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ABSTRACT

The receiver function (RF) is a widely used crustal imaging technique. In principle, it assumes
relatively noise-free traces that can be used to target receiver-side structures following source
deconvolution. In practice, however, mode conversions and reflections may be severely
degraded by noisy conditions, hampering robust estimation of crustal parameters. In this
study, we use a sparsity-promoting Radon transform to decompose the observed RF traces
into their wavefield contributions, that is, direct conversions, multiples, and incoherent noise.
By applying a crustal mask on the Radon-transformed RF, we obtain noise-free RF traces with
only Moho conversions and reflections. We demonstrate, using a synthetic experiment and a
real-data example from the Sierra Nevada, that our approach can effectively denoise the RFs
and extract the underlying Moho signals. This greatly improves the robustness of crustal
structure recovery as exemplified by subsequent H-x stacking. We further demonstrate,
using a station sitting on loose sediments in the Upper Mississippi embayment, that a combi-
nation of our approach and frequency-domain filtering can significantly improve crustal
imaging in reverberant settings. In the presence of complex crustal structures, for example,
dipping Moho, intracrustal layers, and crustal anisotropy, we recommend caution when
applying our proposed approach due to the difficulty of interpreting a possibly more com-
plicated Radon image. We expect that our technique will enable high-resolution crustal imag-
ing and inspire more applications of Radon transforms in seismic signal processing.
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analysts usually employ a variety of quality control procedures to
select high-quality RFs either manually or in an automated man-
ner, for example, using a combination of attributes from decon-
volution, waveform features, and stacking statistics (Yang et al,
2016), or through supervised machine-learning models (Gong
et al., 2022). Previous studies have also made several modifica-
tions to grid-search algorithms in an effort to improve the con-
straints from the low-amplitude reflections, including, but not
limited to, using cluster analysis and semblance weighting
(Philip Crotwell and Owens, 2005; Eaton et al, 2006), varying
weighting factors for different phases (Vanacore et al, 2013),
and performing moveout corrections preceding the grid search
(Rivadeneyra-Vera et al, 2019). In addition, several denoising
frameworks have been proposed to aid with the interpretation
of noisy RF data, including transform-based methods (Chen
et al., 2019, 2022; Dalai et al., 2019; Zhang et al., 2021, 2022;
), rank-reduction techniques (Dokht et al., 2016; Rubio et al.,
2020), and machine-learning frameworks (Dalai et al., 2021;
Wang et al., 2022).

In this study, we denoise the observed RF data using a
modification of a recently proposed transform-based signal
processing workflow—Clean Receiver Function Imaging using
SParse Radon Filter (CRISP-RF; Olugboji et al, 2023). The
central idea involves applying a sparse Radon transform to
effectively decompose the Ps-RF into direct conversions, multi-
ples, and noise, based on the time-slowness moveout and phase
coherence. In our implementation here, we retain the crustal
multiples as well as the direct arrivals generated at the Moho.
Although our approach is illustrated using the traditional
H -« stacking technique, it may be applied prior to data
modeling using other grid-search or waveform-fitting tech-
niques (Wittlinger et al., 2009; Helffrich and Thompson,
2010; Rychert and Harmon, 2016). The improvement in
crustal imaging follows from noise suppression and enhanced
detection of time-slowness arrivals of converted and reflected
phases that enable robust back-projection during a crustal
parameter search. We start by introducing the basic principles
and processing steps of CRISP-RF, and what modifications are
needed to suit our goal of preserving Moho conversions and
multiples. We provide synthetic experiments and a real-data
example to demonstrate the effectiveness of our approach
and to show that we are able to effectively denoise the RF
and improve the robustness of crustal structure estimation. We
demonstrate using another data example that our approach
can be coupled with resonance filtering (Yu et al., 2015;
Akuhara et al, 2016; Zhang and Olugboji, 2021, 2023) to
improve crustal imaging in reverberant settings.

