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We use a generalized estimating equations approach to investigate predictors of preservice, early childhood teachers’ views 
of (a) nature of coding, (b) integration of coding into preschool classrooms, and (c) relation of coding to fields other than 

computer science (CS). Predictors entered into the model were study, time point (pre-survey versus post-survey), prior 
programming knowledge and experience, ten latent survey factors, and the inclusion of lesson design/field experience. 
Significant predictors varied according to the specific view of coding being predicted. Views of the nature of coding were 
predicted by time, prior robot programming experience, perceptions of the value of coding, and intermediate programming 

knowledge. Views of the integration of coding in preschool were predicted by time, and perceptions of mathematics. Views 
of the relation of coding to non-CS fields were predicted by time and perceptions of the value of coding.  
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1 INTRODUCTION 

Including coding and robots in the ECE curriculum is meant to invite all children to consider computer science 
(CS) pathways, and learn important skills for an information intensive future. But it is one thing to call for the 
inclusion of robotics and coding in ECE classrooms, and another thing to actually achieve it. To successfully 
integrate robotics and coding in ECE classrooms requires that ECE teachers have the tools (i.e., skills and 
resources) and motivation to do so. Little is known about the relative influence of the possession of the tools 
and motivation to integrate robotics and coding in ECE contexts on views of the relevance of coding to ECE. 
That is the gap that this study fills. Studying preservice ECE teachers from five studies on integrating robotics 
and coding in ECE, we used data on motivation, prior experience, and studies to predict the views of (a) nature 
of coding, (b) how coding can be integrated into preschool classrooms, and (c) how coding relates to fields 
other than CS, and to examine how such views change from pre- to post-survey. 

2 LITERATURE REVIEW 

2.1 Early Childhood Education 

Within the USA, early childhood education (ECE) is typically defined as education for children from birth to age 
8, and is divided into infant/toddler, preschool, kindergarten, and early elementary. Within ECE, there is a strong 
focus on children learning cognitive and socio-emotional content and skills through play, especially in 
infant/toddler and preschool settings [1], [2]. Preschool serves children aged 3-5, and focuses on socio-
emotional development, preliteracy skills, mathematics skills. Kindergarten is the first formal schooling some 
children receive, and is seen as a bridge to formal schooling. As children move into kindergarten and early 
elementary levels, a partial shift away from play and toward more structured classroom interactions occurs [3].  

2.1.1 Coding and Robots in Early Childhood Education 

To help children learn important skills for the information age, and to consider CS pathways, the use of coding 
and robots is often encouraged in ECE [4]. Such skills include the abilities to decompose and address problems 
using algorithmic thinking, defined as understanding and addressing problems through the creation, 
interpretation, and use of replicable problem solving processes incorporating such CS processes as repeat 
while loops  [5], [6]. CS is rapidly growing and lucrative, but undoubtedly not all children will become computer 
scientists, nor should they. Learning algorithmic thinking can help children build towards CS pathways, but also 
solve diverse problems. 
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Consistent with the focus on play in ECE, especially at the preschool and kindergarten levels, teaching coding 
is often couched within play [7], [8] and dance [9], [10] in ECE settings. This can be done through the use of 
robots [8], [9] and storytelling [7]. For example, ECE learners can include robots as partners in dramatic play. 
To do so, they need to choreograph moves and instruct the robot to perform such moves using coding. This 
often requires that ECE learners debug malfunctioning code. Similarly, children can use the tools of CS to solve 
problems couched within stories. Key to these approaches is not teaching CS didactically to early childhood 
learners, but positioning it as a tool to help such learners engage in play. Still, to accomplish this goal, it is 
necessary that ECE teachers possess coding skills.  

2.2 Preservice Teacher Education 
Preservice teacher education is defined as the program of preparation university students need to take to submit 
for teaching certification in the relevant jurisdiction. Field experience and student teaching have long held a 
central place within preservice teacher education [11]–[13]. Many teacher education courses contain field 
experience components, in which teacher candidates visit schools to observe practicing teachers employing 
techniques being taught in the teacher education course, and the teacher candidates themselves can practice 
such techniques. Teacher candidates need to learn the complex problem solving that is inherent to teaching 
[14]–[16]. Mentor teachers can help teacher candidates develop rich actionable knowledge and skill for 
teaching. But they must balance that mentoring with their own responsibilities to be the lead teacher and 
bedrock in young children’s education [17]. It is not possible for mentor teachers to teach teacher candidates 
all they need to know about teaching [17]. This leaves preservice teacher educators with a quandary: should 
one develop teacher candidates’ knowledge and skills to a great extent and then have them engage in field 
experience, or have them develop the needed skill sets all while engaging in field experience. This quandary is 
a major reason field experience is often couched within teacher education courses that themselves are situated 
within a block. Research on preparing teacher candidates to integrate technology indicates that field experience 
in which candidates need to integrate technology is one of the best predictors of future technology integration 
[12], [18], [19].  

2.3 Digital Competence 
There is a consensus that schools need to equip the young generation with digital literacy so that they can use 
the internet critically, creatively, and responsibly, increase their career and social opportunities, and engage in 
lifelong learning [20], [21]. It is necessary for teachers to become digitally competent themselves in order to 
optimally use technologies and accompany their students in the development of digital competence [22]. 
Considering that coding is another language for young children to learn as part of foundational literacy education 
[9], it is teachers' responsibility to create an environment conducive to their students' development of digital 
competence as well as literacy. However, mixed findings on learning outcomes suggest that teachers should 
deliberate on how they can use technology to support student learning [23]. Multiple frameworks have been 
proposed to better understand and prepare teachers for 21st-century digital competency. The Assessment and 
Teaching of Twenty-First Century Skills Framework, which emphasizes creative and innovative ways of thinking 
and solving problems, is one example. Another example is the European Framework for the Digital Competence 
of Educators, which describes the five areas of competencies every citizen should develop to succeed in a 
digital society, including information and data literacy and digital content creation [24].  
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2.3.1 Preservice Teachers’ Perceptions of Computer Science 

