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Abstract
Mimetic finite difference operators D,G are discrete analogs of the continuous diver-
gence (div) and gradient (grad) operators. In the discrete sense, these discrete operators
satisfy the same properties as those of their continuum counterparts. In particular, they
satisfy a discrete extended Gauss’ divergence theorem. This paper investigates the
higher-order quadratures associated with the fourth- and sixth- order mimetic finite
difference operators, and show that they are indeed numerical quadratures and satisfy
the divergence theorem. In addition, extensions to curvilinear coordinates are treated.
Examples in one and two dimensions to illustrate numerical results are presented that
confirm the validity of the theoretical findings.

Keywords Mimetic · Fourth order · Sixth order · Quadratures · Divergence · Gradient

Mathematics Subject Classification 65M06 · 65M08 · 65M12 · 65M22 · 65N06 ·
65N08 · 65N12 · 65N22

Christopher Paolini, Guillermo F. Miranda and José E. Castillo have contributed equally to this work.

B Christopher Paolini
paolini@engineering.sdsu.edu

Anand Srinivasan
asrinivasan0709@sdsu.edu

Miguel Dumett
mdumett@sdsu.edu

Guillermo F. Miranda
unigrav7@gmail.com

José E. Castillo
jcastillo@sdsu.edu

1 Computational Science Research Center, San Diego State University, 5500 Campanile Drive,
San Diego 92182, CA, USA

2 Electrical and Computer Engineering, San Diego State University, 5500 Campanile Drive, San Diego
92182-1309, CA, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13137-023-00230-z&domain=pdf
http://orcid.org/0000-0001-6563-917X


   19 Page 2 of 20 GEM - International Journal on Geomathematics            (2023) 14:19 

1 Introduction

The use of the finite difference (FD) method is a common approach in numerical
solutions of partial differential equations (PDEs). TheFDmethoddiscretizes the partial
derivatives of PDEs into a set of algebraic equations,which is then solved.AlthoughFD
methods have some known drawbacks, one advantage of FD methods is its simplicity
(especiallywhen one can fit the domain into a box-shaped geometry), a straightforward
implementation when compared to other methods such as the finite element or finite
volume methods.

One of the drawbacks of the FD method is the sensitivity of the solution to
boundary conditions (LeVeque 2007). FD methods derive stencils for the derivative
operators using a Taylor’s series approach. This approach has the advantage of being
straight-forward, since one can easily implement matrices for the numerical deriva-
tives. However, the underlying physics (or other mathematical characteristics) of the
problemmay not be adequately represented in this discretization process.Mimetic dif-
ference methods construct difference operators divergence, D, and gradient G, which
discretely satisfy the extended Gauss’ divergence theorem. These methods are called
mimetic because the discrete difference operators mimic the properties of their contin-
uum counterparts. Hence, numerical schemes obtained using themimetic operators are
more faithful to the physics of the problem under investigation (Castillo and Miranda
2013).

The classical divergence theorem states that the flux of a vector field �v across the
sectionally smooth boundary of a compact domain in two or three dimensions equals
the surface or volume integral of div(�v), and this integral can be regarded as a func-
tional. When dealing with quadrature approximations for integrals, one would then
have a functional estimate for the domain integral. This functional estimate will be
said to mimic the divergence theorem when this estimate is accurate and also turns out
to be equal to the quadrature over the boundary. It is known that general high-order
finite differences for the divergence over a uniform grid may be accurate, but they fail
to mimic the divergence theorem. Hicken & Zingg (2013) have proven accuracy of the
quadratures associated with summation-by-parts methods (SBP) (Kreiss and Scherer
1974; Strand 1994). SBPmethods (derived on nodal grids) have been extended to stag-
gered grids via interpolation, O’Reilly et al. (2017), but their order of approximation
at the boundary is lower than the one in the interior of the domain. The construction of
these operators requires a generalized inner product, referred to as the weight matrix,
whose coefficients can be used for numerical integration of functions.

It is important to notice that the mimetic difference operators are built from a
staggered grid (not from a nodal one) and as a result, their processes of constructions
differ from those of the SBP approach. Our scalar functions are defined at the boundary
and the center of cells, while our vector functions are defined at the edges or faces
of cells. Moreover, the mimetic quadratures induce diagonal norms and our mimetic
operators retain the same order of accuracy over the whole domain, including at the
boundary. The SBP diagonal norm does not have the same order of accuracy at the
boundary, i.e., their 4th-order operator is only 3rd -order accurate at the boundary.

