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Predicting transcriptional outcomes of novel 
multigene perturbations with GEARS

Yusuf Roohani    1, Kexin Huang2 & Jure Leskovec    2 

Understanding cellular responses to genetic perturbation is central to 
numerous biomedical applications, from identifying genetic interactions 
involved in cancer to developing methods for regenerative medicine. 
However, the combinatorial explosion in the number of possible multigene 
perturbations severely limits experimental interrogation. Here, we present 
graph-enhanced gene activation and repression simulator (GEARS), a 
method that integrates deep learning with a knowledge graph of gene–
gene relationships to predict transcriptional responses to both single 
and multigene perturbations using single-cell RNA-sequencing data from 
perturbational screens. GEARS is able to predict outcomes of perturbing 
combinations consisting of genes that were never experimentally 
perturbed. GEARS exhibited 40% higher precision than existing approaches 
in predicting four distinct genetic interaction subtypes in a combinatorial 
perturbation screen and identified the strongest interactions twice as well as 
prior approaches. Overall, GEARS can predict phenotypically distinct effects 
of multigene perturbations and thus guide the design of perturbational 
experiments.

The transcriptional response of a cell to genetic perturbation reveals 
fundamental insights into how the cell functions. Transcriptional 
responses can describe diverse functionality ranging from how gene 
regulatory machinery helps maintain cellular identity to how modulat-
ing gene expression can reverse disease phenotypes1–3. This has implica-
tions for biomedical research, especially in developing personalized 
therapeutics. For instance, validating drug targets through genetic 
perturbation studies increases the likelihood of successful clinical 
trials4. Additionally, identifying synergistic gene pairs can enhance the 
effectiveness of combination therapies5–8. Because complex cellular 
phenotypes are known to be produced by genetic interactions between 
small sets of genes, identifying such interactions could facilitate pre-
cise cell engineering9–14. While recent advancements have enabled 
scientists to more rapidly sample perturbation outcomes experimen-
tally9,15–19, computational approaches that predict perturbation effects 
are indispensable for prioritizing experimental perturbations due to 
the combinatorial explosion of potential multigene combinations.

However, existing computational methods for predicting pertur-
bational outcomes present their own limitations. The predominant 

approach for single-gene perturbation outcome prediction relies on 
inferring transcriptional relationships between genes in the form of a 
gene regulatory network20–23. This is limited either by the difficulty in 
accurately inferring a network from gene expression datasets24 or by 
the incompleteness of networks derived from public databases25–27. 
Moreover, existing predictive models built using such networks linearly 
combine the effects of individual perturbations, which renders them 
incapable of predicting non-additive effects of multigene perturba-
tions, such as synergy22. More recent work uses deep neural networks 
trained on data from large perturbational screens to skip the network 
inference step and directly map genetic relationships into a latent space 
for perturbation outcome prediction28,29. However, these methods still 
require that each gene in the combination be experimentally perturbed 
before the effect of perturbing the combination can be predicted.

Here, we present graph-enhanced gene activation and repression 
simulator (GEARS), a computational method that integrates deep 
learning with a knowledge graph of gene–gene relationships to simu-
late the effects of a genetic perturbation. The incorporation of bio-
logical knowledge gives GEARS the ability to predict the outcomes of 
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(arbitrary vectors of numbers used to represent a meaningful concept; 
Fig. 1b and Supplementary Note 1)30,31. Each gene’s embedding is tuned 
through the course of training to represent key traits of that gene. Split-
ting the representation into two multidimensional components gives 
GEARS additional expressivity for capturing gene-specific heterogene-
ity of perturbation response. Each gene’s embedding is sequentially 
combined with the perturbation embedding of each gene in the pertur-
bation set and finally used to predict the postperturbation state for that 
gene. This prediction is conditioned on a single ‘cross-gene’ embedding 
vector that captures transcriptome-wide information for each cell.

GEARS is uniquely able to predict the outcomes of perturbation 
sets that involve one or more genes for which there are no experi-
mental perturbation data. GEARS does this by incorporating prior 
knowledge of gene–gene relationships using a gene coexpression 
knowledge graph when learning gene embeddings and a Gene Ontol-
ogy (GO)-derived knowledge graph when learning gene perturba-
tion embeddings (Methods). This relies on two biological intuitions:  
(i) genes that share similar expression patterns should likely respond 

perturbing single genes or combinations of genes for which there are no 
prior experimental perturbation data. GEARS outperformed existing 
approaches in predicting the outcomes of both one-gene and two-gene 
perturbations drawn from seven distinct datasets. GEARS could also 
detect five different genetic interaction subtypes and generalize to 
new regions of perturbational space by predicting phenotypes that 
were unlike what was seen during training. Thus, GEARS can directly 
impact the design of future perturbational experiments.

