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Abstract—Traffic measurement is key to many important net-
work functions. Supporting real-time queries at the individual flow
level over networkwide traffic represents a major challenge that
has not been successfully addressed yet. This paper provides the
first solutions in supporting real-time networkwide queries and
allowing a local network function (for performance, security or
management purpose) to make queries at any measurement point
at any time on any flow’s networkwide statistics, while the packets
of the flow may traverse different paths in the network, some of
which may not come across the point where the query is made. Our
trace-based experiments demonstrate that the proposed solutions
significantly outperform the baseline solutions derived from the
existing techniques.

[. INTRODUCTION

Real-time traffic measurement is key to supporting important
network functions, such as identifying elephant flows [1], [2],
re-routing traffic to resolve congestion and balance traffic across
the network [3], [4], detecting denial-of-service attacks [5]-[7],
worm propagation [8]-[10] and scanning [10]-[12], as well as
profiling potential botnet activities [13]. There are two major
challenges in designing traffic measurement modules that run
on network devices (such as routers and switches) to collect
information from the arrival packet streams: One is to support
real-time queries on traffic statistics at the individual flow level
[14], [15], and the other is to support a generalized flow model
[2], [16] where the packets of a flow (such as all packets towards
a given destination address) may pass many network paths and
its measurement requires synthesizing networkwide data from
multiple measurement points. The prior work has only limited
success in addressing these two challenges.

To support real-time responses, it is highly desired that the
traffic measurement modules are implemented on the data plane,
examining packet streams at line rates directly on network
processors [1], [15], [17]. But this means they have to compete
for on-die processing and memory (such as SRAM) resources
of the network processors with other key network functions of
packet forwarding, queuing and scheduling, quality of service,
etc. One solution is to implement traffic measurement with
highly compact and efficient data structures called sketches
[18]-[21], which however bring their own problems: Many
sketches are efficient in recording information from a packet
stream, but inefficient in answering flow-level queries. They
adopt a strategy of online recording and offline queries [18],
[21], [22], which does not support real-time applications. For
some sketches that claim to support real-time queries, they are
designed to measure network traffic and answer queries within
each measurement epoch [1], [15]. At the beginning of each
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epoch, little information will be returned for a query. As time
progresses, more information will be returned, which depends on
the time of the query within the current epoch. A better approach
of supporting real-time queries is based on a time window model
[23]-[25], which returns the statistics of a flow within a sliding
window [t — T',t), where ¢ is the time when the query is made
and T is the window size. We refer such queries as T-queries.
The challenge is that sketches do not keep a time stamp for each
piece of information that is recorded in their data structures and
therefore it is difficult for them to remove the stale information
that should be moved out of the window. The existing solutions
[23]-[25] divide the window into n smaller epoches of length %
and n sketches are used to store the measurement data in these
epoches respectively. As a new epoch starts, the data for the
oldest epoch is removed and its memory is released to store new
information in the current epoch. The accuracy of this approach
depends on the value of n. As we increase n, we can improve
the accuracy in answering 7-queries.

The above window-based solutions however have serious
performance issues. They have to store n sketches, each for an
epoch in the window. As n increases, their memory requirement
multiplies; or under a fixed memory allocation their per-sketch
memory decreases, which has significant impact on measurement
accuracy for each sketch. Moreover, a query requires processing
n sketches with an overhead that increases with n. Another
limitation is that all prior work on 7T'-queries is designed for
answering queries on local traffic at one measurement point.
No existing work addresses the practically important problem of
answering real-time queries on networkwide traffic.

There exists some work on networkwide traffic measurement
[19], [21]. However, their model is not window-based and does
not support real-time queries. Instead, they are designed for
offline queries, with all measurement points forwarding locally
measured data to a centralized measurement center, where the
data are combined to answer queries.

This paper attempts to provide the first solutions in supporting
real-time networkwide 7T-queries and allowing a local network
function (for performance, security or management) to make
queries at any measurement point at any time on any flow’s
networkwide statistics, while the packets of the flow may tra-
verse different paths in the network, some of which may not
come across the point where the query is made. We support
approximate 7T'-queries, yet do not incur significant memory
cost and processing overhead that linearly grow with n. Instead,
we work with a fixed memory allocation at any measurement
point and store only the information of the current epoch as
well as the aggregate information of the previous epochs within
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the window. We rely on a measurement center to store the
detailed data from all measurement points, synthesize the data
and distribute aggregate information back to the measurement
points to support localized real-time queries on networkwide
statistics at the individual flow level. We stress that, different
from [19], [21], the proposed solution supports window-based
queries in real time. In addition, the method of combining data
from different measurement points in [21] assume that all points
use sketches of the same size. We relax the requirement because
different points (e.g., routers) have different traffic conditions and
resource availability and therefore should be allowed to commit
different amounts of resources (thus different sketch sizes) for
local traffic measurements. The main contributions of this paper
are summarized below.

« We define a new problem of supporting approximate real-
time networkwide T'-queries.

« We present two solutions for collecting flow-level traffic
statistics locally, synthesizing the data networkwide, and
answering 7T'-queries efficiently and accurately.

« We conduct experiments based on real network traffic traces
to evaluate the performance of the proposed solutions.
The experimental results demonstrate that our solutions
significantly outperform the baseline solutions derived from
the existing techniques.

II. PRELIMINARIES
A. System Model and Flow Model

Our traffic measurement system consists of a measurement
center and a set of p (> 1) measurement points, denoted as
V = {vo,v1,...,vp—1} with |V| = p. The measurement center
is hosted at a powerful server with adequate computing/memory
resources for measurement data storage and synthesis. It sets up
connections with all measurement points for coordination and
data exchange. The measurement points can be any network
devices (such as gateways, routers, switches, or firewalls) at
which a traffic measurement module is deployed.

Consider the packet stream arriving at a measurement point.
Each packet is abstracted as {f,e), where f is a flow label and
e is an element identifier. Flow label f is typically composed
from a selected subset of packet header fields, such as source
address, destination address, port numbers, protocols, or others,
depending on the application need. Element e may be a count
(e.g., 1 for the packet itself) or a value selected from the packet
headers or even the payload. All the packets with the same label
f form a flow, referred to as flow f.