METHOD

Brief overview of RF and H — « stacking

P-to-S RF (Ps-RF) is obtained by deconvolving the parent com-
ponent from the daughter component seismograms, and targets
receiver-side structure with the source and path removed
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(Langston, 1979; Ammon, 1991; Park and Levin, 2000;
Zhong and Zhan, 2020). The choice of Z-R-T (vertical-radial-
transverse) coordinate system is the most common practice;
other options include L-Q-T and P-SV-SH coordinate systems
(Rondenay, 2009). In this study, we use the Z-R-T coordinate
system and obtain the radial RF by deconvolving the vertical
component from the radial component seismograms. Assuming
a simple laterally homogenous and horizontally layered model
with a crust and a half-space, the Ps-RF trace should contain one
direct conversion from the Moho (PmS) and two multiples
(PPmS and PSmS; Fig. 1a). The H — « stacking method calcu-
lates the stacking amplitudes of Ps-RF traces of different slow-
ness at the predicted arrival times of these phases using different
pairs of H (crustal thickness) and x (P-to-S velocity ratio) values,
and determines the optimal result by performing a grid search
(Zhu and Kanamori, 2000):

s(Hx) =Y Y wiG(t)Ri(b), (1)
ij

in which s is the stacking amplitude, ¢;; is the predicted arrival of
the ith phase (ie., PmS, PPmS, and PSmS), G is a Gaussian
smoothing window centered at time #, R; is the jth radial
Ps-RF trace, and w; is the weighting factors for different phases.
In most implementations, the direct phase is weighted higher,
and the multiples are weighted lower due to their relative ampli-
tudes (e.g., calculated from reflection and transmission coeffi-
cients in Zhang and Olugboji, 2021). Here, we use 0.4, 0.3,
and —0.3 as the weighting factors for PmS, PPmS, and PSmS
phases, respectively, for both synthetic and real data experiments
in the following sections.

The predicted arrivals of each phase, given a single-layer
model with thickness H, compressional velocity Vp, and shear
velocity Vi, are given by

1 1
toms = H| [ —P* =[5 - P |> (22)
S N
1, L,
tppms = H Vé_p + V—%—P , (2b)
1
tpsms = 2H V2 - (20)
S

in which p is the slowness of the Ps-RF trace.

A crustal compressional velocity (V) is usually assumed in
the H — « stacking so that the shear velocity (V) in equation (2)
can be substituted by Vg = % This a priori assumption is not
necessary for some of the adaptations of the H — « stacking; for
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example, Rychert and Harmon (2016) used both Ps- and Sp-RF
in their stacking algorithm so that crustal parameters H, Vp, and
Vs can be determined without assuming its elastic properties.
Other examples include Kumar and Bostock (2008), which used
least-squares regression to solve for V and x and Helffrich and
Thompson (2010), which improved the reliability of V and «
estimates when events with small slownesses are not available.
Nevertheless, for simplicity, we illustrate our approach using the
traditional H — « stacking technique.

Application of CRISP-RF: Sparse Radon transform
and crustal mask

CRISP-RF and sparse Radon transform. The slowness-
binned Ps-RF stacks can be viewed as a 2D matrix with 1D
representing the slowness (or epicentral distance in a 1D earth
model) and the other representing the time axis. Applying the
Radon transform to this matrix allows us to describe the Ps-RF
data d by a sparse model set m:

N‘I
d(tp) = R'm(7,9)}2 Y m(7 =t-qp%q), ()

in which d(t, p) is the Ps-RF data in the time-slowness domain,
m(7,q) is the Radon model in the intercept-time-curvature
domain (here intercept-time refers to the arrival time assuming
zero slowness, and curvature refers to the extent of the move-
out of the phases; Fig. 2a), and R’ is the adjoint Radon
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Figure 1. (a) Wave propagation of the direct P wave, direct P-to-S conversion at
the Moho (PmsS), and its multiples (PPmS and PSmS). (b) Synthetic Ps-receiver
function (RF) traces of single-layer model plotted against epicentral distance.
RF amplitudes are attenuated from 100% at 0 s to 10% at 12 s. Realistic noise
with a signal-to-noise ratio (SNR) of 2.0 is added to all RF traces. Additional
noise with an SNR of 0.5 is added to 10 randomly chosen traces. Black vertical
lines indicate theoretical arrivals for PmS, PPmS, and PSmS phases, respec-
tively. () H —  stacking of the synthetic Ps-RF shown in panel (b). The stacking
image displays a stripe feature, indicating that the Ps-RF traces are dominated
by the PmS phase. Black contour lines indicate 90% and 80% of the maximum
stacking amplitude. For better visualization, we set all negative stacking
amplitudes to zero. The color version of this figure is available only in the
electronic edition.

transform. Ideally, the Radon model (m) should only have
nonzero amplitudes at intercept-time and curvature pairs cor-
responding to coherent arrival phases, that is, PmS, PPmS, and
PSmS in the single-layer scenario (Fig. 2b). The adjoint Radon
transform R' reconstructs the Ps-RF data (d) by summing the
amplitudes of the Radon model at all curvature (g;) along each
slowness (p).

