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Abstract

To estimate unknown population parameters based on y, a vector of multivariate outcomes

having nonignorable item nonresponse that directly depends on y, we propose an innovative

inverse propensity weighting approach when the joint distribution of y and associated covariate

x is nonparametric and the nonresponse probability conditional on y and x has a parametric

form. To deal with the identifiability issue we utilize a nonresponse instrument z, an auxiliary

variable related to y but not related to the nonresponse probability conditional on y and x.

We utilize a modified generalized method of moments to obtain estimators of the parameters in

the nonresponse probability. Simulation results are presented and an application is illustrated

in a real data set.

Keywords: Generalized Method of Moments; Item Nonresponse; Inverse Propensity Weighting;
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1 Introduction

In many statistical applications, multivariate outcomes or responses are collected from

every sampled unit in the study. For example, in health studies conducted by the U.S. Centers

for Disease Control and Prevention, measurements of total cholesterol, high density lipoprotein

cholesterol, body mass index, and average sagittal abdominal diameter etc. may be obtained

from each sampled person in the non-institutionalized civilian resident population of the United

States. Longitudinal responses are another type of multivariate outcomes, in which each

sampled unit is repeatedly measured over several time periods. An example is the AIDS

Clinical Trial Group 193A discussed in Section 4 for HIV-AIDS patients with advanced immune

suppression.

Unfortunately, item nonresponse is a common phenomena in multivariate responses, i.e.,

some of the multivariate responses, not necessarily all, may be missing with a pattern vary-

ing with sampled unit. Estimation and statistical inference without taking nonresponse into

consideration may lead to seriously biased estimators and conclusions.

Throughout this article, y denotes a k-dimensional outcome or response vector of interest

that is subject to item nonresponse, r denotes the response indicator vector of y, i.e., the jth

component of r is 1 (or 0) if the jth component of y is observed (or missing), j = 1, ..., k,

and x denotes a p-dimensional covariate vector associated with y that is always observed.

Statistical approaches dealing with missing data usually depend on the nonresponse propensity

(or mechanism), i.e., the conditional distribution of r given (y,x), denoted by p(r|y,x). If

p(r|y,x) = p(r|yo,x), where yo is the observed part of y, then nonresponse is ignorable

(Rubin, 1976; Little and Rubin, 2002). Otherwise, nonresponse is nonignorable. While there

is a rich literature for valid inference under ignorable nonresponse (Little and Rubin, 2002),

there are serious challenges under nonignorable nonresponse, especially for multivariate y with

item nonresponse.

Greenlees et al. (1982) proposed to handle nonigorable item nonresponse by maximum like-

lihood estimation, assuming parametric models on both p(r|y,x) and p(y|x), the conditional

density of y given x. However, a fully parametric approach is sensitive to the parametric model

assumptions. Since the population p(y, r|x) = p(r|y,x)p(y|x) is not identifiable when both

p(r|y,x) and p(y|x) are nonparametric (Robins and Ritov, 1997), efforts have been made in

scenarios where one of p(r|y,x) and p(y|x) is parametric or semiparametric. Tang et al. (2003)
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and Zhao and Shao (2015) considered the situation where p(y|x) is parametric but p(r|y,x)

is nonparametric, whereas Wang et al. (2014) and Shao and Wang (2016) studied a univari-

ate response y (k = 1) with a nonparametric p(y|x) and a parametric or semi-parametric

p(r|y,x). Under a mixed-effect model on p(y|x), Wu and Carrol (1988), Xu and Shao (2009),

and Shao and Zhang (2015) obtained some results when the dependence of r on y is through

an unobserved random effect b, i.e., p(r|y,x) = p(r|b,x).

Under nonparametric conditional density p(y|x) and nonparametric marginal density p(y),

in this paper we propose an innovative inverse propensity weighting approach to construct

valid estimators of population parameters in the presence of nonignorable item nonreponse in

y, assuming the following two assumptions on the propensity:

(A1) The covariate vector x = (u, z) with a non-constant sub-vector z such that p(r|y,x) =

p(r|y,u) and p(y|x) = p(y|u, z) depends on z.