Results
Knowledge-informed deep learning of perturbation effects
GEARS is a deep learning-based model that predicts the gene expres-
sion outcome of combinatorially perturbing a set of one or more genes 
(perturbation set). Given unperturbed single-cell gene expression 
along with the perturbation set being applied (Fig. 1a), the output is the 
transcriptional state of the cell following the perturbation (Methods).

GEARS introduces a new approach of representing each gene 
and its perturbation using distinct multidimensional embeddings 
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Fig. 1 | GEARS combines prior knowledge with deep learning to predict 
postperturbation gene expression. a, Problem formulation: given unperturbed 
gene expression (green) and applied perturbation (red), predict the gene 
expression outcome (purple). Each box corresponds to an individual gene. 
Arrows indicate change in expression. b, GEARS model architecture. (i) For 
each gene in the unperturbed state, GEARS initializes a gene embedding vector 
(green) and a gene perturbation embedding vector (red) (ii). These embedding 

vectors are assigned as node features in the gene relationship graph and the 
perturbation relationship graph (iii). A GNN is used to combine information 
between neighbors in each graph. Each resulting gene embedding is summed 
with the perturbation embedding of each perturbation in the perturbation set 
(iv). The output is combined across all genes using the cross-gene layer and fed 
into gene-specific output layers (v). The final result is postperturbation gene 
expression; MLP, multilayer perceptron.
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similarly to external perturbations, and (ii) genes that are involved 
in similar pathways should impact the expression of similar genes 
after perturbation (Fig. 1b). Different knowledge graphs, such as large 
context-specific networks, may prove more suitable depending on the 
gene set of interest32 (Supplementary Note 2). GEARS functionalizes 
this graph-based inductive bias using a graph neural network (GNN) 
architecture33.

Predicting single-gene perturbation transcriptional 
responses
In the case of single-gene perturbations, GEARS was evaluated on the 
perturbation of genes whose data had been held out at the time of 
training, and thus those genes had not been seen experimentally per-
turbed during training (Fig. 2a). We used data from two different genetic 
perturbation screens consisting of 1,543 (RPE-1 cells) and 1,092 (K562 
cells) perturbations, respectively, with each measuring over 170,000 
cells (Replogle et al.34; Supplementary Notes 3 and 4). The screens were 
run using the Perturb-seq assay, which combines a pooled screen with 
a single-cell RNA-sequencing readout of the entire transcriptome for 
each cell16. GEARS was trained separately on each dataset. In addition 
to an existing deep learning-based model (CPA), we designed two alter-
native baseline models for evaluation of performance. One baseline 
model (no perturbation) assumes that the perturbation does not result 
in any change in gene expression. The other baseline model first infers 
a gene regulatory network20 and then linearly propagates the effects 
of perturbing a gene along this network (adapted from CellOracle22; 
Supplementary Notes 6 and 7).

We tested model performance by measuring the mean squared 
error (m.s.e.; Fig. 2b) and Pearson correlation (Fig. 2c) between the 
predicted postperturbation gene expression and true postperturba-
tion expression for the held-out set (Supplementary Table 1). Because 
the vast majority of genes do not show substantial variation between 
unperturbed and perturbed states, we restricted our m.s.e. analysis 
to the harder task of only considering the top 20 most differentially 
expressed genes (Supplementary Note 8). GEARS significantly out-
performed all baselines on both datasets with an m.s.e. improvement 
of 30–50% (Fig. 2b). When considering all genes using Pearson cor-
relation, GEARS exhibited more than two times better performance 
in the case of both cell lines (Fig. 2c). Additionally, GEARS displayed 
a clear improvement in capturing the right direction of change in 
expression following perturbation (Fig. 2d), which reflects a more 
accurate representation of regulatory relationships. We consistently 
observed superior performance of GEARS over baselines across metrics 
(Supplementary Fig. 1) and across five additional datasets, including 
a genome-wide perturbation screen16,18,34–36 (Supplementary Table 2  
and Supplementary Figs. 2 and 3). Furthermore, GEARS scaled to 
large datasets more effectively than conventional gene regulatory 
network-based methods (Supplementary Table 3). Beyond transcrip-
tion levels, GEARS also identified groups of genes that induced similar 
transcriptional responses to perturbation, even when data for their 
perturbation had not been seen during training (Extended Data Fig. 1 
and Supplementary Note 9).