A key reason women often do not pursue CS pathways has to do with their own perceptions of CS, which in 
turn was informed by society, including their P-12 (i.e., preschool-12th grade) teachers [25]–[27]. Endemic to 
society’s influence in this regard are hidden biases about CS and gender traits [28]. P-12 teachers often 
associate CS and other technical fields with masculine traits, and this in turn reifies CS as masculine in the 
minds of learners [28], [29]. For example, CS is often positioned as an individualistic pursuit that involves long 
hours of working alone and risk-taking [30]. Indeed, even learners who are interested in CS often perceive 
computer scientists as antisocial and CS as hard, and this may impact their intention to pursue a CS career 
[30]. Such implicit biases can also influence preservice [31] and inservice teachers’ views of who should be 
encouraged to pursue STEM pathways, including CS.  
In 2019, 97.4% of preschool and kindergarten teachers in the USA were women, and this proportion has 
remained stable over time [32]. Similarly, in most European countries, the early childhood education workforce 
is composed of almost exclusively women [33]. This has important implications for the teaching of CS in early 
childhood contexts. Women are drastically underrepresented in CS; indeed, of all the STEM fields, the gender 
gap is the greatest in CS [25], [34]–[37]. This is due to a myriad of factors including structural factors within CS 
programs at the elementary, secondary, and university levels [36], [38], [39] and lack of suitable role models 
[34], [35]. Such factors can make women perceive that they do not belong in CS [34], [40].  
Views of the value of digital technologies to early childhood education often vary based on several factors, 
including teaching experience [41] and a judgment of whether or not the target early childhood learners already 
have too much technology in their lives [42]. A large study of preschool teachers indicated that the strongest 
predictor of technology use was attitudes towards the technology, defined as perceptions of the extent to which 
technologies can contribute to student learning or teacher administrative tasks [41]. Not only the attitudes 
towards the technology but also other elements such as experience in technology use and competency of 
technology use are strong predictors of pre-service teachers’ technology integration [43]. Notably, those 
elements are closely associated with broader educational contexts and institutional factors.  
One method that has been proposed to address the underrepresentation of women in CS is broadening 
opportunities for participation in CS [44]. This can be done through the infusion of CS in P-12 curricula [45]. 
While many high schools offer CS courses, they are usually electives in which few women enroll, at least in part 
due to the stereotype of CS as masculine [25], [27]. There has been less work done at the early childhood [46] 
and elementary levels [47]–[49], and much of this has to do with the (lack of) preparedness of teachers to teach 
CS [50]–[52]. Preparing ECE teachers to teach CS involves not only helping them learn the skills of coding and 
debugging, but also gain a belief that coding is important to ECE curricula [53]. 

3 CONCEPTUAL FRAMEWORK FOR PRESERVICE TEACHERS’ CS MOTIVATION 

Teachers are autonomous human beings whose choices about what to teach and how stem from their own 
teacher identity, skills, motivation, and constraints. A key predictor of teachers’ teaching quality and pedagogical 
choices is their motivation [54]. While motivation can be thought of from many perspectives, preservice teachers’ 
motivation in this study was approached from the perspective that stereotypical conception about a content 
domain drives interest in the domain e.g., [55]. Specifically, we constructed the conceptual framework of this 
study based on the literatures  demonstrating (a) the influence of learners’ stereotypical conception about a 
particular domain (e.g., CS) on their interests e.g., [55], and (b) the importance of goal orientation [56]–[59] and 
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emotions [60], [61] in engagement with the domain. Our framework was to guide to study preservice teachers’ 
motivation in a pluralistic way in which multiple factors are considered given the multiple roles of preservice 
teachers being teachers and learners. But our framework was also to understand CS specific motivation that 
may influence preservice teachers’ views of coding. Considering that teachers’ fundamental beliefs about 
knowledge and knowledge acquisition impact how they teach [62], information of their conception about CS 
should help not only understand their views of coding but also inform researchers and practitioners how to 
prepare preservice teachers for teaching of CS. The following sections explain the five major constructs 
interrelated with teacher CS motivation in our conceptual framework that may impact views of coding.   

3.1 Domain Identity 
Stereotypical conceptions about domains can be studied through domain identity. Domain identity refers to the 
phenomenon of deeming that a particular domain aligns with one’s self [63]. For example, some students readily 
identify with the domain of mathematics, seeing mathematics as part of who they are, seeking out opportunities 
to engage with mathematics-related tasks, and desiring to pursue a career grounded in mathematics. Similarly, 
students can identify with the domain of English, seeing English as part of who they are, and seeking to pursue 
an English-related career. Identification with CS has been studied especially gender differences in CS 
motivation. For example, in Cheryan et al., (2009), many female undergraduates usually identified CS as a 
domain to which they do not belong. Such identification with CS or lack thereof was also related to their interests 
or disinterests.  Domain identifications of teachers are especially important to consider in elementary and ECE 
contexts because elementary and ECE teachers, many of who are female, are tasked with teaching the entire 
curriculum. For example, ECE teachers who do not identify with mathematics often try to shield their students 
from mathematics [64]. With the inclusion of coding and robotics within ECE, a new consideration for domain 
identity of ECE teachers is relevant: identification with CS and engineering. 

3.2 Interest 

The interest individuals hold towards a phenomenon can be defined as the degree to which they find the 
phenomenon to be compelling and worth researching further [65]. Situational interest refers to interest 
generated in the moment by a phenomenon, while personal interest refers to an enduring disposition to study 
a phenomenon [66]. It stands to reason that individuals with interest in CS would be more likely to engage with 
CS than those with little to no interest in CS. This is especially critical to early childhood education contexts, 
where CS is an optional subject and is often superseded by such subjects that are the focus of accountability 
efforts, like mathematics, science, and language arts [67]. 

3.3 Goal Orientation 

According to another prominent motivation theory, individuals’ motivation with regards to a task can be 
explained by their goals in completing a learning task; individuals with mastery goals seek to gain mastery over 
the content, individuals with performance-approach goals seek to perform better than others, and individuals 
with performance-avoid tasks avoid performing the task to avoid appearing less competent than others [56], 
[57]. While mastery goal orientations have long been considered to be ideal [58], much research has shown 
that performance-approach goals are equally effective in producing strong outcomes [59]. 
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3.4 Academic Emotions 
Academic emotions can be defined as positive and negative emotions that learners can experience before and 
when engaging in learning tasks. When students experience positive academic emotions, like enjoyment, they 
are more likely to adopt mastery goals [60]. Students who think that they are likely to be successful at an 
academic task and have high internal control over the outcome are likely to experience anticipatory joy [61]. 
Meanwhile, students who believe that they are likely to fail at a task and have no control over the outcome are 
likely to experience hopelessness [61]. 