The CRISP-RF workflow starts by applying a sparsity-pro-
moting Radon transform that effectively decomposes the input
Ps-RF data into direct conversions, multiple reflections, and
incoherent noise (Olugboji et al., 2023). Here, we demonstrate
the performance of the sparsity-promoting Radon transform for
noise suppression using a synthetic Ps-RF generated for a single-
layer model with a crustal thickness of 35 km, a compressional
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TABLE 1
Detailed H - x Stacking Results of Synthetic Experiments and Real-Data Examples

Case Figure(s) H,,, (km) Hjiitereq (km) H Improvement Kraw Kiiltered x Improvement
Synthetic Figures 1, 2, 4 35318 35.01'5% 67% 1.7340%3 1754028 44%
WCN Figure 6 35.312% 35.94% 40% 1.72709%0 1697050 29%
HENM Figure 7 34.01) 34.0414° 38% 1.857 %1% 1.8570973 42%

H,kaw, and H,xfiereq denotes the optimal solution and the 90% error range of the H — « stacking results of raw Ps-RF and filtered Ps-RF from the adjoint Radon transform,
respectively. H,x improvement denotes the percentage decreased in the 90% error range of H, kfjtereq COMpared to H, .4y IN the case of station HENM, H,x;,, corresponds to the

H - x stacking on the Ps-RF after resonance filtering (Fig. 7d).

velocity of 6.3 km/s, and a shear velocity of 3.6 km/s. To mimic
the behavior of noisy realistic data, we attenuate the amplitudes
(100%-10%) of the late arriving multiples (0 < t < 12 s) and then
add realistic noise with a signal-to-noise ratio (SNR) of 2.0 to all
the RF traces. We then add noise with a significantly lower SNR
of 0.5 to 10 randomly chosen RF traces, resulting in a noisy data-
set with low-amplitude multiples whose arrivals are hard to vis-
ually identify (Fig. 1b). Applying the H — « stacking on this Ps-
RF resolves a Moho depth of 35.3 km and a P-to-S velocity ratio
of 1.73 (Fig. 1c; see Table 1 for the 90% error range). The sparse
Radon model calculated from the CRISP-RF workflow shows a
clear separation of the three Moho-related phases, with the
direct conversion being the strongest positive phase mapped
into the positive curvature domain, the first multiple (PPmS)
mapped into the negative curvature domain with a positive
amplitude, and the second multiple (PSmS) also in the negative
curvature domain but with a negative amplitude (Fig. 2).

Keeping Moho phases: crustal mask. Following the spar-
sity-promoting Radon transform that maps different arrivals
into their corresponding intercept-time-curvature locations
in the Radon image, a masking filter is applied to only retain
the Moho-related phases (it is here that CRISP-RF differs from
its initial goal of being used to filter out crustal multiples). The
Radon-transformed and filtered RFs are effectively denoised
due to the sparsity-promoting step.

The key to designing this masking filter is to determine a
plausible 2D window for the intercept-time-curvature param-
eters that contain the phases of interest. As introduced earlier,
intercept-time (%) refers to the phase arrival assuming zero
slowness, that is, by substituting p = 0 in equation (2), and
the curvature (g) is the degree-two coefficient of the quadratic
polynomial of the Taylor expansion of equation (2) (Ryberg
and Weber, 2000; Shi et al., 2020; Olugboji et al., 2023):

tpms = Tpms + ApmsP”> (42)

. 11 H(Vp-Vy)
Tpms = H (Vs - V_P) Apms = + 5 (4b)
tppms = Tppms + AppmsP™> (40)
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B 1 1 H(Vp+ Vy)
Tppms = H (Vs + V_p) Aepms =~ 5 > (4d)
tpsms = Trsms + dpsmsP™s (4e)
. 1
Tpsms = 2H — qpgms = —HVs. (4f)

Vs

The crustal masking filter for the intercept-time (%) and
curvature (q) is obtained by substituting the grid-search
parameter bounds into equation 4(b), (4d), (4f), for example,
for a generic crustal velocity model, H = 25-55 km, Vp = 6.3,
and Vg = 3.6 km/s. This results in three distinct line segments
in the intercept-time—curvature domain, one in the positive-
curvature half (PmS) and two in the negative-curvature half
(PPmS and PSmS). To account for the numeric errors along
the curvature axis during the Radon transform, we further
add a tolerance width to the line segments, resulting in a crustal
mask that passes through both direct and multiple phases for a
given range of depth (Fig. 3). The rectangular areas of PmS and
PPmS phases only pass through positive amplitudes, and that
of PSmS phases only passes through negative amplitudes, in
accordance with the phase polarities of each respective phase.