Flow size is defined as the number of elements in one flow,
e.g., the number of packets. Size measurement can provide
information about traffic volumes of individual flows for billing
or traffic engineering and help identify elephant flows for traffic
shaping, congestion control or attack detection.

Flow spread is defined as the number of distinct elements in a
flow. Spread measurement can assist in detecting malicious net-
work activities. For example, consider deploying measurement
points at the gateway routers of an enterprise network to monitor
inbound traffic. If we use source address as flow label and
destination address as element identifier, then all packets from
the same external source form a flow. Measuring flow spread
can help detect external sources that are scanning the internal
network — these sources have each contacted too many distinct
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Fig. 1: Exact T-query vs. approximate 7-query at one measure-
ment point and time .

internal destination addresses. In another example, if we use
destination address as flow label and source address as element
identifier, all external packets to the same internal destination
form a flow. Measuring the spread of each internal destination,
i.e., how many external sources are sending packets to an internal
host, can detect distributed denial-of-service (DDoS) attacks
[26], [27].

A flow may be spatial-temporally distributed. In the above
DDoS detection example, the flow of external packets to an
internal destination may arrive from all over the Internet through
different gateways of the enterprise network, and the size/spread
of the flow changes over time. Hence, to measure this flow, we
need the information from all the measurement points over time.

B. Problem of Real-Time T-query and Prior Work

The problem of exact real-time T-query is to answer the size
(or spread) of any flow f in time window of [t — T, t), where
t is an arbitrary time instant and 7" is a pre-specified window
size.

First let’s consider the simple case where there is only one
measurement point vg. Let M " be the measurement data for all
flows during the period from time s to time ¢ at the measurement
point vy. To save memory space, the measurement data are
stored in compact data structures called sketches [14], [15].
From M(’;_T’t, we can extract the measurement of any flow f
during time window [t — T',t) to answer T-queries. However,
maintaining ]VIS_T’t as time ¢ continuously advances is a difficult
problem. When time ¢ advances to ¢ + At, not only do we need
to add information about new packets arrived during [¢, ¢ + At),
but also we have to remove the information about packets arrived
during [t —T,t—T + At), which is hard to implement unless we
store information about each packet with an arrival timestamp.

Therefore, the prior work [23]-[25] relaxes the problem for
approximate T-query. It splits time into fixed measurement
epochs of length h = % where n is a pre-specified parameter.
Starting from the initial time 0, epochs are [(i — 1)h,ih), for
i > 1. As shown in Fig. 1, we let ¢y, be the ending time of
the most recent measurement epoch before ¢. Unless ¢ = ¢, the
window [t — T',t) contains n — 1 completed epochs, in addition
to the current epoch and a partial epoch before those completed
epochs. This partial epoch will be ignored by approximate
T-query. The measurement data of the (n — 1) completed
CpOChS are Méo—h}t(), M30_2h’to_h, " Mgo—(n—l)h,to—(n—Q)h.
The measurement data of the current epoch (up to time t) is
denoted as Méo"t. Let |J be the operator that aggregates the
measurement data from different epochs. Its exact operation
depends on which sketch is used for the measurement data, as
we will explain later. To answer an approximate 7-query, we
aggregate the measurement data of the (n— 1) completed epochs

and the current epoch, i.e., (U:::ll Méo_ih’to_(i_l)h) UMS“‘t,
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from which the measurement data of individual flows can be
extracted. This paper will focus on approximate 7'-query, which
will approach exact T-query as we increase the value of n.

The prior work on approximate 7'-query is limited in three
regards. First, they only consider a single measurement point
[23]-[25] or non-real-time offline queries [21], whereas this
paper considers real-time queries on flows whose packets may
pass multiple or all measurement points. Second, due to varied
traffic volumes, workloads and functions, different measurement
points may commit different amounts of resources (such as
memory) to store their measurement data, resulting in sketches of
different sizes, which makes it difficult to aggregate them. This
is an issue that is not considered in the existing single-point
study. Third, the prior work has to maintain the measurement
data of the (n — 1) completed epochs before the current epoch.
This incurs high memory cost as n increases.

The new problem studied in this paper is called approximate
real-time networkwide T-query, which allows a network function
at any measurement point v, to query on any flow f at
an arbitrary time ¢ for the flow’s size (or spread) across all
measurement points. Consider the previous example of an en-
terprise network with multiple gateways (multiple measurement
points) monitoring the external sources that send packets to each
internal destination. All external packets to the same internal
destination form a flow; the packets of a flow may pass through
all measurement points. As each gateway records the spread
information of the arrival packets, it may sample the packet
destinations to query about their current spreads in real time,
which is the number of distinct sources that send packets to this
destination across all measurement points during [t — T, t). For
an approximated answer, one may expect that we aggregate the
measurement data of the recent (n—1) completed epochs and the
current epoch from all points. This is however not true. As traffic
measurement is done epoch by epoch, the measurement data of
the current epoch from other points will not be updated until the
end of the epoch. Moreover, the query can be made at any time
t in the current epoch, i.e., V¢ € [to,to + h), where to is the
ending time of the previous epoch (which is the last completed
epoch). Given that (¢ — tg) can be arbitrarily small, we cannot
guarantee that the measurement data of the previous epoch is
obtained and aggregated before ¢. Assuming that the round-trip
communication delay between the measurement center and any
measurement point is bounded by h, what we can aggregate is
the measurement data of the recent (n — 2) completed epochs
before the last completed epoch from all points. Let M, be the
measurement data that v, can obtain to answer the approximate
real-time networkwide 7T-query. We have

Mz:( U nL—Jl M;?_ih,to_(i—l)h) UM;O—h,to UM;mt' (1)
v EV i=2

M, is plotted in Fig. 2 with crosshatch pattern, whereas the
answer to the exact networkwide 7'-query is in blue color.
III. CHALLENGES AND MAIN IDEA
A. Challenges

Supporting approximate real-time networkwide 7'-queries is
challenging as the solution should achieve high estimation accu-
racy and in the meanwhile satisfy the following requirements.

