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ABSTRACT

The receiver function (RF) is a widely used crustal imaging technique. In principle, it assumes

relatively noise-free traces that can be used to target receiver-side structures following source

deconvolution. In practice, however, mode conversions and reflections may be severely

degraded by noisy conditions, hampering robust estimation of crustal parameters. In this

study, we use a sparsity-promoting Radon transform to decompose the observed RF traces

into their wavefield contributions, that is, direct conversions, multiples, and incoherent noise.

By applying a crustal mask on the Radon-transformed RF, we obtain noise-free RF traces with

onlyMoho conversions and reflections. We demonstrate, using a synthetic experiment and a

real-data example from the Sierra Nevada, that our approach can effectively denoise the RFs

and extract the underlying Moho signals. This greatly improves the robustness of crustal

structure recovery as exemplified by subsequent H−κ stacking. We further demonstrate,

using a station sitting on loose sediments in the Upper Mississippi embayment, that a combi-

nation of our approach and frequency-domain filtering can significantly improve crustal

imaging in reverberant settings. In the presence of complex crustal structures, for example,

dipping Moho, intracrustal layers, and crustal anisotropy, we recommend caution when

applying our proposed approach due to the difficulty of interpreting a possibly more com-

plicated Radon image.We expect that our techniquewill enable high-resolution crustal imag-

ing and inspire more applications of Radon transforms in seismic signal processing.

KEY POINTS

• Sparse Radon transform is used to denoise the Ps-RF and

extract Moho-related phases.

• Synthetic and data examples show that our approach can

drastically reduce the ambiguity of H − κ stacking.

• Our approach can be coupled with resonance filtering to

improve crustal imaging in reverberant settings.

Supplemental Material

INTRODUCTION

The receiver function (RF) is a powerful seismic imaging tech-

nique for constraining crustal structure in various tectonic set-

tings, for example, orogenic belts (Parker et al., 2013; Yang et al.,

2017), cratons (Thompson et al., 2010; Yuan, 2015; Xia et al.,

2017; Krueger et al., 2021), volcanoes (Leahy et al., 2010;

Rychert et al., 2013; Chen et al., 2020), oceans (Olugboji

et al., 2016; Rychert et al., 2018; Kim et al., 2021), and even

on other planets (Lognonné et al., 2020; Kim et al., 2021).

Two ideas that are fundamental to using the technique include

source deconvolution that targets receiver-side scattering

(Gurrola et al., 1995; Ligorría and Ammon, 1999; Park and

Levin, 2016) and modeling of the largest amplitude body-

wave conversions and reflections generated from seismic

discontinuities directly beneath the station (Langston, 1979;

Zandt and Ammon, 1995; Julia et al., 2000; Zhu and Kanamori,

2000;Wittlinger et al., 2009; Bodin et al., 2013). During themod-

eling stage, for example, H − κ stacking and its various adapta-

tions (Zhu and Kanamori, 2000; Wittlinger et al., 2009; Helffrich

and Thompson, 2010; Rychert and Harmon, 2016), the RF traces

are assumed to be relatively noise-free, permitting robust estima-

tion of the crustal structure, that is, crustal thickness (H) and P-

to-S (compressional-to-shear) velocity ratio (VP=VS, or κ). In

practice, however, mode conversions and reflections may be

severely degraded by noisy conditions. This may render the

modeling step intractable, hampering robust estimation of the

crustal parameters and the subsequent interpretation of crustal

composition (Zandt and Ammon, 1995; Stankiewicz et al., 2002;

Audet et al., 2009; He et al., 2013). For this reason, seismic
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analysts usually employ a variety of quality control procedures to

select high-quality RFs either manually or in an automated man-

ner, for example, using a combination of attributes from decon-

volution, waveform features, and stacking statistics (Yang et al.,

2016), or through supervised machine-learning models (Gong

et al., 2022). Previous studies have also made several modifica-

tions to grid-search algorithms in an effort to improve the con-

straints from the low-amplitude reflections, including, but not

limited to, using cluster analysis and semblance weighting

(Philip Crotwell and Owens, 2005; Eaton et al., 2006), varying

weighting factors for different phases (Vanacore et al., 2013),

and performing moveout corrections preceding the grid search

(Rivadeneyra-Vera et al., 2019). In addition, several denoising

frameworks have been proposed to aid with the interpretation

of noisy RF data, including transform-based methods (Chen

et al., 2019, 2022; Dalai et al., 2019; Zhang et al., 2021, 2022;

), rank-reduction techniques (Dokht et al., 2016; Rubio et al.,

2020), and machine-learning frameworks (Dalai et al., 2021;

Wang et al., 2022).