We apply this crustal mask to the previously calculated
sparse Radon model and perform the adjoint Radon transform
to obtain a noise-free filtered Ps-RF, which shows significantly
enhanced detections of the Moho multiples (Fig. 4a).
Consequently, the H —« stacking shows a better constraint
on the crustal structure, resolving a Moho depth of 35.0 km
and a velocity ratio of 1.75 (Fig. 4b; see Table 1 for the 90% error
range). This result matches the input model perfectly, and shows
a 67% narrower error range on H and 44% on «, respectively,
compared to the H — k stacking directly on the raw synthetic
Ps-RF (compare Fig. 4b with Fig. lc; see also Table 1). The
80% error range of the H — « stacking on the filtered Ps-RF is
from 32.43 to 37.48 km for H and from 1.670 to 1.841 for «,
which is even narrower than the 90% error range of the
H — « stacking on the raw Ps-RF, whereas the 80% error range
of the H — « stacking on the raw Ps-RF is outside the search
range (compare Figs. 1c and 4b). This improvement largely
comes from the better constraint from the multiples (PPmS
and PSmS), which is made possible by the denoising effect pro-
vided by the CRISP-RF.
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Figure 2. (a) Clean, noise-free RF image assuming a 35 km thick crust and a half-space. Intercept-time is defined as the
arrival time of a phase (PmS, PPmS, or PSmS) at zero slowness (p = 0); curvature is defined as the degree-two
coefficient of the quadratic polynomial, as indicated in equation (4a)—(4c). (b) Synthetic Radon image of the clean RF
shown in panel (a). (c) Sparse Radon model of the synthetic Ps-RF shown in Figure 1b obtained from the Clean Receiver
Function Imaging using SParse Radon Filter (CRISP-RF) workflow. Stars denote the theoretical (7,q) locations of the
Moho phases calculated from equation (4b,d,f). The color version of this figure is available only in the electronic edition.
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Figure 3. (a) Masking filter designed to only pass through Moho-related phases in the Radon image. Dashed lines
indicate the predicted intercept-time-curvature curves for each given phase; colored rectangles indicate the final
pass-through areas in the mask obtained by limiting the Moho depth and adding a tolerance width. Red and blue
colors indicate positive and negative arrivals, respectively. (b) Radon image shown in Figure 2 after applying the
designed crustal mask shown in panel (a). The color version of this figure is available only in the electronic edition.
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H-k stacking on Radon
image

The Radon image is an inter-
cept-time—curvature  domain
representation of the Ps-RF data;
therefore, the H -« stacking
can also be applied to the
Radon image directly before
transforming it back to the
time-slowness domain. In the
traditional H — « stacking, given
a pair of (H, «) values, one can
calculate the arrival times for the
three phases (PmS, PPmS, and
PSmS) from equation (2) and
then generate a weighting trace
(O>_w;G(t;) in equation 1) that
only has nonzero amplitudes
around these arrival times.
This weighting trace is then
applied to all Ps-RF traces to
get the stacking amplitude
s(H,x) for this (H,k) pair.
Similarly, one can also calculate
the corresponding (%, g) values
for the three Moho phases from
equation (4b), (4d), (4f). A 2D
weighting matrix can then be
constructed with only nonzero
elements being the 2D elliptical
Gaussians centered at these
three calculated (7, gq) locations
(e.g., Fig. 5). The H — « stacking
on the Radon image is thus con-
ducted by a grid search of the
(H, k) pairs to maximize the
stacking amplitude obtained by
the element-wise product of
the weighting matrix and the
Radon image. This also resolves
the crustal structure perfectly
and shows a similar stacking
image as the one applied to
the time-epicentral-distance
domain Ps-RF, although with a
slightly larger 90% error range
(33.01-36.79 km for H and
1.687-1.817 for «; Fig. 5b).