(A2) Given (y,u), components of r are conditionally independent and, for each j = 1, ..., k, the

probability of observing the jth component of y is πj(y,u,θj), where θj is an unknown

parameter vector and πj is a known function of (y,u) when θj is known.

The covariate z in (A1) is referred to as a nonresponse instrument (Wang et al., 2014; Zhao

and Shao, 2015). The existence of a nonresponse instrument that can be excluded from the

propensity is almost necessary for handling nonignorable nonresponse (Wang et al., 2014; Zhao

and Shao, 2015; Shao and Wang, 2016). Also, as discussed earlier, the parametric assumption

on propensity is needed as p(y|x) is nonparametric. Finally, the conditional independence of

components of r given (y,u) in (A2) is actually reasonable in many applications with item non-

response, as the conditional independence is not the same as the unconditional independence

of components of r.

Under (A2), conditioned on (y,u), the nonresponse propensity πj(y,u,θj) not only directly

depends on the entire y and possibly u, but also varies with j (component). No general result

is available under this type of item nonresponse in the literature. The closest is Li and Shao

(2021), but it assumes that given (y,u), components of r are identically distributed, which

may not be realistic when components of y have different distributions (see the real data

example in Section 4).

Our main methodology is introduced in Section 2, followed by some simulation results in

Section 3 and one real data example in Section 4.
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2 Methodology

Let (yi,xi, ri), i = 1, ..., n, be identically distributed and independently sampled from the

population of (y,x, r). Values of xi are always observed and components of yi are observed

if and only if the corresponding components of ri are equal to one. Under assumptions (A1)-

(A2), we propose to estimate population parameters using inverse propensity weighting, based

on observed data in (yi,xi, ri), i = 1, ..., n.

2.1 Estimation when θj’s are known

To illustrate the idea, we consider estimating population mean µj = E(yj), where yj is the

jth component of y and j is a fixed integer between 1 and k. Estimation of other parameters

is discussed in the end of this subsection.

In this subsection, we assume that θj ’s in (A2) are known. Estimation of θj ’s is considered

in the next subsection. For ri and yi, denote their jth components by rij and yij , respectively.

The simple inverse propensity weighting estimator,

n∑
i=1

rij yij
πj(yi,ui,θj)

/ n∑
i=1

rij
πj(yi,ui,θj)

,

which works for the univariate case of k = 1, does not work because πj(yi,ui,θj) cannot be

computed when yi has a missing component l 6= j. Thus, we propose the following estimator

of µj using composite inverse propensity weighting:

µ̂j(θ) =

n∑
i=1

(ri1 · · · rik) yij
π1(yi,ui,θ1) · · ·πk(yi,ui,θk)

/ n∑
i=1

ri1 · · · rik
π1(yi,ui,θ1) · · ·πk(yi,ui,θk)

, (1)

where θ is a vector with θ1, ..., θk as sub-vectors assumed to be known at this moment. Since

the product ri1 · · · rik is used, we must use the product π1(yi,ui,θ1) · · ·πk(yi,ui,θk) as weights,

which can be computed when ri1 · · · rik = 1. To see why µ̂j(θ) in (1) is asymptotically valid

as n→∞, note that

E

{
(ri1 · · · rik) yij

π1(yi,ui,θ1) · · ·πk(yi,ui,θk)

}
= E

[
E

{
(ri1 · · · rik) yij

π1(yi,ui,θ1) · · ·πk(yi,ui,θk)

∣∣∣∣yi,ui

}]
= E

[
yijE(ri1 · · · rik|yi,ui)

π1(yi,ui,θ1) · · ·πk(yi,ui,θk)

]
= E

[
yijE(ri1|yi,ui) · · ·E(rik|yi,ui)

π1(yi,ui,θ1) · · ·πk(yi,ui,θk)

]
= E(yij) = µj ,
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where the third equality follows from the independence of rij ’s conditioned on (yi,ui) and the

last equality follows from E(rij |yi,ui) = πj(yi,ui,θj), under (A1)-(A2). The consistency and

asymptotic normality of µ̂j(θ) as n→∞ can be established by applying standard arguments

and the central limit theorem, under some moment conditions, since the right hand side of (1)

is a ratio of sums of independent random variables.

