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Abstract

Mimetic finite difference operators D, G are discrete analogs of the continuous diver-
gence (div) and gradient (grad) operators. In the discrete sense, these discrete operators
satisfy the same properties as those of their continuum counterparts. In particular, they
satisfy a discrete extended Gauss’ divergence theorem. This paper investigates the
higher-order quadratures associated with the fourth- and sixth- order mimetic finite
difference operators, and show that they are indeed numerical quadratures and satisfy
the divergence theorem. In addition, extensions to curvilinear coordinates are treated.
Examples in one and two dimensions to illustrate numerical results are presented that
confirm the validity of the theoretical findings.
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1 Introduction

The use of the finite difference (FD) method is a common approach in numerical
solutions of partial differential equations (PDEs). The FD method discretizes the partial
derivatives of PDEs into a set of algebraic equations, which is then solved. Although FD
methods have some known drawbacks, one advantage of FD methods is its simplicity
(especially when one can fit the domain into a box-shaped geometry), a straightforward
implementation when compared to other methods such as the finite element or finite
volume methods.

One of the drawbacks of the FD method is the sensitivity of the solution to
boundary conditions (LeVeque 2007). FD methods derive stencils for the derivative
operators using a Taylor’s series approach. This approach has the advantage of being
straight-forward, since one can easily implement matrices for the numerical deriva-
tives. However, the underlying physics (or other mathematical characteristics) of the
problem may not be adequately represented in this discretization process. Mimetic dif-
ference methods construct difference operators divergence, D, and gradient G, which
discretely satisfy the extended Gauss’ divergence theorem. These methods are called
mimetic because the discrete difference operators mimic the properties of their contin-
uum counterparts. Hence, numerical schemes obtained using the mimetic operators are
more faithful to the physics of the problem under investigation (Castillo and Miranda
2013).

The classical divergence theorem states that the flux of a vector field v across the
sectionally smooth boundary of a compact domain in two or three dimensions equals
the surface or volume integral of div(v), and this integral can be regarded as a func-
tional. When dealing with quadrature approximations for integrals, one would then
have a functional estimate for the domain integral. This functional estimate will be
said to mimic the divergence theorem when this estimate is accurate and also turns out
to be equal to the quadrature over the boundary. It is known that general high-order
finite differences for the divergence over a uniform grid may be accurate, but they fail
to mimic the divergence theorem. Hicken & Zingg (2013) have proven accuracy of the
quadratures associated with summation-by-parts methods (SBP) (Kreiss and Scherer
1974; Strand 1994). SBP methods (derived on nodal grids) have been extended to stag-
gered grids via interpolation, O’Reilly et al. (2017), but their order of approximation
at the boundary is lower than the one in the interior of the domain. The construction of
these operators requires a generalized inner product, referred to as the weight matrix,
whose coefficients can be used for numerical integration of functions.

It is important to notice that the mimetic difference operators are built from a
staggered grid (not from a nodal one) and as a result, their processes of constructions
differ from those of the SBP approach. Our scalar functions are defined at the boundary
and the center of cells, while our vector functions are defined at the edges or faces
of cells. Moreover, the mimetic quadratures induce diagonal norms and our mimetic
operators retain the same order of accuracy over the whole domain, including at the
boundary. The SBP diagonal norm does not have the same order of accuracy at the
boundary, i.e., their 4'"-order operator is only 3"¢-order accurate at the boundary.

Navarro (2015) and Srinivasan & Castillo (2016) investigated the use of the coeffi-
cients obtained from the diagonal weight matrices Q and P, associated with mimetic
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difference operators divergence D and gradient G on staggered grids (Castillo and
Grone 2003) as a tool for numerical integration. This preliminary study was inspired by
the resemblance of the coefficients of the mimetic quadratures with those of Newton-
Cotes’. In fact, the second order is exactly the 3/8, 9/8 Newton-Cotes quadrature, as
previously noticed by Castillo et al. (2001). The results of Navarro and Srinivasan &
Castillo demonstrated that mimetic quadrature coefficients are a viable alternative for
numerical integration.

