
Search for Extraterrestrial Intelligence as One-Shot

Hypothesis Testing

Ian George

Department of Electrical and

Computer Engineering,

Coordinated Science Laboratory

Urbana, IL, USA

igeorge3@illinois.edu

Xinan Chen

Department of Electrical and

Computer Engineering,

Coordinated Science Laboratory

Urbana, IL, USA

xchen146@illinois.edu

Lav R. Varshney

Department of Electrical and

Computer Engineering,

Coordinated Science Laboratory

Urbana, IL, USA

varshney@illinois.edu

AbstractÐBoth the search for extraterrestrial intelligence
(SETI) and messaging extraterrestrial intelligence (METI) strug-
gle with a strong indeterminacy in what data to look for and when
to do so. This has led to attempts at finding both fundamental
mathematical limits for SETI as well as benchmarks regarding
specific signals. Due to the natural correspondence, previous
information-theoretic work has been formulated in terms of
communication between extraterrestrial and human civilizations.
In this work, we instead formalize SETI as a detection problem,
specifically (quantum) one-shot asymmetric hypothesis testing.
This framework holds for all detection scenariosÐin particular,
it is relevant for detection of any technosignature, including
quantum mechanical signals. To the best of our knowledge, this is
the first work to consider the applicability of SETI for quantum
signals. Using this formalism, we are able to unify the analysis of
fundamental limits and benchmarking specific signals. To show a
distinction between METI and SETI, we show that significantly
weaker signals may be useful in detection in comparison to
communication. Furthermore, the framework is computationally
efficient, so it can be implemented by practicing astrobiologists.

Index TermsÐQuantum Information Theory, Search for Ex-
traterrestrial Intelligence, Asymmetric Hypothesis Testing, One-
Shot Information Theory

I. INTRODUCTION & SUMMARY OF RESULTS

SETI, the Search for Extraterrestrial Intelligence (ETI), is an

ongoing international scientific project to study the detection

of ETI civilizations. These civilizations may either be our

contemporaries or have left remains of their civilization that

we may detect, referred to as technosignatures. This is a

difficult task because scientists do not know what signals

to expect nor when to expect them. It is therefore useful

to constrain the problem either through information-theoretic

limits or by benchmarking specific types of signals [1]±[3].

Previous information-theoretic considerations have presumed

communication with the ETI [4], [5], thereby conflating SETI

and METI (messaging with ETI). In this work we avoid this

conflation by viewing SETI as a detection problem rather than

a communication problem and explore both the fundamental

implications of the framework as well as its practicality in

analyzing specific signals.

This material is based upon work supported in part by the National Science
Foundation under Grant 2112890.

First, we argue why SETI should be viewed as asymmetric

one-shot hypothesis testing, which is captured by a semidef-

inite program (SDP). We do this in sufficient generality to

capture quantum mechanical as well as classical signals. This

establishes the limit of detection of independent and identically

distributed signals (i.i.d.) as being determined by Stein’s

lemma and its generalizations [6], [7]. Given the nature of

SETI, it is likely that signals would not be i.i.d. nor sufficiently

large block length for Stein’s lemma to hold, and so we derive

a generalization of the one-shot hypothesis testing SDP for

finite sets of null and alternative hypotheses. We then use this

to show for a finite set of i.i.d. null hypotheses and finite-

length messages, an optimal decision function exists and can

be computationally determined. We discuss what this would

imply for ETIs to design signals if they wish to prove their

existence. We also consider the possibility of an advantage to

using quantum signals.

Having established the general framework and the

information-theoretic limits, we then move on to exploring

what this framework tells us about specific choices of sig-

nals. First, we show that weak signals may be sufficient for

detection in contrast to communication. We then consider the

case of near earth projectiles which have had some recent

interest and and provide a numerical example to demonstrate

the practicality of this framework for benchmarking. Finally,

we discuss previously unconsidered implications for inscribed

matter and artificial transit signals given this framework.