In this way, other population characteristics can be similarly estimated. For example, if

we want to estimate the distribution of the jth component of y at a point t, then we just need

to replace yij by the indicator of yij ≤ t in the previous discussion. Quantiles can then be

estimated. Estimators of correlation between two components of y and between y and x can

be similarly derived. We can also estimate parameters defined by some estimating equations.

2.2 Estimation of θ

To complete our proposed methodology we need to remove the assumption that θ is known,

by constructing an estimator θ̂j of θj for each j under (A1)-(A2). To estimate θj , we follow the

approach of generalized method of moments (GMM) in Wang et al. (2014) for the univariate

response, but we need to add a novel modification to handle the multivariate y.

A brief description of the GMM is as follows. Let ϕ be the parameter vector to estimate,

which is a unique solution to E{g(ϕ)} = 0 with an l-dimensional vector estimating function

g whose tth component is gt(y,x, r,ϕ), t = 1, ..., l. The functions g1, ..., gl are chosen so that

l is not less than the dimension of ϕ and at the true parameter value ϕ, E{∂g(ϕ)/∂ϕ} is of

full rank. Let gn(ϕ) be the l-dimensional vector whose tth component is the sample average

n−1
∑n

i=1 gt(yi,xi, ri,ϕ), t = 1, ..., l. If l is the same as the dimension of ϕ, then we estimate

ϕ by ϕ̂ such that gn(ϕ̂) = 0. If l is larger than the dimension of ϕ, we apply the following

two-step GMM (Hansen, 1982; Hall, 2005):

1. Obtain ϕ̃ by minimizing {gn(ϕ)}Tgn(ϕ), where aT is the transpose of column vector a.

2. Obtain ϕ̂ by minimizing {gn(ϕ)}TŴgn(ϕ), where Ŵ is the inverse of l× l matrix whose

(t, t′) element is n−1
∑n

i=1 gt(yi,xi, ri, ϕ̃)gt′(yi,xi, ri, ϕ̃).

The optimization can be solved by using the MATLAB or R function fminsearch.

For our problem, it remains to specify the form of the estimating function g. Suppose first

that the nonresponse instrument z is discrete and has s categories, say z ∈ {z1, ..., zs}. A
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straightforward extension of the approach in Wang et al. (2014) (from univariate response to

multivariate y) is using

g(θ) =

{
r1 · · · rk

π1(y,u,θ1) · · ·πk(y,u,θk)
− 1

}
v, (2)

where θ = (θT1 , ..., θ
T
k )T , rj is the jth component of the vector r of response indicators and v

is the (s+ q)-dimensional vector whose first s components are indicators of z = zt, t = 1, ..., s,

and the rest q components are the q-dimensional covariate vector u in (A1)-(A2). With this

choice of g, E{g(θ)} = 0 under (A1)-(A2).

However, there is a problem: l = s + q may be smaller than the dimension of θ. For

example, if u is continuous and

πj(y,u,θj) = {1 + exp(αj + βT
j y + γT

j u)}−1, j = 1, ..., k, (3)

where αj is univariate, βj is k-dimensional, γj is q-dimensional, and θj = (αj ,β
T
j ,γ

T
j )T

with dimension q + k + 1, then l = s + q ≥ k(q + k + 1) (the dimension of θ) means that

s ≥ (k − 1)q + k(k + 1), which may be unrealistic. For instance, when q = 0 (there is no u),

s ≥ k(k + 1) requires that z has at least k(k + 1) categories.

To overcome this difficulty we consider the following modification. First, we construct k

overlapped subsets D1, ..., Dk of the entire data set, where Dh contains data from units whose

yih may be missing but all other components are observed, h = 1, ..., k. With the notation

rj = the jth component of r, Dh = {r1 = · · · = rh−1 = rh+1 = · · · = rk = 1}. Table 1 provides

an example of D1, D2, D3 in the case of k = 3 and n = 30.