3

Fig. 2: Exact networkwide T'-query vs. approximate network-
wide T'-query for any measurement point v, and time t.

o Memory Efficiency: The traffic measurement modules are
usually implemented on the data plane to record and exam-
ine the packet streaming directly on the network processors.
Given that the on-die memory resource of the network
processor is limited and shared by key networking functions
such as packet forwarding, queuing and scheduling, etc., the
solution should be memory efficient.

e Low Query Overhead: Query overhead competes for pro-
cessing cycles that would otherwise be used to record
the packet stream or for other network functions. High
query overhead means that queries can only be performed
sparsely, which is undesired for real-time applications that
rely on frequent queries to catch events (such as DDoS
attacks) at they happen.

« Handle Device Diversity: Different points may have dif-
ferent amount of available memory for the measurement
module for two reasons. First, device heterogeneity. The
measurement points may be different types/generations
of devices as the equipment replacement/renewal is usu-
ally conducted progressively. Second, due to varied traffic
volumes, workloads and functions, measurement modules
among different points may be assigned different percent-
ages of on-die memory. The solution should be able to
aggregate sketches with different sizes and customize the
size of the aggregated sketch for each measurement point.

As the system model described in Section II-A that the
system consists of a measurement center and a set of p (> 1)
measurement points is very common and classic (e.g., client-
server model), one may come up with the following possible
solutions.

« Naive Solution 1: Each measurement point performs both
local traffic measurement and aggregation on measurements
from peer points and multiple epochs. For real-time net-
workwide 7' queries, the measurement point can directly
access local aggregation and produce answers instantly.

« Naive Solution 2: The measurement center collects the
measurements of each epoch from all measurement points.
When any measurement point receives a real-time network-
wide T query on any flow f, the query will be forwarded
to the center and the result produced by the center will be
returned as the answer.

Naive solution 1 has a huge memory consumption that is linear
to p and n, which is not scalable for large scale systems and for
larger n (larger n makes the approximate 7'-query approach exact
T-query and hence will increase measurement accuracy). We will
elaborate this in the next subsection. Naive solution 2 requires a
round-trip delay for answering a real-time networkwide 1" query,
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which is significantly larger than directly accessing the local
memory and producing the answer (which is what our solution
will do). This is also validated by our experimental results in
Section VII-D.

To address the above issues, this paper does not attempt to
build a new system/architecture, instead, we follow the system
model in Section II-A and propose a new design that carefully
instructs the interaction between measurement center and points,
so that the above requirements can be satisfied. Next subsection
will describe the main idea of our design and explain why our
design can satisfy the above requirements.

B. Main Idea

Our solutions are built on top of sketches. Consider any
measurement point v, and assume that time starts from 0. At the
current time ¢ € [(k — 1)h, kh) of the kth epoch, with k > n, to
answer the approximate real-time networkwide 7'-queries, there
must be a sketch C that stores the measurement data Mw, ie.,

C =M,

n—1

_ ( U U M;?—ih,to—(i—l)h) UM;O_h,tO UMéo’t

v, €V =2

(k—n)h,(k—2)h (k—2)h,t

(UUE/GV Mw/ ) U MJL ’

The above measurements are transformed from (1), where t; =
(kK — 1)h. As t proceeds from the kth epoch to the (k + 1)th
epoch, i.e., t € [kh,(k + 1)h), at the end of the kth epoch, C
should be updated to

(k—n+1)h,(k—1)h (k—1)h,kh
U, o M g

This update should be conducted instantly to prepare C
for the packet-recording and answering approximate real-time
networkwide T'-queries when the (k+1)th epoch starts, meaning
that we need another sketch C’ (with equal size) to store update
information so that C' just needs to copy the content of C’, i.e.,

(U’UIIEV

The key of our design is to make sure that (3) holds at the
end of the kth epoch with V& > n — 1, so that (2) holds
at any time during the (k + 1)th epoch. However, calculating

(3) requires the measurement data of (n — 2) epochs from
all pomts ie., M(k n+1)h,(k— 7L+2)h ]\l(k n+2)h,(k—n+3)h

, M, (k—=2)h,(k— 1 , Vv € V and local measurement data of the
most recent completed epoch MQ,(}C D, kh, which together are
(p(n —2) 4+ 1) epochs. Note that we need to calculate (3) for
arbitrary £ with £ > n — 1, meaning that we have to store
the measurement data of each epoch independently. This is a
huge memory consumption especially when p and n are large.
Recall that the on-die memory on the network processors that
can be used for measurement is limited. It is impractical to
store the measurement data of (p(n — 2) + 1) epochs at the
measurement point (This is also the reason why Naive Solution
1 is memory hungry). Moreover, aggregating the measurement
data of (p(n — 2) + 1) epochs is complicated, given that the
sizes of sketches from different measurement points may be
different (due to device diversity). Therefore, it is impractical
for v, to calculate (3) locally. Our main idea is to push the

(@)

o' = M(ic—'rH»l)h,(k—l)h) U]\/jl(jk_l)}hk}L.

x

3
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mass measurement data storage and the complex calculation to
the measurement center that is hosted at a powerful server with
adequate memory/computing resources, leaving measurement
points the following lightweight tasks:

e Task 1: Record the measurement data of the current epoch
and upload it to the center.

o Task 2: Maintain C' to answer approximate real-time net-
workwide T-queries at the current kth epoch with & > n—1.
Copy C' to C at the end of each epoch.

o Task 3: Maintain C’ to ensure an instant transfer for C' to
answer approximate real-time networkwide 7T'-queries in the
next (k + 1)th epoch. Wait for the center to return (3) and
then update C’.