II. SETI AND ONE-SHOT HYPOTHESIS TESTING

As the name suggests, SETI is looking to detect an ETI

civilization. Without loss of generality, this may be expressed

as the question ªis the signal coming from a given spacetime

region generated by an ETI?º This question is clearly a yes or

no question, i.e. at most one bit of information. Then we can

view the signal as the input and the answer as a decoder, or

equivalently a decision function, which outputs either 1 (ªyesº)

or 0 (ªnoº). We can denote the probability of false positives

and false negatives as α, β respectively. As the detection of

ETI is an exciting result, it is important that we avoid false

positives. As such, we should choose an upper bound on our

false positive and minimize β under this constraint. Letting
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α ≤ ε ∈ (0, 1) denote our upper bound, we talk of βε as it’s

a function of this choice.

We then wish to express this as an optimization program in

sufficient generality to handle quantum mechanical signals.

Recall that for any finite alphabet Σ, we can talk of the

complex Euclidean space (CES) X := C
Σ [8]. The space

of quantum probability distributions for a given CES, referred

to as density matrices, is defined as D(X ) := {ρ ∈ L(X ) :
ρ ⪰ 0 , Tr(ρ) = 1} where L(X ) is the set of endomorphisms

for CES X and ⪰ denotes the LÈowner order. This is a subset

of the positive operators, denoted Pos(X ). It is easy to see

that the space of classical probability distributions over Σ
are the diagonal matrices contained in D(X ). Also recall that

a positive-operator-valued-measure (POVM) is a finite set of

positive semidefinite operators {Ax}x∈Λ that sum to identity,∑
x∈Λ Ax = I. It may be shown that all maps from quantum

distributions to classical outcomes may be written in the form∑
x∈Λ Tr(ρAx) |x⟩⟨x|.

Combining our goals with this quantum information-

theoretic formalism, we obtain the following optimization

program:

βε(ρ0||ρ1) := min
0≤A≤I

Tr(ρ0A)≥1−ε

Tr(ρ1A) , (1)

where A is the POVM element corresponding to deciding the

input was ρ0, and Tr(ρ0A) ≥ 1−ε guarantees α < ε. Thus we

have determined the essential formalism of the SETI problem

mathematically.

Note that all constraints in (1) are semidefinite constraints,

and so we have an SDP. As SDPs are efficient, for any choice

of null and alternative hypotheses and ε ∈ (0, 1), this may

be efficiently determined. Moreover, one can see that the

negative of the logarithm of the right hand side is the one-shot

hypothesis testing entropy [9] (See [10] for an in-depth review

of this entropy). It follows by the (quantum) Stein’s lemma that

if the null hypotheses are of the form ρi = σ̃⊗n
i for i ∈ {0, 1},

then for any ε ∈ (0, 1), limn→∞ βε
n = exp(−nD(σ0||σ1)),

where D(·||·) is the quantum relative entropy. In other words,

for i.i.d. null and alternative hypotheses, one recovers the

Stein’s lemma as the fundamental limit of SETI for i.i.d.

signals.

A. Generalizing Beyond Stein’s Lemma

While Stein’s lemma may serve as the fundamental limit of

SETI for i.i.d. signals, it certainly is not universally relevant.

Beyond the fact that the second-order expansion for hypothesis

testing shows us that only long i.i.d. signals are even close to

the Shannon limit [11], we might also expect some technosig-

natures to have short message lengths or non-i.i.d. structure.

As such, it would be useful to characterize this setting as

well. To go beyond this setting one considers variations of

quantum Stein’s lemma. Such cases that have been considered

are the adversarial [6] and (a special case of) composite [7]

settings.1 While these aforementioned results are useful in

proving fundamental limits, they only apply under certain

conditions. First, both the adversarial and composite testing

results only characterize the asymptotic limit, but it’s not clear

the signals will be long enough to achieve this Shannon limit.

Furthermore, the adversarial setting, to date, only applies to

quantum states under restricted measurements [6]. Similarly,

[7] only applies when the null and alternative hypotheses are

mixtures of i.i.d. states from some closed, convex set. In other

words, our concern is while these are more general, the results

don’t characterize short, unstructured signals as might arise in

the SETI setting. For this reason, we instead generalize (1) to

consider finite sets of hypotheses.