Navarro (2015) and Srinivasan & Castillo (2016) investigated the use of the coeffi-
cients obtained from the diagonal weight matrices Q and P , associated with mimetic
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difference operators divergence D and gradient G on staggered grids (Castillo and
Grone 2003) as a tool for numerical integration. This preliminary studywas inspired by
the resemblance of the coefficients of the mimetic quadratures with those of Newton-
Cotes’. In fact, the second order is exactly the 3/8, 9/8 Newton-Cotes quadrature, as
previously noticed by Castillo et al. (2001). The results of Navarro and Srinivasan &
Castillo demonstrated that mimetic quadrature coefficients are a viable alternative for
numerical integration.

In this paper, a theoretical framework is provided for the fourth and sixth order
mimetic quadratures (Castillo et al. 2001) associated with the corresponding D andG
discrete mimetic operators. The mimetic coefficients considered in this paper are the
ones from (Castillo and Grone 2003), which guarantee even order of accuracy at the
boundaries and interior nodes for the derivative operators. The approach used for SBP
quadratures reported by Hicken & Zingg (2013) is followed.

The novelty of this research lies in the demonstration that the weights obtained
from the mimetic discretization method are a valid numerical quadrature formulation,
and that these quadratures satisfy the divergence theorem. In addition all weights
(coefficients) are positive-valued and result in diagonal matrices. Finally, high-order
mimetic quadrature formulations retain accuracy when used in curvilinear coordinate
systems.

This paper is organized as follows: after stating in Sect. 2 some identities that one
would like tomimic in the discrete sense, Sect. 3 introducesmimetic operators, and the
resulting high-order quadratures. Section4 demonstrates that the mimetic quadratures
are bonafide numerical quadratures so they can be used for numerical integration
of functions. Section5 presents the extension to curvilinear coordinates. Section6
provides numerical implementations of the quadratures, along with their calculated
accuracy orders. This section, also includes examples of how to solve PDEs using
the mimetic operators. Finally, the “Appendix” shows details of the derivation of the
fourth-order divergence and gradient operators.

2 Identities

Let [a, b] be an interval. Let {x0, x1, · · · , xN } a homogeneous partition of [a, b], i.e.,
xi = a + ih, i ∈ I , h = b−a

N−1 , I = {0, 1, · · · , N }.
1. A quadrature for the numerical integration of function U : [a, b] → R is given by

the closed Newton-Cotes formula,

∫ b

a
U dx ≈

N∑
i=0

w̃i Ui = 〈
U ,1

〉
W̃ = h

〈
U ,1

〉
W = h UTW1, (1)

where w̄i , i ∈ I , are its integration weights, and discrete vector U = (Ui ) =
(U (xi )), i ∈ I . In addition, wi = w̄i

h , i ∈ I , and W̄ = diag {w̄i } = h diag {wi } =
h W , and 1 = [1, 1, ..., 1]T . Notice that 〈·, ·〉V for V = W̄ ,W refers to the gener-
alized inner product.
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2. The generalized inner product of functions U ,V : [a, b] → R is given by

∫ b

a
UV dx ≈ 〈

U , V
〉
W

= UT
WV = V T

WU , (2)

where U = (Ui ), V = (Vi ), i ∈ I , and W is a symmetric and positive definite
matrix. It will turn out that one can restrictW to be diagonal with positive entries.

3. The integration by parts (IBP) formula for U ,V : [a, b] → R is given by

∫ b

a
UVx dx = UV

∣∣∣∣
b

a
−

∫ b

a
VUx dx . (3)

4. The first derivative operator ∂
∂x over a smooth function V : [a, b] → R has a dis-

crete analog D1 which acts on discrete vector V = (Vi ), i ∈ I and approximates
∂V
∂x = Vx by

Vx = ∂V
∂x

≈ D1 V . (4)

3 Mimetic finite difference

Thehigher dimension equivalent to the IBP is the extendedGauss’ divergence theorem,

∫
�

f ∇ · �v dV +
∫

�

�v · (∇ f ) dV =
∫

∂�

f �v · �n dS (5)

In Eq. (5), ∇· is the divergence operator div, and ∇ the gradient operator grad. The
integral on the right hand side of Eq. (5) represents the boundary integral operator.
The aim of mimetic discretizations is to seek discrete equivalents for the div and grad
operators.