3.5 Prior Experience 
Just as field experience teaching CS, perceptions of CS, and motivation to teach CS has the potential to predict 
ECE teacher candidates’ views of coding, so too can experience engaging with CS. First, having prior 
experience with CS may mean that an ECE teacher candidate identified with or had enough interest in CS at 
least in the past to opt into computer science instruction [68]. But if the CS learning experience reified 
stereotypes about computing, having had prior experience with CS may predict lower views of coding [26]. 

4 RESEARCH QUESTIONS 
1) How do ECE teacher candidates’ views of coding change as a result of learning to use coding in teaching? 

2) How can their views of coding be predicted using study, time point (pre-survey versus post-survey), prior 
programming knowledge and experience, ten latent survey factors, and the inclusion of lesson design/field 
experience? 

5 METHOD 

5.1 Participants and Setting 

The research was conducted in five different preservice, early childhood education classes from spring 2018 to 
spring 2020 in two large public universities in the United States. The three classes from university 1 covered 
integrating the performing and visual arts in early childhood education, while the two classes from university 2 
dealt with child’s play as educative processes. The robotics and programming units lasted 7.5 hours, except for 
one study that lasted 5 hours (i.e., study 3 from university 1), and involved robotics in early childhood STEM 
education and robot programming activities. The number of participants in each study was study 1 = 58 (29.1%), 
study 2 = 60 (30.1%), study 3 = 43 (21.6%), study 4 = 19 (9.5%), and study 5 = 19 (9.5%), leading to a total 
sample of N = 199. Participants were mostly female (96%, n = 191; male: 4%, n = 8). Participants’ age ranged 
from 19 to 27 years old (M = 20.41, SD = 1.09). The majority of the participants were White (82.4%; n = 164), 
17 (8.5%) were Asian, 7 (3.5%) were Hispanic, 7 (3.5%) were Black, and 4 (2%) participants identified as multi-
racial. Most participants majored in Education (98.5%, n = 196; other majors: 1.5%, n=3) and their years of 
standing were diverse ranging from the first semester to the ninth semester; 2nd year and 3rd year students 
together represented 70.3% (n = 140) of the participants. Most participants self-reported having no 
programming knowledge (55.3%, n = 110) or little knowledge (34.7%, n = 69) while 18 participants (9%) reported 
having intermediate programming knowledge and only 2 participants (1%) reported high programming 
knowledge. Most participants did not have robot programming experience (89.4%, n = 178) prior to their 
participation in the present research.  
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5.2 Robot Programming Unit 
The robot programming units shared seven main commonalities in terms of (a) tools, (b) sequence of tasks, (c) 
collaborative programming, (d) reflection opportunities, (e) contextualization in teaching, (f) emphasis on early 
learning, and (g) use of examples and models.  Specifically, the robot programming activities in the five studies 
involved the following procedure in general: First, participants took the presurvey before starting the unit, which 
took about 20-30 minutes. In the first class, participants were introduced to block-based programming and 
robotics in early childhood education. They then were provided one of the educational robots (i.e., Ozobots) 
and coding samples for preschoolers and had a chance to practice simple coding on the block-based coding 
platform (i.e., Ozoblockly) (see Figure 1). Afterward, they discussed the ideas on how to relate robotics activities 
to children’s play and learning. In the second and the third (except for study 3) classes, participants paired up 
and collaboratively worked on a series of programming tasks that were designed in order of increasing 
difficulties. The tasks involved either creating code or debugging given code so that it can make the Ozobot 
perform the desired movement. For example, participants learned to code for square movement first and then 
rectangle movement because the code structure is typically simpler for a square (e.g., repeat one-side 
movement 4 times vs. repeat two-side movement 2 times).  In the meantime, they were taught basic 
programming concepts and all their activities were scaffolded with examples and models. After that, they were 
asked to reflect on the challenges in using Ozobots and programming and to create scenarios or design lessons 
that integrate coding and robotics into their teaching or play with preschoolers. At the end of the unit, participants 
took the postsurvey. 
 

  
Figure 1: sample practice code (i.e., making rectangle three times) on Ozoblockly platform 

There were variations in these studies as well. First, early learning and development standards were integrated 
into the unit in studies 1-3 with the emphasis of using robots and coding as part of the preschool curriculum. In 
contrast, the ECE course on play in studies 4-5 focused on learning opportunities that emerge from young 
children’s play. Consequently, there was no formal introduction to the ECE curriculum. Rather, the use of robots 
and coding in the contexts in which play is the key was highlighted. Second, studies 1-2 had field experience 
but studies 3-5 did not. Last, unit length in studies 1, 2, 4, and 5 was 7.5 hours, while unit length in study 3 was 
5 hours.  
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5.3 Measures 

5.3.1 Presurvey and Postsurvey 

All participants completed a survey both before and after learning to program robots. The survey contained 100 
closed response questions in University-1 and 102 closed response questions in University-2, and which 
covered computer programming knowledge, robot programming experience, and STEM and computer science 
motivation. Two questions from the survey used in University-2 were removed from the analysis to have 
responses to the same questions between the two sets of studies. The survey contained modified items from 
such existing instruments as the STEM Semantics Survey [69], the Achievement Emotions Questionnaire – 
Mathematics (AEQ-M) [70], the Learning Self-Regulation Questionnaire (LSRQ) [71], Patterns of Adaptive 
Learning Scales (PALS) [72], Domain Identification Measure [73], and Views of Coding [74]. The STEM 
Semantics Survey was developed based on a sample including teacher preparation candidates from a large 
Midwest university as well teacher/liaison participants in the Middle Schoolers Out to Save the World (MSOSW) 
training sessions, the PALs were administered to students and teachers in elementary, middle, and high schools 
in three Midwest states, and the Views of Coding survey was intentionally designed for students in primary and 
secondary education majors. Additionally, in the presurvey, participants were asked to report their prior 
computer programming knowledge and robot programming experience. Our aim was to investigate ECE teacher 
candidates’ views of coding in ECE contexts that could be improved through learning to program robots and 
motivation. As described earlier, we examined motivation from a pluralistic perspective in which multiple factors 
comprise one’s motivation [88, 89]. We thus assessed ECE teacher candidates’ interests, emotions, goal 
orientations, and domain identifications related to STEM and CS to study multifaced motivation in addition to 
their views of coding. We then conducted principal component analysis to reduce the number of variables across 
these instruments while preserving the needed dimensionality of data.  
5.3.1.1 Computer programming knowledge and robot programming experience 