In this study, we denoise the observed RF data using a

modification of a recently proposed transform-based signal

processing workflow—Clean Receiver Function Imaging using

SParse Radon Filter (CRISP-RF; Olugboji et al., 2023). The

central idea involves applying a sparse Radon transform to

effectively decompose the Ps-RF into direct conversions, multi-

ples, and noise, based on the time-slowness moveout and phase

coherence. In our implementation here, we retain the crustal

multiples as well as the direct arrivals generated at the Moho.

Although our approach is illustrated using the traditional

H − κ stacking technique, it may be applied prior to data

modeling using other grid-search or waveform-fitting tech-

niques (Wittlinger et al., 2009; Helffrich and Thompson,

2010; Rychert and Harmon, 2016). The improvement in

crustal imaging follows from noise suppression and enhanced

detection of time-slowness arrivals of converted and reflected

phases that enable robust back-projection during a crustal

parameter search. We start by introducing the basic principles

and processing steps of CRISP-RF, and what modifications are

needed to suit our goal of preserving Moho conversions and

multiples. We provide synthetic experiments and a real-data

example to demonstrate the effectiveness of our approach

and to show that we are able to effectively denoise the RF

and improve the robustness of crustal structure estimation. We

demonstrate using another data example that our approach

can be coupled with resonance filtering (Yu et al., 2015;

Akuhara et al., 2016; Zhang and Olugboji, 2021, 2023) to

improve crustal imaging in reverberant settings.

METHOD

Brief overview of RF and H − κ stacking
P-to-S RF (Ps-RF) is obtained by deconvolving the parent com-

ponent from the daughter component seismograms, and targets

receiver-side structure with the source and path removed

(Langston, 1979; Ammon, 1991; Park and Levin, 2000;

Zhong and Zhan, 2020). The choice of Z–R–T (vertical–radial–

transverse) coordinate system is the most common practice;

other options include L–Q–T and P–SV–SH coordinate systems

(Rondenay, 2009). In this study, we use the Z–R–T coordinate

system and obtain the radial RF by deconvolving the vertical

component from the radial component seismograms. Assuming

a simple laterally homogenous and horizontally layered model

with a crust and a half-space, the Ps-RF trace should contain one

direct conversion from the Moho (PmS) and two multiples

(PPmS and PSmS; Fig. 1a). The H − κ stacking method calcu-

lates the stacking amplitudes of Ps-RF traces of different slow-

ness at the predicted arrival times of these phases using different

pairs ofH (crustal thickness) and κ (P-to-S velocity ratio) values,

and determines the optimal result by performing a grid search

(Zhu and Kanamori, 2000):

s�H,κ� �
X

i

X

j

wjG�tij�Rj�t�, �1�

in which s is the stacking amplitude, tij is the predicted arrival of

the ith phase (i.e., PmS, PPmS, and PSmS), G is a Gaussian

smoothing window centered at time t, Rj is the jth radial

Ps-RF trace, and wj is the weighting factors for different phases.

In most implementations, the direct phase is weighted higher,

and the multiples are weighted lower due to their relative ampli-

tudes (e.g., calculated from reflection and transmission coeffi-

cients in Zhang and Olugboji, 2021). Here, we use 0.4, 0.3,

and −0.3 as the weighting factors for PmS, PPmS, and PSmS

phases, respectively, for both synthetic and real data experiments

in the following sections.

The predicted arrivals of each phase, given a single-layer

model with thickness H, compressional velocity VP, and shear

velocity VS, are given by
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in which p is the slowness of the Ps-RF trace.

A crustal compressional velocity (VP) is usually assumed in

theH − κ stacking so that the shear velocity (VS) in equation (2)

can be substituted by VS �
VP

κ
. This a priori assumption is not

necessary for some of the adaptations of the H − κ stacking; for
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example, Rychert and Harmon (2016) used both Ps- and Sp-RF

in their stacking algorithm so that crustal parametersH, VP, and

VS can be determined without assuming its elastic properties.

Other examples include Kumar and Bostock (2008), which used

least-squares regression to solve for VP and κ and Helffrich and

Thompson (2010), which improved the reliability of VP and κ

estimates when events with small slownesses are not available.

Nevertheless, for simplicity, we illustrate our approach using the

traditional H − κ stacking technique.

