Check for
Updates

Real-time Spread Burst Detection in Data Streaming

HAIBO WANG?, University of Florida, USA

DIMITRIOS MELISSOURGOS®, Grand Valley State University, USA
CHAOQYI MA, University of Florida, USA

SHIGANG CHEN, University of Florida, USA

Data streaming has many applications in network monitoring, web services, e-commerce, stock trading, social
networks, and distributed sensing. This paper introduces a new problem of real-time burst detection in flow
spread, which differs from the traditional problem of burst detection in flow size. It is practically significant
with potential applications in cybersecurity, network engineering, and trend identification on the Internet.
It is a challenging problem because estimating flow spread requires us to remember all past data items and
detecting bursts in real time requires us to minimize spread estimation overhead, which was not the priority
in most prior work. This paper provides the first efficient, real-time solution for spread burst detection. It is
designed based on a new real-time super spreader identifier, which outperforms the state of the art in terms of
both accuracy and processing overhead. The super spreader identifier is in turn based on a new sketch design
for real-time spread estimation, which outperforms the best existing sketches.

CCS Concepts: « Networks — Network measurement; Network monitoring;
Additional Key Words and Phrases: Spread Burst, Real-time, Data Streaming

ACM Reference Format:

Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen. 2023. Real-time Spread Burst Detection
in Data Streaming. Proc. ACM Meas. Anal. Comput. Syst. 7, 2, Article 35 (June 2023), 29 pages. https://doi.org/
10.1145/3578338.3593566

1 INTRODUCTION

Data streaming is the continuous production of data items which must be immediately processed
to support real-time queries based on up-to-the-moment information. It has wide applications in
network monitoring, web services, e-commerce, stock trading, social networks, and distributed
sensing. Its growing practical importance is evident from industrial pushes (such as Amazon Kinesis
Streams [1]) that enable customizable streaming applications.

For example, the stream of packets that are received by a router’s network interface at tens of
millions of packets per second can be modeled as a data stream, with each data item (i.e., packet)
carrying a flow ID f and a data element e of interest, where f and e are defined based on application
need. All items (packets) with the same flow ID form a flow. We may also treat the stream of user
queries that arrive at an Internet search engine, the stream of purchases at an e-commerce site, the

“co-first authors with equal contribution.

Authors’ addresses: Haibo Wang, University of Florida, Gainesville, FL, USA, wanghaibo@ufl.edu; Dimitrios Melissourgos,
Grand Valley State University, Allendale, MI, USA, dmelissourgos@gmail.com; Chaoyi Ma, University of Florida, Gainesville,
FL, USA, ch.ma@ufl.edu; Shigang Chen, University of Florida, Gainesville, FL, USA, sgchen@cise.ufl.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

2476-1249/2023/6-ART35 $15.00

https://doi.org/10.1145/3578338.3593566

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.




35:2 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

stream of stock trades at an electronic exchange, or the stream of posts at a social network as a
data stream.

Much research interest in data streaming has been directed toward recording the data items
in compact and efficient data structures called sketches and extracting useful statistics from the
sketches (2, 4, 6, 7, 13, 18, 30, 31, 36, 37, 41-43, 46, 47]. They are very useful in dealing with an
extremely high data rate using limited resources, such as (1) monitoring a packet stream on the
data plane of a router at the network processor chip using SRAM and computation circuitry that
are also needed by key network functions such as packet forwarding, or (2) processing a data
stream of Internet searches, e-commerce purchases, stock trades, or social network posts by an
ordinary computer for cost and convenience reasons. Two basic statistics of common interest are
the number of items in each flow (called size) and the number of distinct items in each flow (called
spread). Sketches for flow spread are much more complex and expensive to operate than those for
flow size because they have to remember the past items and count only the new ones.

This paper investigates real-time spread burst detection in data streaming. We want to detect
burst increase, in which a flow’s spread suddenly jumps larger, burst decrease, in which a flow’s
spread suddenly drops significantly, and spread burst, which starts with a burst increase and follows
with a burst decrease. Detecting such patterns in real time has many important applications. We
give a few examples below.

e Cybersecurity: Consider the task of monitoring a packet stream with flow ID f being the
source address and data element e being the destination address/port in each packet. A burst
increase may suggest the onset of network scanning activity. Regularly-reoccurring spread
bursts may suggest scheduled scanning activities (such as some Internet worms, CodeRed
[22, 48] for instance). In another example, if we let f be the destination address and e being
the source address, a burst increase may suggest the onset of a denial-of-service attack.
Regularly-reoccurring spread bursts may suggest scheduled botnet activities.

o Network engineering: TCP’s congestion control can be gamed by creating a large number of
parallel connections. If we let f be the source address and e be the source port and destination
address/port, detection of burst increase and burst decrease provides additional information
for a router to intelligently drop packets against parallel connections during congestion.
In another example, if we let f be the URL in HTTP packets and e be the source address,
detection of bursts informs a web proxy to determine its caching priorities based on the
changing popularity of web content.

o Internet search: If we let f be the search keyword and e be the host address (or cookie) that
issues the search, a burst increase of a keyword indicates rising interest. If it follows with a
burst decrease, it suggests the interest is temporary.

e E-commerce: If we let f be the product ID and e be the customer that makes the purchase, a
burst increase (decrease) indicates the product is gaining (losing) popularity.

If we can detect bursts in real time, we can react to them in real time, by blocking out potentially
malicious sources, taking timely actions to improve network performance, or optimizing digital
ads based on the trends on Internet search or e-commerce.

Burst detection in data streaming has drawn research interest recently [23, 40, 45], but only for
bursts in flow size. This paper investigates burst detection in flow spread, which has never been
studied before. We use an example to illustrate the difference. Consider a packet stream with flow
ID f being the source address and data element e being the destination address/port. Suppose a
burst increase in flow size is defined as the number of packets sent by a source host jumps ten-fold
from one time unit to the next, whereas a burst increase in flow spread is defined as the number
of distinct destinations (that the source host contacts) jumps ten-fold from one time unit to the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:3

next. On the one hand, if a source host sends 1 packet in the first time unit and then 1 million
packets in the next unit, all to the same destination, then it has a burst increase in flow size, but
not in flow spread. On the other hand, if a source host sends 10 packets in the first time unit to the
same destination and then 10 packets in the next unit to different destinations, then it has a burst
increase in flow spread, but not in flow size.

The detection of spread bursts in real time is a technically challenging problem because it requires
us to estimate flow spreads at a high rate at the same time as we receive data items, whereas most
existing sketches for flow spread are optimized for recording (and compressing) data items in their
compact data structures [2, 4, 36, 37, 42, 47], but their spread estimation is much more expensive
and not suitable for real-time operations. This paper addresses the challenge with three major
contributions.

(1) We are the first to introduce the problem of detecting spread bursts and provide an efficient,
real-time solution that achieves good accuracy in detecting burst increase, burst decrease
and spread burst in our experiments using real network traffic traces.

(2) To support our work on spread burst detection, we design a new solution for real-time super
spreader identification, which outperforms the state of the art in terms of both accuracy and
processing overhead.

(3) An enabling component to our super spreader work is a new sketch design for per-flow
real-time spread estimation. It adopts a novel self-adaptive data structure to improve the
accuracy of spread estimation and lower the overhead in the meanwhile. It outperforms the
best existing sketches for flow spread.

The rest of the paper is organized as follows: Section 2 defines burst increase, burst decrease and
spread burst. Section 3 presents a self-adaptive sketch for spread estimation. Section 4 designs a
new sketch for real-time super spreader identification, on top of which Section 5 introduces our
solution for identifying spread bursts in real time. Section 6 presents our experimental evaluation
results. Finally, Section 7 draws the conclusion.

2 BURST INCREASE, BURST DECREASE AND SPREAD BURST

A data stream is a continuous sequence of data items that often arrive at a high rate, allowing
one to look at (or process) each item once before moving on to the next item without storing
the previous items. Each item is a pair of (f, e), where f is a flow ID and e is a data element. All
items carrying the same flow ID form a flow. The size of a flow is the number of items in the flow.
The spread of a flow is the number of distinct items in the flow, which is the focus of this paper.
We can use a counter to keep track of the size of a flow, but that is not adequate for the spread
because we need a data structure to remember the elements that have been seen so that we can
filter out duplicate items in the stream. Because the number of distinct elements in a large flow
can be in thousands or even millions, such a data structure has to be compact and efficient to
operate, but lossy due to compression of all the received items. Such a data structure is called sketch
[8-12, 15, 28, 29, 32, 34, 38, 39], which provides an estimate ﬁf for the true spread ne of flow f.

Problem Definition: We divide a data stream into epochs based on time (e.g., every 5 minutes
being an epoch). Consider an arbitrary flow f.Let nr ; be the spread of flow f in the ith epoch, i > 0.
We define a burst increase of flow f as it meets the following condition: Given two consecutive
(i — 1)th and ith epochs, with i > 0,

nei 2 ﬂ;
nfi-1 < ang;

(1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:4 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

where f is a threshold value and « is a fraction, which are both user-defined. For example, suppose
B =100 and « = 0.1. If we observe that the spread of a flow f is 10 in the 2nd epoch and the spread
is 110 in the 3rd epoch, then there is a burst increase of flow f between these two epochs.

Similarly, we define a burst decrease of flow f as it meets the following condition: Given two
consecutive (i — 1)th and ith epochs, with i > 0,

nei-1 = s
ang -1 > nf ;.

(2)

We define a spread burst of flow f as it meets the condition below: Given a sequence of consecutive
epochs from the (j — 1)th to the ith epochs, with j > 0and 1 <i—j <K,

burst increase happens to flow f from the (j — 1)th epoch to the jth epoch;

nex = B, Vk € [j,i); 3)
burst decrease happens to flow f from the (i — 1)th epoch to the ith epoch,

where K is a user-defined parameter. With this definition, the burst of high spreads is from the jth
epoch to the (i — 1)th epoch, with a length of (i — j) epochs. Note that the total length of the burst
(including the spread increase and spread decrease) is i — j + 2, which is in the range [1, K). For
example, suppose f = 100, « = 0.1 and K = 10. If we observe that the spread of a flow f is 10 in
the 2nd epoch, 110 in the 3rd epoch, 115 in the 4th epoch, and 9 in the 5th epoch, there is a spread
burst of flow f from the 2nd epoch to the 5th epoch, with a total length of 4. The burst of high
spreads is from the 3rd to the 4th epoch with length 2.

Recently, burst detection has gained interest in the research community [23, 40, 45]. However,
the prior work only considers bursts in terms of flow size (i.e., number of items in the flow), an
easier problem than the detection of burst increase and burst decrease in terms of flow spread
(i.e., number of distinct items in the flow), which has not been studied before, to the best of our
knowledge.

Real-time Challenge: We are interested in real-time detection, allowing real-time reaction to
the underlying issue such as an Internet worm outbreak or a denial-of-service attack. That requires
us to have an updated spread estimate 7y each time after we process a data item (f’ ).