Definition 1: Let P,Q ⊂ Pos(X ) be finite sets with index

alphabets Λ,Σ respectively. Then we define the generalized

hypothesis testing optimization problem as

βε(P||Q) := min γ

s.t. Tr
(
XP i

0

)
≥ 1− ε ∀i ∈ Λ

Tr
(
XP j

1

)
≤ γ ∀j ∈ Σ

0 ⪯ X ⪯ I , γ ≥ 0 .

(2)

It’s easy to see if P = {ρ0},Q = {ρ1}, the problem simplifies

to βε(ρ0||ρ1). More generally, the solution is the minimal

probability of false negative for the entire set Q while the

false positive probability for the set P is less than ε. One can

then derive the dual problem of (2):

maximize (1− ε)∥z∥1 − Tr(Z)

subject to

|Λ|∑

i=1

ziP
i
0 −

|Σ|∑

j=1

vjP
j
1 ⪯ Z

|Σ|∑

j=1

vj ≤ 1, 0 ≤ vj ∀j

0 ⪯ z, Z .

(3)

It is straightforward to use Slater’s criterion to prove strong

duality and then use this to prove the following lemma (See

the long version of the paper [14] for the full derivation).

Lemma 1: Let P,Q ⊂ Pos(X ) be finite sets and ε ∈ [0, 1].
It holds

βε
H(P||Q) = βε

H(P ⊗ ω||Q ⊗ ω) ,

where R⊗ ω := {Rk ⊗ ω : Rk ∈ R} and ω ∈ D(W).
This result is not particularly surprising in the following sense.

Imagine we describe the signal over a time steps δt as a state

over CES X . Consider two signals ρ, σ ∈ D(X⊗n) of the form

ρ = ρ1 ⊗ ω and σ = σ1 ⊗ ω where ρ1, σ1 ∈ D(X⊗k), i.e.

the signals stop differing after time kδt has elapsed. Then

the above says you cannot distinguish them any better by

observing the last (n − k)δt time steps, which is intuitive.

Regardless, while the result itself seems straightforward, it is

sufficient for proving the following theorem.

1We note ªthe generalized quantum Stein’s lemmaº [12] has recently been
shown to have a gap in its proof [13], and so we do not discuss it in this
manuscript.
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Theorem 2: Let Σ be a finite alphabet and X := C
Σ be

the corresponding CES. For all ε ∈ [0, 1], given a finite set

of finite length signals Q ⊂ D(X⊗k), a finite set of possible

i.i.d. null hypotheses, Pn := {ρ⊗n : ρ ∈ D(X )}, the minimal

false negative is achieved in finite time and characterized by

βε(Pk||Q).
The intuition of this result is that at any signal length n′ ≥ k,

one can truncate the signal at length k and do just as well

given Lemma 1. This means the optimal decision function is

converged to at signal length k and that the fundamental limit

in this setting is characterized by (2). Moreover, and crucially

in terms of practicality, so long as the dimension of X⊗k is

manageable, the optimal decoder and false negative probability

may be computationally determined using (2) as it is an SDP.

We note that as noise from space is often i.i.d. , Theorem 2

and the generalizations of the Stein’s lemma [6], [7] cover

the relevant case for SETI. While more general signals might

asymptotically converge, given our expectation that signals

would be either short or highly structured, we view these

sufficient for determining the limits of SETI specifically. We

leave further nuanced analysis to subsequent work.

B. Signal Design

Having established fundamental limits of SETI by viewing

it as one-shot asymmetric hypothesis testing, we note what

this would imply in the case that an ETI wishes to signal their

existence. In this case they have some constraints on their

device, for instance power, and they wish to maximize the

distinguishability of their signal from their assumed natural

noise model. In the case that they wish to design an i.i.d.

signal, given Stein’s lemma, they should measure distinguisha-

bility using relative entropy. Therefore, they should consider

the problem

sup
PD∈C

D(N (ρ∅)||N (PD)), (4)

where ρ∅ denotes the ‘no signal’ input, N is the (assumed

memoryless) noise model and C is the set of distributions that

can be generated by devices allowed under the constraints.