Predicting multigene perturbation outcomes
GEARS is designed to predict transcriptional outcomes for perturbation 
sets consisting of multiple genes. We evaluated performance using a 
Perturb-seq dataset (Norman et al.9) containing 131 two-gene perturba-
tions. When evaluating GEARS on two-gene perturbations, we defined 
three generalization classes based on how many of the genes we see 
experimentally perturbed at the time of training (Fig. 2e). The first case 
is when the model has seen each of the two genes in the combination 
individually experimentally perturbed in the training data (two-gene 
perturbation, zero of two unseen). The other cases, which are progres-
sively harder to predict, are when either one of the two perturbed genes 
(one of two unseen) or both genes (two of two unseen) have not been 

seen individually perturbed at the time of training (Supplementary  
Fig. 4 and Supplementary Note 10). GEARS improves performance 
by more than 30% across all cases (Fig. 2f), with the highest improve-
ment of 53% observed when both perturbed genes in the combination 
are unseen. Improvements were also observed across other metrics 
(Supplementary Fig. 5) and on a different dataset (Supplementary 
Tables 2 and 4)37.

Model performance was also analyzed on a gene-by-gene basis. 
In the case of predicting the outcome of perturbing FOSB with CEBPB, 
GEARS correctly captured both the right trend and the magnitude 
of perturbation across all 20 differentially expressed genes (Fig. 2g) 
even though one of the perturbed genes (CEBPB) had not been seen 
experimentally perturbed during training. Moreover, the predictions 
were different from the transcriptional state observed in the case 
of the single-gene perturbation (FOSB) that was seen at the time of 
training the model (Supplementary Fig. 6). Similar performance was 
observed for several other examples across generalization categories 
(Supplementary Fig. 7). We also measured 50% greater enrichment in 
the most significant differentially expressed genes as predicted by 
GEARS than observed with baseline methods (Fig. 2h, Extended Data 
Fig. 2 and Supplementary Note 11).

Although the incorporation of knowledge graphs was instrumental 
in enabling these predictions (Extended Data Fig. 3 and Supplementary 
Fig. 8), it also limits the ability of GEARS to predict outcomes for per-
turbing previously unperturbed genes that are not well connected in 
this graph (Extended Data Fig. 4 and Supplementary Note 12). GEARS 
makes use of a Bayesian formulation to overcome this challenge by 
outputting an uncertainty metric that is inversely correlated with 
model performance (Supplementary Fig. 9).

Predicting non-additive combinatorial perturbation effects
In the case of a two-gene perturbation, if the outcomes of perturbing 
the two genes independently are already known, then a naive model 
could simply add the perturbational effects to estimate the effect of 
the combinatorial perturbation (Fig. 3a,b). However, genes are known 
to interact with one another to produce non-additive genetic interac-
tions after perturbation. For example, two genes that independently 
cause a minor loss in cell growth could synergistically interact with 
one another following combinatorial perturbation to cause cell death.

We defined five types of genetic interactions (Supplementary  
Note 15): synergy, suppression, neomorphism, redundancy and epista-
sis (Supplementary Note 16). When both genes in a two-gene combina-
tion had been individually perturbed, the genetic interaction scores 
predicted by GEARS showed a stronger correlation with the ground 
truth scores calculated using true expression than existing methods. 
For instance, the correlation coefficient (R2) was approximately 0.4 for 
synergy, neomorphism and redundancy, whereas it was only around 0.0 
for the same interactions when predicted by CPA (Extended Data Fig. 5).

To identify new genetic interactions, GEARS can recommend pairs 
of genes that are predicted to have strong genetic interactions. To 
assess the real-world application of GEARS where the recommended 
pairs are then experimentally validated, we calculated performance 
metrics based on the top-ranked predictions. Precision@10 measures 
the fraction of predicted combinations in the top ten that truly exhibit a 
specific genetic interaction subtype, as determined by experimentally 
measured gene expression after perturbation (Supplementary Note 17). 
When compared to baseline methods, GEARS improved precision@10 
by more than 40% for four of five genetic interaction subtypes, and the 
improvement exceeded 90% for redundancy and epistasis (Fig. 3c).  
Additionally, GEARS demonstrated a twofold increase in accuracy 
when predicting the ten strongest interactions for a specific genetic 
interaction subtype (top ten accuracy; Extended Data Fig. 6b). Further 
validation using an additional dataset confirmed the effectiveness of 
GEARS, showing a 20% increase in accuracy across four genetic interac-
tion subtypes. Moreover, the precision–recall curves for all observed 
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genetic interaction subtypes exhibited a higher area under the curve 
than other methods (Supplementary Fig. 12)37. In scenarios where only 
one gene had been perturbed previously, GEARS successfully detected 
synergistic and suppressive interactions (Supplementary Fig. 13).

Different types of genetic interactions can also be evaluated at the 
level of individual genes. For this, the 20 most affected genes were iden-
tified for each two-gene combination (Supplementary Note 18). Based 
on the m.s.e. for these genes, GEARS was able to capture the effects 
of different types of genetic interactions more than 40% better than 
existing methods across three of the five genetic interaction subtypes 
(Extended Data Fig. 6a). As an example, GEARS predicted the correct 

non-additive effects across almost all of the top ten non-additively 
expressed genes following the perturbation of PTPN12 and ZBTB25 
(Fig. 3d). This was also observed across other examples belonging to 
different genetic interaction subtypes (Supplementary Fig. 14).

