coordinates of the viewport
v respectively, and Gσ is a 2D gaussian (σ = 16 pixels) for map smoothing.
For constructing the attention scanpath, we stack the viewport centers of every
viewport, v in the WSI I following [4].

2.2 Predicting Attention Heatmaps

For the Prostate cancer WSIs, we follow a two-step process for predicting the final
attention heatmap. In the first step, we produce the patch-wise attention labels
and assemble the patch-wise predictions to construct the attention heatmap on
the WSI. In the next step, we refine the patch-wise attention predictions using a
self-attention based visual attention refinement module that considers pairwise
similarities between the patches to update the patch-wise attention labels. For
the GI-NET WSIs, we first predict the attention heatmap on the H&E WSI
similar to Prostate cancer. Next, we cascade the attention prediction modules
for the H&E and Ki-67 IHC WSIs by using the patch-wise attention predictions
on the H&E WSI (from Stage 1) and the Ki-67 positive nuclei detection map
(discretized patch-wise similar to the H&E attention heatmap) on the Ki-67
IHC WSI as inputs (each input encoded to a 20-dimensional feature vector) to
the model for predicting attention on Ki-67 IHC WSIs. We depict our attention
prediction model, PathAttFormer for the two cancer types in Fig. 2 and Fig. 3.
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Fig. 2. Our model, PathAttFormer, for predicting visual attention in Prostate grading.

Step 1: Patch-Wise Attention Prediction. Similar to [4], we formulate
attention prediction as a classification task where the aim is to classify a WSI
patch into one of the N attention bins. N = 5 in our study, which best recon-
structs the attention heatmaps. N < 5 leads to inaccurate reconstruction of
the attention heatmap and N > 5 provides us minimal improvement in the
reconstructed attention heatmap while reducing the accuracy of patch classifi-
cation performance. During training, we discretize the average pixel intensity
of every heatmap patch into an attention bin and at inference we assign the
average pixel intensity of a predicted bin to the image patch to construct the
intermediate patch-wise heatmap. Our model comprises of a Swin Transformer
(a Swin-Base model using patch size p = 4, window size w = 7, operating on
224 × 224 images) [13] pre-trained on the ImageNet 1K dataset as the backbone
feature extractor, followed by a fully connected layer fc(1024, 5) as the classifier.

Training Details: During training PathAttFormer on the Prostate cancer WSIs,
we froze the swin transformer and updated the last fully-connected layer only.
We used 500 × 500 image patches (resized to 224 × 224 for training) extracted
from 15 WSIs at 10× magnification (the most frequent magnification used by
pathologists per our analysis) for training while using 2 WSIs for validation.
We performed data augmentation [16] by introducing color jitter and random
horizontal and vertical image flips during training. We used the weighted Cross-
Entropy loss between the predicted and the pathologist-derived attention bins.
The class weight for a bin was inversely proportional to the number of training
instances for the class. We only processed patches with tissue area >30% of the
total patch area, which provided us with 11K H&E patches for training.

For the GI-NET WSIs, we trained separate models for the H&E and the Ki-
67 IHC WSIs corresponding to patches extracted at 4X and 40X magnification
(image sizes 1250 × 1250 and 125 × 125 respectively). These correspond to the
most frequent magnification levels for the two slide types per our analysis. We
used 9K H&E patches and 267K Ki-67 patches for training following a similar
training method as Prostate WSIs. We used the AdamW optimizer [15] with an
initial learning rate of 0.01. Training converged within 16 epochs with a training
time of approximately 8 h on a Nvidia Titan-Xp GPU for both cancer types.
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Step 2: Self-attention Based Visual Attention Refinement. We introduce
a dense method for attention refinement that eliminates spatial discontinuities in
the prediction caused by patch-based processing. We refine the patch-wise pre-
dictions from PathAttFormer using a self-attention (SA) based visual attention
refinement module. This step enforces the spatial continuity in the predicted
attention heatmap, thereby avoiding abrupt variations in the predicted atten-
tion labels caused by the absence of the contextual information. We compute
the contribution of an image patch q to an image patch p as:

wq:dp,q≤dt(p) =
exp(−

||Fp−Fq||2

2α̂1
2 −

||lp−lq||2

2α̂2
2 )

∑
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2 −

||lp−lr||2

2α̂2
2 )

(2)

where Fp denotes the 1024-dim. feature vector encoded by the Swin Transformer
and lp denotes the location of the patch p, dp,r is the euclidean distance between
the patch p and r, and dt is the threshold distance. The Gaussian kernel param-
eters are selected as: α̂1, α̂2 = arg min