Application of CRISP-RF: Sparse Radon transform
and crustal mask
CRISP-RF and sparse Radon transform. The slowness-

binned Ps-RF stacks can be viewed as a 2D matrix with 1D

representing the slowness (or epicentral distance in a 1D earth

model) and the other representing the time axis. Applying the

Radon transform to this matrix allows us to describe the Ps-RF

data d by a sparse model set m:

d�t,p� � R†fm�τ̃, q�g≜
X

Nq

i�1

m�τ̃ � t − qip
2, qi�, �3�

in which d�t, p� is the Ps-RF data in the time-slowness domain,

m�τ̃, q� is the Radon model in the intercept-time-curvature

domain (here intercept-time refers to the arrival time assuming

zero slowness, and curvature refers to the extent of the move-

out of the phases; Fig. 2a), and R† is the adjoint Radon

transform. Ideally, the Radon model (m) should only have

nonzero amplitudes at intercept-time and curvature pairs cor-

responding to coherent arrival phases, that is, PmS, PPmS, and

PSmS in the single-layer scenario (Fig. 2b). The adjoint Radon

transform R† reconstructs the Ps-RF data (d) by summing the

amplitudes of the Radon model at all curvature (qi) along each

slowness (p).

The CRISP-RF workflow starts by applying a sparsity-pro-

moting Radon transform that effectively decomposes the input

Ps-RF data into direct conversions, multiple reflections, and

incoherent noise (Olugboji et al., 2023). Here, we demonstrate

the performance of the sparsity-promoting Radon transform for

noise suppression using a synthetic Ps-RF generated for a single-

layer model with a crustal thickness of 35 km, a compressional
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Figure 1. (a) Wave propagation of the direct P wave, direct P-to-S conversion at
the Moho (PmS), and its multiples (PPmS and PSmS). (b) Synthetic Ps-receiver
function (RF) traces of single-layer model plotted against epicentral distance.
RF amplitudes are attenuated from 100% at 0 s to 10% at 12 s. Realistic noise
with a signal-to-noise ratio (SNR) of 2.0 is added to all RF traces. Additional
noise with an SNR of 0.5 is added to 10 randomly chosen traces. Black vertical
lines indicate theoretical arrivals for PmS, PPmS, and PSmS phases, respec-
tively. (c) H − κ stacking of the synthetic Ps-RF shown in panel (b). The stacking
image displays a stripe feature, indicating that the Ps-RF traces are dominated
by the PmS phase. Black contour lines indicate 90% and 80% of the maximum
stacking amplitude. For better visualization, we set all negative stacking
amplitudes to zero. The color version of this figure is available only in the
electronic edition.
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velocity of 6.3 km/s, and a shear velocity of 3.6 km/s. To mimic

the behavior of noisy realistic data, we attenuate the amplitudes

(100%–10%) of the late arriving multiples (0 < t < 12 s) and then

add realistic noise with a signal-to-noise ratio (SNR) of 2.0 to all

the RF traces. We then add noise with a significantly lower SNR

of 0.5 to 10 randomly chosen RF traces, resulting in a noisy data-

set with low-amplitude multiples whose arrivals are hard to vis-

ually identify (Fig. 1b). Applying the H − κ stacking on this Ps-

RF resolves a Moho depth of 35.3 km and a P-to-S velocity ratio

of 1.73 (Fig. 1c; see Table 1 for the 90% error range). The sparse

Radon model calculated from the CRISP-RF workflow shows a

clear separation of the three Moho-related phases, with the

direct conversion being the strongest positive phase mapped

into the positive curvature domain, the first multiple (PPmS)

mapped into the negative curvature domain with a positive

amplitude, and the second multiple (PSmS) also in the negative

curvature domain but with a negative amplitude (Fig. 2).

Keeping Moho phases: crustal mask. Following the spar-

sity-promoting Radon transform that maps different arrivals

into their corresponding intercept–time–curvature locations

in the Radon image, a masking filter is applied to only retain

the Moho-related phases (it is here that CRISP-RF differs from

its initial goal of being used to filter out crustal multiples). The

Radon-transformed and filtered RFs are effectively denoised

due to the sparsity-promoting step.

The key to designing this masking filter is to determine a

plausible 2D window for the intercept–time–curvature param-

eters that contain the phases of interest. As introduced earlier,

intercept-time (τ̃) refers to the phase arrival assuming zero

slowness, that is, by substituting p = 0 in equation (2), and

the curvature (q) is the degree-two coefficient of the quadratic

polynomial of the Taylor expansion of equation (2) (Ryberg

and Weber, 2000; Shi et al., 2020; Olugboji et al., 2023):
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The crustal masking filter for the intercept-time (τ̃) and

curvature (q) is obtained by substituting the grid-search

parameter bounds into equation 4(b), (4d), (4f), for example,

for a generic crustal velocity model, H = 25–55 km, VP � 6:3,

and VS � 3:6 km=s. This results in three distinct line segments

in the intercept–time–curvature domain, one in the positive-

curvature half (PmS) and two in the negative-curvature half

(PPmS and PSmS). To account for the numeric errors along

the curvature axis during the Radon transform, we further

add a tolerance width to the line segments, resulting in a crustal

mask that passes through both direct and multiple phases for a

given range of depth (Fig. 3). The rectangular areas of PmS and

PPmS phases only pass through positive amplitudes, and that

of PSmS phases only passes through negative amplitudes, in

accordance with the phase polarities of each respective phase.