Predicting new biologically meaningful phenotypes
We applied GEARS to the discovery of new phenotypes by predict-
ing the outcomes of all pairwise combinatorial perturbations of 102 
genes from the Norman et al. dataset9 (Fig. 4a). To make this predic-
tion, GEARS was trained using the postperturbational gene expression 
profiles for both one-gene perturbation outcomes and 128 two-gene 
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Fig. 2 | GEARS outperforms alternative approaches in predicting 
postperturbation gene expression. a, Train–test data split for single-gene 
perturbations. b, The m.s.e. in predicted postperturbation gene expression for 
single-gene perturbations normalized to the no perturbation case. For each 
perturbation, the 20 most differentially expressed (DE) genes were considered; 
perturb, perturbation; GRN, gene regulatory network. c, Pearson correlation 
between mean predicted postperturbation differential gene expression over 
control and true values across all genes. d, Fraction of the top 20 differentially 
expressed genes where the predicted postperturbation differential expression is 
in the opposite direction of the ground truth. e, Train–test data split categories 
for two-gene perturbations. f, Normalized m.s.e. in predicted postperturbation 

gene expression for two-gene perturbations. g, Boxes indicate experimentally 
measured differential gene expression after perturbing the gene combination 
FOSB and CEBPB (n = 85). The red symbol shows the mean change in gene 
expression predicted by GEARS when it has only seen FOSB experimentally 
perturbed at the time of training. The green dotted line shows mean unperturbed 
control gene expression. Whiskers represent the last data point within 1.5× 
interquartile range. h, Jaccard similarity between model-predicted differentially 
expressed genes and true differentially expressed genes. Throughout the figure, 
markers correspond to the mean and error bars correspond to 95% confidence 
intervals computed over predictions made by five models trained using different 
data splits (n = 5).
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perturbation outcomes (Fig. 4b and Supplementary Note 13). The pre-
dicted postperturbation expression captured many distinct pheno-
typic clusters, including those previously identified in Norman et al.9  
(Fig. 4c and Supplementary Note 13). Additionally, GEARS predicts a 
few new phenotypes, including one cluster showing high expression 
of erythroid markers.

To ascertain the biological relevance of this newly predicted 
phenotype, which was not observed in the training data, we com-
pared it with data for proerythroblasts from the Tabula Sapiens cell 
atlas (Supplementary Fig. 10 and Supplementary Note 14). While this 
cluster’s distinct high erythroid marker expression has still not been 
experimentally validated, its identification demonstrates the abil-
ity of GEARS to expand the space of postperturbation phenotypes 
beyond what is observed in perturbational experiments. Moreo-
ver, we validated the robustness of this prediction by excluding all  
phenotypically similar postperturbation outcomes during training 
(Supplementary Fig. 11).

Mapping combinatorial space of diverse genetic interactions
We extended our analysis to predict genetic interactions among 
all possible pairwise combinations of 102 genes (Fig. 5a), following 
CRISPRa-based combinatorial gene activation9. By leveraging the pre-
dicted postperturbation gene expression for each of the 5,151 pairwise 
combinatorial perturbations, we constructed a genetic interaction map 
that could simultaneously represent five distinct types of genetic inter-
actions: synergy, suppression, neomorphism, redundancy and epista-
sis. The genetic interaction map revealed a rich and diverse landscape 
of genetic interactions, with many genes exhibiting strong tendencies 
toward specific genetic interaction subtypes (Fig. 5b). This effect is 
most evident in the interactions between functionally related genes, 
which is in line with previous experimental results15,16,38. For instance, 
genes involved in early erythroid differentiation pathways (PTPN12, 
IKZF3 and LHX1) show a consistent trend of strong synergistic interac-
tions with one another. Moreover, the uniqueness of this genetic inter-
action map is in how it captures a much broader range of interactions 
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than a conventional genetic interaction map, which focuses primarily 
on synergistic or buffering interactions (Supplementary Fig. 15)15.

To validate some of these predictions, we used data from a cell 
fitness screen that perturbed all pairwise combinations of 92 genes9 
(Supplementary Note 19). GEARS performed comparably to a real 
Perturb-seq experiment in capturing the strong interaction effects 
observed in the cell fitness screen (Extended Data Fig. 7). The distri-
bution of GEARS-predicted genetic interaction scores was signifi-
cantly higher for perturbations showing synergistic cell fitness effects 
(P < 0.0013, n = 123; data were analyzed by one-sided t-test comparing 
the means) and lower for those showing buffering effects (P < 4 × 10−5, 
n = 69) than those showing approximately additive cell fitness effects. 