α1,α2

||LV al
refined − LV al

GT ||2, where LV al
refined and

LV al
GT denote the refined and the ground truth patch labels. We used grid search

on our validation set [17] to find the optimal kernel parameters α̂1 = 1.6, α̂2 = 1
and threshold distance factor dt = 0.3 × IDg (IDg = image diagonal length),
respectively. Next, we update the label of the patch p based on the weights wq(p)
obtained in Eq. 2 as: LI
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Fig. 3. Cascaded PathAttFormers for predicting visual attention in GI-NET.
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refined patch label and Lcoarse is the patch label predicted using PathAttFormer.
Finally we construct the attention map M I

refined
′ by assembling LI

refined
′. The

map M I
refined

′ is further smoothed and normalized.
In order to reduce the compute time for GI-NET WSIs, which involved a

higher number of patches per WSI at 40× magnification, we computed the atten-
tion weights for alternate pixels in the image and applied bilinear interpolation
to the intermediate refined attention heatmap, M I

refined
′ for computing the final

attention heatmap, Mrefined. This step reduced compute time 16 times although
model complexity remained O(N2). Average number of patches per slide for
prostate and GI-NET test sets were 834 (10×) and 16.8K (40×) respectively.

3 Results

3.1 Qualitative Evaluation

Figure 4(a), row 1 shows the visual scanpath of a pathologist with the mag-
nification at each viewport center and the attention heatmap computed from
the viewport boxes for a test H&E WSI instance. We see that the pathologist
mostly viewed the WSI at 10× magnification. We also compare the attention
data with the tumor annotation we obtained from the GU specialist. The atten-
tion heatmap correlates well with the tumor locations in the ground truth tumor
annotation.

We compare the attention heatmaps predicted by our model with 4 baseline
models: (1) ResNet34 [14] and (2) Vision Transformer (ViT) [22], as the backbone
feature extractor, (3) ProstAttNet [4], (4) DA-MIL [3], in Fig. 4(a). The multiple
instance learning model (DA-MIL) [3] was trained on the WSIs with the primary
Gleason grades as the bag labels. We also compare the predictions obtained
using the proposed self-attention (SA) based attention refinement module to the
predictions using Dense Conditional Random Fields [17] (CRF) as an alternative
method to refine the attention heatmap. PathAttFormer produces more accurate
attention heatmap compared to the baselines. Moreover, the SA module improves
the overall spatial consistency in the predicted attention heatmaps compared to
the patch-wise predictions from the baseline models.

In Fig. 4(b), we show the attention scanpaths with the magnification at each
viewport center and the computed attention heatmaps for a H&E and Ki-67
IHC WSI instance from our GI-NET dataset. While the pathologist viewed all
image regions in the H&E WSI to detect the tumor regions, as seen in the H&E
scanpath, their attention on the Ki-67 IHC WSI was mostly confined within the
tumor regions detected on the H&E WSI. Also, the regions examined on the
Ki-67 IHC WSI are well correlated with the Ki-67 positive nuclei detection map
obtained using [1]. We also compare the attention data with the tumor segmen-
tation (on the H&E WSI) obtained from [1]. The attention heatmap correlates
well with the tumor locations in the tumor segmentation map. We also com-
pare the attention heatmaps predicted by PathAttFormer to the other models
in row 3 in Fig. 4(b) for the same test Ki-67 IHC WSI instance. We observe that
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Fig. 4. Visualization of observed attention data on a test WSI of (a) Prostate cancer,
and (b) GI-NET. We also compare the predicted attention heatmaps to the pathologist-
derived attention heatmap (row 2 in (a) and row 3 in (b)). PathAttFormer+SA best
predicts the attention data. More results in the supplementary.

PathAttFormer produces more accurate attention heatmaps compared to the
baselines using ResNet34 and ViT as the backbone feature extractors, as well
as the DA-MIL method. Also, the predicted attention heatmap correlates well
with the corresponding tumor segmentation map.

3.2 Quantitative Evaluation

We quantitatively evaluate the model performance using four metrics: weighted
F1-score of attention intensity classification, Cross Correlation (CC), Normal-
ized Scanpath Saliency (NSS), and Information Gain (IG) [18]. A higher weighted
F1-score indicates a better class-balanced classification performance. A high CC
value indicates a higher correlation between the map intensities. NSS measures
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the average normalized attention intensity at the viewport centers and IG mea-
sures the average information gain of the predicted attention heatmap over a
center prior map at viewport centers [18,19]. To ensure that the distributions of
the predicted and pathologist-derived attention heatmaps are similar, we per-
form histogram matching [20] of the two maps as a pre-processing step [4,21]. In
Tables 1 and 2, we report the 4-fold cross-validation scores CCAttn, NSSAttn and
IGAttn between the predicted and the pathologist-derived attention heatmaps
and the corresponding weighted F1-score. We also show the CCSeg score between
the predicted attention heatmap and the ground truth tumor segmentation map.