We will show that for flow spread measurement, we need an
additional sketch that maintains the measurement data of the
current epoch to accomplish Task 1, resulting in totally three
sketches for all three tasks. While for flow size measurement,
Task 1 can be accomplished by only maintaining C' and C’,
resulting in a two-sketch design. Our design ensures that: 1)
we only need constant (two for flow size and three for flow
spread) number of sketches for each measurement point, which
is memory efficient; 2) we only need to access C' to answer
queries, resulting in low query overhead; 3) the measurement
center can aggregate measurements among sketches of different
sizes, and return the aggregated result back to the measurement
points. This allows our design to handle device diversity. One
key technical challenge that is not adequately addressed in the
existing literature is how to combine sketches of different sizes
and do so for different types of sketches.

In the next two sections, we will first propose a sophisti-
cated three-sketch design for answering approximate real-time
networkwide T-queries for flow spread, based on which we then
propose a concise two-sketch design for flow size.

IV. THREE-SKETCH DESIGN FOR FLOW SPREAD
MEASUREMENT

This section proposes three-sketch design for answering ap-
proximate real-time networkwide 7-queries on the statistics
of flow spread. We first review the sketch solution called
rSkt2(HLL) [15] which performs per-flow spread measurement
in a single epoch at a single measurement point. We then describe
the proposed three-sketch design without considering device
diversity. After that, we propose a method to deal with device
diversity. Finally, we discuss the proposed design.

A. rSk2(HLL)

rSkt2 [15] is a state-of-the-art framework for per-flow spread
measurement, which can be plugged in different single-flow
estimators, primarily including bitmap, FM, and HyperLogLog
(HLL) [28] [29]. Among them, rSkt2 that uses HLL estimators,
denoted as rSkt2(HLL), is the most accurate and is thus adopted
in this paper. Before reviewing rSkt2(HLL), we first describe
the HLL estimator, whose data structure is an array of m HLL
registers, each of r (usually 5) bits storing an integer in the
range of [0,2" — 1]. rSkt2(HLL) is a sketch for per-flow spread
measurement. Its data structure is two-dimension HLL estimator
arrays, denoted as D. D has 2 rows, D[0], D[1], each with w
HLL estimators. The jth HLL estimator in D[0]/D]1] is denoted
as D[0][7]/D[1][j], 0 < j < w. The Ith HLL register in estimator

D[0]/D[1][4] is denoted as D[0][j][{]/D[1][4][!], with 0 < I < m.
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When receiving a packet (f,e), rSkt2(HLL) first maps it
to a pair of estimators, D[0][Ho(f) mod w] and D[1][Ho(f)
mod w], and then hashes the packet to the Hj(e)th pair
of HLL registers, D[0][Ho(f) mod w][H;(e) mod m| and
D[1][Ho(f) mod w][H;i(e) mod m], where Hy(-) and Hi(-)
are independent uniform hash functions whose outputs are
sufficiently large. Without confusion, we may omit the modulo
operation. Let g(f, Hi(e)) be a pseudo-random function taking
two input parameters f and Hj(e) and returning a bit, 0
or 1, with equal probability. The packet will be recorded to
the HLL register D[0][Ho(f)][H1(e)] Gf g(f, H1i(e)) = 0) or
D{1)[Ho(f)][H1(e)] Gf g(f, H1(e)) = 1) as follows. VO < u <
20<i<w,0<75<m,

Dlu][i][j] = max{D[u][i][j], G(f ® ¢)}

where @ is the XOR operation and G(-) € [1,2" — 1] is a
geometric hash function and G(-) = x with probability 2%,
For 0 < i < m, define

Ly[i] = DI[0][Ho(f)][i], Ly[i] = D] [Ho(/)][4], if g(f,i) =0

Lyli] = D[Ho(f)]ld], Ly [i] = DOI[Ho (][], if g(f,i) = 1.

We know any element e of flow f must be recorded in Ly. The
clements from any flow f’ # f that is hashed to the same pair
of estimators, D[0][Hy(f)] and D[1][Ho(f)], will be recorded
in either Ly or Ly with equal chance. Let V(.) be the value
produced by the HLL estimator. rSkt2(HLL) produces the spread

estimate 57 for flow f by subtraction.

8 =V(Ls)—V(Ly) 4

rSkt2(HLL) outperforms existing work in terms of estimation
accuracy, recording overhead and query overhead, and thus is
adopted in this paper. For details of rSkt2(HLL), refer to [15].

B. Three-sketch Design without Device Diversity

We describe our three-sketch design that uses rSkt2(HLL) [21]
to measure per-flow spread in each epoch. The same design can
be easily modified to work with other sketches that measure per-
flow spread [18], [20]. Our contribution is to build a solution on
top of rSkt2(HLL) to answer approximate real-time networkwide
T-queries on flow spread. Consider any measurement point v,,
its three-sketch design uses three rSkt2(HLL) sketches, denoted
as B, C and C’, respectively. We begin with the case where all
measurement points use the sketches of the same size. That is,
each sketch is an array of 2 x w x m HLL registers. B measures
the traffic in the current epoch (for Task 1 in Section III-B). C
contains the aggregate measurement from which we can answer
approximate real-time networkwide 7T'-queries (Task 2 in Section
II-B). C’ contains the measurement that enalbes instant update
of C' when proceeding to the next epoch (Task 3 in Section
II-B). Initially, all registers in B, C' and C" are set to zeros. our
design has the following three stages.

1) Local online recording and query: The packets will be
recorded in B, C and C’ in the same way as rSkt2(HLL) does.
For query on flow f, we operate on C, which produces the spread
estimate following (4).

2) Local periodical measurement update: At the end of the
kth epoch with & > n — 1, for any v,,, the measurement module
executes three actions: 1) send B to the center; 2) copy C’ to C;
3) reset C’ to zeros. The second action ensures an instant transfer
to the (k + 1)th (k+ 1 > n) epoch as C is ready for the online

5

recording and query in next epoch. However, this holds with the
prerequisite that (3) holds for C’ at the end of the kth epoch
with £ > n — 1, meaning that C’ should obtain measurement
data

U M EmrADR(k=Dh _ g r(k—n+1)h,(k=1)h (5)
v €V T

before the end of the kth epoch, which will be sent by the center
MEFEIRER 50 3) s possessed by C’ via online recording).
Next, we will describe how the center collects the local measure-
ment data sent from each point (benefited from the first action)
and returns the measurement data M =7 +Dh(k=Dh pefore the
end of the kth epoch with & > n — 1. The process is called
spatial-temporal (ST) join.