Most existing sketches for flow spread are optimized for online recording of the items in their
compact data structures [2, 4, 36, 37, 42, 47], while providing spread estimate at the end of an epoch
offline. The online recording has to be done in real time at the arrival rate of the items, but spread
estimation can be done later. Hence, existing sketches often make the tradeoff in simplifying the
recording operation, while making spread estimation much more complex, which cannot be done
at a per-item level in real time.

Our challenge is to design a new spread sketch that minimizes the spread estimation overhead
for real-time operation, while not increasing the per-item recording overhead, in the meantime
increasing the accuracy of spread estimation. Moreover, we need a new design to identify the flows
whose spreads are beyond a threshold, also called super spreader identification, which is needed by
(1), (2) and (3). Again, the existing work either cannot identify such flows in real time [2, 4] or is
less accurate in doing so [24]. Our new design needs to identify super spreaders in real time as
data items are continuously processed and do so with an accuracy better than the state of the art.

When we use the estimated spread to check the conditions of (1), (2) and (3), it may result in false
positive (in which a burst is mistakenly reported) or false negative (in which a true burst is not
reported). Reducing false positive and false negative depends on the accuracy of real-time spread
estimation by our new designs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:5

3 SELF-ADAPTIVE SKETCH

In order to support timely burst detection, we need an efficient solution to the problem of real-time
super spreader identification, which in turn requires an efficient and accurate solution for real-time
flow spread estimation. In this section, we introduce a new self-adaptive sketch design, which
significantly outperforms the state of the art in spread estimation for a single flow.

3.1 Existing Sketches for Single-flow Spread Estimation

To measure the spread of a single flow, most prior work was based on bitmaps [9, 10, 28, 29, 34],
FM (Flajolet-Martin) sketches [12], LogLog sketch [8] or HLL (HyperLogLog) sketches [11, 15, 25,
32, 38, 39]. Among them, HLL sketches perform the best, with the largest estimation ranges and
the best overall estimation accuracy.

The data structure of HLL [11] is an array A of m registers, each of five bits. Consider a flow
f, which is recorded in A for spread estimation. For each arrival data item (f, e), we perform a
uniform hash h(e) € [0,m — 1), which maps the item to a register A[h(e)]. We then calculate a
geometric hash G(e), which can be implemented by counting the number of leading zeros from
another uniform hash H’(e) and then adding one, such that the probability of G(e) =i is 2% i>1.
To record the item, we let A[h(e)] := max{A[h(e)], G(e)}. To estimate the flow’s spread, denoted as

fir, we compute
m—1 -1
ﬁf = Qp - m? Z Z_Am)
i=0

where @, is a constant that can be calculated as a;, = 10+712i39 when m > 128. Refer to [11, 15] for
am under other values of m. With 5-bit registers, HLL can estimate flow spread up to many billions

(specifically a,, - medot23!), with a relative standard error of 1'—‘/Omﬁ.

The state of the art in HLL sketches includes an improved estimation approach for small flows
n [15], denoted as HLL++, and a Markov-chain-based design in [25], referred to as Streamed
HLL. Other variants of HLL include (1) using geometric hashes whose probability of G(e) = i
being a’ with a base a other than ; [32], which achieves modestly better accuracy in spread
estimation than [15] in some range of flow spread, but is less accurate in other ranges, or (2) using
register distribution with the maximum likelihood method for spread estimation [38, 39], which
achieves modestly better accuracy than [15], but incurs heavy computation overhead, making it not
suitable for supporting real-time flow spread queries. Overall, the stream HLL [25] achieves the best
computational efficiency (especially in query overhead) and the best accuracy as well. It reduces
the average relative estimation error by 22.1% over HLL++ [15] in our experiments (Section 6.2),
using real Internet traffic traces.

Below we introduce a new self-adaptive sketch design, which further reduces the average relative
estimation error by 36.4% over the Streamed HLL.

3.2 Self-Adaptive Sketch (SAS)

The estimation accuracy of HLL sketches is controlled by the number of registers m. Given a fixed
amount of memory, there is a tradeoff between the number of registers (estimation accuracy) and
the size of the registers (estimation range). To measure a flow of large spread, we should keep 5
bits per register for a large range. To measure a flow of medium or small spread, we do not need 5
bits for each register (where the higher-order bits would be mostly unused anyway); we may use
2 bits per register such that we have more registers for better accuracy. The problem is that we
do not know whether the flow’s spread will be large or small beforehand; that is what we want
to measure. Our idea of a self-adaptive sketch design, referred to as SAS, is to begin with 2-bit

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:6 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

m=4

A[0].b  A[1].b A[2]l.b A[3].b

|o|o|1|1|0|1|0|1|1|o|o|o|o|1|o|1lo|o|1|0| B=0
1 A1 4 1 l A[3]r4

A[0].r[0] A[2].r

A[0].r[1] A[2].r[1]
[o[o[1]1[of:[o]1]1]o]o[o[o[1]o]:[o]o]:]o]  B=1
— A A A —

A[0] A[1] A[2] A[3]

Fig. 1. lllustration of Self-Adaptive Sketch (SAS) with m = 4, i.e, four units of five bits each for A. The
interpretation of the units in A depends on the value of the sketchwide indicator B and the local indicator of
each unit (its first bit). When B = 0, each 5-bit unit will be interpreted either as two 2-bit registers or as one
4-bit register. For unit A[0], because its local indicator A[0].b is 0, the remaining four bits are interpreted as
two registers, A[0].r[0] = 012 and A[0].r[1] = 102. For unit A[1], because A[1].b = 1, the remaining four bits
are interpreted as a single 4-bit register, A[1].r4 = 0110;. Notice that the last four bits in both A[0] and A[1]
are 01102, but they are interpreted differently, depending on the local indicator. When B = 1, each 5-bit unit
will be interpreted as a single 5-bit register. For example, A[0] = 001102 and A[1] = 101105.

registers and merge 2 registers into a 4-bit register if one of them overflows. If any 4-bit register
overflows (which indicates a large-spread flow), we convert all registers to five bits. We inherit
five-bit registers from HLL, which measures flow spreads in the order of O(2*!). If one would use
six-bit registers, it could measure flow spreads in the order of O(2%%), but that would be unnecessary
for most practical applications.

Data Structure: SAS consists of (1) an array A of m five-bit units, denoted as A[i], 0 < i < m,
which are all initialized to zeros, (2) a one-bit sketchwide indicator B, initialized to zero, and (3) a
probability variable P, initialized to one. Let N be a spread estimate of a single flow, initialized to
zero.

When B = 0, each unit A[i] contains either two 2-bit registers or one 4-bit register, depending
on the value of the register’s local indicator (which will be introduced shortly). But after B is set to
one, all units A[i] will be interpreted as five-bit registers.

We focus on explaining the case of B = 0. Let’s first define some notations. Consider an arbitrary
unit A[i], 0 < i < m. Its first bit is a local indicator, denoted as A[i].b, which is initially zero. Its
second and third bits are denoted as A[i].r[0], which can be used as a 2-bit register. Similarly, its
fourth and fifth bits are denoted as A[i].r[1], another 2-bit register. We may also combine A[i].r[0]
and A[i].r[1] into a four-bit register, denoted as A[i].r4. We interpret unit A[i] as follows: When
Ali].b = 0, we interpret the other four bits in A[i] as two registers, A[i].r[0] and A[i].r[1]; when
Ali].b = 1, we interpret the other four bits in A[i] as one register A[i].r4. Refer to Fig. 1 for an
illustration.

Data Item Recording: For any arrival data item (f, e), we record the item in SAS by Algorithm 4
in Appendix A. We hash the item to unit A[A(f, e)]. If B = 1, this is a five-bit register where the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:7

item will be recorded. If B = 0 and A[h(f,e)].b = 1, the item will be recorded by the four-bit
register A[h(f, e)].r4 instead. If B = 0 and A[h(f, €)].b = 0, we need another hash h’(f, e) € {0, 1}
to further map the item to A[h(f, e)].r[h’'(f, e)], which is a two-bit register. In all the above cases,
we compute a geometric hash G(f, e), and the mapped register will be updated to G(f, e) only if
G(f, e) is larger than the current register value. Hence, this update is probabilistic. We maintain a
variable P, which at all time equals the probability for a new arrival item to cause an update to A,
which will be formally stated in a theorem and proved in Appendix B. P is the sum of the update
probabilities over all registers. Let p(a) be the probability that a register a € A is updated, where
the array A can be interpreted as a set of registers. P = ), 4 p(a), where p(a) is the product of
the probability for a new item (f, e) to be hashed to a and the probability of G(f, e) > a, which
causes update. Initially, because all registers are zeros and G(f, e) > 1, we must have P = 1. With
an update of a register a to value G(f, e), we need to update P because p(a) changes. The expected
number of new items to cause an update is 1%. So when an update event happens, we increase the
spread estimate N by %.

We now explain the details on how to update the register and the value of P. We must handle
register overflow. First, consider the cases when B = 0.

(1) If A[h(f, e)].b = 0, G(f,e) > A[h(f,e)].r[h'(f,e)] and G(f,e) < 3, then we need to update
the 2-bit register A[h(f, e)].r[h'(f,e)] to G(f, e), where A[h(f, e)].r[h’'(f, )] is the register
that the data item (f, e) is mapped to. It will not cause overflow because G(f,e) < 3. We
also need to update P because p(A[h(f, e)].r[h’'(f, e)]) changes. The probability of hashing
to unit A[h(f,e)] is L. There are two 2-bit registers in it. So the probability of hashing

to Alh(f,e)].r[h'(f,e)] is ﬁ The probability for a geometric hash G(f, e) to be greater
than A[h(f,e)].r[h'(f,e)] is 27 APE-OLr IR (F.0)] Hence p(A[h(f,e)].r[h'(f,e)]) is equal to
ZAMTOLIT O] ofore register update. With the update of A[h(f, e)].r[h’(f,e)] to 2760>€),

2m
this probability becomes 2~C¢¢) for future data items.

o—Alh(f.e)l.r[(f.e)]  9-G(f.e)
P:=P- + ;
2m 2m 4)

A[h(f, e)l.r[h'(f.e)] := G(f.e),

where “:=" is the assignment operator.

(2) L A[h(f,e)].b = 0, G(f,e) > A[h(f,e)].r[h'(f,e)] and 3 < G(f, e) < 15, then there will be
overflow if we set the 2-bit register A[h(f, e)].r[h’(f, e)] to G(f, e). We need to combine two 2-
bit registers to one 4-bit register A[h(f, e)].r4 by setting the local indicator A[A(f, e)].b. Recall
that P is the sum of the update probabilities over all registers. Because we combine two regis-
ters into one, we must subtract the update probabilities of the two registers, A[A(f, )].r[0] and
A[h(f, e)].r[1], from P and then add the update probability of the new register A[h(f, e)].r4,
whose value is G(f, e). Note that the probability of hashing to A[A(f, e)].r[0] or A[h(f, e)].r[1]
is ﬁ, and the probability of hashing to A[h(f, e)].r4 to %

9—AlA(f.e)l.r[0] 4 9-AlR(f.e)l.r[1]  9-G(f.e)
P = P - + ;
2m m

Alh(f,e)].r4 := G(f,e); 5)
A[h(f,e)].b := 1.