These findings increase our confidence that several strong interactions 
captured in the genetic interaction map are biologically meaningful 
even though not all predictions have been experimentally validated. 
When trained to directly predict cell fitness, GEARS also showed strong 
performance (R2 between 0.64 and 0.93; Supplementary Figs. 16 and 
17 and Supplementary Note 20).

Discussion
Recent advancements in high-throughput perturbational screens have 
enhanced both the precision with which genes can be targeted39,40 and 
the scale of information generated17,34. However, their scalability is 
limited due to cost. As CRISPR-based perturbational screens become 
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Fig. 4 | GEARS can predict new biologically meaningful phenotypes.  
a, Workflow for predicting all pairwise combinatorial perturbation outcomes 
of a set of genes. b, Low-dimensional representation of postperturbation gene 
expression for 102 one-gene perturbations and 128 two-gene perturbations 
used to train GEARS. A random selection is labeled. c, GEARS predicts 

postperturbation gene expression for all 5,151 pairwise combinations of the 
102 single genes seen experimentally perturbed. Predicted postperturbation 
phenotypes (non-black symbols) are often different from phenotypes seen 
experimentally (black symbols). Colors indicate Leiden clusters labeled using 
marker gene expression (Supplementary Information).
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more widely used in drug discovery, GEARS can serve as a valuable 
complement to these experiments. GEARS has the unique ability to 
infer a broader range of multigene perturbation outcomes using the 
same experimental data as existing methods19,41. Furthermore, GEARS 
can guide the design of new screens by identifying perturbations 
that maximize information gained and minimize experimental costs 
(Extended Data Fig. 4).

However, for reliable predictions, GEARS must be trained on 
the same cell type or experimental condition. Moreover, training 
GEARS using combinatorial perturbation data is essential for accu-
rate prediction of multigene perturbations. Various confounding 
factors in the data can also influence the accuracy of predictions, 
including cell cycle effects, the assumed success of gene editing 

experiments and heterogeneity in postperturbation distribution 
(Supplementary Note 21).

One of the important strengths of GEARS is detecting emergent 
interactions between pairs of genes. This feature enhances the dis-
covery of feasible routes for engineering cell identity, where cells 
are guided between transcriptional states that may be significantly 
different from one another. For example, GEARS can aid in the precise 
reengineering of immune cells to prevent exhaustion when target-
ing cancer14,42 or in the reversal of phenotypes linked to aging43–45. 
Moreover, models like GEARS could predict effective cocktails of tran-
scription factors for reprogramming induced pluripotent stem cells 
into individual-specific in vitro models46–50. Therefore, GEARS holds 
promise to not only impact the discovery of novel small molecules 
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Fig. 5 | GEARS can search perturbational space for novel genetic interactions 
of different subtypes. a, Workflow for predicting genetic interaction (GI) 
scores. b, Multidimensional genetic interaction map generated by GEARS for all 
pairwise combinations of 102 single genes perturbed in Norman et al.9. For each 

combination, GEARS predicted genetic interaction scores for five different genetic 
interactions: synergy and suppression (red to blue), neomorphism (green), 
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for targeting disease but also aid in designing the next generation of 
cell- and gene-based therapeutics.
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Methods
Overview of GEARS
GEARS considers a perturbation dataset of N cells 𝒟𝒟 𝒟 𝒟𝒟gi, 𝒫𝒫i)}Ni=1, where 
gi ∈ ℝK  is the gene expression vector of cell i with K genes, and 
𝒫𝒫i 𝒟 𝒟Pi

1
,⋯ ,Pi

M) is the set of perturbations of size M performed on cell 
i. M = 0 corresponds to an unperturbed cell. Each perturbation Pk in 
the set corresponds to the index of a gene. The goal of GEARS is to learn 
a function f that maps a novel perturbation set 𝒫𝒫 to its postperturbation 
outcome, which is a gene expression vector g.

Specifically, given a perturbation set 𝒫𝒫 𝒟 𝒟P1,⋯ ,PM), GEARS first 
applies a GNN encoder fpert ∶ ℤ⟶ ℝd that maps each genetic pertur-
bation P ∈ 𝒫𝒫 to a d-dimensional gene perturbation embedding. Another 
GNN-based encoder fgene ∶ ℤ⟶ ℝd  maps each gene into a gene 
embedding. GEARS then combines the set of perturbation embeddings 
with each of the gene embeddings using a compositional module. A 
cross-gene decoder fdec ∶ 𝒟ℝ

d
i }

K
i=1 ⟶ℝK  then takes in the set of per-

turbed gene embeddings and maps them to the postperturbation gene 
expression vector. The entire network is trained end to end with an 
autofocus direction-aware loss (Supplementary Note 22).