In this paper, a theoretical framework is provided for the fourth and sixth order
mimetic quadratures (Castillo et al. 2001) associated with the corresponding D and G
discrete mimetic operators. The mimetic coefficients considered in this paper are the
ones from (Castillo and Grone 2003), which guarantee even order of accuracy at the
boundaries and interior nodes for the derivative operators. The approach used for SBP
quadratures reported by Hicken & Zingg (2013) is followed.

The novelty of this research lies in the demonstration that the weights obtained
from the mimetic discretization method are a valid numerical quadrature formulation,
and that these quadratures satisfy the divergence theorem. In addition all weights
(coefficients) are positive-valued and result in diagonal matrices. Finally, high-order
mimetic quadrature formulations retain accuracy when used in curvilinear coordinate
systems.

This paper is organized as follows: after stating in Sect. 2 some identities that one
would like to mimic in the discrete sense, Sect. 3 introduces mimetic operators, and the
resulting high-order quadratures. Section4 demonstrates that the mimetic quadratures
are bonafide numerical quadratures so they can be used for numerical integration
of functions. Section5 presents the extension to curvilinear coordinates. Section6
provides numerical implementations of the quadratures, along with their calculated
accuracy orders. This section, also includes examples of how to solve PDEs using
the mimetic operators. Finally, the “Appendix” shows details of the derivation of the
fourth-order divergence and gradient operators.

2 Identities

Let [a, b] be an interval. Let {xo, x1, - - - , x5} a homogeneous partition of [a, b], i.e.,
xi=a+ih i€l h=22%1={01,- N}

1. A quadrature for the numerical integration of function i/ : [a, b] — R is given by
the closed Newton-Cotes formula,

b N
/ Ude~ Y b U =(U. 1) =h(U.1), =hU" WL, (1
“ i=0

where w;, i € I, are its integration weights, and discrete vector U = (U;) =
(U(xi)),i € I.Inaddition, w; = %, iel,andW = diag {w;} = h diag {w;} =
hW,and 1 =1, 1, ..., 1]7. Notice that (-, -),, for V = W, W refers to the gener-
alized inner product.
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2. The generalized inner product of functions U, V : [a, b] — R is given by
b
/ UV dx =~ (U, V), =UTWV = VIWU, )
a

where U = (U;), V = (V;), i € I, and W is a symmetric and positive definite
matrix. It will turn out that one can restrict W to be diagonal with positive entries.
3. The integration by parts (IBP) formula for ¢/, V : [a, b] — R is given by

b b b
/ UV dx =UV —/ VU, dx. 3)

4. The first derivative operator % over a smooth function V : [a, b] — R has a dis-
crete analog D; which acts on discrete vector V = (V;), i € I and approximates
W =Vb
5 — Vx DY

V= —=~D V. 4)
ax

3 Mimetic finite difference

The higher dimension equivalent to the IBP is the extended Gauss’ divergence theorem,

/fV-T) dV—i—/T)-(Vf) dV:/ fv-7idS 5)
Q Q Q2

In Eq. (5), V- is the divergence operator div, and V the gradient operator grad. The
integral on the right hand side of Eq. (5) represents the boundary integral operator.
The aim of mimetic discretizations is to seek discrete equivalents for the div and grad
operators.

The mimetic discretization method utilizes a staggered grid. In two or three dimen-
sions, the divergence differential operator acts on vector fields, and the gradient
differential operator acts on scalar fields. PDE flux boundary conditions require that
the flux is given in terms of a gradient. So, physically meaningful PDE discretizations
are constrained to compute the result of a gradient on the boundary of a voxel or ele-
ment. Similarly, the definition of the divergence (and that of a curl) of a vector field
(as the limit of the average flux across the boundary of a region whose volume goes
to zero) imposes the condition that when discretized, the result of a divergence should
be computed on the interior of a discrete voxel.

On [a, b], we define x; = a + "(g;“), i=0,1,...,2N and consider:

o the set of cell centers is X = {x12, %372, ... XN—1)2},

e the set of cell nodes is X = {xg, x, ..., xy}, and
e the set of centers extended (cell centers and interval boundaries a and b) is X =
{x0, X172, X3/2, ..., XN—1/2, XN }-
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The mimetic divergence and gradient operators are defined as linear maps

D: X - X, G:X— X.