We apply this crustal mask to the previously calculated

sparse Radon model and perform the adjoint Radon transform

to obtain a noise-free filtered Ps-RF, which shows significantly

enhanced detections of the Moho multiples (Fig. 4a).

Consequently, the H − κ stacking shows a better constraint

on the crustal structure, resolving a Moho depth of 35.0 km

and a velocity ratio of 1.75 (Fig. 4b; see Table 1 for the 90% error

range). This result matches the input model perfectly, and shows

a 67% narrower error range on H and 44% on κ, respectively,

compared to the H − κ stacking directly on the raw synthetic

Ps-RF (compare Fig. 4b with Fig. 1c; see also Table 1). The

80% error range of the H − κ stacking on the filtered Ps-RF is

from 32.43 to 37.48 km for H and from 1.670 to 1.841 for κ,

which is even narrower than the 90% error range of the

H − κ stacking on the raw Ps-RF, whereas the 80% error range

of the H − κ stacking on the raw Ps-RF is outside the search

range (compare Figs. 1c and 4b). This improvement largely

comes from the better constraint from the multiples (PPmS

and PSmS), which is made possible by the denoising effect pro-

vided by the CRISP-RF.

TABLE 1
Detailed H − κ Stacking Results of Synthetic Experiments and Real-Data Examples

Case Figure(s) Hraw (km) Hfiltered (km) H Improvement κraw κfiltered κ Improvement

Synthetic Figures 1, 2, 4 35:3�7:58
−2:12 35:0�1:53

−1:30 67% 1:73�0:079
−0:130 1:75�0:061

−0:056 44%

WCN Figure 6 35:3�2:95
−2:43 35:9�1:45

−1:78 40% 1:72�0:090
−0:087 1:69�0:070

−0:055 29%

HENM Figure 7 34:0�1:14
−2:26 34:0�1:49

−1:61 38% 1:85�0:125
−0:108 1:85�0:073

−0:062 42%

H,κraw, and H,κfiltered denotes the optimal solution and the 90% error range of the H − κ stacking results of raw Ps-RF and filtered Ps-RF from the adjoint Radon transform,

respectively. H,κ improvement denotes the percentage decreased in the 90% error range of H,κfiltered compared to H,κraw. In the case of station HENM, H,κraw corresponds to the

H − κ stacking on the Ps-RF after resonance filtering (Fig. 7d).

Volume 114 Number 3 June 2024 www.bssaonline.org Bulletin of the Seismological Society of America • 1603



H-k stacking on Radon
image
The Radon image is an inter-

cept–time–curvature domain

representation of the Ps-RF data;

therefore, the H − κ stacking

can also be applied to the

Radon image directly before

transforming it back to the

time-slowness domain. In the

traditional H − κ stacking, given

a pair of (H, κ) values, one can

calculate the arrival times for the

three phases (PmS, PPmS, and

PSmS) from equation (2) and

then generate a weighting trace

(
P

iwiG�ti� in equation 1) that

only has nonzero amplitudes

around these arrival times.

This weighting trace is then

applied to all Ps-RF traces to

get the stacking amplitude

s�H,κ� for this (H,κ) pair.

Similarly, one can also calculate

the corresponding (τ̃, q) values

for the three Moho phases from

equation (4b), (4d), (4f). A 2D

weighting matrix can then be

constructed with only nonzero

elements being the 2D elliptical

Gaussians centered at these

three calculated (τ̃, q) locations

(e.g., Fig. 5). The H − κ stacking

on the Radon image is thus con-

ducted by a grid search of the

(H, κ) pairs to maximize the

stacking amplitude obtained by

the element-wise product of

the weighting matrix and the

Radon image. This also resolves

the crustal structure perfectly

and shows a similar stacking

image as the one applied to

the time-epicentral-distance

domain Ps-RF, although with a

slightly larger 90% error range

(33.01–36.79 km for H and

1.687–1.817 for κ; Fig. 5b).