We note even if C is a convex set, this would result in a

concave optimization problem, but in specific cases it may

still be computationally manageable.

C. Quantum Signals

As our framework is general enough to handle quantum

mechanical signals, it is natural to ask if quantum mechanics

can provide an advantage. A common issue in achieving

advantages with quantum communication is the need for

reference frame alignment [15]. For example, the x, y, z co-

ordinates for defining the polarization of a state must agree

between sender and receiver in general for utilizing polarized

photons to transmit information. In our setting, this is avoided

because to mathematically represent the null and alternative

hypotheses we have assumed we know the reference frame of

the received signal. Further possible solutions to the reference

frame alignment problem could be macroscopic quantum

signals [16] or using superpositions of degrees of freedom

that don’t require aligned reference frames [17].

Under the assumption that quantum signals could be pos-

sible, there are various approaches to consider. One option

would be for there to exist a technosignature/civilization that

generates entangled states. Then under the assumption it is

unlikely to detect entanglement from natural noise, this could

result in an alternative hypothesis that is separated from all

classical null hypotheses. This is distinct from any classical

noise model which could not satisfy such a strong restriction.

Lastly, we note that for all relevant classical signals, if

quantum signals could be generated with the same ease and the

receiver’s reference frame were correct or not relevant, we can

conclude quantum signals could only help. This is effectively

a corollary of the data-processing inequality for βε.

Proposition 1: For any classical distributions P0, P1, if

quantum signals are implementable, we can achieve at least

the same optimal false negative, βε, using quantum signals.

Moreover, there exist cases where the advantage is strict.

We note in the proof the strict advantage holds for classical

hypotheses P0 = |0⟩⟨0|, P1 = 1
2 I, and replacing the P1 by

ρ1 = 1
2

(
1 1
1 1

)
to achieve the advantage. This suggests an

advantage from coherence for such signals.

III. EXAMPLES

Having established general fundamental limits, we now use

the same framework to analyze specific signals to garner

further insights as well as show the advantage of a compu-

tationally efficient general framework.

A. Electromagnetic Signals

As it is our own standard method of communication, a

traditional approach to both SETI and METI is electromag-

netic signals [18]. In such a setting, the standard limitation is

the power of the signal. If the signal had enough power, any

message could be transmitted. This is formally well known

in that the capacity of a Gaussian channel is unbounded

without a power restriction. Of course, as generating power

consumes resources, one would expect there to be constraints.

One common proposal is that if an ETI wished to signal its

existence, it would pulse a laser at its target. Such pulsing

would ideally be of an i.i.d. form, thereby making the Stein’s

lemma relevant in the large blocksize limit. It follows then

that we could consider the earlier signal design discussion,

particularly (4), to be refined for average and peak power

constraints:

max
EP (Pinit)≤P av

f(Pinit)≤Pmax

D(Ntotal(ρ
⊗n
∅ )||Ntotal(Pinit)), (5)

where Pinit is the initial distribution of the signal, f is a

function that calculates the power cost, P av (resp. Pmax) is

the upper bound on the average (resp. peak) power, Ntotal :=
Nr ◦ Nt ◦ Ns is the total noise, Nr is the noise at the

receiver’s end, Nt is noise during the transmission, Ns is the

noise from the sender’s end, and EP is the expectation of

Authorized licensed use limited to: University of Illinois. Downloaded on October 31,2023 at 18:24:37 UTC from IEEE Xplore.  Restrictions apply. 



f(Pinit). If one assumes a specific noise model, this would

give a good approximation of the fundamental limit of the

distinguishability for a specific electromagnetic signal.

