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Abstract—Both the search for extraterrestrial intelligence
(SETI) and messaging extraterrestrial intelligence (METI) strug-
gle with a strong indeterminacy in what data to look for and when
to do so. This has led to attempts at finding both fundamental
mathematical limits for SETI as well as benchmarks regarding
specific signals. Due to the natural correspondence, previous
information-theoretic work has been formulated in terms of
communication between extraterrestrial and human civilizations.
In this work, we instead formalize SETI as a detection problem,
specifically (quantum) one-shot asymmetric hypothesis testing.
This framework holds for all detection scenarios—in particular,
it is relevant for detection of any technosignature, including
quantum mechanical signals. To the best of our knowledge, this is
the first work to consider the applicability of SETI for quantum
signals. Using this formalism, we are able to unify the analysis of
fundamental limits and benchmarking specific signals. To show a
distinction between METI and SETI, we show that significantly
weaker signals may be useful in detection in comparison to
communication. Furthermore, the framework is computationally
efficient, so it can be implemented by practicing astrobiologists.

Index Terms—Quantum Information Theory, Search for Ex-
traterrestrial Intelligence, Asymmetric Hypothesis Testing, One-
Shot Information Theory

I. INTRODUCTION & SUMMARY OF RESULTS

SETI, the Search for Extraterrestrial Intelligence (ETI), is an
ongoing international scientific project to study the detection
of ETI civilizations. These civilizations may either be our
contemporaries or have left remains of their civilization that
we may detect, referred to as rechnosignatures. This is a
difficult task because scientists do not know what signals
to expect nor when to expect them. It is therefore useful
to constrain the problem either through information-theoretic
limits or by benchmarking specific types of signals [1]-[3].
Previous information-theoretic considerations have presumed
communication with the ETI [4], [5], thereby conflating SETI
and METI (messaging with ETI). In this work we avoid this
conflation by viewing SETI as a detection problem rather than
a communication problem and explore both the fundamental
implications of the framework as well as its practicality in
analyzing specific signals.
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First, we argue why SETI should be viewed as asymmetric
one-shot hypothesis testing, which is captured by a semidef-
inite program (SDP). We do this in sufficient generality to
capture quantum mechanical as well as classical signals. This
establishes the limit of detection of independent and identically
distributed signals (i.i.d.) as being determined by Stein’s
lemma and its generalizations [6], [7]. Given the nature of
SETI, it is likely that signals would not be i.i.d. nor sufficiently
large block length for Stein’s lemma to hold, and so we derive
a generalization of the one-shot hypothesis testing SDP for
finite sets of null and alternative hypotheses. We then use this
to show for a finite set of i.i.d. null hypotheses and finite-
length messages, an optimal decision function exists and can
be computationally determined. We discuss what this would
imply for ETIs to design signals if they wish to prove their
existence. We also consider the possibility of an advantage to
using quantum signals.

Having established the general framework and the
information-theoretic limits, we then move on to exploring
what this framework tells us about specific choices of sig-
nals. First, we show that weak signals may be sufficient for
detection in contrast to communication. We then consider the
case of near earth projectiles which have had some recent
interest and and provide a numerical example to demonstrate
the practicality of this framework for benchmarking. Finally,
we discuss previously unconsidered implications for inscribed
matter and artificial transit signals given this framework.

II. SETI AND ONE-SHOT HYPOTHESIS TESTING

As the name suggests, SETI is looking to detect an ETI
civilization. Without loss of generality, this may be expressed
as the question “is the signal coming from a given spacetime
region generated by an ETI?” This question is clearly a yes or
no question, i.e. at most one bit of information. Then we can
view the signal as the input and the answer as a decoder, or
equivalently a decision function, which outputs either 1 (“yes”)
or 0 (“no”). We can denote the probability of false positives
and false negatives as «, 3 respectively. As the detection of
ETI is an exciting result, it is important that we avoid false
positives. As such, we should choose an upper bound on our
false positive and minimize (3 under this constraint. Letting
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a < e € (0,1) denote our upper bound, we talk of 3° as it’s
a function of this choice.