Therefore, D € RV*NV+D gnd G € RWHDX(N+2) A derjvation of the mimetic
fourth-order div and grad operators can be found in the “Appendix”.

The image of operator D is at the cell centers X. We extend the divergence operator
to include the interval boundaries or X by setting the value of this extension to zero.
We denote this new operator by D : X — X. Notice that D € RV+2x(N+D Ag 4
linear map, D is extended to D by appending a first row and last row of zeros.

For simplicity, we identify [a, b] with [0, 1].

In one dimension, Eq. (5) becomes

L 1Y Lar
f fo—dx +/ —-vdx =v()f(1) —v(0)f(0), (6)
0 0x 0 JIx

av a
where Py corresponds to the div operator, and B_f to the grad operator. Hence, v is
X

X
seen as a discrete vector field and f is seen as a discrete scalar field.
Equation (6) can be rewritten as

ov

af
(3

f)+(l),a—x

) = v(1) £(1) — v(0) £(0). )

Let V =v|x = (V;) = V(x;), x; € X be the discrete version of the vector field
v (Vis v restricted to X), and let F = f|; = (F;) = F(x;), x; € X be the discrete
version of the scalar field f (F is f restricted to X ).

Using mimetic operators D and G, the discrete equivalent of Eq. (7), for general
diagonal positive-definite weight matrices Q and P is (see (1))

WDV, F), +h{V,GF), =hV'DT QF + hVT PGF = VxFy — VoFo.  (8)

Rather than satisfy Eq. (8) exactly, our constructed operators up to an error term of
order h satisfies Eq. (8). Specifically, we construct operators that satisfy the following
equality

hWIDQF + hVI' PGEF =hVIBTF = VyFy — ViFi + hVTEE.  (9)

where E is defined in Eq. (14).
One property of these mimetic operators of k" order is the zero row sum

D1=0, G1=0, (10)
where 1 is a vector of ones of the appropriate size. Notice that 1D’ = 0.
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For V = 1, (8) becomes h1T PGF = Fy — Fy = (—1,0,...,0, )T F, for any
F, or equivalently, hGT P11 = bpyr = (—1,0,...,0,1). Therefore,

hG'p=bui2, Y

where p = (p;) = (P;;) is a vector that contains the diagonal of P.
Similarly, if one replaces F' = 1 in (8) then

hDTG = by, (12)

where ¢ = (§;) = (Q;;) is a vector that contains the diagonal of Q and vector
bps1 = (—=1,0,...,0, DT,

Matrices P and Q are defined as the solutions of the programming problems

N+1
min Z pi, subjectto hGTp =byt+2, pi =0,

i=1
and

N
min Zqi, subject to hDTq =bu+1, qi =0,

i=1

respectively.
From (8), define B € RWV+2X(V+D 'the mimetic boundary operator, as

B=h(0D+G"P). (13)
Notice thatif e = (1,0, ..., 0) then the first row of B is given by
elB=hel GTP+hel QD=hG] P+hQ, D=(-1,0,...,0),

where the last identity follows from (11) and that the first row of D (by construction
since there are no divergence of boundary points, see “Appendix”) is zero. Similarly,
the last row of Bis (0, ..., 0, 1).

In addition, for 2 <i < N + 1, the corresponding row sums of B are

N+1 N+1 N+1N+2
Y Bij=h Y (G"P+QD);=h > > (G]P;+ Quby)
j=1 j=1 j=1 1=1
N+1N+2 N+1 N+1
=h Z Z(GiT, P81 +qi 8 Dyj) = h Z G/ipj+haqi Zﬁij =0,
j=1 I1=1 j=l1 j=1

where §;; is the Kronecker delta. The last identity follows from (10) and (8).
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Table 1 Quadrature weights P and Q arising from G and D, respectively

Order k Ak Weight Coefficients

39
2 A0, Al 33
1,1
407 473 343 1177
1152° 384> 384" 1152
649 143 75 551
576° 192’ 64° 576
43531 192937 42647 86473 125303 140309
138240 138240° 69120° 69120 138240 138240
41137 15667 2933 2131 41411 33437

34560 34560 1728° 4320° 34560 34560

4 A0y A1, A2, A3

6 A0s A1s A2, A3, A, A5

o T O T O T

If one defines By € RIV+2x(V+D py

—10...00
00...00
Bi=| i
00...00
00...01
and
E=B - B, (14)

the first and last rows of E are zero. All other row sums of E are zero. From Eq. (12)
we see that E is order h so it goes to zero as h goes to zero.