APPLICATION TO DATA

In this section, we apply the
CRISP-RF  signal denoising
approach to station WCN

June 2024
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Figure 4. (a) Filtered Ps-RF obtained from the adjoint Radon transform of the Radon image shown in Figure 2
after applying the crustal mask shown in Figure 3. (b) H — « stacking of the filtered Ps-RF shown in panel (a).
Black contour lines indicate 90% and 80% of the maximum stacking amplitude. (c,d) Raw Ps-RF and its

H — « stacking for comparison; same as Figure 1b,c. The color version of this figure is available only in the
electronic edition.
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Figure 5. (a) Example of a 2D weighting matrix constructed using the searching values of # = 40 km and x = 1.7.
The weighting matrix is illustrated as the solid color stripes. The faded color indicates the Radon image after
applying the crustal mask, same as Figure 3b. (b) H — « stacking of the Radon image shown in Figure 2. Black
contour lines indicate 90% and 80% of the maximum stacking amplitude. The color version of this figure is
available only in the electronic edition.

located in the midnorthern
section of Sierra Nevada, to
the northeast of Lake Tahoe
(Fig. 6a). Located in the
Great Valley forearc basin, this
station sits on complicated
crustal structures including
metamorphosed  ophiolites,
Mesozoic-age arc-related plu-
tons, Cenozoic-age volcanic
deposits, and extensional gra-
bens associated with sedimen-
tation along the Basin and
Range boundary (Frassetto
et al., 2010). This diversity of
crustal composition  could
likely lead to a complex tele-
seismic wavefield and hard-
to-detect Moho multiples,
making it an ideal location to
test the effectiveness of our
approach on real seismic data.

We obtain 235 high-quality
(SNR > 2.0) teleseismic events
(M, > 6.0, 30°<A <90%
Fig. 6d) and calculate the Ps-
RF traces using the extended-
time multi-taper approach
(Park and Levin, 2000;
Helffrich, 2006; Shibutani
et al, 2008). We applied a
cosine taper to the spectrum
using a cutoff frequency of
1.0 Hz, which allows the RF
to include significant informa-
tion of up to ~0.6 Hz. We stack
the Ps-RFs every 1° with 8°
overlapping epicentral distance
bins (Fig. 6b). We use a P-wave
velocity of 6.3 km/s in the
H — « stacking at this station
following Wang et al. (2022).
The raw Ps-RF image shows
a clear direct conversion from
the Moho just before 5 s and
various other pulses, some of
which exhibit coherence across
different epicentral distances
while others do not. Upon
further visual inspection, a
positive phase with a negative
moveout can be roughly
observed at around 15 s as
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the PPmS multiple; the arrival of the PSmS multiple is harder to
determine, as there are several negative phases between 15 and
20 s. Applying H — « stacking on the raw Ps-RF resolves a
crustal thickness of 35.3 km and a P-to-S velocity ratio of
1.72 (Fig. 6e). This H — x image displays two local maxima
(as defined by the 90% error range contours), indicating
ambiguous stacking results due to noisy Ps-RF traces and poor
constraints from multiple phases. For the local maxima at the
optimal solution, the 90% error range is from 32.87 to
38.25 km for H and from 1.633 to 1.810 for x, whereas the
80% error contour is outside the search range.

We then apply the CRISP-RF workflow on the raw Ps-RF to
obtain its sparse Radon model (Fig. 6f). Although the Radon
image shows more phases and is more complex compared to
the synthetic one (Fig. 2) due to the complicated crustal struc-
ture detected in real seismic data, the adjoint Radon transform
after applying the crustal mask gives a clean Ps-RF image with
clearly identified direct conversion (PmS at ~5 s) and multiple
reflections (PPmS at ~15 s and PSmS at ~18 s) from the Moho
(Fig. 6¢). Consequently, the H — « stacking of the filtered Ps-RF
traces resolves the crustal structure with far less ambiguity,
with a crustal thickness of 35.9 km and a P-to-S velocity ratio
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Figure 6. (a) Location and geological settings of station WCN. Red triangle
indicates the station location. The bottom-left inset map shows the location
of the study area relative to the contiguous United States. (b) Raw Ps-RF
traces calculated at station WCN plotted against epicentral distance. Black
vertical lines indicate the predicted arrival times of the PmS, PPmS, and
PSmS phases calculated from the optimal H — « solution. (c) Filtered Ps-RF
traces obtained from the adjoint Radon transform of the Radon image
shown in panel (f) after applying the crustal mask shown in Figure 3.
(d) Location of the teleseismic events used in the RF calculation. (e) H —
stacking of the raw Ps-RF shown in panel (b). Black contour lines are 90%
and 80% of the maximum stacking amplitude as indicated. (f) Sparse Radon
model of the raw Ps-RF shown in panel (b) obtained from the CRISP-RF
workflow. The crustal mask is indicated in faded color. (g) H — « stacking of
the filtered Ps-RF shown in panel (c). The color version of this figure is
available only in the electronic edition.