1) Weak Signals Can Be Sufficient for Detection: As the

power is a major limitation, it has been proposed in previous

works that electromagnetic signals are not the optimal manner

for communicating with ETI [4]. However, we argue this is

less straightforward in the detection setting where less power

may be sufficient. This can be seen in the following simple

example.2

We consider an ideal square pulsed laser as our source. For

clarity, we discretize the total signal as a sequence of length

n = 5. Assuming a power cutoff for the device and discretizing

the power, we assume each element of the sequence is an

element of the interval [0, g] ⊂ N. It follows the expected

optimal choice of the initial distribution could be written as

|0, P, 0, 0, 0, ⟩, i.e. a delta distribution. We can imagine that

while there is no noise at the source, there is memoryless jitter

in the laser which with probability q/2 shifts the sequence

forward or backward one time bin. We therefore define the

distribution

Pinit = (1−q)|0, 0, P, 0, 0⟩+
q

2
(|0, P, 0, 0, 0⟩+ |0, 0, 0, P, 0⟩)

We assume the noise during travel Nt is loss-only, so that

for each time bin the map y → max(y − c, 0) is applied,

where c is a function of the distance travelled and possibly the

conditions over the travel path. Finally, we assume the noise

at the receiver is composed of two maps. First we assume the

data is taken over a short enough time (as lasers can pulse

reasonably quickly) that the Sun is additive power so that for

each time bin the Sun is modeled by the map y → min(y +
s, g). The second map assumes with some probability there

is any given possible sequence, which allows us to guarantee

absolute continuity of the relative entropy. This is modeled

by a linear map on distributions, q 7→ (1− δ)q + δ
|Y×n| 1⃗Y×n ,

where 1⃗ is the all-ones vector, q is any probability distribution,

and δ ∈ (0, 1). Given these maps, one can determine P0, P1

from Pinit. Under the assumption c < P < g−s+c, one finds

that so long as c ̸= P , D(P0||P1) is a non-zero constant (See

the long version of the paper [14] for the full expression). As

the assumption c < P implies c ̸= P , the asymptotic error

rate for all powers in this range is the same.

In other words, the above example tells us that almost

any power will work. Of course, this is a simplistic model,

but the message is clear and significantly more general: a

detectable signal only requires distinguishability from the set

of null hypotheses, which is significantly less demanding

than distinguishing many messages. Moreover, while this has

been presented with a pulsed laser which implies an ETI

signalling its existence, this applies equally well for detecting

electromagnetic technosignatures. That is, this is an optimistic

takeaway for the success of SETI.

2See [14] for a more involved derivation.

B. Near Earth Projectiles

Having discussed the traditional method of electromagnetic

signals, we move to alternative methods of SETI. We stress

that some of these methods have been discussed under the

assumption that the signal was intentional, however this is not

relevant from the perspective of the mathematical framework.

This is crucial as much of SETI is interested in detecting

technosignatures that may not be intentional. What is im-

portant is the distinguishability between the technosignature

and the null hypothesis. For example, we first consider near

Earth projectiles, which we take to be any sequence of

macroscopic objects that passes near the Earth and could be a

technosignature. Under this definition, the recent ‘Oumuamua

[19], [20] would qualify as a near Earth projectile. While it has

been concluded to not be a technosignature [20], even if it had

been, it would not have mattered whether it was intentional or

not, and our framework captures this.

1) Simple Numerical Example: One purported advantage

of our framework is computational efficiency. Here we present

this with a simple example considering near Earth projectiles

by comparing distributions of meteors burning up in the

atmosphere, known as ªmeteor bursts.º A reason to consider

this example is that there are existing systems for monitoring

meteor bursts as we use their ionization trails for telecom-

munication systems [21], and so this data would be analyzed

anyways.

Mathematically, meteor bursts are found to be Poisson

processes: for any interval ∆t, P[n meteors] = (λ∆t)n

n! eλ∆t,

where λ may depend on many things, such as the time

of day and year [21]. For simplicity, we assume a scaling

such that ∆t = 1 and assume the ETI message begins

in this time interval. Using (1), we look at the probability

of missing an ETI signal βε, denoted βn, as a function

of how many (additive) ETI meteors appear over the time

interval for two choices of λ and three choices of ε which

corresponds to the maximum allowed error probability αn. We

note that our numerical analysis must be finite, whereas the

Poisson process has a countably infinite number of outcomes.