Table 1 shows the quadrature weights for orders k = 25 = 2, 4, 6, obtained from
the mimetic method in Castillo and Grone (2017). The A;’s are the coefficients of the
quadratures. The accuracy conditions that satisfy the truncation error for polynomials
up to order k + 1 are

Dv/ = ju/~! and Gf/=jf/7', j=01,....k (15)

4 Quadrature properties of the mimetic coefficients

The Euler-Maclaurin summation formula (Apostol 1999) relates the integral and the
numerical derivative of a function. Consider f : [0,1] — R, f € C¥"*2. The
Euler-Maclaurin summation formula is

1 n 2m
/0 f(x)dx=nh Z fo+ Z %hk(fo(k_l) — (_1)kfn(k—l)) + OR¥+2)
v=0 k=1

A direct consequence of this formula can be stated as follows:
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Proposition 1 Consider an interval x € [0, 1] and a function g = f' € C*"+2,
with 2m 4+ 2 > 2s. Let W be a positive definite symmetric diagonal matrix of
the form W = diag(Wr, I, Wg), where Wi = diag(ro, A1, ..., 5-1), Wg =
diag(Ays—1, ..., M1, o) and I is the identity matrix. A quadrature for the function g
of the form (]l, th) is a 2 s-order accurate approximation of f1 — fo if and only if
the 2s-quadrature weights satisfy the (2s — 1) Bernoulli conditions,

r—1
jZAv(r —o) = (1), j=1,2,, 25— 1),
v=0

withr = 25, and B; is the sequence of Bernoulli numbers, 1 = —%, By = %, Ba =
—31—0, Be = %, Bz = B5 = -+ - = 0 (refer to theorem 1 in Hicken and Zingg (2013)).

Proposition 2 The P;’s satisfy the (2s — 1) Bernoulli conditions.

Proof By construction, (]l, hG f ) p = J1 — fo is satisfied. Hence, the weights of P
satisfy the (2s — 1) Bernoulli conditions. The exactness condition corresponds to Egs.
(27) and (29) in Castillo and Grone (2003). O

Proposition 3 The algebraic system of 2s-equations is completed for the 2s-weights
Py, Py, ..., Py with the coefficients d;;’s (as noted in the “Appendix”). These d;;’s
are the coefficients that arise from the Toeplitz-structure for the centered-difference
stencil on a staggered grid that is of 2s-order of accuracy.

Proof 1t is enough to take as the remaining complementary equation any appropriate
simple column sum from 4 PG equated to zero. However, involving the conveniently
adapted entries from the upper left corner of the stencil yields the desired 2 s-order
of accuracy at the boundary nodes. This corresponds to the matrix 7; of Eq. (27) in
Castillo and Grone (2003). O

Proposition 4 The quadrature obtained using the diagonal weight matrix P is (2s+1)-
order accurate.

Proof By construction (]1, hPGf > = f1 — fo holds. Since G is 2s-order accurate, it
follows that G f = f' + O(h*). Thus, hPGf = hPf' + hP[O(h**)]. It follows
that fi — fo = (L, hPGf) = (L, hPf')+ (1, O(h?**1)). So, the quadrature obtained
by using the diagonal P matrix that is associated to G is (2s + 1)-order accurate. O