(3) fA[h(f,e)].b = 1,G(f,e) > A[h(f,e)].r4 and G(f, e) < 15, then we need to update the 4-bit
register A[h(f, e)].r4 to G(f, e). Note that with A[h(f,e)].b = 1, A[h(f, e)] is interpreted as
having a 4-bit register A[h(f, e)].r4. The probability of hashing to A[h(f,e)] is % and the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:8 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

m=4

A[0].b  A[1].b  A[2].b A[3].b

T T T T Initialization

008 BB 208 BE &0t BE 0O BE e
N=0.00

P=1.00
A[0].r[0]|A[1].r[0]]A[2].r[0]|A[3].r[0]

A[0].r[1] A[1].r[1] A[2].r[1] A[3].r[1]

A[0].b  A[1]l.b  A[2].b  A[3].b

T T T T <fe;> <fey>

[lolL Ll Tl e [LTlofe] K25 60 mes.10

P=0.91 P=0.80
A[0].r[0]|A[1].r[0]|A[2].r[0]A[3].r[0]

A[0].r[1] A[1].r[1] A[2].r[1] A[3].r[1]

A[0].b  A[1]l.b  A[2].b  A[3].b

T T T T <fie3> <fey>

[elolel[ofefolelo]:}: I°| LIl ¢23 56 nesro

P=0.73 P=0.61
A[0].r[0]|A[1].r[0] A[3] r[0]

A[0].r[1] A[1].r[1] A[3].r[1]

<feg>

B=1
[ololo]t[ofe[o]o]o[fe[o]]o[of o]o]o[:}
N=6.36

P=0.20

A[0] Al1] Al2] A[3]

Fig. 2. lllustration on how the registers in SAS evolve as data items are recorded. There are four rows of
register arrays in the figure. Initialization is shown in the first row, where A has four units of 5 bits each,
with B =0, N =0 and P = 1. When (f, e1) arrives, suppose that it is hashed to A[0].r[1] and G(f, e1) = 2,
thus A[0].r[1] = 2 = 103, N = 1.00, and P = 0.91, according to our algorithm, as shown in the second row.
When (f, e2) arrives, suppose that it is hashed to A[2].r[0] and G(f, e2) = 3, thus A[2].r[0] =3 =112, N is
increased by 1% to 2.10, and then P is changed to 0.80, also shown in the second row. When (f, e3) arrives,
suppose that it is hashed to A[1].r[1] and G(f, e3) = 1, thus A[1].r[1] =1 = 012 = 1, N = 3.36, and P = 0.73,
as shown in the third row. When (f, e4) arrives, suppose that it is hashed into A[2].r[0] and G(f,e4) = 4
which is larger than the current value of A[2].r[0]. Because A[2].r[0] cannot store G(f, e4) without overflow,
we combine A[2].r[0] and A[2].r[1] into A[2].r4 by setting A[2].b = 1 and A[2].r4 = 4 = 0100,. Then, N = 4.72
and P = 0.61. Finally, when (f, es) arrives, suppose that it is hashed to A[3].r[0] and G(f, e5s) = 17, which
will overflow A[3].r[0]. We need a 5-bit register to store G(f, e5). We turn all units to 5-bit registers and let
B = 1. We set A[3].r[0] = 17 = 100013, N = 6.36 and P = 0.20, as shown in the last row.

probability for this register to be updated by a new item changes from 2-Alh(f>€)l to 2-G(f>e)
as the register value is changed.

2—A[h(f,e)].r4 Z—G(f,e)
P:=P- + ;
m

m (6)
A[h(f, e)].r4 :== G(f,e).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:9

(4) If G(f,e) > 15, there will be overflow because with B = 0, all registers are 2-bit or 4-bit
long and none can hold G(f, e). We set B = 1 and combine the registers in each unit A[i],
0 < i < m, to a single 5-bit register by taking the maximum value of the registers in the unit.
Since the values of many registers may have changed, we recompute P by summing the new
update probabilities over all 5-bit registers:

7 9-All]
2
P:= . 7
Z(; - )
We then update the value of A[h(f, e)] to G(f, e) unless G(f, e) > 31, in which case A[A(f, e)] =
31. With this update, we need to change the value of P accordingly.

P {P_ 2L 4 2900 i G(fe) < 31

(®)

e

P - 2 e G(fe) > 31
The correctness of the formulas for updating P is stated in Theorem 1, which is proven in
Appendix B.

Next, consider the case when B = 1. If G(f, e) > A[h(f, e)] and A[h(f, e)] < 31, then we update the

value of P the same way as in (8) and let A[h(f, e)] := min{G(f, e), 31}.

THEOREM 1. At any time the value of P in SAS is equal to the probability for the next arrival data
item to update the value of a register.

The proof of the above theorem can be found in Appendix B. Figure 2 gives an example of how
data items are recorded by SAS.

Estimation Accuracy: The standard error of spread estimate by HLL [11] is bm d2(n), where n

ym
is the real flow spread, m is the number of registers, |5,(n)| < 5-107* for m > 16 as n — oo, and fB,,,
is a function of m: f15 = 1.106, f32 = 1.070, fea = 1.054, P128 = 1.046, fos = 4/310g(2) — 1 = 1.03896.
The standard error decreases when m increases.

This result applies to SAS, with its standard error being % + d2(n), where m’ is the total number
of variable-sized registers in A. In the worst case, SAS becomes HLL when B = 1, i.e., all registers
are converted to five bits long and thus m’ = m. But its performance is better than HLL when B = 0

and m’ > m.

Spread Estimation: The variable N provides an up-to-date estimate of the flow’s spread at any
time. There is essentially no query overhead.

4 REAL-TIME SUPER SPREADER IDENTIFICATION

We now consider a data stream of numerous flows. We divide the time into epochs. To support
timely burst detection (in the next section), we design a real-time super spreader identifier that
processes the data stream in each epoch and implements the following two functions:

(1) real-time super spreader identification. It identifies in real time the flows whose spreads are
greater than a user-specified threshold in an epoch, and returns the IDs and the estimated
spreads of those flows.

(2) per-flow spread estimation. It can provide an estimate for the spread of any given flow at any
time.

4.1 Existing Work on Super Spreader Identification

The prior work on super spreader identification can be broadly categorized as either sampling-based
[2, 5, 17, 27, 44] or sketch-based [7, 19, 20, 24, 33].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:10 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

The sampling-based solutions [5, 17, 27, 44] monitor only a portion of the flows by sampling.
They only consider the data items whose hash values are smaller than a pre-specified threshold,
which controls the sampling probability. They store the flow IDs of the sampled items and estimate
the spread of each flow based on its sampled items. They can then identify the super spreaders from
the sampled flows. Note that the super spreaders are more likely to be sampled while most small
flows will be filtered out. The best sampling-based solution is a recently published work called
AROMA [2, 4]. AROMA does not support real-time identification of super spreaders. That would
require spread estimation at a per-item basis, which AROMA does not support, because of high
overhead. None of the sampling-based solutions support per-flow spread estimation. Nonetheless,
we will compare with AROMA on the accuracy of super-spreader identification.

The sketch-based solutions summarize the information of all items in sketches. Most of them
[7, 19, 20, 33] are designed to recover the super spreaders offline. They usually suffer from high
overhead of recovering super spreaders. The most recent work, called SpreadSketch [24], stresses the
importance of fast detection. It outperforms the prior sketch-based solutions in terms of detection
accuracy and detection overhead. Yet its processing overhead is still significant as our experiments
will demonstrate. Moreover, its accuracy in super spreader identification is much worse than
AROMA [2, 4].

4.2 New Design for Real-time Super spreader Identification

We introduce a new design for Real-time Super spreader Identifier, referred to as RSI, which
adopts SAS as a building block for its efficiency and accuracy in spread estimation. It detects super
spreaders in real time and provides a spread estimation for any flow at any time. Our experimental
results show that its processing overhead is much smaller than SpreadSketch [24], while its overall
accuracy is better than AROMA [2, 4], under the same memory usage.

Data Structure: The data structure of RSI consists of (1) a hash table T that stores a subset of
selected flows, with each table entry having a flow ID field and an estimated spread field — we
will report a flow as a candidate super spreader if its estimated spread reaches a user-specified
threshold ¢; (2) an array C of n SAS sketches, each of which operates independently — we do not
use each SAS sketch for a single flow, but use all SAS sketches together for spread estimation of
numerous flows in the data stream; and (3) a variant of conservative counter update sketch (CU)
[14], denoted as U, which enables per-flow spread estimation. The value of n is determined based
on the amount of memory allocated for RSL

Notations: The ith SAS sketch in C is denoted as C[i], for 0 < i < n. Its array of 5-bit units is
denoted as C[i].A4, its indicator is denoted as C[i].B, and its probability variable is denoted as C[i].P.
We do not need the variable N for spread estimation, which is now the job of U. The jth 5-bit
unit in C[i].A is denoted as C[i].A[j], 0 < j < m. If C[i].B = 0 and C[i].A[j].b = 0, we interpret the
remaining four bits of the unit as two registers, C[i].A[j].r[0] and C[i].A[j].r[1], each having two
bits. If C[i].B = 0 and C[i].A[j].b = 1, we interpret the remaining four bits of the unit as a single
4-bit register, C[i].A[j].r4. If C[i].B = 1, any unit C[i].A[j] is considered as a 5-bit register. The
CU sketch, i.e., U, is a two-dimensional counter array with d rows and w columns. Each counter
has [log(t + 1)] bits. The jth counter of the ith row in U is denoted as U[i][j], where 0 < i < d,
0 < j < w. The value of d is typically set to three or four. The value of w is determined based on
the amount of memory allocated.

Flow-SAS Mapping: We consider the case that the number of flows in a large data stream is far
greater than the number n of SAS sketches in C, so we cannot allocate one SAS sketch per flow. The
flows have to share the SAS sketches. To prevent a very large flow from turning all SAS sketches

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:11

Algorithm 1: Record a data stream in RSI
Input: (f,e),C,U

1 r=h"(f,e)

2 p = CIH(f)].P

3 Record (f, e) in C[H,(f)] with return value b

4 if b = true then

5 v = min{U[i][H/(f)] |0 <i < d}

6 for i €[0,d) do

7 if U[i)[H/(f)] <v+
L | ULIH (D) = o

then

=]
+ =

1
p

Arrived item <f,e>

N?ecording

c I C[0] I C1l I I Clil I Ic[n.z] I C[n-1]| array of SAS
/\ 1
Increase by —
p
| ] ] ] \ ] ] ]
U | | | |\ | | | d arrays of counters

If spread 2 t, insert f

. f e
T I ETTCE E— flow hash table

Fig. 3. Illustration on the operations of RSI for super spreader identification. Each arrival item (f,e) is
recorded by one SAS selected from C. If it causes a register update, we increase the estimated spread of flow
finU. If the estimated spread reaches the threshold, we will insert flow f and its estimated spread in T. For
all subsequent items of flow f, after they are recorded and if they cause register updates in C, we need to
update the flow’s entry in T for its increased spread estimate.

into 5-bit registers, we pseudo-randomly map each flow to k SAS sketches through hashing, where
k < n, and record its data items only in these k sketches, so that any large flow will not severely
impact any small flow, unless their k sketches completely overlap.