APPLICATION TO DATA

In this section, we apply the

CRISP-RF signal denoising

approach to station WCN
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located in the midnorthern

section of Sierra Nevada, to

the northeast of Lake Tahoe

(Fig. 6a). Located in the

Great Valley forearc basin, this

station sits on complicated

crustal structures including

metamorphosed ophiolites,

Mesozoic-age arc-related plu-

tons, Cenozoic-age volcanic

deposits, and extensional gra-

bens associated with sedimen-

tation along the Basin and

Range boundary (Frassetto

et al., 2010). This diversity of

crustal composition could

likely lead to a complex tele-

seismic wavefield and hard-

to-detect Moho multiples,

making it an ideal location to

test the effectiveness of our

approach on real seismic data.

We obtain 235 high-quality

(SNR > 2.0) teleseismic events

(Mw > 6:0, 30° < Δ < 90°;

Fig. 6d) and calculate the Ps-

RF traces using the extended-

time multi-taper approach

(Park and Levin, 2000;

Helffrich, 2006; Shibutani

et al., 2008). We applied a

cosine taper to the spectrum

using a cutoff frequency of

1.0 Hz, which allows the RF

to include significant informa-

tion of up to ∼0.6 Hz. We stack

the Ps-RFs every 1° with 8°

overlapping epicentral distance

bins (Fig. 6b). We use a P-wave

velocity of 6.3 km/s in the

H − κ stacking at this station

following Wang et al. (2022).

The raw Ps-RF image shows

a clear direct conversion from

the Moho just before 5 s and

various other pulses, some of

which exhibit coherence across

different epicentral distances

while others do not. Upon

further visual inspection, a

positive phase with a negative

moveout can be roughly

observed at around 15 s as
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available only in the electronic edition.

1.91.81.71.6
25

35

45

55 1

0.8

0.6

0.4

0.2

0

H = 35.0 km   = 1.75

T
h

ic
k

n
e
ss

 (
k

m
)

5 10 15 20 252

Time (s)

90

80

70

60

50

40

30

E
p

ic
e

n
tr

a
l d

is
ta

n
ce

 (
d

e
g

)
(a) (b)

5 10 15 20 252
Time (s)

90

80

70

60

50

40

30

E
p

ic
e

n
tr

a
l d

is
ta

n
ce

 (
d

e
g

)

0.8

0.8

0.8

0.8

0.9

0.9

0.9

1.91.81.71.6
25

35

45

55 1

0.8

0.6

0.4

0.2

0

H = 35.3 km   = 1.73

VP/VS

VP/VS

VP/VS

VP/VS

T
h

ic
k

n
e
ss

 (
k

m
)

(d)(c)

Figure 4. (a) Filtered Ps-RF obtained from the adjoint Radon transform of the Radon image shown in Figure 2
after applying the crustal mask shown in Figure 3. (b) H − κ stacking of the filtered Ps-RF shown in panel (a).
Black contour lines indicate 90% and 80% of the maximum stacking amplitude. (c,d) Raw Ps-RF and its
H − κ stacking for comparison; same as Figure 1b,c. The color version of this figure is available only in the
electronic edition.
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the PPmSmultiple; the arrival of the PSmSmultiple is harder to

determine, as there are several negative phases between 15 and

20 s. Applying H − κ stacking on the raw Ps-RF resolves a

crustal thickness of 35.3 km and a P-to-S velocity ratio of

1.72 (Fig. 6e). This H − κ image displays two local maxima

(as defined by the 90% error range contours), indicating

ambiguous stacking results due to noisy Ps-RF traces and poor

constraints from multiple phases. For the local maxima at the

optimal solution, the 90% error range is from 32.87 to

38.25 km for H and from 1.633 to 1.810 for κ, whereas the

80% error contour is outside the search range.