Then, we estimate θj one at a time, j = 1, ..., k. For each j, we use data in Dj and

estimating function

g(j)(θj) =

{
rj

πj(y,u,θj)
− 1

}
δjvj , (4)

where δj is the indicator of set Dj , vj is the vector whose first s+ q components are the same

as those of v in (2), the rest k − 1 components are y1, ..., yj−1, yj+1, ..., yk, and yt is the tth

component of y. Note that g(j)(θj) in (4) can always be computed, since when δj = 1, all yt

with t 6= j are observed.

Besides the fact that the estimating function g in (2) involves all θj ’s and the estimating

function g(j) in (4) involves θj only, another key difference between g and g(j) is that the

observed components of y other than the jth component are used as “covariates” and included
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in the vector vj in (4). In this way, we not only make use of the partially observed responses in

y (note that r1 · · · rk = 1 if and only if all components of y are observed), but also include more

components in the estimating function so that l = s + q + k − 1 is typically large enough for

our purpose of estimating θj . For example, in the case of (3), the dimension of θj is q+ k+ 1;

hence, l = s+ q+ k− 1 ≥ q+ k+ 1 is the same as s ≥ 2, which naturally holds as long as z is

not a constant. However, if we do not include the last k − 1 components in vj , i.e., vj in (4)

is replaced by v defined in (2), then the dimension of g(j) is s + q, which is smaller than the

dimension of θj in the case of (3) unless s ≥ k + 1. Therefore, using vj instead of v ensures

that our procedure has a larger scope in application.

A GMM estimator θ̂j of θj can be computed using the estimating function g(j) in (4) and

data set Dj . Since Dj ’s are overlapped, some data are repeatedly used in the estimation of

θ̂1, ..., θ̂k.

To see why the function g(j)(θj) in (4) produces asymptotically valid estimator of θj , note

that

E{g(j)(θj)} = E

[
E

[{
rj

πj(y,u,θj)
− 1

}
δjvj

∣∣∣∣y,u, δj]]
= E

[{
E(rj |y,u, δj)
πj(y,u,θj)

− 1

}
δjE(vj |y,u, δj)

]
= 0,

where the second equality follows from the independence between z and rj conditioned on

(y,u, δj) and the last equality follows from E(rj |y,u, δj) = E(rj |y,u) = πj(y,u,θj) under

(A1)-(A2).

When z has continuous components, we can apply the method by discretizing z into s

categories or use s moments of z as components of v. If z = z is a univariate continuous

covariate, then typically we use s = 2 with the first and second components of vj being 1 and

z, respectively.

Once θ̂1, ..., θ̂k are obtained, we estimate µj by µ̂j(θ̂), obtained by substituting θ in µ̂j(θ)

in (1) with θ̂ = (θ̂T1 , ..., θ̂
T
k )T . Note that the entire θ̂, not just θ̂j , should be used in µ̂j(θ̂)

according to (1).
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2.3 Asymptotic theory

Under the same regularity conditions assumed in Wang et al. (2014), consistency and

asymptotic normality of θ̂j can be established and details are omitted. For the point estimator

µ̂j(θ̂), its consistency and asymptotic normality can be established. We provide the main

argument below and omit the details of proof. Define

ψ(yi,ui,θ) =
1

π1(yi,ui,θ1) · · ·πk(yi,ui,θk)
,

τ(θ) =
1

n

n∑
i=1

(ri1 · · · rik)ψ(yi,ui,θ),

and

ζj(θ) =
1

n

n∑
i=1

(ri1 · · · rik)yij ψ(yi,ui,θ).

Then, by (1), µ̂j(θ̂) = ζj(θ̂)/τ(θ̂) and

√
n{µ̂j(θ̂)− µj} =

1

τ(θ̂)

[√
n{ζj(θ̂)− µj} − µj

√
n{τ(θ̂)− 1}

]
.