3) Remote ST join: Denote B at v, at the end of the kth
epoch as B, ;. During the kth epoch, the center has received
B, Vv, € V,1 <1 < k—1, which will be aggregated for each
measurement point v, € V to obtain MFmrA DR E=DR e
aggregating process is called temporal join and its operation is

k—1
(k=n+1)h,(k=1)h _ (I-1)h,lh
Mz Ul:k—n+2 Mz (6)
where | J on any two measurement data M, and M, (which are
two rSkt2(HLL) sketches with the same w, m) is the register-
wise max operation, i.e., VO < u < 2,<i<w, 0<j<m,
(M, Mo ][u][i][5] = max{ M, [u) [i][j], Mo [wl[@][j]}. ()
Then, the center will obtain M (k=7 +Dh.(k=Dh {yy ag0regating
all Afék_”H)h’(k_l)h, Vv, € V spatially. This aggregating
process is called uniform spatial join and its operation is
VWO<u<2,<i<w, 0<j7<m,

M(kfnJrl)h,(kfl)h[u} [7][J] = mg’é{Méka)h,(kﬂ)h wl[Al5])-

(3)

The word “uniform” means that the rSkt2(HLL) sketches
at different measurement points are assumed to have the
same w and m. We will discuss how to aggregate
MDD eV ospatially when the rSkt2(HLL)
sketches at different measurement points are with different sizes
in next subsection.

ME=ntDh(k=1h jn (8) is exactly what the measurement
point v, needs for updating C’ (see (5)). The center will return
it to the measurement point. As we have assumed, the round-
trip transmission time is smaller than h. Since the center has
adequate computing resources, we also assume that the time for
the ST join plus the round-trip transmission time is smaller than
h. Therefore, we can guarantee that A (F—7+Dh(k=Dh cap pe
sent to the measurement point before the end of the kth epoch.

C. Handle Device Diversity with Nonuniform Spatial Join

Due to device diversity, the rSkt2(HLL) sketches at different
points may be different sizes. Actually, the number of register
in each HLL estimator, i.e., m is recommended to be a constant
number, e.g., 128, to ensure accuracy of each estimator [28],
therefore, it is reasonable to assign the same value of m to C
and C’ at each measurement point. In contrast, the number of
estimators, i.e., w, may vary depending on the memory allocated
to the measurement module.
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Denote the number estimators for v, as w,. In this subsection,
we consider the case where wg, w1, wa, ..., wp—1 are not all the
same. Let wy < wy < ... < wp—q and we assume % to be the
power of 2, V1 < x < p. In this case, the uniform spatial join
that directly does register-wise max in (8) will not work and we
need to aggregate MFrADR =D G cross all points Vv, € V
in a different manner, called nonuniform spatial join.

We propose a method called expand-and-compress. The center
will column-wise expand each M FDE=DR ot contain
w, estimators to My o (k nFDRE=DR ot contains wp_1 counters
such that V0 < u < 2,0 <i<wp—1,0< 7 <m,

MO ][] MDD [ mod wy][f].
(C))

After expansion, v, € V contains wp,_1
estimators. The center combines ]V[ (k=n+2)h.kh Vv, € V to
METHDRE=DR o6 follows. Y0 < u < 2,0 <i < wp_1,0<
Jj<m,

M(k—n+2)h kh v

METEDREEIR ][] = max MR D i)

For a certain measurement point v, the rSkt2(HLL) sketches

. . . (k—n2)h,kh .
on it are 2 X w, X m register arrays while M, is
2 X wp_1 x m. Therefore, the center needs to compress the size
of MEFTmHDRGE=Dh om 9 % Wp—1 X M 10 2 X wy X m and

sends it back to v,. VO < u < 2,0 <i < w,—1,0< 5 < m,

M(k—n+1)h,(k—1)h[u] [{5]

= max {MFETTIRETDR G T, [5])
0<i<ie=t
Note that in Section IV-B where we do not consider device
diversity, M —n+Dh(k=Dh in (8) is a 2 x w x m counter array
and will be sent to each measurement point. In this subsection,
M k=ntDh,(k=1h i5 customized in size for v, and will only be
sent to v,. Since v, is an arbitrary point, our nonuniform spatial
join is applicable for each point.

D. Discussion

Recall in Section II-B that the measurement data of the
last completed epoch of all peer points cannot be obtained at
the beginning of this epoch but is delayed for a time that is
assumed to be smaller than h. Therefore, at the kth epoch with
k > n — 1, the center can calculate UW#z Mﬁd)h’(k*l)h
by performing uniform spatial join in (8) for the case where
there is no device diversity or perform nonuniform spatial join
for the case where there is device diversity. Upon receiving
U%/#vm Mﬁ_mh’(k_l)h, v, will aggregate it directly to C' by
counter-wise addition. From (2), we have

_ ( U M;?—Z)h,(k—l)h) U]\Z[z

Vot FVg
o (k=2)h,(k=1)h (k=n)h,(k—=2)h
(, 9 M )U(U%,ev M, )
UM(k—2)}L,t
_ (UU . M;fc—n)h,(k—l)h)UMagk—l)h,t. (10)
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This will make the approximate real-time networkwide 7T-
query closer to the exact networkwide 7'-query.

V. TWO-SKETCH DESIGN FOR FLOW S1ZE MEASUREMENT

This section proposes two-sketch design for answering ap-
proximate real-time 7'-queries on the other kind of flow statistics,
i.e., flow size. We first review the classical sketch, i.e., CountMin
[14], which performs per-flow size measurement of a single
epoch and at a single measurement point. We then describe the
detailed design of the proposed two-sketch design, during which
we will explain why only two-sketches are required for flow size
measurement. Finally, a method to deal with device diversity is
proposed. We will focus on the new content and avoid duplicate
description.