This can be rigorously handled by truncating the tail of the

distribution, given the tail property of the distribution and the

data-processing inequality for βε. We provide the results of our

example determined numerically using the CVXPY package

in Fig. 1.

The major takeaway of Figure 1 is that the error prob-

ability βε does not scale linearly in α. Clearly the ability

to numerically investigate the system is an advantage for

benchmarking signals regardless of whether they are deliberate

or not. Moreover, it is one method for determining which

technosignatures are most likely to be detected, allowing the

scientific community to lower their resource to risk consump-

tion tradeoff.

C. Inscribed Matter

A similar method to near Earth projectiles is inscribed

matter [4]. This was originally proposed as a more energy-

efficient means of METI than electromagnetic signals. The
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Fig. 1: Error probability of the optimal decision function for

determining if there were extra detected meteors in a unit

interval as a function of the extra meteors. (a) is for natural

meteors distributed according to Pois(3), and (b) is for Pois(6)
(i.e. larger variance). Each plot is for three different tolerances

of false positive probability αn < ε.

idea is to encode massive amounts of information on a small

piece of matter and then send that as the message. However,

this and subsequent work ignored that the message must be

noticed before any communication can be achieved. In other

words, achieving SETI is a necessary precondition for METI,

and it follows that there must be energy costs to the de-

tectability of the matter. By the data-processing inequality, one

would expect that the piece of matter should have macroscopic

properties that give rise to distinguishability from the local

surroundings. One would expect this would lead to an increase

in energy costs, and our framework would be useful for such

investigations. In particular, we propose the following (non-

linear) variation of one-shot hypothesis testing optimization

problem could be used to study specific proposals:

minimize
0⪯A⪯I,Q∈D(X )

⟨P1, A⟩

⟨P0, A⟩ ≥ 1− ε

P1 = Nn(Q)

E(Q) ≤ B ,

(6)

where, X is the Euclidean space the designed signal Q is

defined over, E(·) is an energy cost function, B is a constraint

on the total energy, and Nn is a linear map representing the

noise introduced to the design during transmission.

D. Transits

As a final method of signaling, we consider artificial transits.

Artificial transits are (ETI-constructed) objects which orbit

around stars. It has been shown that these could be detected

while searching for exoplanets as they result in strange de-

tected flux from the star [22]. While suggested as a means

for an ETI to deliberately signal its existence [22]±[24], it

is not unreasonable to imagine there would be reasons to

build artificial transits for other reasons. One advantage of

deliberate signals proposed in the previously mentioned works

is that they can cause the flux of the star to pulse for a much

longer time than a laser can be pulsed. In particular, the transit

can generate pulses long after the civilization has ceased to

exist. This would result in significantly larger block lengths.

By our discussion of the Stein’s lemma and it’s second-order

expansion, we can view our framework as giving a further

formal justification to the advantage of both the use of and

attempt to detect artificial transits.

IV. CONCLUSION

In this work we have made a strong distinction between

messaging and detecting extraterrestrial intelligent civiliza-

tions. By focusing on SETI as a detection problem, we

introduced a new general framework for analyzing SETI

in terms of one-shot hypothesis testing. This framework is

general enough to handle arbitrary technosignatures regardless

of if they are deliberately sent. We generalize this framework

to being able to handle finitely many null and alternative

hypotheses. This result combined with the generalized Stein’s

lemma captures all standard settings for SETI. We then use

this framework to explore the limits of deliberate signaling

design and the possibility of an advantage using quantum

signals. We then analyzed specific classes of signals. We

showed that in contrast with METI, signals with low power

may be sufficient for SETI. We presented an example of the

advantage of a computationally efficient framework. Lastly we

gave qualitative discussions on where our framework could be

applied quantitatively to analyze inscribed matter and artificial

transits. Our hope is this computationally efficient framework

may be of use to the general SETI community.
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