All participants were asked to report their computer programming knowledge and robot programming 
experience in the pre-surveys. The four-level of computer programming knowledge was coded as no knowledge 
= 1, low knowledge = 2, intermediate knowledge = 3, and high knowledge = 4. As for robot programming 
experience, participants’ responses were coded as Yes = 1 or No = 2. 
5.3.1.2 Motivation variables 

Principal component analysis using varimax rotation was conducted with 214 preservice early childhood 
teachers’ responses to the pre-surveys, consisting of one hundred items. Note that n = 214 for the presurvey, 
but n = 199 for the set of participants who completed the presurvey and postsurvey. The determinant was 
different than zero, the KMO was 0.854, and Bartlett’s Test of Sphericity was significant (p < 0.001). The ten 
latent variables accounting for 61.93% of the variance were determined based on 0.30 as cut-off score, Kaiser’s 
criterion of eigenvalues [75], and parallel analysis. Ten latent variables were identified: 
Perceptions of mathematics included fourteen items (Cronbach’s α = 0.954). This factor pertained to students’ 
mathematics interest and identification with mathematics, and contained items from two different scales. The 
factor included slightly modified items from the Mathematics - Domain Identification Measure (DIM) survey to 
which participants responded using a 5-point Likert scale [73, p. 1054]. Specifically, we changed a couple of 
items with an interrogative sentence in the original scale (e.g., How much is Math to the sense of who you are?) 
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to a declarative sentence (e.g., Math is important to the sense of who I am). Smith and White [73] reported high 
reliability for the original subscale (Cronbach’s α = 0.93) for the Mathematics-DIM. Authors [76] demonstrated 
high reliability for the slightly modified Mathematics-DIM survey conducted among ECE majors (Cronbach’s α 
= 0.95). This factor also included items from the mathematics interest scale [69]. A sample item invited 
respondents to rate the item "To me, MATH is unexciting: is exciting" on a 7-point Likert scale [69, p. 350]. High 
Cronbach’s α values were calculated before for the original mathematics interest scale (0.86 – 0.92) [69], [76], 
[77]. 
CS and Engineering emphasis in STEM career had thirteen items (Cronbach’s α = 0.949). This factor covered 
interest in STEM career emphasizing computer science and engineering. A sample item invited participants to 
use a 7-point Likert scale to rate “To me, A CAREER in science, technology, engineering, mathematics, or 
computer science is unappealing: is appealing” [69, p. 350]. High Cronbach’s α values were calculated before 
for the original engineering (0.80 - 0.92) and career (0.76 – 0.93) interest scales [69], [76], [77] among a wide 
range of samples including ECE majors. The computer science scale used the same adjective pairs with other 
scales in [69]. Authors [76] calculated high reliability (Cronbach’s α = 0.94) for the computer science interest 
scale.  
Perceived value of coding had eighteen items (Cronbach’s α = 0.916). This factor was about attitudes toward 
coding skills, understanding of coding, and autonomous regulation. The factor included slightly modified items 
from two surveys: The Learning Self-regulation Questionnaire (LSRQ), in which participants used a 5-point 
Likert scale to respond to items such as I felt like participating in STEM-related class activities was a good way 
to improve my understanding of STEM-related topics (we changed a word ‘patients’ in the original scale into 
‘STEM-related topics’ according to our research domain) with 5-point Likert scale in Black and Deci [71], 
reporting Cronbach’s α as 0.80 and a survey related to views of computing (e.g., I would voluntarily take courses 
on coding if I were given the opportunity) with 4-point Likert scale in [74]. Here we used a word ‘coding’ instead 
of the word ‘computing’ in the original scale. Authors [76], [77] reported acceptable reliability for the slightly 
modified LSRQ (Cronbach’s α = 0.71 and Cronbach’s α = 0.71). Yadav et al. [78] and Authors [76] calculated 
Cronbach’s α values (0.76 and 0.94, respectively) for the modified version of the survey related to views of 
computing. 
Perceptions of technology and engineering had twelve items (Cronbach’s α = 0.874). This factor was about 
interest in and identification with technology and engineering. The factor included original items from [69] and 
slightly modified items from [71] and [79] where we added examples of technology (i.e., computer software) and 
engineering (i.e., building robots) to the original item. A sample item invited participants to use a 7-point Likert 
scale to rate “To me, TECHNOLOGY is unappealing : is appealing” [69, p. 350]. High Cronbach’s α values were 
calculated before for the original technology (0.77 - 0.95) and engineering (0.80 – 0.92) interest scales [69], 
[76], [77]. This factor included slightly modified items from the Computer Technology - DIM survey (e.g., 
Engineering involves working with other people) in Smith et al. [79, p. 350] and the LSRQ (e.g., A solid 
understanding of STEM-related topics was important to my intellectual growth) in [71] with 5-point Likert scales. 
Smith et al [79] and Black and Deci [71] reported Cronbach’s α values for the original surveys (0.78 and 0.80, 
respectively). Authors [76] calculated Cronbach’s α = 0.635 and Cronbach’s α = 0.71 for the slightly modified 
Computer Technology – DIM survey and the LSRQ, respectively.  
Performance goal orientation had nine items (Cronbach’s α = 0.896). This factor was about performance avoid 
(e.g., “It’s important to me that I don’t look stupid in class”) [72, p. 13] and performance approach (e.g., “It’s 
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important to me that I look smart compared to others in my class”) [72, p. 12] goal orientations. Midgley et al. 
[72] and Authors (2021) calculated Cronbach’s α values for performance avoid (0.74 and 0.72, respectively) 
and performance approach (0.89 and 0.82, respectively) for the original 5-point Likert scale.  
Perceptions of English had seven items (Cronbach’s α = 0.917). This factor was about identification with the 
subject English. The slightly modified items were from the English - DIM survey (e.g., It is important to me to be 
good at English) with 5-point Likert scale in Smith and White [73, p. 1054]. Smith and White [73] reported 
Cronbach’s α as 0.90 for the original survey. Authors [76] calculated Cronbach’s α = 0.80 for the slightly modified 
English – DIM survey. 
Science interest had six items (Cronbach’s α = 0.890). The factor was about interest in science. A sample item 
was rating “To me, SCIENCE - is unappealing : is appealing” [69, p. 350]. Cronbach’s alpha value was 
calculated 0.84 before for the 7-point Likert scale [69]. High Cronbach’s α values were calculated before (0.86 
and 0.91, respectively) in [76], [77]for the science interest scale. The slightly modified item in this factor was 
from the LSRQ (e.g., I would feel bad about myself if I didn’t do STEM-related class activities) with 5-point Likert 
scale. William and Deci [80] reported Cronbach’s α as 0.75 for the original the LSRQ. 
Mastery goal orientation (MGO) had five items (Cronbach’s α = 0.897). The factor was about achievement goal 
orientation (e.g., “One of my goals in class is to learn as much as I can”) [72, p. 11]. Cronbach’s alpha value 
was calculated as 0.85 [72] and 0.91 [76]before for the original MGO scale with the 5-point Likert scale.  
Achievement emotion in STEM+CS had nine items (Cronbach’s α = 0.913). This factor was about achievement 
emotions in STEM and attitudes toward coding skills. The factor included slightly modified items from the 
Achievement Emotions Questionnaire – Mathematics (AEQ-M) (e.g., I look forward to my STEM-related class) 
with the 5-point Likert scale [70, p. 7] and from a survey related to views of computing (e.g., I am not comfortable 
with learning how to code) with 4-point Likert scale [74]. Pekrun et al. [70] reported a high reliability (Cronbach’s 
α = 0.90) for the original AEQ-M. Authors [76], [77] reported Cronbach’s α as 0.89 and 0.91, respectively, for 
the slightly modified AEQ-M scale.  
Identification with CS and Engineering had four items (Cronbach’s α = 0.706). This factor pertained to 
identification with computer science and engineering. The slightly modified items were from the Computer 
Technology - DIM survey (e.g., Engineering (e.g., building robots) is masculine) with 5-point Likert scale in 
Smith et al. [79, p. 350]. Smith et al. [79] reported Cronbach’s α to be 0.78 for the original survey. 