The mimetic divergence operator and Q hold a similar property. It is well known
that general higher-order FD schemes can accurately represent the divergence on a
uniform grid. However, they fail to mimic the divergence theorem in the sense that the
discrete quadrature of the volume integral does not produce a discrete quadrature for
the surface integral. As noted in Hicken and Zingg (2013), the use of the corresponding
diagonal matrix combined with the SBP operators produces a functional that mimics
the divergence theorem. As shown in the previous section, P and Q, when combined
with the mimetic G and D produce a functional that mimics the extended Gauss’
divergence theorem on a staggered grid.
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Mimetic operator D can be generalized to higher dimensions by means of Kronecker
products (Castillo and Grone 2017). By construction, (1, 2 QDv) = v, — v in [0, 1].
In a two dimensional grid, the exactness condition becomes (12, thyv) 0r
where Qyy, Dxy, Bxy and I, are obtained from the Kronecker products using the one
dimensional operators. The implementation of the Kronecker products is demonstrated
in example 4 of the numerical results section. Therefore, one can conclude that the
divergence theorem is satisfied because the discrete quadrature of Dv over the volume
produces a discrete quadrature of the boundary flux v.

= Bxyv»

5 Mimetic quadratures and the divergence theorem

On a two dimensional grid with m and n equal size sub-intervals, the area integral on
the left hand side of Eq. (5) can be discretized as

WDyv. g, + 16T, . =710y + Gl Pl =B, (16

where ﬁxy = [in ®]A)ma lA)n ®im], Gyy = [i,{ ®Gm; Gn ®i;], Byy = [in ®Bm, Bh®
Im]’ Pyy = diag([In ® Pyy1, Pur1 @ Iml), Oxy = diag([Iny2 ® Omi2, Oni2 ®
Ln2]). I, = [0; In; O].

The significance of Eq. (16) is that the 2 s-order of accuracy is retained in higher
dimensions for the extended Gauss’ divergence theorem, since the higher dimension
operators are formed, via Kronecker products, using the one-dimensional D and G
matrices. Moreover, the discretization invokes the boundary operator, and therefore
depends only on the boundary values for f and v. It can therefore be concluded that
the mimetic quadratures accurately mimic the extended Gauss’ divergence theorem.

A special case with f a constant function in Eq. (16) results in the divergence theo-
rem. The mimetic quadratures therefore satisfy the discrete version of the divergence
theorem.

6 Higher order mimetic quadratures on curvilinear coordinates

Evaluation of integrals by a coordinate transformation require the calculation of its

Jacobian. In one dimension, the Jacobian of a coordinate transformation to a uniform
o d / L . .

staggered grid X is simply —f = f . If the original integrand is some function z,

with the corresponding discrete vector Z, one can consider an expression of the form
(Z ,hPf’ ) as an induced quadrature on the staggered grid. One can use proposition
4 for the quadrature of the form (]1, hPf' ) If z and f are polynomials of degree i

and j, with (i 4+ j) < 2, then the discrete equivalent of fol z(x) f'(x) dx can be
expressed as (Z, th)Q = ZThQDf. It now follows from the construction of D

that if z(x) f' € C29[0, 1], then ZThQD f = /01 z(x) f/(x) dx + O(h**). This is an
accurate quadrature when the integrand is of the form z(x) f’(x) [18].
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Table 2 Calculated least-square Order k

order of accuracy for example 1 Dpe Plot legend ¢ P
Mimetic-2 MIM-G2 —0.8404 2.0444
Mimetic-4 MIM-G4 2.6453 5.1923
6 Mimetic-6 MIM-G6 2.8574 6.1614

In higher dimensions, the Jacobian is a linear combination of products of first partial
derivatives. Integrals in multiple coordinates on Cartesian domains can be expressed as
iterated sums starting with one variable of integration. The mimetic operators in higher
dimensions can be obtained from the one dimensional operators using the Kronecker
products. Thus, the accuracy of the mimetic quadratures with curvilinear coordinates
is retained in higher dimensions as well (Srinivasan et al. 2022).

7 Numerical examples

In this section, the implementation of higher order mimetic quadratures is illustrated
in the first four numerical examples. The last two examples use the mimetic D and G
operators for solving PDEs.

7.1 Example 1

The goal of this example is to evaluate the integral given in Schwartz (1969), and com-
pare the numerical approximation proposed in this paper and its analytical solution.

Ty = /0] m dx = %(atan(oa;s> —atan<_g'5)>

The numerical solution was obtained for a = 0.5. A grid refinement study was
performed to calculate the convergence rate for each of the methods considered. The
errors are proportional to the p power of the grid spacing &, where p is the order of
convergence, i.e., E(h) = Ch?.