of 1.69 (Fig. 6g). This H — x image shows only one maxima, with
the 90% error range of H and « 40% and 29% narrower, respec-
tively, compared to the H — « stacking directly on the raw Ps-RF
(compare Fig. 6e and 6g; see also Table 1). The 80% error range
of the H — x stacking on the filtered Ps-RF is from 33.17 to
38.05 km for H and from 1.610 to 1.798 for x, which is at least
59% and 37% narrower than that on the raw Ps-RF, and is
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comparable to the 90% error range of the H — « stacking on the
raw Ps-RF. Applying the H — « stacking directly on the Radon
image after crustal mask filtering yields a similar result (Fig. Sla,
available in the supplemental material to this article). Our results
are broadly consistent with Porter et al. (2014), which reported a
Moho depth of 34.5 km and a P-to-S velocity ratio of 1.77, and
the Earthscope Automated Receiver Survey (EARS, Philip
Crotwell and Owens, 2005) database, which reported a crustal
thickness of 38 km and a P-to-S velocity ratio of 1.70.

DISCUSSION

Crustal imaging through complicated structures:
promises and limitations

In this study, we introduce modifications to the CRISP-RF
workflow introduced by Olugboji et al. (2023) to extract
Moho phases and suppress background noise using spare
Radon transforms, and show that this improves the quality
of crustal imaging through H — « stacking. Although our pro-
posed approach is proven effective by both a synthetic experi-
ment and a real-data example, it is based on the assumption
that the Ps-RF traces are not contaminated by any significant
signal-generated noise, that is, reverberations. Reverberations
coming from sedimentary, oceanic, or glacial layers could gen-
erate high-amplitude resonant noise in the Ps-RF traces due to
their low-seismic velocity, completely masking conversion and
reflection phases from the Moho and even deeper discontinu-
ities (Yeck et al, 2013; Yu et al., 2015; Audet, 2016; Chai et al.,
2017; Cunningham and Lekic, 2019; Zhang and Gao, 2019).
Because the Ps-RF traces calculated at stations above such
reverberant environments are dominated by a resonance that
resembles a decaying sinusoid, the proposed approach in
this study will likely fail because the distinct, time-separated,
and coherent arrivals are no longer present. A systematic data-
driven approach—FAst Detection and Elimination of Echoes
and Reverberations (FADER)—has recently been proposed by
Zhang and Olugboji (2023) to solve the twin problem of detec-
tion and elimination of reverberations without a priori knowl-
edge of the elastic structure of the reverberant layers. This
approach uses autocorrelation and cepstral analysis to extract
the signature of reverberation and then uses a frequency
domain filter to remove it and obtain reverberation-free Ps-
RF. Therefore, it is natural to combine both the techniques
to achieve a better crustal image in reverberant settings.

To demonstrate the possibility of applying our proposed
approach after filtering out reverberation, we select station
HENM located in the Upper Mississippi embayment, where
loose sediments are widely present (Fig. 7a). We obtain 192
high-quality (SNR > 2.0) teleseismic events (M, > 6.0,
30° < A < 90°% Fig. 7b) and calculate the Ps-RF traces using
the same method and parameters described earlier. We use a
P-wave velocity of 6.1 km/s in the H — « stacking at this station
following Liu et al. (2017). The raw Ps-RF traces show strong
reverberant behavior with no clearly identified phases
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(Fig. 7c) and therefore lead to a poorly constrained H — x stack-
ing image with multiple local maxima and an optimal stacking
solution at the boundary of the search range (Fig. 7g).
We apply the FADER workflow and estimate a two-way travel
time (of the S waveleg trapped in the sediment layer) of 1.18 s
and a reverberation strength (at the sediment-crust boundary)
of 0.70 (see Fig. S2). A frequency domain resonance removal
filter is then designed and applied to the raw Ps-RF traces, which
effectively eliminates the resonant noise, making the direct con-
version from the Moho clearly visible at around 5 s,
along with the two multiple phases at around 14 s and 17 s,
respectively, although not as coherent (Fig. 7d). This results
in a much better constrained H — « stacking image, with an opti-
mal solution of 34.0 km for H and 1.85 for x (Fig. 7h; see Table 1
for the 90% error range). Applying the proposed approach in
this study further eliminates all phases and background noise
except for the Moho phases, resulting in a clean, noise-free
Ps-RF image (Fig. 7e). The consequent H — x stacking gives
the same solution of H = 34.0 km and x = 1.85, with an even
narrow 90% error range (38% narrower for H and 42% narrower
for k) (compare Fig. 7h and 7i; see also Table 1). Applying the
H - « stacking directly on the Radon image after crustal mask
filtering yields a similar result (Fig. S1b). This result differs from
those documented in the EARS database (H = 28 km, x = 1.76)
due to the extra processing step of FADER but is consistent with
Liu et al. (2017), which implemented a similar reverberation
removal technique and reported a Moho depth of 34.1 km
and a P-to-S velocity ratio of 1.85.