The mimetic discretization method utilizes a staggered grid. In two or three dimen-
sions, the divergence differential operator acts on vector fields, and the gradient
differential operator acts on scalar fields. PDE flux boundary conditions require that
the flux is given in terms of a gradient. So, physically meaningful PDE discretizations
are constrained to compute the result of a gradient on the boundary of a voxel or ele-
ment. Similarly, the definition of the divergence (and that of a curl) of a vector field
(as the limit of the average flux across the boundary of a region whose volume goes
to zero) imposes the condition that when discretized, the result of a divergence should
be computed on the interior of a discrete voxel.

On [a, b], we define xi = a + i(b−a)
2N , i = 0, 1, . . . , 2N and consider:

• the set of cell centers is X̃ = {x1/2, x3/2, . . . xN−1/2},
• the set of cell nodes is X = {x0, x1, . . . , xN }, and
• the set of centers extended (cell centers and interval boundaries a and b) is X̂ =

{x0, x1/2, x3/2, . . . , xN−1/2, xN }.
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The mimetic divergence and gradient operators are defined as linear maps

D : X → X̃ , G : X̂ → X .

Therefore, D ∈ R
N×(N+1) and G ∈ R

(N+1)×(N+2). A derivation of the mimetic
fourth-order div and grad operators can be found in the “Appendix”.

The image of operatorD is at the cell centers X̃ . We extend the divergence operator
to include the interval boundaries or X̂ by setting the value of this extension to zero.
We denote this new operator by D̂ : X → X̂ . Notice that D̂ ∈ R

(N+2)×(N+1). As a
linear map, D is extended to D̂ by appending a first row and last row of zeros.

For simplicity, we identify [a, b] with [0, 1].
In one dimension, Eq. (5) becomes

∫ 1

0
f
∂v

∂x
dx +

∫ 1

0

∂ f

∂x
v dx = v(1) f (1) − v(0) f (0), (6)

where
∂v

∂x
corresponds to the div operator, and

∂ f

∂x
to the grad operator. Hence, v is

seen as a discrete vector field and f is seen as a discrete scalar field.
Equation (6) can be rewritten as

〈∂v

∂x
, f

〉 + 〈
v,

∂ f

∂x

〉 = v(1) f (1) − v(0) f (0). (7)

Let V = v|X = (Vi ) = V (xi ), xi ∈ X be the discrete version of the vector field
v (V is v restricted to X ), and let F = f |X̂ = (Fi ) = F(xi ), xi ∈ X̂ be the discrete

version of the scalar field f (F is f restricted to X̂ ).
Using mimetic operators D̂ and G, the discrete equivalent of Eq. (7), for general

diagonal positive-definite weight matrices Q and P is (see (1))

h
〈
D̂V , F

〉
Q + h

〈
V ,GF

〉
P = hV T D̂T QF + hV T PGF = VN FN − V0F0. (8)

Rather than satisfy Eq. (8) exactly, our constructed operators up to an error term of
order h satisfies Eq. (8). Specifically, we construct operators that satisfy the following
equality

hV T D̂QF̂ + hV T PGF̂ = hV TBT F̂ = VN FN − V1F1 + hV T E F̂ . (9)

where E is defined in Eq. (14).
One property of these mimetic operators of kth order is the zero row sum

D̂1 = 0, G1 = 0, (10)

where 1 is a vector of ones of the appropriate size. Notice that 1T D̂T = 0.
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For V = 1, (8) becomes h1T PGF = FN − F0 = (−1, 0, . . . , 0, 1)T F , for any
F , or equivalently, hGT P1 = bm+2 = (−1, 0, . . . , 0, 1). Therefore,

hGT p = bm+2, (11)

where p = (pi ) = (Pii ) is a vector that contains the diagonal of P .
Similarly, if one replaces F = 1 in (8) then

h D̂T q̂ = bm+1, (12)

where q̂ = (q̂i ) = (Qii ) is a vector that contains the diagonal of Q and vector
bm+1 = (−1, 0, . . . , 0, 1)T .

Matrices P and Q are defined as the solutions of the programming problems

min
N+1∑
i=1

pi , subject to hGT p = bm+2, pi ≥ 0,

and

min
N∑
i=1

qi , subject to h DT q = bm+1, qi ≥ 0,

respectively.
From (8), define B ∈ R

(N+2)×(N+1), the mimetic boundary operator, as

B = h (QD̂ + GT P). (13)

Notice that if e1 = (1, 0, . . . , 0) then the first row of B is given by

eT1 B = h eT1 G
T P + h eT1 QD̂ = h GT

1...P + h Q1...D̂ = (−1, 0, . . . , 0),

where the last identity follows from (11) and that the first row of D̂ (by construction
since there are no divergence of boundary points, see “Appendix”) is zero. Similarly,
the last row of B is (0, . . . , 0, 1).