C and p for each of the methods, have been fitted by least squares. The results
are summarized in Table 2. Figure 1 shows the log-log errors as a function of grid
spacing. The numerical results achieve the desired order of accuracy for second, fourth
and sixth orders.

7.2 Example 2

Consider the integral e2 from Bailey & Borwein (2006).

T —2+4+2In2

1
I = 2 t d =
2 /0 x“arctan(x) dx B
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Error vs Step Size (log-log)
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1071 == :
103 10 107"
Step Size, log(h)
Fig.1 Log-log error versus step-size for example 1
100 Error vs Step Size (log-log)
105} 1
w
(o))
o
5
o
10—10 L 4
/9’ —8— MIM-G2
*/’ -0~ MIM-G4
Lo —<--MIM-G6
1071° = :
103 102 107

Step Size, log(h)

Fig.2 Log-log error versus step-size for example 2

This integral involves a coordinate transformation £ = arctan(x),& € [0, %]. The
numerical integration uses Z,,», = z'h PGx, where z is the integrand in Z,. Gx refers

dx
to the inverse of the Jacobian, which is the first derivative of the transformation @

Figure 2 shows the log-log errors. Since the sixth order numerical solution exhibits
round-off errors as the grid size is decreased, the rate of convergence was computed
at every step by halving the step size (as opposed to a least-square curve fit that was
performed for the previous example). Table 3 shows the computed rates of convergence
for each step size.
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Table 3 Calculated order of accuracy for example 2

Mimetic type n=32 n =64 n=128 n =256 n=512
MIM-G2 1.5178 1.7869 1.8987 1.9505 1.9755
MIM-G4 4.1238 4.1613 4.1270 4.0806 4.0457
MIM-G6 6.3346 6.9891 8.6610 4.6663 4.1380

Table 4 Calculated order of

accuracy for example 3 Mimetic type n=24 n=48 n=96
MIM-2 2.0186 2.0219 2.0143
MIM-4 4.4992 4.2728 4.1281
MIM-6 7.5549 12.6327 0.3451

7.3 Example 3

Consider the double integral

—1
Iy = // 2+ yz)e%<1—xz+y2>sin(xy2 ) dxdy = 3(1 — e~ 1) (1 = cos(1))
o,

from Hicken & Zingg (2013). The computational domain (&, ) is mapped to the
physical coordinates (x, y) via the transformation

2 2
x“—y =1 xy —1
=, d = s
& 3 and 7n >

where £ € [0, 1] and n € [0, 1]. For each grid size, the physical coordinates were
evaluated using a nonlinear solver. The physical coordinates were then used to compute
the integrand function z in Z3. The discrete equivalent of the double integral can be
represented as

Ty =2 (P®P)J,
where the Jacobian J is given by
J=d®G)x]o[(GR®Dy] - [I®G)yl o [(GDx],

and where o denotes the element-wise product and I is the identity matrix (Table 4).

Figure 3 shows the log-log errors as a function of step size for example 3. The
convergence for the sixth order scheme shows round-off errors since it quickly attains
machine numeric precision for the calculations.
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Error vs Step Size (log-log)

10°
W -///‘ ]
w
E; Lo
5
e o -
S s i -
| .- /,.»'
10000 = 7 o ]
ol
/'/'
L —e— MIM-2
s -0 MIM-4
Q= ————— <’ === MIM-6
107°
102 107"

Step Size, log(h)

Fig.3 Log-log error versus step-size for example 3

Boundary Operator, Error vs Step Size (log-log)
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Fig.4 Log-log error versus step-size for example 4

7.4 Example 4

This example demonstrates the numerical convergence of the boundary operator B
and B in 2D as shown in Eq. (16). Convenient functions v and f were chosen as

v(x,y) =sin(x)cos(y), f(x,y)= 26")/2, x €[0,1],y €10, 1] (17

Figure 4 shows the calculated log-log errors as a function of step size. Both B and B
achieve the desired order of accuracy as expected (Table 5).
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Table 5 Calculated order of accuracy for example 4

Mimetic type n=24 n=48 n=196 n=192 n =384
MIM-2 1.8436 1.9296 1.9665 1.9836 1.9919
MIM-4 2.9787 3.7061 3.8814 3.9464 3.9742
MIM-6 6.8272 6.6305 6.4237 5.9773 -

Brusselator, Solution u(x,t)
4th order Mimetic, 4th order Adaptive RungeKutta
39

Fig.5 Example 5, solution u(x, t).