The shallow layer reverberations commonly observed in geo-
logical settings such as sediments, oceans, and glaciers are a spe-
cial complicating case where near-surface crustal structure
hampers the reliability of Ps-RF imaging results. Other cases
include a crust-to-mantle transition that is gradational or a com-
plex crustal structure, for example, dipping Moho, intracrustal
layers, and crustal anisotropy (Frederiksen and Bostock, 2000;
Ogden et al.,, 2019; Shi et al., 2023). In these cases, the crustal
properties deviate from the simple case considered in our syn-
thetic experiments (a single layer with a sharp Moho). For
instance, in the data example of station WCN we showed earlier,
a strong negative phase with a negative moveout can be observed
at ~7 s in the raw Ps-RF traces (Fig. 6b) and also in the negative
curvature domain of the Radon image (Fig. 6f). This phase is
likely a multiple reflection generated at a shallow interface
within the crust. In addition, complicated phases with alternate
positive and negative amplitudes are observed at ~10-12 s
(Fig. 6b), possibly indicating the presence of upper mantle
anisotropy. In this case, a joint interpretation of radial and trans-
verse RFs may aid in identifying complex structural features.
Although we have demonstrated that our data processing work-
flow can robustly recover the bulk crust properties, we recom-
mend caution when applying our proposed approach under
these circumstances due to the difficulty of interpreting a
possibly more complicated Radon image.
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Improving constraints on crustal composition and
evolution

P-to-S§ velocity ratio (k) can be directly converted to Poisson’s
ratio (¢) (Christensen and Fountain, 1975):

il

Improved resolution of x following denoising provides
much tighter constraints on the inferred crustal composition,
providing important information on the geological evolution
of the Earth’s crust (Zandt and Ammon, 1995; Stankiewicz
et al., 2002; Guo et al., 2019). For instance, an increase in pla-
gioclase content and a decrease in quartz can increase the

1

o= 0.5[1 -~ (5)
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Figure 7. (a) Location and geological settings of station HENM. Red triangle
indicates the station location. The bottom-right inset map shows the
location of the study area relative to the contiguous United States.

(b) Location of the teleseismic events used in the RF calculation. (c) Raw
Ps-RF traces calculated at station HENM plotted against epicentral
distance. Theoretical arrival times of PmS, PPmS, and PSmS phases are
calculated from the H — « stacking result and plotted in solid black lines.
(d) Ps-RF traces after reverberation removal. (e) Ps-RF traces after
reverberation removal and applying the modified CRISP-RF workflow.
(f) Sparse Radon model of the raw Ps-RF shown in panel (d) obtained from
the CRISP-RF workflow. The crustal mask is indicated in faded color.
(g) H — « stacking of the raw Ps-RF shown in panel (c). (h) H — x stacking
of the processed Ps-RF shown in panel (d). (i) H — x stacking of the
processed Ps-RF shown in panel (e). The color version of this figure is
available only in the electronic edition.
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Poisson’s ratio from 0.24 for a granitic rock to 0.27 for a diorite
and to 0.30 for a gabbro (Tarkov and Vavakin, 1982).