We then wish to express this as an optimization program in
sufficient generality to handle quantum mechanical signals.
Recall that for any finite alphabet X, we can talk of the
complex Euclidean space (CES) X := C> [8]. The space
of quantum probability distributions for a given CES, referred
to as density matrices, is defined as D(X) := {p € L(X) :
p =0, Tr(p) = 1} where L(X) is the set of endomorphisms
for CES X and > denotes the Lowner order. This is a subset
of the positive operators, denoted Pos(X). It is easy to see
that the space of classical probability distributions over X
are the diagonal matrices contained in D(X’). Also recall that
a positive-operator-valued-measure (POVM) is a finite set of
positive semidefinite operators {4, },c that sum to identity,
> wea Az = L. It may be shown that all maps from quantum
distributions to classical outcomes may be written in the form
S aen Tr(pAL) [2)al.

Combining our goals with this quantum information-
theoretic formalism, we obtain the following optimization
program:

min
0<A<I
Tr(poA)>1—e

B (pollp1) :== Tr(p14) , 1)

where A is the POVM element corresponding to deciding the
input was pg, and Tr(pgA) > 1—e guarantees « < . Thus we
have determined the essential formalism of the SETI problem
mathematically.

Note that all constraints in (1) are semidefinite constraints,
and so we have an SDP. As SDPs are efficient, for any choice
of null and alternative hypotheses and ¢ € (0,1), this may
be efficiently determined. Moreover, one can see that the
negative of the logarithm of the right hand side is the one-shot
hypothesis testing entropy [9] (See [10] for an in-depth review
of this entropy). It follows by the (quantum) Stein’s lemma that
if the null hypotheses are of the form p; = 52" for i € {0,1},
then for any ¢ € (0,1), lim,_, 55 = exp(—nD(op||o1)),
where D(-||-) is the quantum relative entropy. In other words,
for i.i.d. null and alternative hypotheses, one recovers the
Stein’s lemma as the fundamental limit of SETI for i.i.d.
signals.

A. Generalizing Beyond Stein’s Lemma

While Stein’s lemma may serve as the fundamental limit of
SETI for i.i.d. signals, it certainly is not universally relevant.
Beyond the fact that the second-order expansion for hypothesis
testing shows us that only long i.i.d. signals are even close to
the Shannon limit [11], we might also expect some technosig-
natures to have short message lengths or non-i.i.d. structure.
As such, it would be useful to characterize this setting as
well. To go beyond this setting one considers variations of
quantum Stein’s lemma. Such cases that have been considered
are the adversarial [6] and (a special case of) composite [7]

settings.! While these aforementioned results are useful in
proving fundamental limits, they only apply under certain
conditions. First, both the adversarial and composite testing
results only characterize the asymptotic limit, but it’s not clear
the signals will be long enough to achieve this Shannon limit.
Furthermore, the adversarial setting, to date, only applies to
quantum states under restricted measurements [6]. Similarly,
[7] only applies when the null and alternative hypotheses are
mixtures of i.i.d. states from some closed, convex set. In other
words, our concern is while these are more general, the results
don’t characterize short, unstructured signals as might arise in
the SETI setting. For this reason, we instead generalize (1) to
consider finite sets of hypotheses.

Definition 1: Let P, Q C Pos(X) be finite sets with index
alphabets A, respectively. Then we define the generalized
hypothesis testing optimization problem as

B5(P||Q) :=min
st. Tr(XP))>1-¢

Tr(XPlj)g'y
0=<X<I,7>0.

VieA

2
Viex @

It’s easy to see if P = {po}, @ = {p1}, the problem simplifies
to 5%(pol|p1). More generally, the solution is the minimal
probability of false negative for the entire set Q while the
false positive probability for the set P is less than €. One can
then derive the dual problem of (2):

maximize (1 —¢)|z||; — Tr(Z)
A =
subject to ZzlPé — Zv]-Pf <7
i=1 j=1
= 3)
> w <1, 0< V)
j=1
0=z 7.

It is straightforward to use Slater’s criterion to prove strong
duality and then use this to prove the following lemma (See
the long version of the paper [14] for the full derivation).
Lemma 1: Let P, Q C Pos(X) be finite sets and ¢ € [0, 1].
It holds
Ba(PlQ) = bu(Powl|Qew),

where R @ w = {R, Qw : R, € R} and w € D(W).

This result is not particularly surprising in the following sense.
Imagine we describe the signal over a time steps Jt as a state
over CES X. Consider two signals p, o € D(X®") of the form
p=p@wand 0 = 0y ® w where py,0; € D(X®F), ie.
the signals stop differing after time kdt has elapsed. Then
the above says you cannot distinguish them any better by
observing the last (n — k)dt time steps, which is intuitive.
Regardless, while the result itself seems straightforward, it is
sufficient for proving the following theorem.