In addition, for 2 ≤ i ≤ N + 1, the corresponding row sums of B are

N+1∑
j=1

Bi j = h
N+1∑
j=1

(GT P + QD̂)i j = h
N+1∑
j=1

N+2∑
l=1

(GT
il Pl j + QilD̂l j )

= h
N+1∑
j=1

N+2∑
l=1

(GT
il pl δl j + qi δil D̂l j ) = h

N+1∑
j=1

GT
i j p j + h qi

N+1∑
j=1

D̂i j = 0,

where δi j is the Kronecker delta. The last identity follows from (10) and (8).
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Table 1 Quadrature weights P and Q arising from G and D, respectively

Order k λk Weight Coefficients

2 λ0, λ1 P 3
8 , 9

8

Q 1, 1

4 λ0, λ1, λ2, λ3 P 407
1152 , 473

384 , 343
384 , 1177

1152

Q 649
576 , 143

192 , 75
64 , 551

576

6 λ0, λ1, λ2, λ3, λ4, λ5 P 43531
138240 , 192937

138240 , 42647
69120 , 86473

69120 , 125303
138240 , 140309

138240

Q 41137
34560 , 15667

34560 , 2933
1728 , 2131

4320 , 41411
34560 , 33437

34560

If one defines B1 ∈ R
(N+2)×(N+1) by

B1 =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

,

and
E = B − B1, (14)

the first and last rows of E are zero. All other row sums of E are zero. From Eq. (12)
we see that E is order h so it goes to zero as h goes to zero.

Table 1 shows the quadrature weights for orders k = 2 s = 2, 4, 6, obtained from
the mimetic method in Castillo and Grone (2017). The λi ’s are the coefficients of the
quadratures. The accuracy conditions that satisfy the truncation error for polynomials
up to order k + 1 are

D̂v j = jv j−1 and G f̂ j = j f̂ j−1, j = 0, 1, . . . , k (15)

4 Quadrature properties of themimetic coefficients

The Euler-Maclaurin summation formula (Apostol 1999) relates the integral and the
numerical derivative of a function. Consider f : [0, 1] → R, f ∈ C2m+2. The
Euler-Maclaurin summation formula is

∫ 1

0
f (x) dx = h

n∑
v=0

fv +
2m∑
k=1

βk

k! h
k
(
f (k−1)
0 − (−1)k f (k−1)

n

)
+ O(h2m+2)

A direct consequence of this formula can be stated as follows:
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Proposition 1 Consider an interval x ∈ [0, 1] and a function g = f ′ ∈ C2m+2,
with 2m + 2 ≥ 2 s. Let W be a positive definite symmetric diagonal matrix of
the form W = diag(WL , I ,WR), where WL = diag(λ0, λ1, . . . , λ2s−1), WR =
diag(λ2 s−1, . . . , λ1, λ0) and I is the identity matrix. A quadrature for the function g
of the form

〈
1, hWg

〉
is a 2 s-order accurate approximation of f1 − f0 if and only if

the 2s-quadrature weights satisfy the (2s − 1) Bernoulli conditions,

j
r−1∑
v=0

λv(r − v) j−1 = r j − (−1) jβ j , j = 1, 2, . . . , (2s − 1),

with r = 2 s, and β j is the sequence of Bernoulli numbers, β1 = − 1
2 , β2 = 1

6 , β4 =
− 1

30 , β6 = 1
42 , β3 = β5 = · · · = 0 (refer to theorem 1 in Hicken and Zingg (2013)).

Proposition 2 The Pi ’s satisfy the (2s − 1) Bernoulli conditions.

Proof By construction,
〈
1, hG f

〉
P = f1 − f0 is satisfied. Hence, the weights of P

satisfy the (2s−1) Bernoulli conditions. The exactness condition corresponds to Eqs.
(27) and (29) in Castillo and Grone (2003). 
�
Proposition 3 The algebraic system of 2s-equations is completed for the 2s-weights
P1, P2, . . . , P2s with the coefficients di j ’s (as noted in the “Appendix”). These di j ’s
are the coefficients that arise from the Toeplitz-structure for the centered-difference
stencil on a staggered grid that is of 2s-order of accuracy.

Proof It is enough to take as the remaining complementary equation any appropriate
simple column sum from hPG equated to zero. However, involving the conveniently
adapted entries from the upper left corner of the stencil yields the desired 2 s-order
of accuracy at the boundary nodes. This corresponds to the matrix Il of Eq. (27) in
Castillo and Grone (2003). 
�
Proposition 4 The quadrature obtained using the diagonalweightmatrix P is (2s+1)-
order accurate.