5.3.2 Open-ended items 

Participants were invited to respond to the following three items modified from the open-ended items (i.e., 
substituting the word ‘coding’ for ‘computational thinking’ in the original questions) on the original views of coding 
survey [74, p. 470]: 
In your view, what is coding? What is its purpose? 
In your view, how can (or cannot) coding be integrated in preschool classrooms? 
In your view, how does coding relate to disciplines and fields other than computer science? Please provide an 
example. 
We included these questions because they provided the opportunity to gain detailed insight into participants’ 
perceptions and knowledge of coding and how it can be used in early childhood education classrooms that 
cannot be captured fully by the closed-ended items. 
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5.4 Data Analysis 

5.4.1 Dummy Coding 

Data came from five independent studies spanning two different universities. As such, the classes studied had 
some differences in implementation and requirements (see the Robot Programming Unit section). The five 
studies were coded from study 1 to study 5. Three of the studies required participants to create a lesson plan 
and had a field experience component (dummy coded as 1), while two did not require participants to write a 
lesson plan and did not have a field experience component (dummy coded as 2). The ‘time’ variable was the 
order in which the participants took the survey. Time points for pre-survey and post-survey were dummy coded 
as 1 and 2, respectively. 

5.4.2 Open-ended Response Evaluation 

199 participants’ responses to the open-ended items on the pre and postsurvey were evaluated with a rubric 
(Appendix A). Scores from zero to four were assigned to the response of each item; 0 representing no response, 
and 4 representing a good understanding of coding, how to integrate coding into preschool, and how coding 
relates to other fields other than computer science. For views of the nature of coding, we considered the 
following response that ‘coding is the sequence of numbers, commands, and signals that tell computers what 
to do’ as evidence of the participant having a sound understanding of the subject. Therefore, we assigned the 
response a score of 4. We scored a response such as ‘coding involves making a computer function’ a score of 
3 because the participant responded only to one of the sub-questions asked and the response was fairly 
general. A response such as ‘it's computer related. Beyond that I don't know what it's for’ was rated 2 because 
it indicates a basic understanding but also significant lack of prior knowledge of coding. A response such as ‘I'm 
not really sure of what it is. In private school, we did not have any computer science classes,’ the response 
would be rated as 1, because it indicated that the participant did not know how to answer the question. If the 
participant did not enter any information in the open-ended question, the response would be automatically 
assigned a score of 0. More information on scoring criteria and example responses can be found in Appendix 
A. 
 
Once the evaluation rubric was developed, all four raters went through the rubric to ensure a consistent 
understanding of the rubric. Then pilot coding was conducted: each rater was paired with another rater and 
completed a different portion of the rating from both pre- and post-survey responses across multiple studies for 
a few times. The paired rater was different each round, so the raters developed a shared understanding of the 
coding rubric. During the pilot coding process, four raters evaluated participants’ responses independently using 
the rubric and the consensus was reached. Then, two raters were paired up, and their evaluation scores were 
used to calculate the interrater reliabilities. The first pair rated approximately 60% of the data and the second 
pair rated 40% of the data. For each pair of raters, the Cohen’s Kappa scores of ratings for pairs before 
consensus were 0.767 and 0.854. Consensus scores were used in the analysis as the outcome variable. 