'We note “the generalized quantum Stein’s lemma” [12] has recently been
shown to have a gap in its proof [13], and so we do not discuss it in this
manuscript.
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Theorem 2: Let X be a finite alphabet and X' := C* be

the corresponding CES. For all £ € [0, 1], given a finite set
of finite length signals Q C D(X®F), a finite set of possible
i.i.d. null hypotheses, P, := {p®" : p € D(X)}, the minimal
false negative is achieved in finite time and characterized by
B (Pxl1Q).
The intuition of this result is that at any signal length n’ > k,
one can truncate the signal at length £ and do just as well
given Lemma 1. This means the optimal decision function is
converged to at signal length k£ and that the fundamental limit
in this setting is characterized by (2). Moreover, and crucially
in terms of practicality, so long as the dimension of X®¥ is
manageable, the optimal decoder and false negative probability
may be computationally determined using (2) as it is an SDP.
We note that as noise from space is often i.i.d., Theorem 2
and the generalizations of the Stein’s lemma [6], [7] cover
the relevant case for SETI. While more general signals might
asymptotically converge, given our expectation that signals
would be either short or highly structured, we view these
sufficient for determining the limits of SETI specifically. We
leave further nuanced analysis to subsequent work.

B. Signal Design

Having established fundamental limits of SETI by viewing
it as one-shot asymmetric hypothesis testing, we note what
this would imply in the case that an ETI wishes to signal their
existence. In this case they have some constraints on their
device, for instance power, and they wish to maximize the
distinguishability of their signal from their assumed natural
noise model. In the case that they wish to design an i.i.d.
signal, given Stein’s lemma, they should measure distinguisha-
bility using relative entropy. Therefore, they should consider
the problem

sup D(N (po)||N (Pp)), ©)

Ppec
where pg denotes the ‘no signal’ input, A is the (assumed
memoryless) noise model and C is the set of distributions that
can be generated by devices allowed under the constraints.
We note even if C is a convex set, this would result in a
concave optimization problem, but in specific cases it may
still be computationally manageable.

C. Quantum Signals

As our framework is general enough to handle quantum
mechanical signals, it is natural to ask if quantum mechanics
can provide an advantage. A common issue in achieving
advantages with quantum communication is the need for
reference frame alignment [15]. For example, the z,y, 2z co-
ordinates for defining the polarization of a state must agree
between sender and receiver in general for utilizing polarized
photons to transmit information. In our setting, this is avoided
because to mathematically represent the null and alternative
hypotheses we have assumed we know the reference frame of
the received signal. Further possible solutions to the reference
frame alignment problem could be macroscopic quantum

signals [16] or using superpositions of degrees of freedom
that don’t require aligned reference frames [17].

Under the assumption that quantum signals could be pos-
sible, there are various approaches to consider. One option
would be for there to exist a technosignature/civilization that
generates entangled states. Then under the assumption it is
unlikely to detect entanglement from natural noise, this could
result in an alternative hypothesis that is separated from all
classical null hypotheses. This is distinct from any classical
noise model which could not satisfy such a strong restriction.

Lastly, we note that for all relevant classical signals, if
quantum signals could be generated with the same ease and the
receiver’s reference frame were correct or not relevant, we can
conclude quantum signals could only help. This is effectively
a corollary of the data-processing inequality for /3°.

Proposition 1: For any classical distributions Py, Py, if
quantum signals are implementable, we can achieve at least
the same optimal false negative, 3¢, using quantum signals.
Moreover, there exist cases where the advantage is strict.

We note in the proof the strict advantage holds for classical
hypotheses Py = [0Y0[, P; = LI, and replacing the P, by
1 (1
PL=13511 1
advantage from coherence for such signals.

to achieve the advantage. This suggests an

III. EXAMPLES

Having established general fundamental limits, we now use
the same framework to analyze specific signals to garner
further insights as well as show the advantage of a compu-
tationally efficient general framework.