Assume that ∇ψ(y,u,θ) = ∂ψ(y,u,θ)/∂θ exists and each component of ∇ψ(y,u,ϑ) −

∇ψ(y,u,θ) is bounded in absolute value by H(y,u)‖ϑ − θ‖ with E{H(y,u)} < ∞, where

‖ · ‖ is the L2 norm. This assumption holds if πj(y,u,θj)’s are given by (3). Then, by the

consistency of the GMM estimator θ̂,

√
n{ζj(θ̂)− µj} =

√
n{ζj(θ)− µj}+

√
n{ζj(θ̂)− ζj(θ)}

=
√
n{ζj(θ)− µj}+

1√
n

n∑
i=1

(ri1 · · · rik)yij

{
ψ(yi,ui, θ̂)− ψ(yi,ui,θ)

}
=
√
n{ζj(θ)− µj}+

1√
n

n∑
i=1

(ri1 · · · rik)yij∇ψ(yi,ui,θ)(θ̂ − θ) + op(1)

=
√
n{ζj(θ)− µj}+

{
1

n

n∑
i=1

(ri1 · · · rik)yij∇ψ(yi,ui,θ)

}
√
n(θ̂ − θ) + op(1)

=
√
n

{
1

n

n∑
i=1

(ri1 · · · rik)yij ψ(yi,ui,θ)− µj

}
+A(θ)

√
n(θ̂ − θ) + op(1),

where A(θ) = E{(ri1 · · · rik)yij∇ψ(yi,ui,θ)}, op(1) denotes a term converging to 0 in proba-

bility as n→∞, and the last equality follows from the law of large numbers and the definition
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of ζj(θ). Similarly,

√
n{τ(θ̂)− 1} =

√
n{τ(θ)− 1}+

√
n{τ(θ̂)− τ(θ)}

=
√
n{τ(θ)− 1}+

1√
n

n∑
i=1

(ri1 · · · rik)
{
ψ(yi,ui, θ̂)− ψ(yi,ui,θ)

}
=
√
n{τ(θ)− 1}+

{
1

n

n∑
i=1

(ri1 · · · rik)∇ψ(yi,ui,θ)

}
√
n(θ̂ − θ) + op(1)

=
√
n

{
1

n

n∑
i=1

(ri1 · · · rik)ψ(yi,ui,θ)− 1

}
+B(θ)

√
n(θ̂ − θ) + op(1),

where B(θ) = E{(ri1 · · · rik)∇ψ(yi,ui,θ)}. From the theory in Wang et al. (2014), the GMM

estimator θ̂ has the property that

√
n(θ̂ − θ) =

1√
n

n∑
i=1

φ(yi,xi) + op(1), (5)

where φ is an unknown vector function with E{φ(y,x)} = 0 and a finite positive definite ma-

trix E{φ(y,x)φ(y,x)T }. Then the asymptotic normality of
√
n{µ̂j(θ̂)−µj} with asymptotic

mean 0 follows from the joint asymptotic normality of the following vector,

1√
n

n∑
i=1


(ri1 · · · rik)yij ψ(yi,ui,θ)− µj

(ri1 · · · rik)ψ(yi,ui,θ)− 1

φ(yi,xi)

 (6)

However, the asymptotic variance of
√
n{µ̂j(θ̂)− µj} is very complicated, because it involves

not only the asymptotic variances of the three components in (6), but also their asymptotic

covariances, and the form of function φ in (5) is complicated (Wang et al., 2014). Thus, we do

not try to obtain an explicit form of the asymptotic variance of µ̂j(θ̂). Instead, we recommend

the bootstrap method for variance estimation or inference. Using the previous arguments, we

can show that the bootstrap analog µ̂∗j (θ̂
∗) is asymptotically normal and the general bootstrap

theory (Shao and Tu , 1995) ensures that the bootstrap variance estimators are consistent.