More specifically, each flow f is mapped to C[H;(f)], 0 < i < k, where H;(.) is a hash function
whose range is [0, n).

Flow-CU Mapping: Based on the standard operation of CU [14], each flow f is mapped to d
counters, U[i][H/(f)], 0 < i < d, where H/(.) is a hash function whose range is [0, w).

Data Item Recording: For any arrival data item (f, e), we record the item in a selected SAS sketch
in C by Algorithm 1. First, we use a hash value, r = h”(f, e) € [0, k — 1], to select an SAS, C[H,(f)].
Then we record the item in C[H,(f)] by Algorithm 4, which can be found in Appendix A. By
Theorem 1, the probability for the item to cause a register update is p = C[H,(f)].P. Hence, we
should increase flow f’s spread estimate by [l) This is done by increasing some of the d counters in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:12 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

U that f is mapped to as follows: Let v be the smallest value of the d counters. For the counters
that are smaller than v + 117’ we increase them to v + 1%. For the counters that are equal to or greater

than v + %, we keep them unchanged.

For each arrival data item, besides the overhead of recording it in a SAS sketch (which has been
discussed in Section 3.2) the additional overhead includes one hash h”(f, e) to select the SAS sketch
and d hashes for updating U. Because d is typically three or four, we may take bits from one hash
computation H*(f), log, w bits at a time to replace H/(f), 0 < i < d, if the number of output bits
in H*(f) is at least d log, w. That reduces d hashes to one hash for updating U.

Spread Estimation: Because flows share counters in U, as they increase their counters in recording,
they introduce inter-flow noise to other flows that share the same counters. To query for the spread
of any flow f, we return the minimum value of the d counters, U[i][H/(f)], 0 < i < d, which
carries the smallest noise.

Real-time Super Spreader Identification: For each arrival data item (f, e), after recording it
in C and increasing the d counters, we have the real-time estimate of the flow’s spread by taking
the minimum of the d counters. If it reaches the threshold ¢, we insert f into the hash table T as a
super spreader if it is not already there, and we set its estimated spread. If f is already in T, we
increase its spread estimate in the table by ’%. Figure 3 illustrates the operations of RSI for super
spreader identification.

5 REAL-TIME BURST DETECTION (RBD)

By the definitions in Section 2, we may detect a burst increase in real time; as the arrival of a data
item in flow f pushes the spread estimate higher to meet the condition of burst increase in (1),
we are able to detect it right away if we have the updated spread estimate. However, we can only
detect a burst decrease at the end of an epoch because the condition of burst decrease in (2) holds
at the beginning of each epoch but may be violated at any time as the flow’s spread increases. Only
if (2) holds at the end of the epoch, we can be sure that we have a burst decrease. Because a spread
burst consists of a burst increase and then a burst decrease, it is also true that we can only detect a
spread burst at the end of the epoch.

Consider a device processing a continuous high-rate data streaming, such as the network pro-
cessor chip in a router processing an incoming packet stream at tens of millions of packets per
second. Suppose that real-time spread burst detection, denoted as RBD, is one of the tasks by a
measurement module implemented in cache memory (such as SRAM) for high speed. Suppose that
RBD starts from the 0th epoch and processes the data stream, epoch by epoch, to detect all burst
increases, burst decreases, and spread bursts.

Data Structure: At the ith epoch, i > 0, the data structure of RBD consists of (1) RSI’s data structure
for recording the data items in the current epoch, denoted as C;, U;, and T;, with the threshold t = j,
(2) RST’s data structure from the previous (i — 1)th epoch, denoted as U;_1, and T;_1, and (3) a hash
table F storing the flows that had a burst increase less than K epochs ago and kept their spreads
above the threshold in each epoch since. These flows are candidates for spread burst detection.

At the end of the ith epoch, we will send the content of C;, U;, T; and F to an offline server, which
keeps all measurement results for long-term storage. We delete C;_;, U;_1, and T;_; locally, keep C;,
U; and T; for one more epoch, always keep F, and create C;.1, U4+ and Ti1 to start the (i + 1)th
epoch.

Per-item Operation and Real-time Detection of Burst Increase: For any arrival data item
(f,e), we record it by Algorithm 1 in C;, U; and T;. After recording, if the flow f is in T; and its

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:13

Algorithm 2: Real-time detection of burst increase by RBD
Input: (f,e), C;, U;, T;, Ui_1, Ti—1, F

1 Record (f,e) in C;, U; and T; by Algorithm 1

2 if f € T; and fiy ; is increased then

3 Look up in T;-; and U;—; for fif ;4

4 if Af ;1 <afif; then

5 Report a burst increase of flow f

L Insert f and i into F

6

Algorithm 3: Detection of burst decrease and spread burst by RBD
Input: (f,e), Ci, Ui, Ty, Uiy, Ti-1, F
1 for each flow f € T;_; do

2 Look up in T; and U; for 7ig ;

3 if anif ;4 > fiy; then

4 Report a burst decrease of flow f

5 if f € F then

6 L Report a spread burst of flow f

for each flow f € F do
8 Look up in T; and U; for 7ig ;

~

9 Flow f was inserted to F during the jth epoch
10 if fif ; < Bori—j=K then
11 L Remove f from F

estimated spread in the current epoch, denoted as 7y ;, is just updated, since if ; must be greater
than the threshold f, we need to check the condition for burst increase. To do so, we look up in
T;-, for the estimated spread of flow f in the previous epoch, denoted as 7if ;_;. If f is notin T;_y,
we compute fif ;1 from U;_y; see Section 4.2. If if ;1 < afif;, we report a burst increase for flow
f,and if f is not already in F, we insert flow f, together with i, into F. The pseudo code can be
found in Algorithm 2.

Detection of Burst Decrease and Spread Burst: At the end of the ith epoch, for each flow f
in T;-;, we know that its estimated spread 7if ;_; in the (i — 1)th epoch must be greater than the
threshold . We want to check the condition for burst decrease. To do so, we look up in T; for
the flow’s estimated spread in the ith epoch, 7is ;. If f is not in T;, we compute 7y ; from U;. If
afif ;1 > fig ;, we report a burst decrease for flow f.If f is in F, then we report a spread burst.

For each flow f in F, if fi ; < 8, we remove it from F. Suppose flow f was inserted into F in
the jth epoch, if i — j = K, we also remove f from F. Refer to Algorithm 3 for the end-of-epoch
operations.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup

We use four datasets for our experiments: (1) a synthetic dataset used for the evaluation of SAS,
(2) 12 hours of packet stream, extracted from one of the backbone infrastructure routers on our

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:14 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

campus, which contains 23,595,264 packets, (3) five CAIDA traces [26], which cumulatively contain
8,194,919,166 packets, and (4) an E-commerce dataset [16], where each item is a product review
record and there are 109,950,747 items in total. For all network datasets, each packet is modeled
as a data item (f, e). In the second dataset above, we identify 237304 flows in the packet stream.
From each packet’s headers, we extract the source IP address as the flow ID f, and the combination
of source port, destination IP and destination port as the element ID e. That helps a router to
catch parallel TCP connections during congestion by measuring flow spread, identifying super
spreaders, detecting burst increase and spread burst, as is explained in the introduction. We divide
the 12 hours of packet stream into 144 epochs of 5 minutes each. As an example, the first epoch
contains 173851 packets, among which 107708 are distinct. In the third dataset, we use the source
address as the flow ID and the destination address as the element ID e. The five traces, gathered
by five different routers in different years, each contain one hour of Internet traffic. Each of the
five one-hour CAIDA traces is divided into 60 one-minute epochs. For the E-commerce dataset, we
extract the product name as the flow ID, and the user name in each review as the element ID e.
Detecting burst increase, burst decrease, and spread burst can help track the popularity change
of products over time. The dataset contains a total of 206859 flows. It spans 61 days in the whole
October and November of 2019. We divide the dataset into 61 epochs, each lasting for 24 hours.
The performance metric for evaluating SAS (Self-Adaptive Sketch) is the standard error [35],

which is defined as \/Zfeg(nfr;ﬁf )2/(1Q] = 1), where nf is the true spread of flow f, 7is is the

estimate, and Q is the set of all flows in a stream.

The performance metrics for evaluating RSI (Real-time Super spreader Identifier) include (1)
number of true positives (TP), which are the reported flows that are truly super spreaders, (2)
number of false positives (FP), which are the reported flows that are not super spreaders, (3) number
of false negatives (FN), which are true super spreaders not reported, (4) F1-score given by the

formula F1 = m, which combines the impact of FP and FN with respect to TP, and (5)

average time for processing a data item (such as packet). Note that a higher F1-score indicates a
better performance, with F1 = 1 for the case of no FP and no FN.

The performance metrics for evaluating RBD (Real-time Burst Detection) include (1) number of
true positives (TP), (2) number of false positives (FP), (3) number of false negatives (FN), and (4)
F1-score.

In the next three subsections, we will evaluate SAS, RSI and RBD, respectively. For SAS, we
evaluate its estimation accuracy with respect to the state-of-the-art sketches for spread measurement
and we keep the memory a constant of 640 bits for all sketches and the register size (unit size in our
case) to 5 bits for all sketches. For RSI, we evaluate its performance on super spreader identification
with respect to the state-of-the-art solutions. It inherits the aforementioned parameters of SAS. Let
M be the total memory and M(U) be the memory allocated for its array U. In the experiments for RSI,
we set M to 2Mb, and vary the memory distribution M(U)/M and the number of hash functions d.
We will use the parameter configuration that performs best in the subsequent evaluation, including
the experiments for RBD.

6.2 Evaluation of SAS for Spread Estimation

We compare SAS with the state of the art, Streamed HLL [25], as well as the original HLL [11] and
its improvement HLL++ [15] on their estimation accuracy. As recommended by [15], the memory
is set to 640 bits for each sketch. That is, HLL++ has 128 5-bit HLL registers; Streamed HLL has
115 5-bit registers, two floats for storing the estimate and the probability respectively; SAS has 115
5-bit units, a 1-bit indicator, two floats for storing the estimate and P respectively.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:15

0.08

Standard Error
o
o
=~

0.02 Streamed HLL - —
HLL++ -----
0.00 HL| — —
0 2 4 6 8 10

Flow Spread (x10%)
Fig. 4. Standard error comparison among SAS, Streamed HLL, HLL++ and HLL.

We first use artificially generated flows with spreads ranging from 1 to 1000 (which covers most
flows in our packet stream to be used next). For each spread value, we generate 5000 flows of
that spread and run the four sketches in turn to provide a spread estimate before computing the
standard error. Fig. 4 presents the standard error comparison. Due to the self-adjusting design, SAS
outperforms HLL++ and Streamed HLL significantly. For example, SAS reduces the standard error
by 41.6% and 26.1%, compared to HLL++ and Streamed HLL, respectively, when the flow spread is
100. This accuracy improvement is important for the performance of RSI and RBD that are built on
top of it.