Proof By construction
〈
1, hPG f

〉 = f1 − f0 holds. Since G is 2s-order accurate, it
follows that G f = f ′ + O(h2s). Thus, hPG f = hP f ′ + hP[O(h2 s)]. It follows
that f1 − f0 = 〈

1, hPG f
〉 = 〈

1, hP f ′〉+ 〈
1, O(h2 s+1)

〉
. So, the quadrature obtained

by using the diagonal P matrix that is associated to G is (2s + 1)-order accurate. 
�
The mimetic divergence operator and Q hold a similar property. It is well known

that general higher-order FD schemes can accurately represent the divergence on a
uniform grid. However, they fail to mimic the divergence theorem in the sense that the
discrete quadrature of the volume integral does not produce a discrete quadrature for
the surface integral. As noted inHicken and Zingg (2013), the use of the corresponding
diagonal matrix combined with the SBP operators produces a functional that mimics
the divergence theorem. As shown in the previous section, P and Q, when combined
with the mimetic G and D produce a functional that mimics the extended Gauss’
divergence theorem on a staggered grid.
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Mimetic operatorD can be generalized to higher dimensions bymeans ofKronecker
products (Castillo and Grone 2017). By construction,

〈
1, hQDv

〉 = vn − v0 in [0, 1].
In a two dimensional grid, the exactness condition becomes

〈
I2, hDxyv

〉
Qxy

= Bxyv,

where Qxy,Dxy,Bxy and I2 are obtained from the Kronecker products using the one
dimensional operators. The implementation of theKronecker products is demonstrated
in example 4 of the numerical results section. Therefore, one can conclude that the
divergence theorem is satisfied because the discrete quadrature ofDv over the volume
produces a discrete quadrature of the boundary flux v.

5 Mimetic quadratures and the divergence theorem

On a two dimensional grid with m and n equal size sub-intervals, the area integral on
the left hand side of Eq. (5) can be discretized as

〈
hD̂xyv, f̂

〉
Qxy

+ 〈
hGT

xyv, f̂
〉
Pxy

= h f̂ T [QxyD̂xy + GT
xyPxy]v = h f̂ TBxyv, (16)

where D̂xy = [
În⊗D̂m, D̂n⊗ Îm

]
,Gxy = [

ÎTn ⊗Gm;Gn⊗ ÎTm
]
,Bxy = [

În⊗Bm,Bn⊗
Îm

]
, Pxy = diag([In ⊗ Pm+1, Pn+1 ⊗ Im]), Qxy = diag([In+2 ⊗ Qm+2, Qn+2 ⊗

Im+2]), În = [0; In; 0].
The significance of Eq. (16) is that the 2 s-order of accuracy is retained in higher

dimensions for the extended Gauss’ divergence theorem, since the higher dimension
operators are formed, via Kronecker products, using the one-dimensional D and G
matrices. Moreover, the discretization invokes the boundary operator, and therefore
depends only on the boundary values for f and v. It can therefore be concluded that
the mimetic quadratures accurately mimic the extended Gauss’ divergence theorem.

A special case with f a constant function in Eq. (16) results in the divergence theo-
rem. The mimetic quadratures therefore satisfy the discrete version of the divergence
theorem.

6 Higher order mimetic quadratures on curvilinear coordinates

Evaluation of integrals by a coordinate transformation require the calculation of its
Jacobian. In one dimension, the Jacobian of a coordinate transformation to a uniform

staggered grid X̂ is simply
d f

dx
= f

′
. If the original integrand is some function z,

with the corresponding discrete vector Z , one can consider an expression of the form〈
Z , hP f ′〉 as an induced quadrature on the staggered grid. One can use proposition
4 for the quadrature of the form

〈
1, hP f ′〉. If z and f are polynomials of degree i

and j , with (i + j) ≤ 2 s, then the discrete equivalent of
∫ 1
0 z(x) f ′(x) dx can be

expressed as
〈
Z , hD f

〉
Q = ZT hQD f . It now follows from the construction of D

that if z(x) f ′ ∈ C2 s[0, 1], then ZT hQD f = ∫ 1
0 z(x) f ′(x) dx + O(h2 s). This is an

accurate quadrature when the integrand is of the form z(x) f ′(x) [18].
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Table 2 Calculated least-square
order of accuracy for example 1

Order k Type Plot legend C p

2 Mimetic-2 MIM-G2 −0.8404 2.0444

4 Mimetic-4 MIM-G4 2.6453 5.1923

6 Mimetic-6 MIM-G6 2.8574 6.1614

In higher dimensions, the Jacobian is a linear combination of products of first partial
derivatives. Integrals inmultiple coordinates onCartesian domains can be expressed as
iterated sums startingwith one variable of integration. Themimetic operators in higher
dimensions can be obtained from the one dimensional operators using the Kronecker
products. Thus, the accuracy of the mimetic quadratures with curvilinear coordinates
is retained in higher dimensions as well (Srinivasan et al. 2022).