A. CountMin

CountMin [14] uses a two-dimensional array of counters,
denoted as C. It has d rows, each of w counters. The jth counter
in the ith row is denoted as Ci][j], 0 < i < d, 0 < j < w. Upon
receiving a packet from flow f, CountMin records the packet by
hashing f to one counter in each row and increases that counter
by one, ie., C[i|[H;(f)] = C[i|[H:(f) mod w] + 1, where
H;,V 0 <i < d are independent pseudo-random hash functions
whose outputs are sufficiently large. Without confusion, we
abbreviate H;(f) mod w as H;(f). Upon query on flow f,
CountMin takes the minimum value of those d counters as the
size estimate 3y, i.e.,

§p = min{C[i][H:(f)],0 < i < d}.

B. Two-sketch Design without Device Diversity

1D

Our two-sketch design employs CountMin for local flow size
measurement. Consider any measurement point v, its two-
sketch design uses two CountMin sketches, C' and C’ of the
same size, i.e., d x w. Initially, all counters in C' and C’ are
set to zeros. Similar to the three-sketch design for flow spread
measurement, the two-sketch design also has the three stages.

1) Local online recording and query: Each packet that
arrives at the local measurement point will be online recorded in
both C' and C” in the same way as CountMin does. For query,
the module returns min{Ci][H;(f)],0 < i < d}.

2) Local periodical measurement update: At the end of the
kth epoch, V& > 1, the measurement module executes three
actions: 1) send C to the center; 2) copy C’ to C; 3) reset C’ to
zeros. The later two actions are the same as those under three-
sketch design. The difference is the first action that the module
send C rather than B (which we do not need here) to the center.
To make (3) holds for C’ at the end of the kth epoch with
k > n—1, the ST join performed at the center should return the
measurement data M (k—n+Dh.(k=1h pefore the end of the kth
epoch with k£ > n — 1.

3) Remote ST join: Denote C that is sent from v, at the
end of the kth epoch as C, ;. When the center receives C;, , it
recovers the measurement data of the kth epoch at v,:

Msﬁh[inﬂ:cz,l[i][‘} Osi<d Osj<uw
o klil7] = Coemr i1l

1<k<n 0<i<d, 0<j<w;
il — (0 f““ A=D1

Lh,(I+1)h .
+ZW s M),
k>n, 0<i<d, 0< 7 <w.

M;kfl)h"kh[i][j} —
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The above operation reveals that the center can recover the
measurement of each epoch, i.e., B in Task 1 of Section
III-B from C. This explains why for flow size we only need
two sketches in each measurement point. After measurement
recovery of each epoch from the above equation, the center
performs temporal join and obtains MET AR GE=DR £ each
measurement point v, € V if k > n — 1. The temporal join
here is counter-wise addition rather than register-wise max in
the three-sketch design ie., V0 <i<d, 0 <j < w,

(M, | Mo J[i][5] = M [1][] + Mo [i] 5]

Then, the center will obtain M *=7+DA(k=1h by performing
spatial join, ie., V0 <i<d, 0<j <w,

M= DR = DR ) vaev (][]

Similar to the three-sketch design, w here can be different and
we will discuss how to perform nonuniform spatial join later. The
center will return M (k=7 +Dh.(k=Dh 5 the measurement point.

12)

M(k—nJrl)h,(k:—l)h

x

C. Handle Device Diversity with Nonuniform Spatial Join

We can also apply the expand-and-compress method for flow
size measurement. The workflow is similar but the detailed
operations vary. The expand operation in (9) for flow spread
is modified to V0 <7 < d,0 < j < wp_

ME=n DR (k=Dh 151 = pp(k=ntDhi(k=Dh[;

[fj mod wy].

After expansion, ]V[z?e_"u)h"kh7 Yv, € V contains
wp—1 counters in each row. The server combines all
Mikc n+2)h,kh Vo, €V to MFETADRE=DR o follows. V0 <

i<d,0§]<wp,1,

]\/[ (k—n+1)h,(k— l)h

Z ]\/[(k n+1)h,(k—1) h[l][ﬂ

v, €V

. k—n+2)h,kh
The center needs to compress the size of M£ mEDER fom

d x wp_1 to d X w, and sends it back to v,. V0 < i < d,0 <
.j < Wg-—1,

MDD ] = max {M““ S [ FER)
0<i< P

Again, we stress that M (k=n+1)h,(k=1)h ent to each measure-
ment point v, € V is customized in size for v, and will only be
sent to v,. Since v, is an arbitrary point, our nonuniform spatial
join is applicable for each point.

VI. ANALYSIS

Denote C' at measurement point v, as C,. For any mea-
surement point v, € V and any time ¢, the approximate real-
time networkwide T'-query focuses on the packet stream that
appears during period [tg — (n — 1)h,to — h) at peer points and
that appears during [to — (n — 1)h,t) locally, which together
are called approximate networkwide T-stream. For any flow
f, let sy be the actual size/spread estimate of flow f in the
approximate networkwide T-stream and 5;, be the estimate
produced by C,. We compare our design with an ideal case
where we use one sketch (CountMin for size and rSkt2(HLL)
for spread) to record the approximate networkwide 7'-stream.
We assume a sketch C, Vv, € V that has the same data

7

structure as C,, i.e., CountMin with size d x w,, for flow size and
rSkt2(HLL) with size 2 x w, x m for flow spread, and records
the approximate networkwide 7'-stream. Let é’f@, be the estimate
produced by C;. Without device diversity, 8 ; = 8} ;=..=8 ,_,
as wo=wi=..wp—1. We have the following theorems for our
designs.

Analysis for three-sketch design:

Theorem 6.1: If wg = wy =,...,= wp_; (in the case where
there is no device diversity), we have § f,Z=§}7I, Yo, € V.