Next, we use our campus packet stream to evaluate. For each flow in each epoch, we run the
three sketches to each produce a spread estimate and calculate the standard error. The standard
error of all flows in all epochs (or flows with spread greater than or equal to 20) is presented in
Table 1. SAS reduces the standard error by 22.4% compared to Streamed HLL, which in turn reduces
the standard error by 16.2% over HLL++. From Fig. 4, we see that larger flows (with spreads no
smaller than 20) have larger standard errors. If we only consider these flows, the error reduction by
SAS over Streamed HLL is 20.4%, and the reduction by Streamed HLL over HLL++ is 16.2%.

Table 1. Standard errors for SAS, Streamed HLL and HLL++, using the campus packet stream. SAS reduces
standard error of all flows by 22.4% over Streamed HLL.

All flows Flows with spread > 20
SAS 0.00194 0.0301
Streamed HLL 0.00250 0.0378
HLL++ 0.00298 0.0451

6.3 Evaluation of RSI for Super Spreader Identification

The experimental configuration is described as follows: We use the campus packet stream. In each
epoch, the flows whose spreads are 100 or greater are super spreaders. Each counter in U is 7 bits
long, and we set t to 90. The value of ¢ controls the tradeoff between FP and FN; a smaller threshold
t will increase FP but reduce FN (which is often more important). Let M be the total memory and
M(U) be the memory allocated for U. Hence, the memory allocated for C is about M — M(U) as the
hash table T for super spreaders is typically small. We use the ratio M(U)/M to characterize the
memory distribution in RSI. When we increase an integer in U by a real number 1/p, our actual
implementation is to increase the counter by [1/p] with a probability of %.

We first evaluate the impact of d (number of counter arrays in U) and memory distribution on
the performance of RSI. Table 2 presents the average number of FPs, the average number of FN, and
the F1-scores with respect to d, under M(U)/M = 0.5 and M = 2Mb. The total number of true super
spreaders across all epochs is 23962, as shown in the second column under Ground Truth. Super

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:16 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

Table 2. Accuracy of RSl in FP, FN and F1-score with respect to d.

d Ground Truth Reported FP FN F1-score
1 23962 29184 5403 181 0.895
2 23962 26513 2689 138 0.944
3 23962 26428 2638 172 0.944
4 23962 26441 2633 154 0.945
5 23962 26469 2661 154 0.944
6 23962 26412 2627 177 0.944
7 23962 26481 2689 170 0.943
Table 3. Accuracy of RSl in FP, FN and F1-score with respect to M(U)/M.
M(U)/M | Ground Truth | Reported | FP | FN | Fl-score
0.4 23962 26426 2645 | 181 0.944
0.5 23962 26441 2633 | 154 0.945
0.6 23962 26517 2696 | 141 0.944
0.7 23962 26411 2634 | 185 0.944

spreaders are counted independently in each epoch. If a flow’s spread is 100 or greater in multiple
epochs, we try to detect it in all those epochs. The third through sixth columns present the number
of reported super spreaders, the number of false positives, the number of false negatives, and the
F1-score, respectively.

As we increase d from the minimum value 1, there are two opposing factors that affect the
accuracy of spread estimation by U, which in turn affects the accuracy of super spreader detection.
On the one hand, with a large value of d, the min operation inherited from CU [14] helps reduce
the error in spread estimation; on the other hand, as data items are recorded for up to d times, it
increases the inter-flow noise in U and thus increases the error in spread estimation. With these
two opposing factors, as we can see in Table 2, the F1-score increases first, peaks at d = 4, and
decreases after that. Hence, we will set d = 4 in the remaining experiments, which agrees with the
choice of d in existing papers that adopt CU [3, 21, 46].

Table 3 presents FP, FN and F1-score by varying M(U)/M from 0.4 to 0.7, with d = 4 and M =
2Mb. The best F1-score is achieved when M(U)/M = 0.5, which means that the memory is about
evenly distributed between C and U.

Next, we compare RSI with the state of the art on super spreader identification, i.e., AROMA [2]
and SpreadSketch [24], in terms of accuracy in super spreader identification. For RSI, we set d = 4
and M(U)/M = 0.5. The memory M allocated to each sketch is 2Mb. The parameter settings of
AROMA and SpreadSketch follow those in the original papers. We use all the epochs of our packet
stream. Table 4 shows experimental results in FP, FN, and F1-score. RSI has the smallest number of
false positives, much fewer than AROMA, which is in turn much better than SpreadSketch. The
table also shows that all three sketches have very few false negatives, comparing with the number
of true super spreaders in the second column. For example, RSI’s FN only accounts for 0.6% of super
spreaders. The reason that SpreadSketch has no false negatives but many false positives is because
it usually overestimates flow spread. In terms of the performance in F1-score results, RSI is the best,
maintaining a F1-score of 0.945. In comparison, AROMA’s F1-score is 0.889 and SpreadSketch’s
F1-score is only 0.670.

Finally, we compare the sketches in terms of per-packet processing overhead. AROMA is not
evaluated because it does not support real-time super spreader identification due to its high overhead
on spread estimation. RSI needs 212 ns to process a packet on average while SpreadSketch needs
4889 ns, which is 22 times larger.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:17

Table 4. Performance of RSI, AROMA and SpreadSketch in super spreader identification.

Epoch Ground Truth | Reported | FP | FN | Fl-score
AROMA 23962 28742 5300 | 520 0.889
RSI 23962 26441 2633 | 154 0.945
SpreadSketch 23962 47620 | 23658 | 0 0.670

6.4 Evaluation of RBD for Burst Detection

Since this paper is the first that studies the spread burst detection, there is no prior work that we
can compare with. We focus more on evaluating the performance of RBD under different parameter
values.

We first study the performance of RBD under different memory allocations, using the campus
dataset. We use the entire 144 epochs of the packet stream. If not specified otherwise, the default
parameter settings are d = 4, M(U)/M = 0.5, f = 100, « = 0.1, M =2Mb, and K = 10. The left half
of Table 5 presents the F1-scores for burst increase, burst decrease, and spread burst detection,
under the campus dataset, where the first column varies the memory allocation from 100Kb to
10000Kb (i.e., 10Mb). The experimental results show that the performance generally improves as
the memory increases; small deviation is the result of statistical variance in execution. When the
memory is increased from 100Kb to 500Kb, the performance improvement is significant, with the
F1-score for burst increase increasing from 0.753 to 0.944, but the gain becomes negligible when
the memory is increased further. This is because when C and U are small, there will be many hash
collisions as we map flows to them, causing inter-flow noise. As we increase memory, collisions
(thus noise) are reduced. Once collisions are already kept at a low level, further increasing memory
does not offer much help.

The detailed experimental results on TP, FP, and FN for burst increase, burst decrease and spread
burst detection are provided in Tables 13-15 in Appendix C. They cannot be included in the main
text due to space limitation.

Table 5. F1-score of RBD for burst increase, burst decrease, and spread burst detection, w.r.t. memory allocation
(Kb), under f = 100, « = 0.1, and K = 10, using the campus dataset and the CAIDA-1 dataset, respectively.
CAIDA-1 begins from a higher memory of 500Kb because it contains much more items than the campus
dataset.

Campus dataset CAIDA-1 dataset
Mem. (Kb) Burst increase|Burst decrease|Spread burst|Burst increaseBurst decrease|Spread burst

100 0.753 0.698 0.663 - - -

200 0.905 0.884 0.839 - - -

500 0.944 0.934 0.926 0.785 0.808 0.788
1000 0.956 0.924 0.926 0.951 0.930 0.953
2000 0.953 0.932 0.928 0.944 0.953 0.957
5000 0.959 0.936 0.932 0.957 0.966 0.958
10000 0.953 0.934 0.933 0.953 0.978 0.957

In the remaining experiments, we study how the performance of RBD is affected by different
parameter settings. Fach time we vary one parameter while fixing the others to their default values:
d=4,MU)/M = 0.5, p = 100, « = 0.1, K = 10, and M = 2Mb. Using the campus dataset, Table
6 presents the performance of RBD with respect to 8, which varies from 20 to 1000. When the
threshold f is very small, the numbers of false positives and false negatives are large because the
error in spread estimation can easily overcome the threshold. As § increases, there are fewer spread

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:18 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

bursts and the numbers of false positives and false negatives drop even faster, improving F1-score
above 0.9 when f is 100 or more.

Table 6. Performance of RBD in spread burst detection w.r.t. , under @ = 0.1, K = 10, and M = 2Mb, using
the campus dataset

B | Ground truth | Reported | TP | FP | FN | F1-score
20 2905 3396 2600|796 305 | 0.825
50 1122 1278 1030 (248 | 92 | 0.858
100 580 594 545 | 49 | 35| 0.928
200 298 300 280 | 20 | 18 | 0.936
500 103 104 97 7 6 0.937
1000 51 48 47 1 4 0.949

Table 7 presents the performance of RBD with respect to «, which varies from 0.5 to 0.01. RBD
performs well across the whole range. As we decrease a, there are fewer bursts, which is expected
as it becomes more difficult to meet the condition (3), and F1-score decreases slightly.

Table 7. Performance of RBD in spread burst detection w.r.t. &, under f = 100, K = 10, and M = 2Mb, using
the campus dataset

a | Ground truth | Reported | TP |FP | FN | F1-score
0.5 1383 1415 133184 | 52| 0.951
0.2 895 913 835 | 78|60 | 0.923
0.1 580 594 545 |49 35| 0.928
0.05 402 406 368 | 38|34 | 0.910
0.02 279 287 260 (27 19| 0.918
0.01 237 232 214 |18 23| 0.912

Using the campus dataset, the left half of Table 8 presents the performance of RBD by varying
both « and 8. When § > 100, RBD performs very well across the whole range of «. But when f is
small such as 20, the flow’s spread at the low end of a burst increase (or decrease) is even smaller,
proportional to . The error in spread estimation by sketch U can overcome such a small spread,
resulting in lower F1-score.

Table 8. F1-score of RBD in spread burst detection, w.r.t. to f and a, where K = 10, using the campus dataset
(M = 2Mb) and the CAIDA-1 dataset (M = 5Mb), respectively

Campus dataset CAIDA-1 dataset

B ¢ 051021 0.11]0.05{0.02]|0.01| 05| 0.2 0.1(0.05]/0.02|0.01

20 |0.90/0.87|0.85(0.84|0.83]0.81|0.36|0.80|0.86|0.85|0.84|0.85
50 10.93({0.90]|0.89|0.88(0.86|0.88|0.86|0.94]0.94{0.95]|0.85|0.86
100 [{0.96]0.94]0.94|0.93|0.92|0.92|0.95|0.95|0.96 | 0.96 | 0.95 | 0.87
200 10.96(0.95]/0.94|0.92{0.93|0.94|0.97|0.98[0.99{0.97]0.99|0.99
500 |0.97/0.97|0.97(0.97|0.96|0.97|1.00|0.99|1.00|0.99|0.99 | 1.00
1000{0.95{0.98(0.97|0.99|0.98|1.00 |1.00|1.00|1.00|1.00|1.00 |1.00

Using the campus dataset, the left half of Table 9 presents the performance of RBD with respect
to K, which varies from 2 to 100. When K increases, there are more bursts, which can be easily
seen from the definition (3) as a large K gives more room for bursts to form. But K does not have
significant impact on the detection performance of RBD.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:19

Table 9. Performance of RBD in spread burst detection with respect to K, using the campus dataset, under the
parameter settings of f = 100, « = 0.1, and M = 2Mb, and using the CAIDA-1 dataset, under the parameter
settings of f = 100, « = 0.1, and M = 5Mb, respectively.