7.5 Example 5 - Brusselator

In this example the solution of a one dimension system of diffusion Eq. (Gerhard and
Hairer 1996) defined by the set of PDEs

up =1+ u?v —4u+1/50 (V- Vu)
v = 3u — u?v+1/50 (V - Vo)

is approximated by mimetic operators.

The initial and boundary conditions were set to u(0,¢) = u(1,¢) = 1, v(0,¢) =
v(l,t) = 3, u(x,0) = 1+ sin2nx), v(x,0) = 3 in the domain x € [0, 1] and
t € [0,10]. The boundary conditions for # and v were imposed at each step of
numerical integration.

The V - V operator was discretized using the fourth order mimetic Laplacian L =
DG. The Brusselator system has been solved as a system of equations (both u and
v simultaneously). No special treatment was done for the nonlinear u%v term here.
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Inviscid 2D Burgers Eqn u + 2/3V-(u2/2) +1/3uV-u =0

6th Order Mimetic, 4th order Runge Kutta
Time =0.00 s Time=0.25s

Fig.6 2D inviscid Burgers’ equation, solution u(x, y, 7).

As in, both u and v were defined simultaneously on staggered grids since this is a
dissipative system.

The system of equations was solved using the adaptive fourth-order Runge Kutta
time discretization after a mimetic fourth-order spatial discretization of the Laplacian
was utilized. The numerical solution is shown in Fig. 5.

7.6 Example 6 - 2D inviscid Burgers’ equation

The 2D inviscid Burgers’ equation in quasilinear form (Jameson 2008) is given by

+ 2y u clviu=o
S 2 ) T3t T

x2 y2

20)62 20y2
initial condition in the domain x x y € [—3, 3]2, with periodic boundary conditions.

The V- operator was discretized using the sixth order D, along with the correspond-
ing sixth order interpolant to have the quantities at the cell centers. The non-linear term
was treated in quasilinear form as referenced in citejameson. Interpolation is neces-

A 2D Gaussian input u(x, y, 0) = exp (— ), oy = oy = 0.5 was used as
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sary at each time step of integration, since the div operator maps u from nodes to cell
centers. With Ip as the interpolant, the discretized mimetic divergence was written
as DIp at each time step. The sixth-order interpolant used is from (Srinivasan et al.
2022). The procedure to discretize V - u using interpolant matrices is also mentioned
in that report.

Figure 6 shows the solution obtained from a fourth-order Runge Kutta scheme with
sixth-order mimetic spatial discretization.

8 Conclusion

This paper presents an introduction and a theoretical framework for higher-order
quadratures arising from the mimetic methods. The mimetic quadrature weights are
positive definite diagonal matrices that satisfy the divergence theorem. The weights
satisfy also the Bernoulli conditions of the Euler-Maclaurin series, and can therefore
be used as end corrections on a grid for numerical integration of functions. Mimetic
methods satisfy vector calculus identities as well as a discrete version of the extended
Gauss’ divergence theorem. The mimetic Dand G operators also exhibit uniform order
of accuracy at all (interior and the boundary) grid points. In addition, the accuracy of
the higher-order mimetic quadratures is preserved under curvilinear coordinates.
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A Appendix: Mimetic fourth-order Dand G