RF imaging studies have routinely used this sensitivity of
crustal composition to Poisson’s ratio to study how bulk com-
position varies for different geological terranes. For example,
thanks to the massive high-quality seismic data from USArray
and EARS (Philip Crotwell and Owens, 2005), Lowry and Pérez-
Gussinyé (2011) proposed a feedback mechanism for which
ductile strain first localizes quartz-rich, weak crust, leading to
processes that promote advective warming, hydration, and fur-
ther weakening, based on the correlation between low Poisson’s
ratios, higher lithospheric temperatures, and deformation in the
Cordillera region. Similarly, Ma and Lowry (2017) estimated the
seismic velocity ratios across the continent United States and
suggested Cordilleran high heat flow may partly reflect crustal
hydration enthalpy. Other examples include Audet et al. (2009),
which implied high pore-fluid pressures and thus an overpres-
sured subducted oceanic crust at northern Cascadia indicated by
anomalously high Poisson’s ratio and He et al. (2013), which
suggested a dominantly felsic lower crust and the presence of
lower crustal delamination in the Cathaysia block in Southern
China from the low Poisson’s ratio.

The reliability of these interpretations depends heavily on
the accuracy of the P-to-S velocity ratio (k) estimation. We
have shown that by denoising the Ps-RF using our proposed
approach, the measurement error for x in the traditional
H — « stacking can be greatly reduced (Table 1), enabling more
robust estimation of crustal structures.

Application of Radon transform in seismic signal
processing

We have applied a sparse Radon transform in high-resolution
Ps-RF imaging of sharp discontinuities. Because we have
demonstrated earlier, this data processing technique can be
beneficial not only when imaging upper mantle discontinu-
ities, as suggested by Olugboji et al. (2023), but also for
improved detection of multiple reflected phases when imag-
ing the crust. The Radon transform maps the coherent phases
in the time-domain Ps-RF traces onto the Radon model based
on their moveout and amplitudes. The same philosophy
is also applicable to other seismic imaging techniques, for
example, top- and bottom-side reflections, because each
arriving phase also follows a distinct moveout (Gu et al,
2009; Gu and Sacchi, 2009). In these cases, modifications
to equations (2)-(4) are needed, as the theoretical arrivals
in these observations are different, and their relationship with
slowness or epicentral distance may be different (e.g., linear
instead of parabolic).

CONCLUSION

In this study, we use a sparsity-promoting Radon transform to
decompose the Ps-RF into its scattered wave contributions,
that is, direct conversions, multiples, and incoherent noise.
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By applying a specially designed crustal mask to the Radon
model and transforming the now filtered Ps-RFs into the time
domain using an adjoint Radon transform, a set of clean, noise-
free Ps-RF traces is obtained. This leads to robust interpreta-
tions of crustal structure. This technique for crustal imaging
using Ps-RFs is a modification to the CRISP-RF workflow pro-
posed by Olugboiji et al. (2023), which originally targets upper
mantle discontinuities. We demonstrate using both synthetic
experiments and real-data examples that our approach can
effectively denoise the Ps-RF traces and extract all Moho
phases, and therefore greatly reduce the error range in the
grid search for crustal parameters. We also demonstrate the
CRISP-RF denoising with a simultaneous dereverberation
technique proposed by Zhang and Olugboji (2021, 2023),
which improves crustal imaging beneath reverberant layers.
In the presence of complex crustal structures, for example, dip-
ping Moho, intracrustal layers, and crustal anisotropy, we rec-
ommend caution when applying our proposed approach due
to the difficulty of interpreting a possibly more complicated
Radon image. We anticipate that our approach will enable
high-resolution crustal imaging with noisy teleseismic RFs
and inspire more applications of the sparse Radon transform
for seismic imaging.

DATA AND RESOURCES

All seismic data used in this study can be obtained from
the Incorporated Research Institutions for Seismology Data
Management Center (IRIS-DMC, https://ds.iris.edu/ds, last accessed
December 2023) under the network codes NN (station WCN) and
NM (station HENM). Synthetic receiver functions (RFs) were com-
puted using the Telewavesim open-source Python library provided
by Audet et al. (2019). The extended-time multitaper deconvolution
program and the Clean Receiver Function Imaging using SParse
Radon Filter (CRISP-RF) data processing workflow are provided
by Olugboji et al. (2023), and can be retrieved from the open-source
repository at doi: 10.5281/zenodo.7996504. The FAst Detection and
Elimination of Echoes and Reverberations (FADER) data processing
workflow is provided by Zhang and Olugboji (2023) and can be
retrieved from the open-source repository at doi: 10.5281/zenodo.
6804873. The supplemental material includes Figure S1 of H -«
stacking on Radon images for real data examples and Figure S2 of
reverberation detection with FADER at station HENM.
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