Campus dataset CAIDA-1 dataset
K | Ground truth | Reported | F1-score | Ground truth | Reported | F1-score
2 507 532 0.916 103 107 0.971
5 555 566 0.910 112 117 0.969
10 580 594 0.928 118 120 0.958
20 584 594 0.927 123 124 0.955
50 589 605 0.918 125 126 0.956
100 589 602 0.911 125 126 0.956

Additional Experiments using CAIDA Datasets: We expand our evaluation of RBD with
five additional datasets, which are packet traces from different Internet routers downloaded from
CAIDA [26]. These five datasets are denoted as CAIDA-1, CAIDA-2, CAIDA-3, CAIDA-4, and
CAIDA-5, with 1,389,150,056 packets, 1,080,151,501 packets, 1,837,095,662 packets, 2,284,636,747
packets, and 1,603,885,200 packets, respectively. Each dataset is 1 hour long. Because their traffic
intensity is much larger than our campus dataset, we set each epoch to 1 minute. We repeat the
previous experiments of RBD for the campus dataset on each of the CAIDA datasets. If not specified
otherwise, the default parameters are a =0.1, f = 100, and K = 10. The default memory allocation
is M = 5Mb for CAIDA-1, CAIDA-2, and CAIDA-5, and M = 10Mb for CAIDA-3 and CAIDA-4,
depending on the size of the dataset. For CAIDA-1, the experimental results on F1-scores are
presented in the right half of Tables 5, 8 and 9.

From these experimental results, we can draw similar conclusions as we did from the results
of the campus dataset: The right half of Table 5 presents the performance of RBD in F1-score
using CAIDA-1 dataset under different memory allocations. The performance of RBD is improved
with more memory, e.g., from 500Kb to 1Mb, but as the memory further increases, the rate of
performance improvement becomes small. The right half of Table 8 presents the performance of
RBD with respect to f and . RBD works very well when f is large (e.g., 100 or greater for steep
bursts), but works less well when f is small (e.g., 20), particularly when « is also very small or is
very large (e.g., 0.5 for very shallow bursts). We stress that in network applications such as anomaly
detection, steep bursts are of more interest. The right half of Table 9 presents the performance of
RBD with respect to K. We can see that the performance of RBD is not very sensitive to K.

Similar conclusions can be drawn from the results for CAIDA-2 through CAIDA-5, which are
included in Appendix C for verification.

Additional Experiments using E-commerce Dataset: Finally we present our evaluation
results on the E-commerce dataset, which is smaller in comparison to the network packet traces,
containing 206859 products (flows) and 109,950,747 reviews (items) recorded in 61 days, with each
epoch being a day. Detecting spread burst can help track the popularity of the products. We repeat
the same experiments on RBD over this dataset. If not specified otherwise, the default parameters
are a =0.1, f = 400, K = 10, and M = 2Mb.

Table 10 presents the performance of RBD with respect to memory allocation, in terms of burst
increase, burst decrease and spread burst detection. The performance of RBD is improved with
more memory, but after the memory reaches a certain level (such as 2000Kb or 2Mb), the rate of
performance improvement is generally moderate with additional memory. Table 11 presents the
performance of RBD with respect to  and a. RBD works well for steep bursts with large f values,
but works less well when f is small, particularly when « is also very small or is very large (e.g., 0.5
for very shallow bursts). We believe that steep bursts (jumping popularity of products) are again of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:20 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

more interest. Table 12 presents the performance of RBD with respect to K. We can see that the
performance of RBD has only modest sensitivity to K.

Table 10. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with § = 400, « = 0.1, and K = 10, using the E-commerce dataset.

Memory (Kb) | Increase | Decrease | Spread burst
500 0.267 0.314 0.366
1000 0.603 0.750 0.642
2000 0.837 0.811 0.913
5000 0.930 0.952 0.932
10000 1.000 0.952 0.952

Table 11. F1-score of RBD in spread burst detection, w.r.t. f and @, under K=10 and M = 2Mb, using the
E-commerce dataset.

¢ 0.5] 0.2 0.1]0.05/0.02|0.01

B
200 |0.71{0.73]0.80|0.79|0.57 { 0.52

400 |0.780.77(0.91]0.80|0.83|0.67
600 |0.77{0.85]|0.92|0.89|1.00 | 0.86
800 |0.77{0.71)0.80 | 0.80 | 0.80 | 1.00
1000 (0.77|0.91|1.00|1.00|1.00 | 1.00

Table 12. Performance of RBD in spread burst detection, w.r.t. K, under f = 400, « = 0.1, and M = 2Mb, using
the E-commerce dataset.

K | Ground truth | Reported | F1-score
2
5

14 15 0.965
19 23 0.904
10 21 25 0.913
20 21 26 0.893
50 22 27 0.897

7 CONCLUSION

This paper introduces a new problem of detecting burst increases, burst decreases and spread
bursts in real time. It proposes a new self-adaptive sketch (SAS) for recording data items in an
evolving data structure and providing flow estimation at any time with low overhead. It uses the
self-adaptive sketch as the building block to design a new super spreader identifier (RSI), which
detects super spreaders in real time with low overhead. It then uses the super spreader identifier
as the building block to design an efficient, real-time solution (RBD) for spread burst detection.
We evaluate SAS, RSI and RBD experimentally based on six real network traffic traces and an
E-commerce dataset. The results demonstrate that SAS and RSI significantly outperform the state
of the art, and RBD detects spread bursts with good accuracy and efficiency. As a future work,
we will experimentally study the proposed solution in other application contexts to evaluate its
generality and derive context-specific optimizations.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation under grants SCC-2124858 and
CNS-1909077, and by the National Institutes of Health under grant R01 LM014027.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:21

REFERENCES

(1]
(2]

(3]
(4]
(5]

[11]

[12]
[13]

[14]

[15]
[16]
[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

[n. d.]. Amazon Kinesis Data Streams. https://aws.amazon.com/kinesis/data-streams/.

Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny Raz, and Minlan Yu. 2020. Routing Oblivious
Measurement Analytics. In 2020 IFIP Networking Conference (Networking). IEEE, 449-457.

Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021. SALSA: Self-adjusting Lean Streaming
Analytics. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 864—-875.

Ran Ben-Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, Bilal Tayh, and Danny Raz. 2021. Routing-Oblivious
Network-Wide Measurements. IEEE/ACM Transactions on Networking 29, 6 (2021), 2386-2398.

Jing Cao, Yu Jin, Aiyou Chen, Tian Bu, and Z-L Zhang. 2009. Identifying High Cardinality Internet Hosts. In IEEE
INFOCOM 2009. IEEE, 810-818.

G. Cormode. 2011. Sketch Techniques for Approximate Query Processing. Foundations and Trends in Sample, NOW
publishers (2011).

Graham Cormode and S Muthukrishnan. 2005. Space Efficient Mining of Multigraph Streams. In Proceedings of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 271-282.

M. Durand and P. Flajolet. 2003. Loglog Counting of Large Cardinalities. In European Symposium on Algorithms.
Springer, 605-617.

C. Estan, G. Varghese, and M. Fisk. 2003. Bitmap Algorithms for Counting Active Flows on High Speed Links. In
Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement. 153-166.

C. Estan, G. Varghese, and M. Fisk. 2006. Bitmap Algorithms for Counting Active Flows on High-speed Links. IEEE/ACM
Transactions on Networking 14, 5 (2006), 925-937.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyperloglog: The Analysis of a Near-optimal
Cardinality Estimation Algorithm. In Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics
and Theoretical Computer Science, 137-156.

P. Flajolet and G N. Martin. 1985. Probabilistic Counting Algorithms for Data Base Applications. Journal of computer
and system sciences 31, 2 (1985), 182-209.

J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L. Uden, and X. Li. 2018. HeavyKeeper: An Accurate Algorithm for
Finding Top-k Elephant Flows. In 2018 USENIX Annual Technical Conference (USENLX ATC 18). USENIX Association,
Boston, MA, 909-921. https://www.usenix.org/conference/atc18/presentation/gong

Amit Goyal, Hal Daumé III, and Graham Cormode. 2012. Sketch Algorithms for Estimating Point Queries in NLP. In
Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural
language learning. 1093-1103.

S. Heule, M. Nunkesser, and A. Hall. 2013. HyperLogLog in Practice: Algorithmic Engineering of a State-of-The-Art
Cardinality Estimation Algorithm. Proc. of EDBT (2013).

Kaggle. 2020. eCommerce behavior data from multi category store (Dec. 2019 - April 2020). https://www.kaggle.com/
datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store?resource=download.

Noriaki Kamiyama, Tatsuya Mori, and Ryoichi Kawahara. 2007. Simple and Adaptive Identification of Superspreaders
by Flow Sampling. In IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications. IEEE,
2481-2485.

T. Li, S. Chen, and Y. Ling. 2011. Fast and Compact Per-Flow Traffic Measurement through Randomized Counter
Sharing. IEEE INFOCOM (2011).

Weijiang Liu, Wenyu Qu, Jian Gong, and Kegiu Li. 2015. Detection of Superpoints using a Vector Bloom Filter. IEEE
Transactions on Information Forensics and Security 11, 3 (2015), 514-527.

Yang Liu, Wenji Chen, and Yong Guan. 2015. Identifying High-cardinality Hosts From Network-wide Traffic Measure-
ments. [EEE Transactions on Dependable and Secure Computing 13, 5 (2015), 547-558.

Chaoyi Ma, Haibo Wang, Olufemi Odegbile, and Shigang Chen. 2021. Noise Measurement and Removal for Data
Streaming Algorithms with Network Applications. In 2021 IFIP Networking Conference (IFIP Networking). IEEE, 1-9.
David Moore, Colleen Shannon, and K Claffy. 2002. Code-Red: A Case Study on the Spread and Victims of an Internet
Worm. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment. 273-284.

Debjyoti Paul, Yanqing Peng, and Feifei Li. 2019. Bursty Event Detection Throughout Histories. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 1370-1381.

Lu Tang, Qun Huang, and Patrick PC Lee. 2020. SpreadSketch: Toward Invertible and Network-wide Detection of
Superspreaders. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 1608-1617.