Consider a staggered grid on [0, 1] of N cells and grid spacing h = % Define
X; = ﬁ, i=0,1,---,2N. Let X = {x1/2, x3/2, - - - xn—12} (cell centers), X =
{x0, x1, -+ ,xn—1,xn} (cell nodes), and X = {x0,x1/2,x3/2, -+ , Xn—1/2, XN} (cell
centers and boundary).
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The mimetic divergence operator D : X — X uses data on X to
compute derivatives at X. A staggered fourth-order finite difference scheme
is given by [21—4, —%, %, —21—4]. This scheme suffices for points x; € X such
X[—3/2, XI—1/2, XI+41/2, XI4+3/2 € X. That is not the case for X172, XN—1/2> where a
special stencil is needed for the boundaries. Symmetry suggests that it is necessary
to find a fourth-order scheme for x /2. However, the approach taken in Castillo and
Grone (2017) is to consider special schemes for X » = {x1,2, X3/2, X5/2, X7/2} utilizing
data from X, = {xo, x1, X2, X3, X4, x5} (similarly at the other boundary). Fourth-order
Taylor expansions of the points in Xpto compute the first-order derivative of the points
in X; generates a Vandermonde system of six unknowns (scheme weights) and five
equations (degree of accuracy), with right hand side vector ¢ = (0, 1, 0, 0, 0)7 (since
one wants to approximate the first derivative). Since the Vandermonde matrix V is full
rank, then nullity(V) = 1.

The resulting fourth-order divergence matrix D € R""+D takes the form

[ di1 diz di3 dia di5 dis
dp1 dy dr3 doy dys dog
d31 d3 d33 d3g d3s d3e
dy1 dap daz dag das dag

1 =9 9 =1
2% 8 8 74

hD = : ,

19 9 1

% 3 8

—dye —dys —dag —dyz —dyr —dy
—d36 —d3s —d34 —d33 —d3 —d3;
—dre —drs —dr4 —do3 —dy —d
—die —di5 —di4 —d13 —d12 —di1

and it can be shown that the structure of V is such that its null space generator is
(—1,5,10, 10, =5, 1). Therefore, for each grid point in f(b, there is one degree of
freedom, and hence D has four degrees of freedom.

Let D be the top-left corner sub-matrix of D, then the general solution can be
represented as

|
—_
jan
—
=

-1 17 3 =5 1 g
2 24 38 24 24
I =9 9 -1 o]
. | s 00 o
D: 1 —9 9 -1 + [1 _5 10_10 5_1]
OﬂTgﬁO o3
1 -9 9 -1 o4
00 %35 =

If one takes oy = a3 = a4 = 0, one can extend the standard fourth-order scheme as
much as possible. On the other hand, «¢1 is chosen conveniently.
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If one extends the image of D from XtoX by padding with zeros the first and last
rows then D € R®+27+1D ig given by

-0 0

—4751 909 6091 —1165 12 —25 0
5192 1298 15576 5192 2596 15576

=}

A 1 1 -9 9 -1
D=—| 2 T 3§ = 0 0
o L == 9 L 9

24 8 8 24

Symmetry of D ensures that the bottom right corner can be determined from the

coefficients of the top left portion of the matrix.
The weight matrix Q associated to D is given by

) 649 143 75 551 551 75 143 649
Q=dlag 1’ 9 9 9 9 17"‘7 b b 9 9 9 1 .
576 192 64 576 576 64 192 576

The derivation for the coefficients of the fourth-order gradient follows a similar pro-
cedure as the one outlined above to obtain G € R +1.7m+2) 55

[[—1152 10063 2483 —3309 2099 —697 0 7]
407 3256 9768 3256 3256 4884

17 =5

o =4 17 3 == 1
1 12 24 8 24 24
1 =9 9 =1
G=21 0 = 5 35 = 0
0 o 41 =2 92 =
24 8 8

The weight matrix Q associated to D is given by

P—di 407 473 343 1177 1 1177 343 473 407
=dia T12n’ 204 204 11eA° 1o b T30 T 0 S oA 112- |0
§ 1152 384 384 1152 1152 384 384 1152
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As noted earlier in Sect. 5, E = B — By € R0n+2.m+1D) ¢

-0 -
187 —=1567 13211 —1165 43 =25 0
3072 4608 27648

3341 319 —171
27648 9216 1024

4608
319
27648
= 523 =321 173 11 0
3072 1024 1024 1024 1536
75
1024
—25
27648

2099 —=2365 _73 =25 _25 0
9216 9216 27648 12 13824

—697 473 0
13824 9216

0 0

The matrix E is predominantly zeros with non-zero elements corresponding to the
boundaries. E is O(h) and thus E — 0 as 4 — 0. This is illustrated in numerical
example 4 of Sect. 7.
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