7 Numerical examples

In this section, the implementation of higher order mimetic quadratures is illustrated
in the first four numerical examples. The last two examples use the mimetic D and G
operators for solving PDEs.

7.1 Example 1

The goal of this example is to evaluate the integral given in Schwartz (1969), and com-
pare the numerical approximation proposed in this paper and its analytical solution.

I1 =
∫ 1

0

1

(x − 0.5)2 + a2
dx = 1

a

(
atan

(0.5
a

)
− atan

(−0.5

a

))

The numerical solution was obtained for a = 0.5. A grid refinement study was
performed to calculate the convergence rate for each of the methods considered. The
errors are proportional to the pth power of the grid spacing h, where p is the order of
convergence, i.e., E(h) = Chp.

C and p for each of the methods, have been fitted by least squares. The results
are summarized in Table 2. Figure 1 shows the log-log errors as a function of grid
spacing. The numerical results achieve the desired order of accuracy for second, fourth
and sixth orders.

7.2 Example 2

Consider the integral e2 from Bailey & Borwein (2006).

I2 =
∫ 1

0
x2arctan(x) dx = π − 2 + 2ln2

12
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Fig. 1 Log-log error versus step-size for example 1

Fig. 2 Log-log error versus step-size for example 2

This integral involves a coordinate transformation ξ = arctan(x), ξ ∈ [0, π
4 ]. The

numerical integration uses In2 = z′hPGx , where z is the integrand in I2. Gx refers

to the inverse of the Jacobian, which is the first derivative of the transformation
dx

dξ
.

Figure 2 shows the log-log errors. Since the sixth order numerical solution exhibits
round-off errors as the grid size is decreased, the rate of convergence was computed
at every step by halving the step size (as opposed to a least-square curve fit that was
performed for the previous example). Table 3 shows the computed rates of convergence
for each step size.
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Table 3 Calculated order of accuracy for example 2

Mimetic type n = 32 n = 64 n = 128 n = 256 n = 512

MIM-G2 1.5178 1.7869 1.8987 1.9505 1.9755

MIM-G4 4.1238 4.1613 4.1270 4.0806 4.0457

MIM-G6 6.3346 6.9891 8.6610 4.6663 4.1380

Table 4 Calculated order of
accuracy for example 3

Mimetic type n = 24 n = 48 n = 96

MIM-2 2.0186 2.0219 2.0143

MIM-4 4.4992 4.2728 4.1281

MIM-6 7.5549 12.6327 0.3451

7.3 Example 3

Consider the double integral

I3 =
∫ ∫

�x

(x2 + y2)e
1
3 (1−x2+y2)sin

( xy − 1

2

)
dxdy = 3(1 − e−1)(1 − cos(1))

from Hicken & Zingg (2013). The computational domain (ξ, η) is mapped to the
physical coordinates (x, y) via the transformation

ξ = x2 − y2 − 1

3
, and η = xy − 1

2
,

where ξ ∈ [0, 1] and η ∈ [0, 1]. For each grid size, the physical coordinates were
evaluated using a nonlinear solver. The physical coordinateswere then used to compute
the integrand function z in I3. The discrete equivalent of the double integral can be
represented as

In3 = zT (P ⊗ P)J ,

where the Jacobian J is given by

J = [(I ⊗ G)x] ◦ [(G ⊗ I)y] − [(I ⊗ G)y] ◦ [(G ⊗ I)x],

and where ◦ denotes the element-wise product and I is the identity matrix (Table 4).
Figure 3 shows the log-log errors as a function of step size for example 3. The

convergence for the sixth order scheme shows round-off errors since it quickly attains
machine numeric precision for the calculations.
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Fig. 3 Log-log error versus step-size for example 3