A. Electromagnetic Signals

As it is our own standard method of communication, a
traditional approach to both SETI and METI is electromag-
netic signals [18]. In such a setting, the standard limitation is
the power of the signal. If the signal had enough power, any
message could be transmitted. This is formally well known
in that the capacity of a Gaussian channel is unbounded
without a power restriction. Of course, as generating power
consumes resources, one would expect there to be constraints.
One common proposal is that if an ETI wished to signal its
existence, it would pulse a laser at its target. Such pulsing
would ideally be of an i.i.d. form, thereby making the Stein’s
lemma relevant in the large blocksize limit. It follows then
that we could consider the earlier signal design discussion,
particularly (4), to be refined for average and peak power
constraints:

max
Ep (Pinit) < Pay
f(Pinit) < Pmax

D(Motal (Pgm) ‘ |Motal<Pinit))a (5)

where P, is the initial distribution of the signal, f is a
function that calculates the power cost, P (resp. Pnax) 18
the upper bound on the average (resp. peak) power, Nyotal :=
N, o Ny o N is the total noise, N, is the noise at the
receiver’s end, N; is noise during the transmission, N is the
noise from the sender’s end, and Ep is the expectation of
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f(Pinit). If one assumes a specific noise model, this would
give a good approximation of the fundamental limit of the
distinguishability for a specific electromagnetic signal.

1) Weak Signals Can Be Sufficient for Detection: As the
power is a major limitation, it has been proposed in previous
works that electromagnetic signals are not the optimal manner
for communicating with ETI [4]. However, we argue this is
less straightforward in the detection setting where less power
may be sufficient. This can be seen in the following simple
example.?

We consider an ideal square pulsed laser as our source. For
clarity, we discretize the total signal as a sequence of length
n = 5. Assuming a power cutoff for the device and discretizing
the power, we assume each element of the sequence is an
element of the interval [0,g] C N. It follows the expected
optimal choice of the initial distribution could be written as
|0, P,0,0,0,), i.e. a delta distribution. We can imagine that
while there is no noise at the source, there is memoryless jitter
in the laser which with probability ¢/2 shifts the sequence
forward or backward one time bin. We therefore define the
distribution

Pinit = (1—q)|0,0,P,0,0>+% (0, P,0,0,0) +]0,0,0, P,0))

We assume the noise during travel A is loss-only, so that
for each time bin the map y — max(y — ¢,0) is applied,
where c is a function of the distance travelled and possibly the
conditions over the travel path. Finally, we assume the noise
at the receiver is composed of two maps. First we assume the
data is taken over a short enough time (as lasers can pulse
reasonably quickly) that the Sun is additive power so that for
each time bin the Sun is modeled by the map y — min(y +
s,g). The second map assumes with some probability there
is any given possible sequence, which allows us to guarantee
absolute continuity of the relative entropy. This is modeled
by a linear map on distributions, ¢ — (1 — d)q + ‘y‘swfyx",
where 1 is the all-ones vector, ¢ is any probability distribution,
and § € (0,1). Given these maps, one can determine Py, P;
from Pi,;. Under the assumption ¢ < P < g—s+c, one finds
that so long as ¢ # P, D(FPy||P1) is a non-zero constant (See
the long version of the paper [14] for the full expression). As
the assumption ¢ < P implies ¢ # P, the asymptotic error
rate for all powers in this range is the same.

In other words, the above example tells us that almost
any power will work. Of course, this is a simplistic model,
but the message is clear and significantly more general: a
detectable signal only requires distinguishability from the set
of null hypotheses, which is significantly less demanding
than distinguishing many messages. Moreover, while this has
been presented with a pulsed laser which implies an ETI
signalling its existence, this applies equally well for detecting
electromagnetic technosignatures. That is, this is an optimistic
takeaway for the success of SETI.

2See [14] for a more involved derivation.

B. Near Earth Projectiles

Having discussed the traditional method of electromagnetic
signals, we move to alternative methods of SETI. We stress
that some of these methods have been discussed under the
assumption that the signal was intentional, however this is not
relevant from the perspective of the mathematical framework.
This is crucial as much of SETI is interested in detecting
technosignatures that may not be intentional. What is im-
portant is the distinguishability between the technosignature
and the null hypothesis. For example, we first consider near
Earth projectiles, which we take to be any sequence of
macroscopic objects that passes near the Earth and could be a
technosignature. Under this definition, the recent ‘Oumuamua
[19], [20] would qualify as a near Earth projectile. While it has
been concluded to not be a technosignature [20], even if it had
been, it would not have mattered whether it was intentional or
not, and our framework captures this.

1) Simple Numerical Example: One purported advantage
of our framework is computational efficiency. Here we present
this with a simple example considering near Earth projectiles
by comparing distributions of meteors burning up in the
atmosphere, known as “meteor bursts.” A reason to consider
this example is that there are existing systems for monitoring
meteor bursts as we use their ionization trails for telecom-
munication systems [21], and so this data would be analyzed
anyways.