Gene coexpression graph encoder
To capture the relative heterogeneity of perturbational response for 
each gene, GEARS represents each gene u ∈ ℤ as a learnable embedding 
xgene ∈ ℝd instead of a scalar. GEARS first obtains a representation for 
each gene that captures coexpression patterns in the cell. For this, we 
apply a GNN on a gene coexpression graph 𝒢𝒢gene, where edges link 
coexpressed genes (nodes). GEARS calculates Pearson correlations ρu,v 
among genes u,v in the training dataset. For each gene u, we connect 
it to the top Hgene genes that have the highest ρu,v and are above a thresh-
old δ. Next, we apply a GNN parameterized by θg that augments every 
gene u’s embedding xgeneu  by integrating information from the embed-
dings of its coexpressed genes: hgene

u 𝒟 GNNθg (x
gene
u , 𝒢𝒢gene) ∈ ℝd.

Incorporating prior knowledge of gene–gene relationships 
using the GO graph
GEARS predicts the outcome of perturbing genes never seen perturbed 
before by constructing a gene perturbation similarity graph 𝒢𝒢pert, 
leveraging the pathway information contained in GO51. We first define 
𝒢𝒢GO as a bipartite graph where an edge links a gene to a pathway GO 
term. We denote 𝒩𝒩u as the set of pathways for a gene u. We compute the 
Jaccard index between a pair of genes u,v as Ju,v 𝒟

|𝒩𝒩u∩𝒩𝒩v |
|𝒩𝒩u∪𝒩𝒩v |

; this measures 
the fraction of shared pathways between the two genes. For each gene 
u, we then select the top Hpert gene v with the highest Ju,v to construct 
𝒢𝒢pert. Next, we initialize all possible gene perturbations (P1,⋯,PK) with 
learnable embeddings 𝒟xpert

1
,⋯ ,xpertK ). We then feed them into a GNN 

parameterized by θp to augment every perturbation v’s embedding 
x
pert
v  by integrating information from neighboring perturbations in 

𝒢𝒢pert: hpert
v 𝒟 GNNθp 𝒟x

pert
v , 𝒢𝒢pert) ∈ ℝd.

Modeling combinatorial perturbations across genes
Given a perturbation set 𝒫𝒫 𝒟 𝒟P1,⋯ ,PM), GEARS looks up the perturba-
tion embedding of each element of that set 𝒟hpert

P1
,⋯ ,hpert

PM
). To model 

multigene perturbations, we use the ‘sum’ compositional operator 
followed by an MLP: h𝒫𝒫 𝒟 MLPθc (∑

M
i=1 h

pert
Pi

). The ‘sum’ operator allows 
extendability to perturbations of any size. Thus, each perturbation 
embedding from 𝒟hpert

P1
,⋯ ,hpert

PM
) is applied to every gene embedding 

to obtain a postperturbation gene embedding. For gene u, we have 
h
post-pert
u 𝒟 MLPθpp (h

gene
u + h𝒫𝒫).

Cross-gene effects and gene-specific decoder
Following application of the perturbations in the embedding space, 
GEARS maps the postperturbation gene embedding to its correspond-
ing postperturbation gene expression vector. Because each gene has 
its own perturbation pattern, for every gene u, we apply a gene-specific 
linear layer parameterized by wu ∈ ℝd,bu ∈ ℝ  to map it to a scalar of 

perturbation gene expression effect zu 𝒟 wuh
post-pert
u + bu ∈ ℝ . We 

then concatenate the individual effect to a single perturbation effect 
vector z ∈ ℝK  for the cell. Because the perturbational effect on a gene 
can incur secondary effects on other genes, we wanted to use the 
transcriptome-wide ‘cross-gene’ information for the cell when predict-
ing final gene expression for each gene. Thus, we added an additional 
MLP that generates a cross-gene embedding for the cell 
hcg 𝒟 MLPθcg 𝒟z) ∈ ℝd. Conditioned on this cross-gene state, for every 
gene u, a gene-specific decoder parameterized by wcg

u ∈ ℝd+1,bcgu ∈ ℝ 
augments zu to ẑu 𝒟 w

cg
u (zu ∥ hcg) + bcgu ∈ ℝ , where the double bar 

notation (∥) refers to the vector concatenation operation. Finally,  
the predicted perturbation effect vector ẑ ∈ ℝK  is added to the gene 
expression of a randomly sampled unperturbed control cell (gctrl) to 
arrive at the predicted postperturbation gene expression vector  
for that cell ĝ 𝒟 ẑ + gctrl. This allows GEARS to focus only on learning 
perturbation effects.