Fig. 4 Log-log error versus step-size for example 4

7.4 Example 4

This example demonstrates the numerical convergence of the boundary operator B
and B1 in 2D as shown in Eq. (16). Convenient functions v and f were chosen as

v(x, y) = sin(x)cos(y), f (x, y) = 2ex y2, x ∈ [0, 1], y ∈ [0, 1] (17)

Figure 4 shows the calculated log-log errors as a function of step size. Both B and B1
achieve the desired order of accuracy as expected (Table 5).
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Table 5 Calculated order of accuracy for example 4

Mimetic type n = 24 n = 48 n = 196 n = 192 n = 384

MIM-2 1.8436 1.9296 1.9665 1.9836 1.9919

MIM-4 2.9787 3.7061 3.8814 3.9464 3.9742

MIM-6 6.8272 6.6305 6.4237 5.9773 –

Fig. 5 Example 5, solution u(x, t).

7.5 Example 5 - Brusselator

In this example the solution of a one dimension system of diffusion Eq. (Gerhard and
Hairer 1996) defined by the set of PDEs

ut = 1 + u2v − 4u + 1/50 (∇ · ∇u)

vt = 3u − u2v + 1/50 (∇ · ∇v)

is approximated by mimetic operators.
The initial and boundary conditions were set to u(0, t) = u(1, t) = 1, v(0, t) =

v(1, t) = 3, u(x, 0) = 1 + sin(2πx), v(x, 0) = 3 in the domain x ∈ [0, 1] and
t ∈ [0, 10]. The boundary conditions for u and v were imposed at each step of
numerical integration.

The ∇ · ∇ operator was discretized using the fourth order mimetic Laplacian L =
D̂G. The Brusselator system has been solved as a system of equations (both u and
v simultaneously). No special treatment was done for the nonlinear u2v term here.
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Fig. 6 2D inviscid Burgers’ equation, solution u(x, y, t).

As in, both u and v were defined simultaneously on staggered grids since this is a
dissipative system.

The system of equations was solved using the adaptive fourth-order Runge Kutta
time discretization after a mimetic fourth-order spatial discretization of the Laplacian
was utilized. The numerical solution is shown in Fig. 5.

7.6 Example 6 - 2D inviscid Burgers’ equation

The 2D inviscid Burgers’ equation in quasilinear form (Jameson 2008) is given by

ut + 2

3
∇ ·

(
u2

2

)
+ 1

3
u∇ · u = 0

A 2D Gaussian input u(x, y, 0) = exp

(
− x2

2σ 2
x

− y2

2σ 2
y

)
, σx = σy = 0.5 was used as

initial condition in the domain x × y ∈ [−3, 3]2, with periodic boundary conditions.
The∇· operator was discretized using the sixth order D̂, along with the correspond-

ing sixth order interpolant to have the quantities at the cell centers. The non-linear term
was treated in quasilinear form as referenced in citejameson. Interpolation is neces-
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sary at each time step of integration, since the div operator maps u from nodes to cell
centers. With ID as the interpolant, the discretized mimetic divergence was written
as DID at each time step. The sixth-order interpolant used is from (Srinivasan et al.
2022). The procedure to discretize ∇ · u using interpolant matrices is also mentioned
in that report.

Figure 6 shows the solution obtained from a fourth-order Runge Kutta scheme with
sixth-order mimetic spatial discretization.

8 Conclusion

This paper presents an introduction and a theoretical framework for higher-order
quadratures arising from the mimetic methods. The mimetic quadrature weights are
positive definite diagonal matrices that satisfy the divergence theorem. The weights
satisfy also the Bernoulli conditions of the Euler-Maclaurin series, and can therefore
be used as end corrections on a grid for numerical integration of functions. Mimetic
methods satisfy vector calculus identities as well as a discrete version of the extended
Gauss’ divergence theorem. Themimetic D̂ andG operators also exhibit uniform order
of accuracy at all (interior and the boundary) grid points. In addition, the accuracy of
the higher-order mimetic quadratures is preserved under curvilinear coordinates.
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A Appendix: Mimetic fourth-order D̂ and G

Consider a staggered grid on [0, 1] of N cells and grid spacing h = 1
N . Define

xi = i
2N , i = 0, 1, · · · , 2N . Let X̃ = {x1/2, x3/2, · · · xN−1/2} (cell centers), X =

{x0, x1, · · · , xN−1, xN } (cell nodes), and X̂ = {x0, x1/2, x3/2, · · · , xN−1/2, xN } (cell
centers and boundary).
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The mimetic divergence operator D : X → X̃ uses data on X to
compute derivatives at X̃ . A staggered fourth-order finite difference scheme
is given by [ 1