Applying the bootstrap effectively avoids the complicated derivation of asymptotic variances,

at the expense of a large amount of computations. In Section 3, the performance of bootstrap

standard error (squared root of variance estimator) is evaluated by simulations.
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3 Simulation Results

We carry out a simulation study to investigate the finite sample performance of our pro-

posed µ̂j(θ̂) given by (1) as an estimator of the marginal population mean µj = E(yj),

j = 1, ..., k, with θ estimated by the GMM estimator θ̂ derived in Section 2.2.

We consider a panel size k = 4 and sample size n = 1, 200, reflexing the panel and sample

sizes in the real data AIDS Clinical Trial Group 193A example presented in Section 4. A

univariate and continuous covariate z is considered with log z ∼ N(2.9, 1). Given z, yj ’s are

conditionally independent, log y1 ∼ N(0.4 + 0.9 log z, 0.82), log y2 ∼ N(0.6 + 0.8 log z, 0.82),

log y3 ∼ N(0.8 + 0.7 log z, 0.82), and log y4 ∼ N(0.9 + 0.6 log z, 0.82). The true marginal means

are µ1 = 41.89, µ2 = 35.16, µ3 = 29.81, and µ4 = 23.10. These µj ’s are chosen to match the

estimated values in the real data example considered in Section 4.

The nonresponse propensity is given by (3) with u = 0, αj ’s and βj ’s shown in Tables 2-3 for

settings 1-2, respectively. The parameter values αj and βj are chosen so that the unconditional

nonresponse probability matches the observed proportion in the real data example for every

j. The difference in two settings is that all coefficients in front of yj ’s in the propensity (3) are

positive in setting 1 so that larger values of yj have a higher probability to be nonresponse,

whereas in setting 2, the coefficients may be positive or negative. The covariate z in the real

data example is the baseline response and is used as nonresponse instrument in the estimation.

To evaluate the performance, we include two other estimators, the naive estimator = the

sample mean of observed values of yj and the sample mean of yj with full data (no nonresponse)

available in the simulation as nonresponse is constructed. The naive estimator is theoretically

biased due to nonignorable nonresponse and is included to see the effect of bias; the full data

sample mean is used as a standard.

Based on 1,000 simulation runs, Tables 2-3 report, for settings 1-2 respectively, simulation

average of estimates of µj , bias, bias in percentage, standard deviation of the estimate, average

of the standard error obtained by bootstrap with size 200, and coverage probability of the

approximate 95% confidence interval with limits = estimate ± 1.96(bootstrap standard error).

Results are given for j = 1, 2, 3, 4 and three estimators, based on the proposed, naive, and full

data methods. In the calculation of the proposed estimator given by (1), the GMM estimator

θ̂j is calculated using the MATLAB or R function fminsearch with initial value θj = 0. Since

z is continuous, we use (1, z) as the first two components of vj in (4).
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From the simulation results in Tables 2-3, the performance of proposed estimator (1) can be

summarized as follows. It has negligible bias: the largest biases are 3.1% and 2.4% and the rest

of biases are all smaller than 2%. The coverage probability of the related confidence interval is

close to 95%; the worst cases are in setting 1: 0.932 when j = 1 and 0.934 when j = 2, but even

the full data approach may also have coverage probabilities 0.932 and 0.936. The bootstrap

standard error for the proposed method performs well in general, and is sometimes a little

bit conservative, which results in slightly conservative coverage probability of the confidence

interval.

In setting 1 where larger yj values have higher probability to be missing data, the naive

estimator has a negative bias. Although the bias is around −5% only, it still affects considerably

the coverage probability of the related confidence interval. In setting 2, when smaller yj values

have higher probability to be missing data (j = 2 or 4), the naive estimator has a small positive

bias = 2.3% and 3.7% so that its coverage probability is acceptable. This appears by luck but

cannot support the naive approach of ignoring nonignorable nonresponse.

4 A Real Data Example

For illustration, we apply our proposed estimation method to the AIDS Clinical Trial Group

193A data set, which can be found at https://www.hsph.harvard.edu/fitzmaur/ala/cd4.txt.