Theorem 6.2: If wo < wy <,...,< wp_1 (in the case where
there is device diversity), we have

|E(3f,:) —s¢l < |E(8}0) — s¢l
Var(y,) < Var(g}_ro)

13)
(14)

Analysis for two-sketch design:

Theorem 6.3: If wg = wy =,...,= wp_1 (in the case where
there is no device diversity), we have § f.,zzg},z’ Yo, € V.

Theorem 6.4: If wy < wy <,...,< wp_ (in the case where
there is device diversity), we have §}’p_1 <Spe < §}’0

The proof of the above theorems are provided in [30] due to
space limit.

VII. PERFORMANCE EVALUATION
A. Experiment Setup

Our experiments support approximate real-time networkwide
T-queries by running the two-sketch design for flow size and
three-sketch design for flow spread at three measurement points,
denoted as vy, vy, v, simulating a scenario where a network
has three gateways to three ISPs (for robustness of Internet
connection against ISP failure). 7" = 1 minute and each epoch
lasts for 6s by default. We will evaluate the impact of the
length of epoch. Since we are the first that proposes solu-
tions for answering the approximate real-time networkwide 7T'-
queries, there is no prior work that can be used directly as
baselines. To enhance our evaluation, we use the state-of-the-art
work that support approximate T-queries (for one measurement
point) as baselines. Specifically, each measurement point is
embedded with the baseline solution. When answering real-
time networkwide 7'-queries at an arbitrary measurement point
v, = vg,V1,V2, each local measurement point communicates
with the other two measurement points and adds up all the three
measurement results locally, which serves as the answer to the
query. For flow size measurement, we use Sliding Sketch as
the baseline [31], whose main data structure is a two-dimension
array. The number of rows is 10 in the original paper and we use
the same parameter. For flow spread measurement, we use VATE
[24] as the baseline, which measures the spread of each flow
based on the bitmap algorithm [20], [32]. We set the length of
bitmap for each flow to 2048, which can satisfy our measurement
requirements and is consistent with the setting in VATE.

We use the real traffic traces downloaded from CAIDA in
2018 [33]. The dataset we use lasts for 30 mins. It contains
1018839925 packets and 5149105 different source IP addresses
and 3306781 different destination IP addresses. The destination
address is adopted as the flow label, which has the application
of detecting DDoS attacks if our design is used to answer
approximate real-time networkwide 7T-queries on flow spread. In
the experiment, we divide the dataset into three packet streams,
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each for a measurement point. Each packet in the dataset is
randomly selected to one of the three packet streams.

Our evaluation is based on five metrics, categorized into
three groups: 1) Estimation Accuracy: As we have explained
in Section II-B and plotted in Fig. 2, the measurement module
Vg = vp,V1,VUz answers the approximate real-time network-
wide T'-queries rather than the exact networkwide T'-queries
(which cannot be done in real-time and is resource-hungry).
Therefore, the true size/spread for any flow is its size/spread
in the approximate neworkwide 7'-stream that has been defined
in Section VI. There are three metrics to evaluate the estimation
accuracy. 1) Absolute error, defined as |55 — s¢|, where sy is
the actual size/spread of f and 5y is the estimated size/spread
of f. The average absolute error is defined as 2%,
where I' is a flow set of |I'| flows; 2) Relative bias, defined
as ZL2L Tt evaluates how the flow’s estimated size/spread
deviates its actual size/spread; 3) Relative standard error, defined

as 4/ 2per(@r/50 D7 g0 o flow set T of [T'| flows. 2) Online

query overhel;ﬂ, defined as average time it takes to answer one
approximate real-time networkwide T'-query at the measurement
point. The smaller it is, the more flows the measurement module
can query on in one unit time. 3) Throughput. It represents the
average number of packets recorded per second. The unit is one
packet per second, which can be transformed to Abps if the
average packet size is A (e.g., 1k) bits. High throughput ensures
that the measurement module can be used to record the packet
stream arriving at high rate.

We implement our designs and baselines in Java. We use three
computers performing as three measurement points, each with a
Quad-Core Intel Core i7 (2.7GHz), 16GB memory. The server
is HP Z840, which has an E5-2643v4 CPU (6-Core,20M Cache,
3.4GHz), 256GB memory and around 10 TB disk storage.

8

B. Estimation Accuracy for Flow Spread Measurement

We plot the same styles of figures as what we do for flow size
measurement. The length of each epoch is 6s. We first conduct
experiments for the case where each algorithm is allocated
the same amount of memory. The results under 2Mb memory
allocation for each algorithm are shown in Fig. 3 and under 8Mb
memory allocation for each algorithm are shown in Fig. 4. Both
figures clearly show that our three-sketch design for flow spread
measurement outperforms VATE significantly.

Next we evaluate the performance of the three-sketch design
when handling device diversity. For fair comparison VATE at
different points will be allocated to the same memory as three-
sketch. We allocate different amount of memory for differ-
ent measurement points by setting M;=2Mb, M>=4Mb and
M3=8Mb. The results produced by the three-sketch design and
VATE at the measurement point v; with 4Mb memory allocation
are shown in Fig. 5. The results of the three-sketch design
at vy and vy are shown in Figs. 7(a)-(b), respectively. The
results demonstrate the advantages of the three-sketch design
over VATE in terms of estimation accuracy. We increase the
memory allocations to M;=8Mb, M3=16Mb and M3=32Mb.
The results produced by the three-sketch design and VATE at
the measurement point with M,=16Mb are shown in Fig 6. The
results of the three-sketch design at measurement points vy with
M;=8Mb and vy with M3=32Mb are shown in Figs. 7(c)-(d),
respectively. The similar conclusion can also be drawn.

C. Estimation Accuracy for Flow Size Measurement

We plot scatter figures to illustrate the absolute error of
each flow, where the x-axis is the real value (flow size in this
subsection) and y-axis is the estimate. We also plot the line
y = . Each point in the figure represents a flow. The closer to
y = z the point is, the more accurate the estimate of the flow
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is. We also plot figures to show the distribution of the relative
bias and relative standard error along with the actual flow size.
We set the length of each epoch to be 6s.