Daniel Ting. 2014. Streamed Approximate Counting of Distinct Elements: Beating Optimal Batch Methods. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 442—-451.
UCSD. 2019. The CAIDA Anonymized Internet Traces Dataset (April 2008 - January 2019). https://www.caida.org/
catalog/datasets/passive_dataset/.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:22 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

[27] Shobha Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. 2004. New Streaming Algorithms for Fast
Detection of Superspreaders. Technical Report. Carnegie-Mellon Univ Pittsburgh Pa School Of Computer Science.

[28] Haibo Wang, Chaoyi Ma, Shigang Chen, and Yuanda Wang. 2022. Fast and Accurate Cardinality Estimation by
Self-Morphing Bitmaps. IEEE/ACM Transactions on Networking (2022).

[29] Haibo Wang, Chaoyi Ma, Shigang Chen, and Yuanda Wang. 2022. Online Cardinality Estimation by Self-morphing
Bitmaps. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 1-13.

[30] Haibo Wang, Chaoyi Ma, Olufemi O Odegbile, Shigang Chen, and Jih-Kwon Peir. 2021. Randomized error removal for
online spread estimation in data streaming. Proceedings of the VLDB Endowment 14, 6 (2021), 1040-1052.

[31] Haibo Wang, Chaoyi Ma, Olufemi O Odegbile, Shigang Chen, and Jih-Kwon Peir. 2022. Randomized Error Removal for
Online Spread Estimation in High-Speed Networks. IEEE/ACM Transactions on Networking (2022).

[32] L. Wang, T. Yang, H. Wang, J. Jiang, Z. Cai, B. Cui, and X. Li. 2019. Fine-grained Probability Counting for Cardinality
Estimation of Data Streams. World Wide Web 22, 5 (2019), 2065-2081.

[33] Pinghui Wang, Xiaohong Guan, Tao Qin, and Qiuzhen Huang. 2011. A Data Streaming Method for Monitoring
Host Connection Degrees of High-speed Links. IEEE Transactions on Information Forensics and Security 6, 3 (2011),
1086-1098.

[34] K. Whang, B. T Vander-Zanden, and H. M Taylor. 1990. A Linear-time Probabilistic Counting Algorithm for Database
Applications. ACM Transactions on Database Systems (TODS) 15, 2 (1990), 208-229.

[35] Wikipedia. 2023. Corrected sample standard error. https://en.wikipedia.org/wiki/Standard_deviation.

[36] Q. Xiao, S. Chen, M. Chen, and Y. Ling. 2015. Hyper-compact Virtual Estimators for Big Network Data Based on
Register Sharing. In ACM SIGMETRICS Performance Evaluation Review, Vol. 43. ACM, 417-428.

[37] Qingjun Xiao, Shigang Chen, You Zhou, Min Chen, Junzhou Luo, Tengli Li, and Yibei Ling. 2017. Cardinality Estimation

for Elephant Flows: A Compact Solution based on Virtual Register Sharing. IEEE/ACM Transactions on Networking 25,

6 (2017), 3738-3752.

Q. Xiao, S. Chen, Y. Zhou, and J. Luo. 2020. Estimating Cardinality for Arbitrarily Large Data Stream with Improved

Memory Efficiency. IEEE/ACM Transactions on Networking 28, 2 (2020), 433-446.

Q. Xiao, Y. Zhou, and S. Chen. 2017. Better with Fewer Bits: Improving the Performance of Cardinality Estimation of

Large Data Streams. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 1-9.

[40] Wei Xie, Feida Zhu, Jing Jiang, Ee-Peng Lim, and Ke Wang. 2016. Topicsketch: Real-time Bursty Topic Detection from

Twitter. IEEE Transactions on Knowledge and Data Engineering 28, 8 (2016), 2216-2229.

T. Yang, H. Zhou, Y.and Jin, S. Chen, and X. Li. 2017. Pyramid Sketch: A Sketch Framework for Frequency Estimation

of Data Streams. Proceedings of the VLDB Endowment 10, 11 (2017), 1442-1453.

[42] M. Yoon, T. Li, S. Chen, and J. Peir. 2009. Fit a Spread Estimator in Small Memory. In IEEE INFOCOM 2009. IEEE,
504-512.

[43] M. Yu, L. Jose, and R. Miao. 2013. Software Defined Traffic Measurement with OpenSketch. Proc. of USENIX Symposium

on Networked Systems Design and Implementation (2013).

Qi Zhao, Abhishek Kumar, and Jun (Jim) Xu. 2005. Joint Data Streaming and Sampling Techniques for Detection of

Super Sources and Destinations.. In Internet Measurement Conference. 77-90.

Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. 2021. BurstSketch: Finding Bursts in Data

Streams. In Proceedings of the 2021 International Conference on Management of Data. 2375-2383.

[46] Y. Zhou, T. Yang, ]. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig. 2018. Cold Filter: A Meta-framework for Faster and More
Accurate Stream Processing. In Proceedings of the 2018 International Conference on Management of Data. 741-756.

[47] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O Odegbile. 2019. Generalized Sketch Families for Network Traffic

Measurement. Proceedings of the ACM on Measurement and Analysis of Computing Systems 3, 3 (2019), 1-34.

Cliff Changchun Zou, Weibo Gong, and Don Towsley. 2002. Code Red Worm Propagation Modeling and Analysis. In

Proceedings of the 9th ACM conference on Computer and communications security. 138-147.

—

[38

—

[39

—

[41

—

[44

—

[45

—

[48

—

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:23

APPENDIX A. SAS RECORDING ALGORITHM

Algorithm 4: Record a data item (f, e) in SAS
Input: (f,e), A

Output: True if an update event occurs or false otherwise
1 compute h(f,e), G(f,e)

2 if B =1 then

3 if A[h(f,e)] < 31 and A[h(f,e)] < G(f,e) then
4 if G(f, e) < 31 then

—Alh(f,e -G(f,e

: | =P B EO0 ALK(f )] = GU(fe)
6 else

; | P=P -0 AlK(fe)] =31

8 B return true

9 else if G(f,e) > 16 then
10 B:=1,P:=0
11 for i € [0,m) do

12 if A[i].b = 0 then

13 L Ali] := max{A[i].r[0], A[i].r[1]}
14 else

15 L Ali] := Ali].r4
16 P:=P+ 2_:1”'

17 if G(f, e) < 31 then
g-Alh(f.e)]  9=G(f.e)

w8 | | =P 20N 20 Al(fLe)] = G(fe)

19 else

20 | | Pi=P-Zl0 Aln(fe)] =31
21 | return true

22 else if A[h(f,e)].b = 0 then

23 compute h'(f, e)
24 if A[h(f, e)].r[h'(f,e)] < G(f,e) then

25 if G(f,e) < 3 then

2 | pi=p o ZLIUA L 2000 MRS, )] (fL o) = G(f )

27 else

28 L P:=P- ZfA[W’e>]'r[U]2J;ffA[W’e”'r[l] + ZfG;lf'e),A[h(f, e)].r4 := G(f,e),
Alh(f,e)].b =1

29 | return true

30 else

31 if A[h(f,e)].r4 < G(f,e) then

32 Pi=p - EEAT L 200D AL(fe)]rd = G(f,€)

33 return true

34 return false

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:24 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

APPENDIX B. PROOF OF THEOREM 1

Due to the pseudo randomness of the hash function h(-, -) € [0, m — 1], any data item (f, e) will be
randomly hash to a five-bit unit A[A(f, e)] with the probability of % Without loss of generality,
we consider an arbitrary unit A[i] with 0 < i < m. Define AP; as the accumulative variation in P
caused by the update in A[i]. Summing up accumulative variation in P across all units, we have

P=1+ZAP,- 9)

We have the following lemma for AP;.

LEMMA 1. At any time the probability for the next arrival data item to update A[i] with0 < i <m
1
is = + AP;.

m

Proor. Depending on the interpretation of A[i], AP; is represented differently. There are three
cases.

e Case 1: A[i].b = 0. In this case, A[i] contains two two-bit registers, A[i].r[0] and A[i].r[1].
Since each item will go to either one with even probability, we consider A[i].r[0] without loss of
generality. Let the number of data items that update A[i].r[0] be z and the arrival sequence of these
items are (fi, e1), (f2, €2), ..., (f2 €z). Since A[i].b = 0, we know these data items must follow the
first case of Section 3.2 as otherwise other cases will change the status of A[i].b. Each time an item
(fj»ej) with 1 < j < z arrives, the value of P will be changed by

-G(fj-1-€j-1) -G(fj.ej) ...
-2 12 ! g I if j > 2;
m 2m (10)
14 2-Gf1.e1) ifi=1
2m zm o LI =L

Moreover, the value of A[i].r[0] will be changed from G(fj_1, ej-1) to G(f;, ej) if j > 2 or from 0 to
G(f1, e1)ifj = 1. Apparently, the current value of A[i].r[0] is G(f%, e;). After (f1, e1), (f2, €2), ..., {(fz> €2)
are recorded in A[i].r[0], the value of P will be changed by

1 Z*G(flsel) z 2*G(fj_1,e_j_1) 2*G(ﬂ',€j)
-t —+ Z[— +

2m 2m < 2m 2m
Jj=2
1 27G(fz.e2)
B _% 2m
1 Z—A[i].r[O]
=t T (11)
m m

The same holds for A[i].r[1]. Combining A[i].r[0] and A[i].r[1], we have

1 o-Alilrlo]  o-A[i].r[1]
AP; = —— + + (12)
m 2m 2m
Consider an arbitrary data item (f, e). It will change the data structure of A[i] if (1) h(f, e) = i,
h'(f,e) = 0 and G(f,e) > A[i].r[0]; or (2) h(f,e) = i, k'(f,e) = 1 and G(f, e) > A[i].r[1]. The
probability for either condition to happen is ZfAz[:]n‘r[O] + 27A2[:]r;r[0] = L 4+ AP;. Therefore, the lemma
holds for the case of A[i].b = 0.
e Case 2: A[i].b = 1. In this case, A[i] contains a four-bit register, A[i].r4. Let the number of data
items that update A[i].r4 be z and the arrival sequence of these items are (fi, €1), (f2, €2)s ..., {(f2 €z)-

Now, we consider three processes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:25

The first process is the recording of items before (excluding) the arrival of {f, e1). Since A[i].b = 0

holds all the time, according to the analysis of Case 1, the variation in the value of P is —% +
g-AlL.r[0]  9-Ali].rl1]

2m 2m

The second process is the recording of item (f}, e;). At that time A[i].b = 0 and 3 < G(fi, e1) < 15,
corresponding to the second case of Section 3.2, from which we know the variation in the value of
Pi 9—Ali].r[0] o-Ali].r1] 2-G(fi.e1)

18 = 2m - 2m m :

The third process is the recording of item (f3, e3)...., {fz, ez). Since A[i].b = 1 and 3 < G(fj, ¢;) <
15 V2 < j < z always hold, this process follows the third case of Section 3.2. For each item (fj, e;),

“GUjoejo)  p-GUie) . )
2 TV 4 27 with 2 < j < z. Overall the

its recording will change the value of P by —
2-G(fi.e1) 2-G(fz.ez)

variation in P in this process is —
item (f, e,) will set A[i].r4 = G(f2, ;).
Combing the above three processes, we know the total variation in the value of P is