We then apply the CRISP-RF workflow on the raw Ps-RF to

obtain its sparse Radon model (Fig. 6f). Although the Radon

image shows more phases and is more complex compared to

the synthetic one (Fig. 2) due to the complicated crustal struc-

ture detected in real seismic data, the adjoint Radon transform

after applying the crustal mask gives a clean Ps-RF image with

clearly identified direct conversion (PmS at ∼5 s) and multiple

reflections (PPmS at ∼15 s and PSmS at ∼18 s) from the Moho

(Fig. 6c). Consequently, the H − κ stacking of the filtered Ps-RF

traces resolves the crustal structure with far less ambiguity,

with a crustal thickness of 35.9 km and a P-to-S velocity ratio

of 1.69 (Fig. 6g). ThisH − κ image shows only one maxima, with

the 90% error range of H and κ 40% and 29% narrower, respec-

tively, compared to theH − κ stacking directly on the raw Ps-RF

(compare Fig. 6e and 6g; see also Table 1). The 80% error range

of the H − κ stacking on the filtered Ps-RF is from 33.17 to

38.05 km for H and from 1.610 to 1.798 for κ, which is at least

59% and 37% narrower than that on the raw Ps-RF, and is
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Figure 6. (a) Location and geological settings of station WCN. Red triangle
indicates the station location. The bottom-left inset map shows the location
of the study area relative to the contiguous United States. (b) Raw Ps-RF
traces calculated at station WCN plotted against epicentral distance. Black
vertical lines indicate the predicted arrival times of the PmS, PPmS, and
PSmS phases calculated from the optimal H − κ solution. (c) Filtered Ps-RF
traces obtained from the adjoint Radon transform of the Radon image
shown in panel (f) after applying the crustal mask shown in Figure 3.
(d) Location of the teleseismic events used in the RF calculation. (e) H − κ

stacking of the raw Ps-RF shown in panel (b). Black contour lines are 90%
and 80% of the maximum stacking amplitude as indicated. (f) Sparse Radon
model of the raw Ps-RF shown in panel (b) obtained from the CRISP-RF
workflow. The crustal mask is indicated in faded color. (g) H − κ stacking of
the filtered Ps-RF shown in panel (c). The color version of this figure is
available only in the electronic edition.
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comparable to the 90% error range of the H − κ stacking on the

raw Ps-RF. Applying the H − κ stacking directly on the Radon

image after crustal mask filtering yields a similar result (Fig. S1a,

available in the supplemental material to this article). Our results

are broadly consistent with Porter et al. (2014), which reported a

Moho depth of 34.5 km and a P-to-S velocity ratio of 1.77, and

the Earthscope Automated Receiver Survey (EARS, Philip

Crotwell and Owens, 2005) database, which reported a crustal

thickness of 38 km and a P-to-S velocity ratio of 1.70.

DISCUSSION

Crustal imaging through complicated structures:
promises and limitations
In this study, we introduce modifications to the CRISP-RF

workflow introduced by Olugboji et al. (2023) to extract

Moho phases and suppress background noise using spare

Radon transforms, and show that this improves the quality

of crustal imaging through H − κ stacking. Although our pro-

posed approach is proven effective by both a synthetic experi-

ment and a real-data example, it is based on the assumption

that the Ps-RF traces are not contaminated by any significant

signal-generated noise, that is, reverberations. Reverberations

coming from sedimentary, oceanic, or glacial layers could gen-

erate high-amplitude resonant noise in the Ps-RF traces due to

their low-seismic velocity, completely masking conversion and

reflection phases from the Moho and even deeper discontinu-

ities (Yeck et al., 2013; Yu et al., 2015; Audet, 2016; Chai et al.,

2017; Cunningham and Lekic, 2019; Zhang and Gao, 2019).

Because the Ps-RF traces calculated at stations above such

reverberant environments are dominated by a resonance that

resembles a decaying sinusoid, the proposed approach in

this study will likely fail because the distinct, time-separated,

and coherent arrivals are no longer present. A systematic data-

driven approach—FAst Detection and Elimination of Echoes

and Reverberations (FADER)—has recently been proposed by

Zhang and Olugboji (2023) to solve the twin problem of detec-

tion and elimination of reverberations without a priori knowl-

edge of the elastic structure of the reverberant layers. This

approach uses autocorrelation and cepstral analysis to extract

the signature of reverberation and then uses a frequency

domain filter to remove it and obtain reverberation-free Ps-

RF. Therefore, it is natural to combine both the techniques

to achieve a better crustal image in reverberant settings.

To demonstrate the possibility of applying our proposed

approach after filtering out reverberation, we select station

HENM located in the Upper Mississippi embayment, where

loose sediments are widely present (Fig. 7a). We obtain 192

high-quality (SNR > 2.0) teleseismic events (Mw > 6:0,

30° < Δ < 90°; Fig. 7b) and calculate the Ps-RF traces using

the same method and parameters described earlier. We use a

P-wave velocity of 6.1 km/s in the H − κ stacking at this station

following Liu et al. (2017). The raw Ps-RF traces show strong

reverberant behavior with no clearly identified phases

(Fig. 7c) and therefore lead to a poorly constrained H − κ stack-

ing image with multiple local maxima and an optimal stacking

solution at the boundary of the search range (Fig. 7g).