Autofocus direction-aware loss
GEARS optimizes model parameters to fit the predicted ĝ postpertur-
bation gene expression to true postperturbation gene expression g 
using stochastic gradient descent. We designed an autofocus loss that 
automatically gives a higher weight to differentially expressed genes 
by elevating the exponent of the error. Given a minibatch of T perturba-
tions, where each perturbation k has Tk cells and each cell has K genes 
with predicted postperturbation gene expression ĝ and true expression 
g, the loss is defined as

Lautofocus 𝒟
1
T

T
∑
k=1

1
Tk

Tk

∑
l=1

1
K

K
∑
u=1

𝒟gu − ĝu)
(2+γ).

However, this loss is insensitive to directionality. To address this, 
GEARS incorporates an additional direction-aware loss

Ldirection 𝒟
1
T

T
∑
k=1

1
Tk

Tk

∑
l=1

1
G

K
∑
u=1

[sign (gu − gctrl
u ) − sign (ĝu − gctrl

u )]
2
.

The prediction loss function is L = Lautofocus + λLdirection, where λ adjusts 
the weight for the directionality loss.

Uncertainty
GEARS generates an uncertainty score to measure the confidence of 
model prediction on a novel perturbation. A Gaussian likelihood 𝒩𝒩𝒟ĝu, σ̂2u) 
is used to model the postperturbation gene expression value for gene u 
under perturbation 𝒫𝒫, where ĝu is the predicted postperturbation scalar 
and σ̂2u is the variance52. We add an additional gene-specific layer to pre-
dict the log variance term su 𝒟 log σ̂2u 𝒟 wunc

u h
post-pert
u + buncu  for each 

gene u and learn it through a modified Bayesian neural network loss52

Lunc 𝒟
1
T

T
∑
k=1

1
Tk

Tk

∑
l=1

1
G

K
∑
u=1

exp𝒟−su)𝒟gu − ĝu)
(2+γ).

By encouraging log variance to be large when the error is large, the log 
variance is learned to be a proxy of model uncertainty.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The following are the Gene Expression Omnibus accession numbers 
used: Dixit et al.16: GSE90063; Adamson et al.18: GSE90546; Norman 
et al.9: GSE133344; Jost et al.35: GSE132080; Tian et al.36: GSE124703; 
Replogle et al.37: GSE146194; Horlbeck et al.15: GSE116198. The data 
from Replogle et al.34 are available at https://doi.org/10.25452/figshare.
plus.20022944.
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Code availability
Code to run GEARS is available at https://github.com/snap-stanford/
GEARS. Results can be reproduced using https://github.com/yhr91/
GEARS_misc.
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Extended Data Fig. 1 | GEARS identifies groups of genes inducing similar 
perturbation effect, even when not seen perturbed previously. Each plot 
presents a low-dimensional (UMAP) representation of postperturbation gene 
expression following genetic perturbations that were held out in the test set. 
Each column corresponds to a different split of the experimental data into 
training and test sets. a, Each panel corresponds to true postperturbational 
transcriptional state measured using a Perturb-Seq assay. Colors correspond to 
distinct clusters identified using Leiden clustering set to a constant resolution 
across all panels. The largest cluster is assumed to show minimal perturbation 

effect and is colored grey. b, Each panel corresponds to postperturbation state 
predicted by GEARS. Colors correspond to the true labels identified when 
clustering the true experimental data, thus each point is labeled the same as 
in a. Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) 
were used to compare clusters identified by GEARS to those observed in true 
postperturbation expression for each data split. Average values for each metric 
across splits shown on left. c, Same as b using a baseline model that predicts 
no perturbation effect. d, Same as b using a baseline model that predicts mean 
perturbation effect.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Identifying significant enrichment for true 
differentially expressed genes in GEARS predictions. a, Hypergeometric 
distribution used to model the probability of obtaining a random overlap 
between the differentially expressed genes predicted by GEARS and the true 
significantly differentially expressed genes following a perturbation. In this 
example, 142 genes were shared between GEARS and the true prediction.  
A p-value is calculated for each perturbation in the held out set. b, Box-plot 

showing the log (base 10) of the p-value for all held-out perturbations in the 
Norman et al. 2019 dataset. To account for multiple hypothesis testing (561 tests), 
a Bonferroni correction was applied, using a significance threshold of 0.05. A 
black dashed line represents the adjusted threshold. GEARS was trained on 5 
different data splits (n=5). Number of data points for each bar are listed above it. 
Whiskers represent last data point within 1.5x interquartile range below the first 
quantile and above the third quantile.
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Extended Data Fig. 3 | Model ablation study highlights relative importance 
of GEARS components under different generalization conditions. The ‘No 
Graph’ condition removes both the gene ontology graph and co-expression 
graph; ‘No GO Graph’ removes the gene ontology graph; ‘No Co-Express Graph’ 
removes the co-expression graph; ‘No Cross-gene’ removes the cross-gene MLP 
layer; ‘No Gene-specific Decoder’ removes the gene specific decoder MLP and 
uses a shared MLP instead; ‘MSE Loss’ switches from the auto-focus loss to the 
regular L2 loss. Four generalization conditions are considered: a, (1/1 Unseen) 
single-gene perturbations not seen experimentally perturbed at the time of 