. Moreover, we know the update of the last

1 9-Alilrlol  9-Alil.r[1]

AP; = —— + +
m 2m 2m
g-Alilrlo]  g-Alil.rll]  9-Glfi.er)
- - +
2m 2m m
2_G(flvel) Z_G(vaez)
- +
m m
1 27G(fze)
= 4+ —
m m
1 2—A[i].r4
= -4+ (13)
m m
Consider an arbitrary data item (f, e). It will change the data structure of A[i] if A(f,e) = i and
G(f,e) > A[i].r4, which happen with the probability of # = % + AP;. Therefore, the lemma

holds for the case of A[i].b = 1.

e Case 3: B = 1. In this case, A[i] is a five-bit register. Let the number of data items that update A[i]
be z and the arrival sequence of these items are (fi, e1), {f2, €2), ..., {fz, ez). We know G(f}, e;) > 15
with V1 < j < z, corresponding to the fourth case of Section 3.2, from which we know initially P
was recalculated as 7" %ﬂ So the variation caused by A[i] in the value of P is 2zl
to (8), we will change the value of P for when recording an item (f;, e;) by

. According

m

(14)

m m ’
9—Ali]

T 1fG(f},eJ) > 31,

and update A[i] = min{G(f;, e;), 31}. After recording all items, A[i] = G(f, e;) and the accumulative
variation in the value of P is

—Ali -G(fj.ej) .
{—Z—A[] + 2 if G(fje;) < 31

1 9-All] .
—— +=— ifA 1
AP, = rln+ ——, ifA[i] <3 (15)
—-0» if Ali] = 31.
Consider an arbitrary data item (f, e). It will change the data structure of Ali]if h(f,e) = i and
G(f,e) > A[i], which happens with the probability of TTAM = % + AP; if A[i] < 31, and the
probability of 0 =L + AP;, if A[i] = 31 as A[i] can not be updated any more. Therefore, the lemma

m

holds for the case of B = 1. m]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:26 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

Lemma 1 is applicable to any unit A[i], YO < i < m. Combining all units in A, we know at any
time the probability for the next arrival data item to update A is Zﬁgl[% + AP;] = P. The equation
is derived because of (9). Therefore, the theorem holds.

APPENDIX C. ADDITIONAL EXPERIMENTAL RESULTS FOR CAMPUS DATASETS AND
CAIDA DATASETS

In Tables 13-15, the first column varies the memory allocation from 100Kb to 10000Kb (i.e., 10Mb),
the second column shows the actual number of burst increases in the data (ground truth), the
third column shows the number of reported burst increases by RBD, the fourth column shows the
number of TPs, the fifth column shows the number of FPs, the sixth column shows the number of
FNs, and the last column shows the F1-score.

Table 13. Performance of RBD in spread burst increase detection with respect to memory allocation, using
the campus dataset.

Memory (Kb) | Ground truth | Reported | TP | FP | FN | F1-score
100 1091 1347 919 | 428|172 0.753
200 1091 1144 1012132 | 79 0.905
500 1091 1108 1038 | 70 | 53 0.944
1000 1091 1103 1049 | 54 | 42 0.956
2000 1091 1091 1040 | 51 | 51 0.953
5000 1091 1110 1056 | 54 | 35 0.959
10000 1091 1097 1043 | 54 | 48 0.953

Table 14. Performance of RBD in burst decrease detection with respect to memory allocation, using the
campus dataset.

Memory (Kb) | Ground truth | Reported | TP | FP | FN | F1-score
100 807 1170 690|480 | 117 | 0.698
200 807 891 751|140| 56 0.884
500 807 832 766 | 66 | 41 0.934
1000 807 817 751| 66 | 56 0.924
2000 807 818 758 | 60 | 49 0.932
5000 807 824 764 | 60 | 43 0.936
10000 807 833 766 | 67 | 41 0.934

Table 15. Performance of RBD in spread burst detection with respect to memory allocation, using the campus
dataset.

Memory (Kb) | Ground truth | Reported | TP | FP | FN | F1-score
100 580 729 4341295|146| 0.663
200 580 628 507 |121| 73 | 0.839
500 580 608 550 | 58 | 30 | 0.926
1000 580 608 550 | 58 | 30 | 0.926
2000 580 594 545149 | 35 | 0.928
5000 580 600 550 | 50 | 30 | 0.932
10000 580 598 550 | 483 | 30 | 0.933

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:27

Table 16. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with f = 100, @ = 0.1, and K = 10, using the CAIDA-2 dataset, containing 1,080,151,501 packets.

Memory (Kb) | Increase | Decrease | Spread burst
500 0.831 0.814 0.819
1000 0.918 0.862 0.918
2000 0.947 0.929 0.920
5000 0.938 0.958 0.920
10000 0.969 0.958 0.912

Table 17. F1-score of RBD in spread burst detection, w.r.t. f and a, where K=10 and M = 5Mb, using the
CAIDA-2 dataset, containing 1,080,151,501 packets.

[24

0.5] 0.2 0.1(0.05/0.02|0.01

p

20 |0.54|0.67|0.780.82|0.69|0.91
50 10.82|0.86|0.85|0.84(0.70 | 0.92
100 [0.89(0.94]0.92|0.94|0.96|0.92
200 10.94|0.93]/0.95|0.96|1.00|1.00
500 |1.00{1.00|1.001.00|1.001.00
1000 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Table 18. Performance of RBD in spread burst detection, w.r.t. K, with f = 100, « = 0.1, and M = 5Mb, using
the CAIDA-2 dataset, containing 1,080,151,501 packets.

K | Ground truth | Reported | F1-score
2 43 48 0.923
5 46 51 0.928
10 47 53 0.920
20 52 59 0.919
50 52 59 0.919

Table 19. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with f = 100, @ = 0.1, and K = 10, using the CAIDA-3 dataset, containing 1,837,095,662 packets.

Memory (Kb) | Increase | Decrease | Spread burst
1000 0.676 0.718 0.705
2000 0.913 0.906 0.914
5000 0.954 0.971 0.988
10000 0.937 0.965 0.909
20000 0.948 0.954 0.954

Table 23. F1-score of RBD in spread burst detection, w.r.t. f and a, where K=10 and M = 10Mb, using the
CAIDA-4 dataset, containing 2,284,636,747 packets.

[24

0.5] 0.2 0.1]0.05/0.02|0.01

p

20 |0.63]0.81)|0.83|0.83|0.90(0.87
50 ]0.91{0.91]|0.91/0.92|0.92|0.88
100 [0.94(0.93]0.91{0.95{0.96|0.91
200 |0.92]0.94]0.92|0.95|0.94|0.95
500 |0.98{0.98]0.98|0.98|0.990.99
1000 {0.98|0.97 | 0.97 | 0.98 | 0.99 | 0.99

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



35:28 Haibo Wang, Dimitrios Melissourgos, Chaoyi Ma, and Shigang Chen

Table 20. F1-score of RBD in spread burst detection, w.r.t. f and a, where K=10 and M = 10Mb, using the
CAIDA-3 dataset, containing 1,837,095,662 packets.

[24

05|02 0.1]0.05/0.02|0.01

p

20 ]0.56(0.76|0.76 | 0.49 | 0.78 | 0.76
50 10.85|0.92|0.91|0.90(0.79|0.76
100 [0.93/0.92]0.91|0.91{0.93|0.80
200 [0.96|0.97|0.94|0.95(0.99|0.99
500 |1.00{1.00|0.98|0.98|1.00 |1.00
1000{0.97{0.97 |1.00 | 1.00 | 1.00 | 1.00

Table 21. Performance of RBD in spread burst detection, w.r.t. K, with f = 100, « = 0.1, and M = 10Mb, using
the CAIDA-3 dataset, containing 1,837,095,662 packets.

K | Ground truth | Reported | F1-score
2 78 78 0.897
5 88 88 0.909
10 88 88 0.909
20 89 89 0.910
50 90 90 0.911

Table 22. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with f = 100, @ = 0.1, and K = 10, using the CAIDA-4 dataset, containing 2,284,636,747 packets.

Memory (Kb) | Increase | Decrease | Spread burst
500 0.344 0.335 0.328
1000 0.692 0.703 0.699
2000 0.842 0.836 0.852
5000 0.902 0.901 0.897
10000 0.918 0.915 0.914
20000 0.928 0.926 0.904
50000 0.913 0.915 0.906

Table 24. Performance of RBD in spread burst detection, w.r.t. K, with f = 100, « = 0.1, and M = 10Mb, using
the CAIDA-4 dataset, containing 2,284,636,747 packets.

K | Ground truth | Reported | F1-score
2 506 516 0.927
5 627 646 0.910
10 668 690 0.914
20 675 696 0.914
50 677 699 0.914

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



Real-time Spread Burst Detection in Data Streaming 35:29

Table 25. F1-score of RBD in burst increase, burst decrease, and spread burst detection, w.r.t. memory
allocation, with f = 100, @ = 0.1, and K = 10, using the CAIDA-5 dataset, containing 1,603,885,200 packets.

Memory (Kb) | Increase | Decrease | Spread burst
500 0.707 0.713 0.716
1000 0.897 0.898 0.907
2000 0.962 0.966 0.955
5000 0.962 0.966 0.969
10000 0.963 0.969 0.965

Table 26. F1-score of RBD in spread burst detection, w.r.t.  and a, where K=10 and M = 5Mb, using the
CAIDA-5 dataset, containing 1,603,885,200 packets.
a

05|02 0.1(0.05/0.02|0.01

p

20 |0.47|0.66|0.77 | 0.85|0.89 | 0.85
50 |0.82{0.95]|0.97|0.97|0.890.85
100 [0.97(0.97]0.97|0.97|0.96|0.86
200 |0.97]0.96|0.97 |0.97 | 0.97 | 0.95
500 |0.97{0.97|0.97|0.97|0.97 | 0.96
1000 | 1.00 | 1.00 [ 0.99 | 0.99 | 1.00 | 0.99

Table 27. Performance of RBD in spread burst detection, w.r.t. K, with f = 100, « = 0.1, and M = 5Mb, using
the CAIDA-5 dataset, containing 1,603,885,200 packets.

K | Ground truth | Reported | F1-score
2 324 319 0.970
5 344 338 0.971
10 346 341 0.969
20 351 345 0.971
50 355 349 0.972

Received October 2022; revised December 2022; accepted April 2023

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 2, Article 35. Publication date: June 2023.



	Abstract
	1 Introduction
	2 Burst Increase, Burst Decrease and Spread Burst
	3 Self-Adaptive Sketch
	3.1 Existing Sketches for Single-flow Spread Estimation
	3.2 Self-Adaptive Sketch (SAS)

	4 Real-time Super Spreader Identification
	4.1 Existing Work on Super Spreader Identification
	4.2 New Design for Real-time Super spreader Identification

	5 Real-time Burst Detection (RBD)
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Evaluation of SAS for Spread Estimation
	6.3 Evaluation of RSI for Super Spreader Identification
	6.4 Evaluation of RBD for Burst Detection

	7 Conclusion
	References