24 ,− 9
8 ,

9
8 ,− 1

24 ]. This scheme suffices for points xl ∈ X̃ such
xl−3/2, xl−1/2, xl+1/2, xl+3/2 ∈ X . That is not the case for x1/2, xN−1/2, where a
special stencil is needed for the boundaries. Symmetry suggests that it is necessary
to find a fourth-order scheme for x1/2. However, the approach taken in Castillo and
Grone (2017) is to consider special schemes for X̃b = {x1/2, x3/2, x5/2, x7/2} utilizing
data from Xb = {x0, x1, x2, x3, x4, x5} (similarly at the other boundary). Fourth-order
Taylor expansions of the points in X̂b to compute the first-order derivative of the points
in Xb generates a Vandermonde system of six unknowns (scheme weights) and five
equations (degree of accuracy), with right hand side vector c = (0, 1, 0, 0, 0)T (since
one wants to approximate the first derivative). Since the Vandermonde matrix V is full
rank, then nullity(V ) = 1.

The resulting fourth-order divergence matrix D ∈ R
(n,n+1) takes the form

hD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36
d41 d42 d43 d44 d45 d46

1
24

−9
8

9
8

−1
24

. . .
. . .

1
24

−9
8

9
8

−1
24−d46 −d45 −d44 −d43 −d42 −d41

−d36 −d35 −d34 −d33 −d32 −d31
−d26 −d25 −d24 −d23 −d22 −d21
−d16 −d15 −d14 −d13 −d12 −d11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and it can be shown that the structure of V is such that its null space generator is
(−1, 5, 10, 10,−5, 1). Therefore, for each grid point in X̃b, there is one degree of
freedom, and hence D has four degrees of freedom.

Let D̃ be the top-left corner sub-matrix of D, then the general solution can be
represented as

D̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−11
12

17
24

3
8

−5
24

1
24 0

1
24

−9
8

9
8

−1
24 0 0

0 1
24

−9
8

9
8

−1
24 0

0 0 1
24

−9
8

9
8

−1
24

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

α1
α2
α3
α4

⎤
⎥⎥⎦

[
1 −5 10 −10 5 −1

]
.

If one takes α2 = α3 = α4 = 0, one can extend the standard fourth-order scheme as
much as possible. On the other hand, α1 is chosen conveniently.
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If one extends the image of D from X̃ to X̂ by padding with zeros the first and last
rows then D̂ ∈ R

(n+2,n+1) is given by

D̂ = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . .

−4751
5192

909
1298

6091
15576

−1165
5192

129
2596

−25
15576 0 . . .

1
24

−9
8

9
8

−1
24 0 0 . . .

0 1
24

−9
8

9
8

−1
24 0 . . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Symmetry of D̂ ensures that the bottom right corner can be determined from the
coefficients of the top left portion of the matrix.

The weight matrix Q associated to D̂ is given by

Q = diag

(
1,

649

576
,
143

192
,
75

64
,
551

576
, 1, ..., 1,

551

576
,
75

64
,
143

192
,
649

576
, 1

)
.

The derivation for the coefficients of the fourth-order gradient follows a similar pro-
cedure as the one outlined above to obtain G ∈ R

(m+1,m+2) as

G = 1

h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1152
407

10063
3256

2483
9768

−3309
3256

2099
3256

−697
4884 0 . . .

0 −11
12

17
24

3
8

−5
24

1
24 . . .

0 1
24

−9
8

9
8

−1
24 0 . . .

0 0 1
24

−9
8

9
8

−1
24 . . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The weight matrix Q associated to D̂ is given by

P = diag

(
407

1152
,
473

384
,
343

384
,
1177

1152
, 1, ..., 1,

1177

1152
,
343

384
,
473

384
,
407

1152

)
.
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As noted earlier in Sect. 5, E = B − B1 ∈ R
(m+2,m+1) is

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

187
3072

−1567
4608

13211
27648

−1165
4608

43
768

−25
13824 0 . . .

3341
27648

319
9216

−171
1024

319
27648 0 . . .

−1103
3072

523
1024

−321
1024

173
1024

−11
1536 0 . . .

2099
9216

−2365
9216

73
27648

75
1024

−25
512

25
13824 0 . . .

−697
13824

473
9216 0 −25

27648 0 . . .

0 0 . . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix E is predominantly zeros with non-zero elements corresponding to the
boundaries. E is O(h) and thus E → 0 as h → 0. This is illustrated in numerical
example 4 of Sect. 7.
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