We first conduct experiments for the case where each algo-
rithm is allocated the same amount of memory. In this case,
the results at vg, v1,vo Will be the same. The results under 2Mb
memory allocation are shown in Figure 8. The two-sketch design
produces the estimates that are closer to the line y = z in the
scatter plot (Fig. 8(a)) than Sliding Sketch (Fig. 8(b)). As shown
in Fig. 8(c), the relative bias of the two-sketch design is less than
5.0% of that of Sliding Sketch. The relative standard error of the
two-sketch design is within 10% of that of Sliding Sketch. We
allocate more memory for each algorithm, i.e., 8Mb. The results
in Fig. 9 show Sliding Sketch’s estimation accuracy is improved,
but the two-sketch design still outperforms it significantly.

We also conduct experiments for the case where the algorithms
at vg, v1,ve are allocated with different memories My, M1, M,
respectively, simulating the scenario with device diversity. In
this case, we need the expand-and-compress method in the two-
sketch design. Note that the two-sketch design at vg, v1, vy Will
produce different estimates while Sliding Sketch will produce the
same estimate. We first Let My=2Mb, M1=4Mb and M;=8Mb.
The results produced by the two-sketch design and Sliding
Sketch at v; are shown in Fig. 10. The results of the two-
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and Sliding Sketch with 8Mb memory at each point vy, v1, va.

Two-Sketch | Sliding Sketch | Three-Sketch | VATE
0.068 1057 0.53 4104

TABLE I: Online query overheads (us) of the two-sketch design,
three-sketch design, Sliding Sketch and VATE.

sketch design at vy, vo are shown in Figs. 12(a)-(b), respectively.
Figures show that the two-sketch design (even the two-sketch
design at vg) perform much better than Sliding Sketch. Let
Mp=8Mb, M1=16Mb and M,=32Mb. The results produced by
the two-sketch design and Sliding Sketch at v; are shown in
Fig 11. The results of the two-sketch design at vg, v, are shown
in Figs. 12(c)-(d), respectively. The similar conclusion can be
drawn.

D. Online Query Overhead

The online query overheads of the two-sketch design and
Sliding Sketch for flow size measurement and the three-sketch
design and VATE for flow spread measurement are shown in
Tbl. I. We stress that the results will be not affected by the
memory allocation. For flow size measurement, the two-sketch
design only needs 0.068us to answer one approximate real-time
networkwide T-query, while Sliding Sketch needs 1057us. For
flow spread measurement, the three-sketch design’s online query
overhead is 0.53us. In contrast, VATE’s online query overhead
is 4104us, 6514 times larger. The reason is that our designs
only need to access local sketches for answering queries while

9
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Fig. 13: Average absolute error of two-sketch and Sliding Sketch for flow size measurement under different memory: plots(13a)
and (13c); of three-sketch and VATE for flow spread measurement under different memory: plots(13b) and (13d).

Two-Sketch | Sliding Sketch | Three-Sketch | VATE
4.03 29 5.34 2.99

TABLE II: Throughputs (10° packets per second) of the two-
sketch design, three-sketch design, Sliding Sketch and VATE.

baselines need extra round-trip transmission time to fetch the
results on other measurement points, and extra time to aggregate
local measurement data of recent (n — 1) epochs and the current
epoch. We want to stress that the improvement is significant
because query overhead competes for processing cycles that
would otherwise be used to record the packet stream. High query
overhead means that queries can only be performed sparsely,
which is undesired for real-time applications that rely on frequent
queries to catch events (such as worm attacks) at they happen.

E. Throughputs

Previous results have shown that our designs can answer
approximate real-time networkwide 7'-queries accurately. This
part will show that our design will not degrade the online packet-
recording speed. Tbl. II shows the throughput results of all
algorithms. All algorithms can record millions of packets per
second. Among them our designs are the fastest as we push the
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complex ST join to the server, leaving local measurement points
lightweight operations.

F. Average Absolute Error under Different Epoch Lengths

We change the value of n from 5 to 60, corresponding to the
epoch length from 12s to 1s. The x-axis is the value of n. The
y-axis is the average absolute error for all flows in the dataset.
We first conduct experiments for measuring flow size, where all
the measurement points share the same memory size. The results
under 2Mb are shown in Fig. 13a. The average absolute error of
the two-sketch design keeps at a low value, which ranges from
110 to 166. In the same figure, the average absolute error of
Sliding Sketch increases from 2313 to 3303, meaning we have
reduced the absolute error by 94.97% to 95.67%. This happens
because the baseline needs to keep the measurement data of n
epochs, resulting in the memory allocated for each epoch much
smaller, while our two-sketch design only needs to keep two
sketches at the measurement point. We allocate more memory to
each algorithm in Fig. 13b (i.e., 8Mb). The estimation accuracy
of both Sliding Sketch and two-sketch has been improved, but
our design is still a lot more accurate.
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We also conduct experiments for measuring flow spread,
where all the three measurement points (vg, v1, v2) are allocated
the same memory size. The same as flow size measurement,
We change the value of n from 5 to 60. The results under
2Mb are shown in Fig. 13c. The average absolute error of
three-sketch is low, ranging from 33 to 39. In the same figure,
the average absolute error of VATE increases from 97 to 120,
meaning we have reduced the absolute error by 65.98% to
67.5%. The reason is the same as that for the flow size estimation
accuracy improvement of two-sketch over Sliding Sketch. We
allocate more memory for each algorithm in Fig. 13d (i.e., 8Mb).
Both estimation accuracy of VATE and three-sketch has been
improved, but our design still performs better than VATE.

VIII. CONCLUSION

This paper proposes two solutions, i.e., the two-sketch design
and three-sketch design to answer the approximate real-time
networkwide 7T'-queries on flow size and flow spread, respec-
tively. Our designs are built on top of existing sketches. They
utilize the huge resources on the server and only store aggregated
networkwide traffic statistics at the local measurement point,
so that the queries can be answered by only accessing the
local data. We also propose an expand-and-compress method to
deal with device diversity of all measurement points. Our trace-
driven experiments demonstrate that our designs outperform the
baselines significantly.
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