5.5 Analytic Strategy 

We used geepack package [81] for R to conduct generalized estimating equation analysis. We chose to use a 
generalized estimating equations approach because we wanted to use predictor data to predict an outcome, 
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but the participants were nested within different classrooms and universities. In addition, participants’ views of 
(a) nature of coding, (b) integration of coding in preschool classrooms, and (c) relation of coding to non-CS 
fields in the post-survey is likely to be correlated with their view in the pre-survey. As such, using a standard 
regression approach would not work [82]. Generalized estimating equations can account for nesting and as 
such produces minimally biased Betas [82]. Generalized estimating equations offer numerous advantages for 
modeling correlated data [83]. The interpretation of the estimates is identical to those in models with 
uncorrelated data [83]. 
The predictor variables included: a) study in which ECE teacher candidates participated, b) prior programming 
knowledge, c) prior robot programming experience, d) scores for the ten latent factors from the presurvey, and 
e) inclusion of lesson design plus field experience or not. These measurements were hypothesized to be related 
to ratings of open-ended response items at the second time point (i.e., post-survey). Note that item (e) is related 
to item (a) but there were multiple studies in which lesson design plus field experience was used, and so it was 
important to keep study ID as a predictor to account for potential nesting. Prior literature indicated that prior 
programming knowledge, prior robot programming experience, and motivation predict preservice teachers’ 
views of coding. The gap between pre-survey (time = 1) and post-survey (time = 2) was around three weeks. 
Study = 0 was used as the baseline comparison group for study in which participants were enrolled. Time = 1 
(pre-survey) was used as the baseline comparison group to the post-surveys for the difference in participants’ 
views of coding. 
We used AR-1 correlation structure because we speculate that one's post-survey score is correlated with his or 
her pre-survey score. Identity link function was used because our outcome variable is continuous. 

6 RESULTS 

6.1 RQ1: How do ECE teacher candidates’ views of coding change as a result of learning to use 
coding in teaching? 

Participants’ overall views of coding scores increased significantly from pre to posttest for all five study groups 
(see Figure 2). However, study was not a significant predictor for an increase in open-ended response scoring. 
The increase rate was highest among participants who were enrolled in study 3. By contrast, the lowest rate 
was found among participants in study 1. 
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Figure 2: Pre-post gains in total open-ended response scores 

6.2 RQ2: How can ECE teacher candidates’ views of coding be predicted using study, time point (pre-
survey vs. post-survey), prior programming knowledge and experience, ten latent survey factors, 
and the inclusion of lesson design/field experience? 

 

Table 1: Descriptive Statistics of the Full Score and Score of Each Question 

Variable  M  SD  Range  
Full Score  8.61  2.09  0-12  
Views of the nature of coding  2.98  0.77  0-4  
Views of integration of coding in preschool  2.84   0.997  0-4  
Views of relation of coding to non-CS fields 2.79  1.129  0-4  

 

Table 2: Descriptive Statistics of Significant Predictors 

Variable  M  SD  Range  
Perception of value of coding  44.36  9.71  18-69  
Perception of mathematics  49.67  16.49  14-79 
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6.3 Predicting Overall Views of Coding Scores 
There were four significant predictor variables including time points, programming knowledge, robot 
programming experience, and views of coding. Specifically, the time variable was significantly positively 
associated with open-ended response total scores (b = 1.633, p < 0.001), indicating that overall views of coding 
scores significantly increased from pre- to post-survey. Robot programming experience was also a significant 
positive predictor of the total scores in the post-survey (b = 1.226, p = 0.002), such that participants who 
answered that they have prior robot programming experience scored 1.226 units better in open-ended 
responses in the post-survey than participants who reported no prior robot programming experience. 
Perceptions of the value of coding was also significantly positively related with open-ended response total 
scores in the post-survey (b = 0.040, p = 0.005), indicating the more positive perceptions of the value of coding 
participants have the higher scores the participants received in their open-ended responses in the post-survey. 
However, programming knowledge was significantly negatively associated with open-ended response total 
scores in post-survey (b = -1.091, p = 0.018), particularly participants who reported having intermediate 
programming knowledge obtained 1.091 unit less on open-ended response total scores in post-survey than 
participants who reported no prior programming knowledge. 

Table 3: Predictors of Total Views of Coding Score 

Predictor Beta Std.err Wald Pr(>|W|) 

(Intercept) 5.1 1.04 23.82 < .001 
Time = post-survey 1.63 0.18 82.89 < .001 
Study2 0.22 0.26 0.71 0.4 
Study3 0.33 0.54 0.38 0.536 
Study4 0.41 0.56 0.54 0.461 
Study5 0.65 0.57 1.32 0.25 
Lesson design and field experience present -0.57 0.49 1.31 0.253 
Low prior programming knowledge 0.06 0.2 0.08 0.778 
Intermediate prior programming knowledge -1.09 0.46 5.59 0.018 
High prior programming knowledge -1.19 0.67 3.19 0.074 
Has prior robot programming experience 1.22 0.4 9.5 0.002 
Perceptions of mathematics -0.01 0.01 1.68 0.195 
CS & engineering in STEM career -0.004 0.01 0.23 0.632 
Perceived value of coding 0.04 0.01 7.71 0.005 
Perception of computer science and technology 0.002 0.01 0.04 0.839 
Performance goal orientation -0.01 0.01 0.53 0.466 
Perceptions of English -0.001 0.02 0.005 0.941 
Science interest 0.02 0.01 1.12 0.291 
Mastery goal orientation 0.03 0.03 1.01 0.315 
Self-determination in STEM+ computer science 0.01 0.02 0.3 0.585 
Identification with computer science & engineering 0.02 0.03 0.4 0.528 
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6.4 Predicting Views of the Nature of Coding 
The multivariate generalized estimating equation model detected three significant predictor variables including 
time, programming knowledge, and robot programming experience. To be specific, the time variable was 
significantly positively associated with Q1 scores (b = 0.261, p < 0.001), where participants’ scores for the same 
Q1 were significantly higher in post-survey than in pre-survey. Robot programming experience was also a 
significant positive predictor of Q1 scores in post-survey (b = 0.421, p = 0.005), indicating that participants who 
reported as having prior robot programming experience have significantly higher scores in Q1 responses than 
the participants who reported as having no experience. However, programming knowledge was a significant 
negative predictor of Q1 scores, where participants who reported themselves as having high programming 
knowledge and intermediate programming knowledge respectively scored 0.778 unit and 0.631 unit less than 
the participants who reported as having no programming knowledge in Q1 responses in post-survey (b = 0.778, 
p = 0.003; b= -0.631, p < 0.001). 