For Prostate WSIs (Table 1), PathAttFormer with attention refinement (SA)
best predicts the attention heatmap in terms of the CC and IG metrics compared
to pathologist-derived attention data, while the PathAttFormer model has the
best NSS score. PathAttFormer + SA also best predicts the tumor segmenta-
tion in terms of CC. The proposed model improves performance by first using
a Swin Transformer backbone instead of a convolutional model (e.g. ResNet34)
for predicting attention on a WSI patch, followed by refining patch-wise pre-
dictions using an attention refinement module. PathAttFormer also outperforms
ProstAttNet [4] on our test set. For GI-NET Ki-67 WSIs (Table 2), our PathAt-
tFormer + SA model best predicts the attention heatmap in terms of all metrics
compared to the pathologist-derived attention data, while the PathAttFormer
model with the H&E and Ki-67 detection map as inputs best predicts the ground
truth tumor segmentation in terms of the CC metric.

Table 1. Comparison of the 4-fold cross validation performance on the baseline models
(blue) and the PathAttFormer models (red) for five test H&E WSIs of prostate cancer.

Model Weighted-F1 CCAttn NSSAttn IGAttn CCSeg

ResNet34 [14] 0.327 ± 0.01 0.710 ± 0.03 0.382 ± 0.01 0.978 ± 0.04 0.675 ± 0.07

ViT [22] 0.321 ± 0.01 0.706 ± 0.03 0.441 ± 0.02 0.241 ± 0.01 0.682 ± 0.07

ProstAttNet [4] 0.329 ± 0.01 0.712 ± 0.02 0.408 ± 0.01 1.046 ± 0.04 0.678 ± 0.07

DA-MIL [3] - 0.504 ± 0.03 0.275 ± 0.03 0.042 ± 0.02 0.303 ± 0.08

PathAttFormer 0.348 ± 0.01 0.737 ± 0.02 0.584 ± 0.02 1.032 ± 0.04 0.681 ± 0.07

PathAttFormer+CRF 0.348 ± 0.01 0.743 ± 0.02 0.526 ± 0.02 0.702 ± 0.04 0.684 ± 0.07

PathAttFormer+SA 0.348 ± 0.01 0.751 ± 0.02 0.580 ± 0.02 1.087 ± 0.04 0.689 ± 0.07

Table 2. Comparison of the 4-fold cross validation performance on the baseline models
(blue) and the PathAttFormer models (red) for five Ki-67 IHC WSIs of GI-NET.

Model Weighted-F1 CCAttn NSSAttn IGAttn CCSeg

ResNet34 [14] 0.273 ± 0.01 0.728 ± 0.05 0.514 ± 0.01 0.718 ± 0.03 0.820 ± 0.05

ViT [22] 0.270 ± 0.01 0.726 ± 0.06 0.526 ± 0.02 0.764 ± 0.03 0.809 ± 0.05

DA-MIL [3] - 0.521 ± 0.07 0.383 ± 0.03 0.104 ± 0.02 0.692 ± 0.06

PathAttFormer 0.291 ± 0.01 0.732 ± 0.05 0.566 ± 0.02 0.758 ± 0.03 0.819 ± 0.04

PathAttFormer (w/ H&E attn.) 0.291 ± 0.01 0.741 ± 0.06 0.568 ± 0.02 0.763 ± 0.03 0.827 ± 0.04

PathAttFormer (w/ H&E attn.+Ki-67) 0.291 ± 0.01 0.744 ± 0.06 0.562 ± 0.02 0.771 ± 0.04 0.835 ± 0.04

PathAttFormer+CRF (w/ H&E attn.+Ki-67) 0.291 ± 0.01 0.758 ± 0.06 0.565 ± 0.02 0.479 ± 0.03 0.826 ± 0.04

PathAttFormer+SA (w/ H&E attn.+Ki-67) 0.291 ± 0.01 0.762 ± 0.06 0.573 ± 0.02 0.802 ± 0.04 0.834 ± 0.04



20 S. Chakraborty et al.

4 Conclusion

We have shown how pathologists allocate attention while viewing prostate cancer
and GI-NET WSIs for tumor grading and presented a generalizable deep learning
model that predicts visual attention on WSIs. Our work forms the foundation
for research on tracking and analysing the attention behavior of pathologists
viewing multiple stained images in sequence in order to grade the tumor type.
In the future, we will collect attention data in a larger study with more WSIs
in order to improve our attention prediction model. Additionally, we aim at
predicting the attention scanpaths of pathologists that can reveal insights about
the spatio-temporal dynamics of viewing behavior.
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17. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFS with gaus-
sian edge potentials. In: Advances in Neural Information Processing Systems, vol.
24 (2011)

18. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., Durand, F.: What do different
evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach.
Intell. 41(3), 740–757 (2018)
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