training. b–d, (2/2 Unseen) two-gene perturbations in which both genes were 
not seen experimentally perturbed individually at the time of training (b), (1/2 
Unseen) one of the two genes was not seen experimentally perturbed (c) or (0/2 
Unseen) both genes have been seen experimentally perturbed (d). Performance 
is measured using the mean squared error in predicted postperturbation gene 
expression for the top 20 most differentially expressed genes. For all panels (a–d) 
the marker indicates the mean MSE over predictions made by models trained 
using 5 different training data splits (n=5). The error bars represent bootstrapped 
95% CI.
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Extended Data Fig. 4 | Model performance relationship with network 
connectivity. Each point in the scatter plot corresponds to a prediction made for 
a novel single-gene perturbation not seen at the time of training. The y-axis plots 
the pearson correlation between the true mean postperturbation differential 

expression over unperturbed control and the same predicted by GEARS. The 
x-axis measures the number of connections between the novel perturbed gene 
and other genes in the network that had been seen at the time of training. Error 
band corresponds to 95% CI.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Model performance at predicting genetic interaction 
(GI) scores. a, GI scores for the set of combinatorial perturbations that were 
defined as expressing a specific GI subtype phenotype in Norman et al. 2019. The 
gray dots correspond to GI scores computed using true postperturbation gene 
expression. The colored dots were computed using predicted postperturbation 
gene expression under three different models: GEARS, CPA and Naive 
models. The naive model here simply sums together the effects of single-gene 
perturbations. The metrics on the y-axis correspond to different GI scores and 
the colored dotted lines indicate the defined thresholds for determining if a 

combination is exhibiting a specific GI subtype phenotype. Both GEARS and 
CPA were trained using a leave-one-out testing approach for each of the 131 
combinations. The black dashed line represents the minimum and maximum of 
all 131 values and the black solid line represents the mean. b, Scatter plots of GI 
scores for all 131 two-gene combinatorial perturbations from that dataset. The 
x-axis shows GI scores computed using true postperturbation gene expression 
and the y-axis shows scores computed using predicted postperturbation gene 
expression. The top row shows predictions made by GEARS and the bottom row 
shows predictions made by CPA. R2 refers to the coefficient of determination.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Model performance in predicting genetic interactions 
(GIs). a, Mean Square Error (MSE) in predicting non-additive combinatorial 
effects between the additive model which assumes that the effect of the 
combination is just the sum of the two known single-gene perturbation outcomes 
and GEARS predictions. MSE was measured on the 20 genes with the largest 
difference between true postperturbation expression following two-gene 
combinatorial perturbation and the additive prediction for that combination. GI 
subtypes (x-axis) were labelled without overlap as in Norman et al. 2019 (Synergy 

n=30, Suppression n=12, Redundancy n=8, Neomorphism n=13, Epistasis n=9). 
Bar plots represent the mean and error bars correspond to 95% CI. b, Top 10 
accuracy in predicting GIs: Model accuracy in predicting the set of 10 strongest 
interactions for each GI subtype as determined using true expression. Marker 
represents mean and error bar represents 1SD for the random model which 
performs 1000 draws (n=1000). For other models, predictions from 3 trained 
models were used (n=3). c, Precision and recall in predicting GIs (n=3).
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Extended Data Fig. 7 | Validation of GEARS predicted genetic interaction 
(GI) map using combinatorial cell fitness screen. a, Combinatorial cell 
fitness screen data was used for all pairwise combination of 92 genes leading to 
4186 unique combinations. Using cell fitness, interactions were quantified as 
synergistic or suppressive. b, Combinations showing the strongest cell fitness 
effects were used to validate GEARS predictions. c, Combinatorial Perturb-seq 
data was available for 110 of these combinations. GEARS was trained on Perturb-
Seq data to predict remaining 4076 perturbation outcomes. d, GEARS performs 

similar to experimental Perturb-Seq data in predicting strong genetic interaction 
outcomes for both strongly synergistic and suppressive interactions identified 
using cell fitness measurements. GI scores are z-normalized within each modality 
for comparison. Centreline represents mean. Whiskers represent last data 
point within 1.5x interquartile range below the first quantile and above the third 
quantile, outliers not shown. The p-values were computed using a one-sided 
t-test comparing the means of the two distributions.

http://www.nature.com/naturebiotechnology
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