Table 4: Predictors of View of the Nature of Coding 

Predictor Beta Std.err Wald Pr(>|W|) 

(Intercept) 1.65 0.47 12.47 < 0.001 
Time = post-survey 0.26 0.07 14.82 < 0.001 
Study2 -0.11 0.1 1.29 0.255 
Study3 0.12 0.23 0.28 0.593 
Study4 0.04 0.22 0.03 0.868 
Study5 0.23 0.26 0.77 0.379 
Lesson design and field experience present -0.27 0.21 1.67 0.197 
Low prior programming knowledge -0.09 0.09 1.19 0.274 
Intermediate prior programming knowledge -0.63 0.19 10.89 0.001 
High prior programming knowledge -0.78 0.26 9.09 0.002 
Has prior robot programming experience 0.42 0.15 7.63 0.006 
Perception of math 0.0001 0.003 0.003 0.958 
CS & engineering in STEM career -0.002 0.003 0.53 0.45 
Perceived value of coding 0.009 0.005 3.09 0.079 
Perceptions of computer science and technology -0.00004 0.005 0.00006 0.993 
Performance goal orientation -0.001 0.006 0.05 0.823 
Perceptions of English 0.009 0.008 1.25 0.263 
Science interest 0.01 0.007 2.53 0.111 
Mastery goal orientation 0.009 0.01 0.38 0.538 
Self-determination in STEM+CS 0.007 0.009 0.66 0.417 
Identification with CS & engineering 0.01 0.013 0.65 0.421 

 

6.5 Predicting Views of Integration of Coding in Preschool 

We detected two significant predictor variables including time and perceptions of mathematics. The time 
variable was significantly positively associated with Q2 open-ended response scores (b = 0.688, p < 0.001), 
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showing participants scored significantly higher in post-survey Q2 responses than in pre-survey responses. 
However, perception of mathematics (Factor 1) was significantly negatively related to Q2 response scores (b = 
-.008, p = 0.033), indicating that the more positive perception of mathematics was, the lower the scores 
participants obtained on views of integration of coding in preschool. 

 

Table 5: Predictors of views of integration of coding in preschool 

Predictor Beta Std.err Wald Pr(>|W|) 

(Intercept) 1.97 0.46 18.58 < 0.001 
Time = post-survey 0.69 0.09 56.08 < 0.001 
Lesson design and field experience present -0.23 0.23 0.99 0.319 
Study2 0.06 0.13 0.22 0.637 
Study3 0.22 0.26 0.74 0.389 
Study4 0.08 0.26 0.08 0.774 
Study5 0.18 0.25 0.53 0.465 
Low prior programming knowledge -0.04 0.1 0.16 0.688 
Intermediate prior programming knowledge -0.26 0.19 2.04 0.153 
High prior programming knowledge -0.26 0.37 0.52 0.472 
Has prior robot programming experience 0.39 0.21 3.38 0.066 
Perceptions of mathematics -0.01 0.004 4.53 0.033 
CS & engineering in STEM career 0.001 0.004 0.1 0.748 
Perceived value of coding 0.01 0.01 3.26 0.071 
Perceptions of computer science and technology 0.001 0.01 0.02 0.878 
Performance goal orientation 0.003 0.01 0.3 0.582 
Perceptions of English 0.001 0.01 0.01 0.937 
Science interest -0.007 0.01 0.65 0.421 
Mastery goal orientation 0.02 0.02 1.22 0.268 
Self-determination in STEM+CS 0.01 0.01 0.51 0.475 
Identification with CS & engineering -0.02 0.02 1.02 0.312 

 

 

6.6 Predicting views of relation of coding to non-CS disciplines 

Time (b = 0.68, p < 0.001) and perceptions of the value of coding (b = 0.02, p = 0.013) were significant predictor 
variables of views of how coding relates to field other than computer science in the post-survey. Participants 
scored significantly higher in post-survey open-ended responses to how coding relates to fields other than 
computer science than the same item on the presurvey.  

 

Table 6: Predictors of views of relation of coding to non-CS disciplines 

Predictor Beta Std.err Wald Pr(>|W|) 

(Intercept) 1.48 0.63 5.55 0.018 
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Time = post-survey 0.68 0.1 48.79 <0.001 
Study2 0.27 0.16 2.91 0.088 
Study3 -0.02 0.29 0.003 0.954 
Study4 0.3 0.25 1.44 0.229 
Study5 0.24 0.28 0.72 0.396 
Lesson design and field experience2 -0.06 0.23 0.07 0.794 
Low prior programming knowledge  0.19 0.12 2.42 0.12 
Intermediate prior programming knowledge -0.19 0.25 0.63 0.427 
High prior programming knowledge -0.15 0.46 0.11 0.744 
Has prior robot programming experience 0.41 0.22 3.59 0.058 
Perceptions of mathematics -0.002 0.004 0.13 0.72 
CS & engineering in STEM career -0.003 0.005 0.33 0.562 
Perceived value of coding 0.02 0.008 5.41 0.02 
Perceptions of computer science and technology 0.001 0.007 0.05 0.818 
Performance goal orientation -0.01 0.008 1.91 0.166 
Perceptions of English -0.01 0.01 1.1 0.295 
Science interest 0.01 0.01 1.77 0.184 
Mastery goal orientation 0.006 0.02 0.1 0.757 
Self-determination in STEM+CS -0.002 0.01 0.03 0.869 
Identification with computer science and engineering 0.02 0.02 1.81 0.178 

 