We apply the FADER workflow and estimate a two-way travel

time (of the S waveleg trapped in the sediment layer) of 1.18 s

and a reverberation strength (at the sediment-crust boundary)

of 0.70 (see Fig. S2). A frequency domain resonance removal

filter is then designed and applied to the raw Ps-RF traces, which

effectively eliminates the resonant noise, making the direct con-

version from the Moho clearly visible at around 5 s,

along with the two multiple phases at around 14 s and 17 s,

respectively, although not as coherent (Fig. 7d). This results

in a much better constrainedH − κ stacking image, with an opti-

mal solution of 34.0 km forH and 1.85 for κ (Fig. 7h; see Table 1

for the 90% error range). Applying the proposed approach in

this study further eliminates all phases and background noise

except for the Moho phases, resulting in a clean, noise-free

Ps-RF image (Fig. 7e). The consequent H − κ stacking gives

the same solution of H = 34.0 km and κ � 1:85, with an even

narrow 90% error range (38% narrower forH and 42% narrower

for κ) (compare Fig. 7h and 7i; see also Table 1). Applying the

H − κ stacking directly on the Radon image after crustal mask

filtering yields a similar result (Fig. S1b). This result differs from

those documented in the EARS database (H = 28 km, κ � 1:76)

due to the extra processing step of FADER but is consistent with

Liu et al. (2017), which implemented a similar reverberation

removal technique and reported a Moho depth of 34.1 km

and a P-to-S velocity ratio of 1.85.

The shallow layer reverberations commonly observed in geo-

logical settings such as sediments, oceans, and glaciers are a spe-

cial complicating case where near-surface crustal structure

hampers the reliability of Ps-RF imaging results. Other cases

include a crust-to-mantle transition that is gradational or a com-

plex crustal structure, for example, dipping Moho, intracrustal

layers, and crustal anisotropy (Frederiksen and Bostock, 2000;

Ogden et al., 2019; Shi et al., 2023). In these cases, the crustal

properties deviate from the simple case considered in our syn-

thetic experiments (a single layer with a sharp Moho). For

instance, in the data example of stationWCNwe showed earlier,

a strong negative phase with a negative moveout can be observed

at ∼7 s in the raw Ps-RF traces (Fig. 6b) and also in the negative

curvature domain of the Radon image (Fig. 6f). This phase is

likely a multiple reflection generated at a shallow interface

within the crust. In addition, complicated phases with alternate

positive and negative amplitudes are observed at ∼10–12 s

(Fig. 6b), possibly indicating the presence of upper mantle

anisotropy. In this case, a joint interpretation of radial and trans-

verse RFs may aid in identifying complex structural features.

Although we have demonstrated that our data processing work-

flow can robustly recover the bulk crust properties, we recom-

mend caution when applying our proposed approach under

these circumstances due to the difficulty of interpreting a

possibly more complicated Radon image.
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Improving constraints on crustal composition and
evolution
P-to-S velocity ratio (κ) can be directly converted to Poisson’s

ratio (σ) (Christensen and Fountain, 1975):

σ � 0:5

�

1 −
1

κ
2
− 1

�

: �5�

Improved resolution of κ following denoising provides

much tighter constraints on the inferred crustal composition,

providing important information on the geological evolution

of the Earth’s crust (Zandt and Ammon, 1995; Stankiewicz

et al., 2002; Guo et al., 2019). For instance, an increase in pla-

gioclase content and a decrease in quartz can increase the

Figure 7. (a) Location and geological settings of station HENM. Red triangle
indicates the station location. The bottom-right inset map shows the
location of the study area relative to the contiguous United States.
(b) Location of the teleseismic events used in the RF calculation. (c) Raw
Ps-RF traces calculated at station HENM plotted against epicentral
distance. Theoretical arrival times of PmS, PPmS, and PSmS phases are
calculated from the H − κ stacking result and plotted in solid black lines.
(d) Ps-RF traces after reverberation removal. (e) Ps-RF traces after
reverberation removal and applying the modified CRISP-RF workflow.
(f) Sparse Radon model of the raw Ps-RF shown in panel (d) obtained from
the CRISP-RF workflow. The crustal mask is indicated in faded color.
(g) H − κ stacking of the raw Ps-RF shown in panel (c). (h) H − κ stacking
of the processed Ps-RF shown in panel (d). (i) H − κ stacking of the
processed Ps-RF shown in panel (e). The color version of this figure is
available only in the electronic edition.
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Poisson’s ratio from 0.24 for a granitic rock to 0.27 for a diorite

and to 0.30 for a gabbro (Tarkov and Vavakin, 1982).