Longitudinal responses, the CD4 cell counts, were collected from HIV-AIDS patients with

advanced immune suppression. After removing some patients with abnormal data, we focus

on 1,271 patients with responses in four time intervals, (4,12], (12,20], (20,28], (28,36], denoted

as y1, y2, y3, y4.

The longitudinal response y = (y1, ..., y4)
T has item nonresponse, as summarized in Table

4. The item nonresponse is due to adverse events, low-grade toxic reactions, the desire to seek

other therapies, death, and some other reasons. Previous experiences from doctors and Cho

et al. (2016) found that a steep decline in the CD4 cell count indicates the disease progression,

and patients with low CD4 cell counts are more likely to miss the scheduled study visits as

compared to patients with normal CD4. Therefore, nonresponse of the CD4 cell count is likely

related to itself and is nonignorable (Cho et al., 2016; Yuan and Yin, 2010).

We apply our proposed method in Section 2 to estimate µj = E(yj), j = 1, ..., 4, with

11



the always observed z = the baseline CD4 measurement as the instrument described in (A1).

Since z is the baseline CD4 cell count and y is the after-baseline CD4 cell count vector, based

on the reason of nonresponse described previously, it is reasonable to assume that the item

nonresponse of y is unrelated with the baseline z once we conditioned on y, i.e., (A1) holds

with z as an instrument. To apply the proposed method, we assume model (3) with x = z,

i.e., there is no other covariate.

The proposed estimates for j = 1, ..., 4 are shown in Table 5, together with their bootstrap

standard errors with bootstrap size 200. For comparison, we also include in Table 5 the sample

mean of observed values of yj (naive estimate ignoring nonresponse), the differences between

the proposed and naive estimates, and the bootstrap standard errors for differences.

From Table 5, the proposed estimates show a more serious decline in CD4 cell count over

the time than naive estimates, although naive estimates also indicate the decline. Compared

with 2 times the standard error, the difference between the proposed and naive estimates is

significant at j = 4.
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Table 1. Example of D1, D2, D3 when k = 3 and n = 30

(rj is the indicator of whether yj is observed)

entire dataset D1 D2 D3

unit r1 r2 r3 unit r1 r2 r3 unit r1 r2 r3 unit r1 r2 r3

1 0 0 0 2 1 1 1 2 1 1 1 2 1 1 1

2 1 1 1 3 0 1 1 5 1 1 1 5 1 1 1

3 0 1 1 5 1 1 1 8 1 1 1 7 1 1 0

4 1 0 0 8 1 1 1 11 1 0 1 8 1 1 1

5 1 1 1 12 1 1 1 12 1 1 1 10 1 1 0

6 0 0 1 15 1 1 1 14 1 0 1 12 1 1 1

7 1 1 0 16 0 1 1 15 1 1 1 15 1 1 1

8 1 1 1 17 1 1 1 17 1 1 1 17 1 1 1

9 0 0 1 21 1 1 1 21 1 1 1 18 1 1 0

10 1 1 0 23 1 1 1 22 1 0 1 20 1 1 0

11 1 0 1 24 0 1 1 23 1 1 1 21 1 1 1

12 1 1 1 28 1 1 1 27 1 0 1 23 1 1 1

13 0 1 0 28 1 1 1 28 1 1 1

14 1 0 1 30 1 0 1 29 1 1 0

15 1 1 1

16 0 1 1

17 1 1 1

18 1 1 0

19 0 0 0

20 1 1 0

21 1 1 1

22 1 0 1

23 1 1 1

24 0 1 1

25 0 0 0

26 0 1 0

27 1 0 1

28 1 1 1

29 1 1 0

30 1 0 1
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Table 2. Simulation results for the estimation of µj in setting 1

(n = 1, 200, bootstrap size = 200, simulation runs = 1,000)

% of standard standard coverage
j missing method estimate bias bias % deviation error prob.