Mathematically, meteor bursts are found to be Poisson
processes: for any interval At, P[n meteors] = (Aﬁi't)"e)\m’
where A may depend on many things, such as the time
of day and year [21]. For simplicity, we assume a scaling
such that At = 1 and assume the ETI message begins
in this time interval. Using (1), we look at the probability
of missing an ETI signal (3°, denoted (,, as a function
of how many (additive) ETI meteors appear over the time
interval for two choices of A and three choices of ¢ which
corresponds to the maximum allowed error probability a.,. We
note that our numerical analysis must be finite, whereas the
Poisson process has a countably infinite number of outcomes.
This can be rigorously handled by truncating the tail of the
distribution, given the tail property of the distribution and the
data-processing inequality for 5°. We provide the results of our
example determined numerically using the CVXPY package
in Fig. 1.

The major takeaway of Figure 1 is that the error prob-
ability 3¢ does not scale linearly in «. Clearly the ability
to numerically investigate the system is an advantage for
benchmarking signals regardless of whether they are deliberate
or not. Moreover, it is one method for determining which
technosignatures are most likely to be detected, allowing the
scientific community to lower their resource to risk consump-
tion tradeoff.

C. Inscribed Matter

A similar method to near Earth projectiles is inscribed
matter [4]. This was originally proposed as a more energy-
efficient means of METI than electromagnetic signals. The
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Fig. 1: Error probability of the optimal decision function for
determining if there were extra detected meteors in a unit
interval as a function of the extra meteors. (a) is for natural
meteors distributed according to Pois(3), and (b) is for Pois(6)
(i.e. larger variance). Each plot is for three different tolerances
of false positive probability o, < €.

idea is to encode massive amounts of information on a small
piece of matter and then send that as the message. However,
this and subsequent work ignored that the message must be
noticed before any communication can be achieved. In other
words, achieving SETI is a necessary precondition for METI,
and it follows that there must be energy costs to the de-
tectability of the matter. By the data-processing inequality, one
would expect that the piece of matter should have macroscopic
properties that give rise to distinguishability from the local
surroundings. One would expect this would lead to an increase
in energy costs, and our framework would be useful for such
investigations. In particular, we propose the following (non-
linear) variation of one-shot hypothesis testing optimization
problem could be used to study specific proposals:

minimize (P, A)
0=XA=I,QeD(X)
(Py, Ay >1—¢ 6)
P =N, (Q)
EQ) <B,

where, X is the Euclidean space the designed signal @ is
defined over, E(-) is an energy cost function, B is a constraint
on the total energy, and N, is a linear map representing the
noise introduced to the design during transmission.

D. Transits

As a final method of signaling, we consider artificial transits.
Artificial transits are (ETI-constructed) objects which orbit

around stars. It has been shown that these could be detected
while searching for exoplanets as they result in strange de-
tected flux from the star [22]. While suggested as a means
for an ETI to deliberately signal its existence [22]-[24], it
is not unreasonable to imagine there would be reasons to
build artificial transits for other reasons. One advantage of
deliberate signals proposed in the previously mentioned works
is that they can cause the flux of the star to pulse for a much
longer time than a laser can be pulsed. In particular, the transit
can generate pulses long after the civilization has ceased to
exist. This would result in significantly larger block lengths.
By our discussion of the Stein’s lemma and it’s second-order
expansion, we can view our framework as giving a further
formal justification to the advantage of both the use of and
attempt to detect artificial transits.

IV. CONCLUSION

In this work we have made a strong distinction between
messaging and detecting extraterrestrial intelligent civiliza-
tions. By focusing on SETI as a detection problem, we
introduced a new general framework for analyzing SETI
in terms of one-shot hypothesis testing. This framework is
general enough to handle arbitrary technosignatures regardless
of if they are deliberately sent. We generalize this framework
to being able to handle finitely many null and alternative
hypotheses. This result combined with the generalized Stein’s
lemma captures all standard settings for SETI. We then use
this framework to explore the limits of deliberate signaling
design and the possibility of an advantage using quantum
signals. We then analyzed specific classes of signals. We
showed that in contrast with METI, signals with low power
may be sufficient for SETI. We presented an example of the
advantage of a computationally efficient framework. Lastly we
gave qualitative discussions on where our framework could be
applied quantitatively to analyze inscribed matter and artificial
transits. Our hope is this computationally efficient framework
may be of use to the general SETI community.
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