7 DISCUSSION 

Time (pre-survey vs. post-survey) is a significant predictor in all four models, which predicted participants’ 
overall views of coding, views of the nature of coding, views on the integration of coding in preschool, and views 
of the relation of coding to fields other than CS. Holding all the other variables constant, participants had an 
improved understanding of coding and its purpose after they worked through the robot programming unit. 
Holding all the other variables constant, participants had a better understanding of how they can integrate 
coding into preschool classrooms after they worked through our tasks in this research project. Holding all the 
other variables constant, participants had a better understanding of how coding can be transferred into other 
fields after they worked through the robot programming unit. This is promising because views of coding are 
often closely held and difficult to change [28], [30], [35] From a teacher education perceptive, one might surmise 
that time would have an effect in university one due to its inclusion of field experience, but not university two. If 
that were the case, one would expect the variable to not be a significant predictor. That these teacher candidates 
began to espouse a richer view of coding and to see coding as a valuable part of the preschool curriculum that 
is applicable to other subjects bodes well for their potential as early childhood CS teachers. In this way, they 
may also serve as positive role models of female computer scientists, which is critical to countering views of CS 
as masculine and uninviting for women [26], [84]. 
Also of note is that designing a lesson and using it in field experience was not a significant predictor for overall 
views of coding, views of the nature of coding, views of integration of coding in preschools, and views of relation 
of coding to non-CS fields. Much teacher education literature holds that integrating field experience and lesson 
design within teacher education courses increases the depth with which teacher candidates learn content [18], 
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[85]. It is possible that either designing the lesson plan and using it in field experience was not impactful, or that 
it was but less time spent engaging directly with pair programming [86] counterbalanced that impact. Further 
research is needed to explore this finding.  
Participants with intermediate and high programming knowledge scored significantly lower than participants 
with no prior programming knowledge on open-ended views of coding responses. In this way, the use of 
educational robotics and coding in our project was more beneficial for novice programmers than participants 
who already had some level of knowledge, especially on their understanding of coding and its purpose. For 
participants with no prior programming experience, learning to use coding in teaching can be a novel and 
insightful experience for them to develop a better understanding of the role of coding in early childhood 
education. However, for the participants who already have some programming knowledge, learning to use 
educational robotics and coding might have a limited impact on their views of coding. Participants with 
intermediate and high programming knowledge are likely to have taken a CS class before and presumably saw 
CS as a distinct discipline that is hard and not suitable for early childhood education. Participants were probably 
constrained by the initial ideas about the nature of coding and had difficulty being creative and flexible in viewing 
coding from the perspective of early childhood education purpose [87]. In addition, participants with prior 
experience of coding tend to bring certain expectations about the class based on their prior experience (mostly 
with text-based programming languages) and if the class is different from what they expected (e.g., class using 
block-based programming language), they may perceive the class as not inviting or not useful for them, which 
the literature indicates can lead to weaker views of coding [26], [88]. Last, we speculate that it is possible that 
those participants might have overestimated their programming knowledge level, given that this estimation was 
based on participants’ self-report. Further research is needed. 
We found a small negative association between perception of mathematics and views of integration of coding 
in preschool. Teacher candidates have a unique identity in that they pursue teaching careers with having a 
teacher mindset and yet are still students who might not have a clear idea of what they could do or would do as 
a future teacher. With less knowledge and skills for teaching, they often teach principles similar to how they 
learned the principles [89]. Also, it is possible that teacher candidates may not have a profound understanding 
of how concepts and practices from different principles are integrated for the purpose of teaching. Particularly, 
students with a more positive perception of mathematics are more likely to have higher satisfaction with the way 
they learned mathematics and prefer teaching using traditional procedures than integrating new teaching tools 
or approaches. It is probable that they considered integrating coding into early childhood classrooms 
unnecessary since coding was not part of early learning and development standards [90]. 
Perceived value of coding has a small relationship with views of the relation of coding to non-CS disciplines. 
With their positive perception of the value of coding, the participants seemed capable of detecting and 
recognizing the broad application of coding in other subject areas other than CS. Thus, participants who held a 
more positive view of coding tended to report that coding could be integrated into other disciplines and were 
more able to provide better rationales.  

7.1 Limitations and Delimitations 
Survey responses were collected from early childhood teacher candidates taking teacher preparation courses 
at two different universities. While the robot programming units had substantial similarities, the teacher 
education courses had different emphases. We accounted for nesting using generalized estimating equations. 
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But such nesting can adversely affect the intuitiveness of the interpretation of findings. For example, time is a 
significant predictor in all four models. While further research is needed to investigate further the nature of the 
learning activities that led to the positive changes, these findings offer critical implications for teacher education 
researchers and practitioners who are interested in broadening participations in STEM. As discussed earlier, 
views not only on CS but also on its value are not easy to change [28], [30], [35]. Two or three 2.5-hour class 
sessions on coding in this research led to drastic changes in the participants’ views of coding. Given positive 
changes in their views of the value of coding in education, it is possible that these future teachers would actually 
integrate coding in their classrooms considering the importance of teacher beliefs in technology integration [91, 
p. 201]. Future research that employs a larger sample size and can link participants’ views of coding and their 
teaching would be valuable. 
All data, except dummy coded variables such as time and study, were collected using a self-report survey. 
Particularly regarding the self-reporting prior programming knowledge and experiences, participants could have 
been equipped with different understandings of what ‘low/intermediate/high’ programming knowledge and 
experiences represented. We might have future participants elaborate on their prior knowledge and experiences 
using open-ended questions to leverage the self-reported information. Self-presentation bias is an issue in many 
areas of research with human participants, and no less so in teacher education research [92]. Still, the nature 
of many of the variables (e.g., science interest, perceptions of CS and technology) studied in this research lend 
themselves well to self-report. 

8 CONCLUSION 

Early childhood teacher candidates’ views of coding, the place of coding in the preschool curriculum, and the 
relationship of coding to other disciplines increased after spending only several hours learning to code and use 
coding in early childhood teaching. This trend was consistent across all five study groups. As highlighted above, 
this is noteworthy given how resistant women’s views of coding are to change [26], [28]. The remaining positive 
predictors – prior robot coding experience and perceptions of the value of coding – were aligned with the existing 
literature. Still, the negative predictors – intermediate and high prior programming knowledge and perceptions 
of mathematics – were not expected. Further research is needed to understand the why behind these predictors. 
This is an important first step towards, but certainly not the only step needed for, ensuring that CS is for all [45]. 
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