1 30.75 proposed 42.44 0.552 0.013 7.705 7.896 0.932

naive 39.76 -2.129 -0.051 2.448 2.441 0.784

full data 41.92 0.034 0.001 2.180 2.150 0.936

2 24.57 proposed 35.76 0.599 0.017 6.246 6.223 0.934

naive 33.92 -1.241 -0.035 1.836 1.792 0.827

full data 35.21 0.048 0.001 1.636 1.628 0.943

3 46.66 proposed 30.75 0.933 0.031 6.035 5.911 0.956

naive 28.09 -1.720 -0.058 1.582 1.583 0.747

full data 29.91 0.095 0.003 1.236 1.245 0.948

4 39.03 proposed 23.65 0.543 0.024 4.355 4.317 0.956

naive 22.06 -1.040 -0.045 1.079 1.053 0.780

full data 23.06 -0.048 -0.002 0.908 0.861 0.932

πj(y,θj) = {1 + exp(αj + βT
j y)}−1, j = 1, ..., 4

α1 = −1.2, βT
1 = (0.1, 0.01, 0.01, 0.01)

α2 = −1.5, βT
2 = (0.01, 0.1, 0.01, 0.01)

α3 = −0.5, βT
3 = (0.01, 0.01, 0.1, 0.01)

α4 = −0.8, βT
4 = (0.01, 0.01, 0.01, 0.1)
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Table 3. Simulation results for the estimation of µj in setting 2

(n = 1, 200, bootstrap size = 200, simulation runs = 1,000)

% of standard standard coverage
j missing method estimate bias bias % deviation error prob.

1 30.47 proposed 42.26 0.375 0.009 6.979 7.176 0.941

naive 39.58 -2.310 -0.055 2.464 2.382 0.769

full data 41.98 0.090 0.002 2.138 2.145 0.943

2 22.79 proposed 35.63 0.471 0.013 4.891 5.498 0.961

naive 35.96 0.796 0.023 1.916 1.857 0.946

full data 35.18 0.017 0.001 1.682 1.604 0.929

3 48.19 proposed 30.14 0.324 0.011 4.699 5.292 0.960

naive 28.40 -1.413 -0.047 1.656 1.598 0.797

full data 29.87 0.052 0.002 1.264 1.227 0.935

4 40.08 proposed 23.53 0.426 0.018 3.734 3.989 0.951

naive 22.96 0.854 0.037 1.154 1.150 0.926

full data 23.12 0.019 0.001 0.879 0.862 0.946

πj(y,θj) = {1 + exp(αj + βT
j y)}−1, j = 1, ..., 4

α1 = −1.3, βT
1 = (0.1, 0.02, 0.02, 0.02)

α2 = −1.1, βT
2 = (0.02,−0.1, 0.02, 0.02)

α3 = −0.3, βT
3 = (−0.02, 0.02, 0.1,−0.02)

α4 = −0.2, βT
4 = (0.02, 0.02,−0.02,−0.1)
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Table 4. Nonresponse pattern of y in the example

Nonresponse pattern Number of

r1 r2 r3 r4 s† observations

0 0 0 0 0 121

1 0 0 0 1 82

0 1 0 0 1 57

0 0 1 0 1 11

0 0 0 1 1 7

1 1 0 0 2 69

1 0 1 0 2 37

1 0 0 1 2 11

0 1 1 0 2 41

0 1 0 1 2 119

0 0 1 1 2 2

1 1 1 0 3 94

1 1 0 1 3 118

1 0 1 1 3 34

0 1 1 1 3 31

1 1 1 1 4 437

Total 1271

†s = r1 + r2 + r3 + r4
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Table 5. Estimates and standard errors of µj’s in the example

% of standard
j missing method estimate error

1 30.61 proposed 38.09 2.670

naive 35.70 1.416

difference† 2.395 2.158

2 24.00 proposed 32.21 2.132

naive 34.68 1.490

difference −2.468 1.779

3 45.95 proposed 27.44 2.653

naive 27.68 1.366

difference −0.236 2.540

4 40.28 proposed 24.42 1.687

naive 28.51 1.435

difference −4.085 1.667

† difference = proposed − naive
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