RF imaging studies have routinely used this sensitivity of

crustal composition to Poisson’s ratio to study how bulk com-

position varies for different geological terranes. For example,

thanks to the massive high-quality seismic data from USArray

and EARS (Philip Crotwell and Owens, 2005), Lowry and Pérez-

Gussinyé (2011) proposed a feedback mechanism for which

ductile strain first localizes quartz-rich, weak crust, leading to

processes that promote advective warming, hydration, and fur-

ther weakening, based on the correlation between low Poisson’s

ratios, higher lithospheric temperatures, and deformation in the

Cordillera region. Similarly, Ma and Lowry (2017) estimated the

seismic velocity ratios across the continent United States and

suggested Cordilleran high heat flow may partly reflect crustal

hydration enthalpy. Other examples include Audet et al. (2009),

which implied high pore-fluid pressures and thus an overpres-

sured subducted oceanic crust at northern Cascadia indicated by

anomalously high Poisson’s ratio and He et al. (2013), which

suggested a dominantly felsic lower crust and the presence of

lower crustal delamination in the Cathaysia block in Southern

China from the low Poisson’s ratio.

The reliability of these interpretations depends heavily on

the accuracy of the P-to-S velocity ratio (κ) estimation. We

have shown that by denoising the Ps-RF using our proposed

approach, the measurement error for κ in the traditional

H − κ stacking can be greatly reduced (Table 1), enabling more

robust estimation of crustal structures.

Application of Radon transform in seismic signal
processing
We have applied a sparse Radon transform in high-resolution

Ps-RF imaging of sharp discontinuities. Because we have

demonstrated earlier, this data processing technique can be

beneficial not only when imaging upper mantle discontinu-

ities, as suggested by Olugboji et al. (2023), but also for

improved detection of multiple reflected phases when imag-

ing the crust. The Radon transform maps the coherent phases

in the time-domain Ps-RF traces onto the Radon model based

on their moveout and amplitudes. The same philosophy

is also applicable to other seismic imaging techniques, for

example, top- and bottom-side reflections, because each

arriving phase also follows a distinct moveout (Gu et al.,

2009; Gu and Sacchi, 2009). In these cases, modifications

to equations (2)–(4) are needed, as the theoretical arrivals

in these observations are different, and their relationship with

slowness or epicentral distance may be different (e.g., linear

instead of parabolic).

CONCLUSION

In this study, we use a sparsity-promoting Radon transform to

decompose the Ps-RF into its scattered wave contributions,

that is, direct conversions, multiples, and incoherent noise.

By applying a specially designed crustal mask to the Radon

model and transforming the now filtered Ps-RFs into the time

domain using an adjoint Radon transform, a set of clean, noise-

free Ps-RF traces is obtained. This leads to robust interpreta-

tions of crustal structure. This technique for crustal imaging

using Ps-RFs is a modification to the CRISP-RF workflow pro-

posed by Olugboji et al. (2023), which originally targets upper

mantle discontinuities. We demonstrate using both synthetic

experiments and real-data examples that our approach can

effectively denoise the Ps-RF traces and extract all Moho

phases, and therefore greatly reduce the error range in the

grid search for crustal parameters. We also demonstrate the

CRISP-RF denoising with a simultaneous dereverberation

technique proposed by Zhang and Olugboji (2021, 2023),

which improves crustal imaging beneath reverberant layers.

In the presence of complex crustal structures, for example, dip-

ping Moho, intracrustal layers, and crustal anisotropy, we rec-

ommend caution when applying our proposed approach due

to the difficulty of interpreting a possibly more complicated

Radon image. We anticipate that our approach will enable

high-resolution crustal imaging with noisy teleseismic RFs

and inspire more applications of the sparse Radon transform

for seismic imaging.

DATA AND RESOURCES

All seismic data used in this study can be obtained from

the Incorporated Research Institutions for Seismology Data

Management Center (IRIS-DMC, https://ds.iris.edu/ds, last accessed

December 2023) under the network codes NN (station WCN) and

NM (station HENM). Synthetic receiver functions (RFs) were com-

puted using the Telewavesim open-source Python library provided

by Audet et al. (2019). The extended-time multitaper deconvolution

program and the Clean Receiver Function Imaging using SParse

Radon Filter (CRISP-RF) data processing workflow are provided

by Olugboji et al. (2023), and can be retrieved from the open-source

repository at doi: 10.5281/zenodo.7996504. The FAst Detection and

Elimination of Echoes and Reverberations (FADER) data processing

workflow is provided by Zhang and Olugboji (2023) and can be

retrieved from the open-source repository at doi: 10.5281/zenodo.

6804873. The supplemental material includes Figure S1 of H − κ

stacking on Radon images for real data examples and Figure S2 of

reverberation detection with FADER at station HENM.
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