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Abstract

To estimate unknown population parameters based on vy, a vector of multivariate outcomes
having nonignorable item nonresponse that directly depends on y, we propose an innovative
inverse propensity weighting approach when the joint distribution of y and associated covariate
x is nonparametric and the nonresponse probability conditional on y and @ has a parametric
form. To deal with the identifiability issue we utilize a nonresponse instrument z, an auxiliary
variable related to y but not related to the nonresponse probability conditional on y and x.
We utilize a modified generalized method of moments to obtain estimators of the parameters in
the nonresponse probability. Simulation results are presented and an application is illustrated

in a real data set.
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1 Introduction

In many statistical applications, multivariate outcomes or responses are collected from
every sampled unit in the study. For example, in health studies conducted by the U.S. Centers
for Disease Control and Prevention, measurements of total cholesterol, high density lipoprotein
cholesterol, body mass index, and average sagittal abdominal diameter etc. may be obtained
from each sampled person in the non-institutionalized civilian resident population of the United
States. Longitudinal responses are another type of multivariate outcomes, in which each
sampled unit is repeatedly measured over several time periods. An example is the AIDS
Clinical Trial Group 193A discussed in Section 4 for HIV-AIDS patients with advanced immune
suppression.

Unfortunately, item nonresponse is a common phenomena in multivariate responses, i.e.,
some of the multivariate responses, not necessarily all, may be missing with a pattern vary-
ing with sampled unit. Estimation and statistical inference without taking nonresponse into
consideration may lead to seriously biased estimators and conclusions.

Throughout this article, y denotes a k-dimensional outcome or response vector of interest
that is subject to item nonresponse,  denotes the response indicator vector of y, i.e., the jth
component of r is 1 (or 0) if the jth component of y is observed (or missing), j = 1,..., k,
and x denotes a p-dimensional covariate vector associated with y that is always observed.
Statistical approaches dealing with missing data usually depend on the nonresponse propensity
(or mechanism), i.e., the conditional distribution of = given (y,x), denoted by p(r|y,x). If
p(rly,x) = p(r|y,, ), where y, is the observed part of y, then nonresponse is ignorable
(Rubin, 1976; Little and Rubin, 2002). Otherwise, nonresponse is nonignorable. While there
is a rich literature for valid inference under ignorable nonresponse (Little and Rubin, 2002),
there are serious challenges under nonignorable nonresponse, especially for multivariate y with
item nonresponse.

Greenlees et al. (1982) proposed to handle nonigorable item nonresponse by maximum like-
lihood estimation, assuming parametric models on both p(r|y, ) and p(y|x), the conditional
density of y given . However, a fully parametric approach is sensitive to the parametric model
assumptions. Since the population p(y,r|x) = p(r|y, z)p(y|z) is not identifiable when both
p(r|y, ) and p(y|x) are nonparametric (Robins and Ritov, 1997), efforts have been made in

scenarios where one of p(r|y, ) and p(y|x) is parametric or semiparametric. Tang et al. (2003)



and Zhao and Shao (2015) considered the situation where p(y|x) is parametric but p(r|y, )
is nonparametric, whereas Wang et al. (2014) and Shao and Wang (2016) studied a univari-
ate response y (kK = 1) with a nonparametric p(y|x) and a parametric or semi-parametric
p(rly, ). Under a mixed-effect model on p(y|x), Wu and Carrol (1988), Xu and Shao (2009),
and Shao and Zhang (2015) obtained some results when the dependence of r on y is through
an unobserved random effect b, i.e., p(r|y, x) = p(r|b, x).

Under nonparametric conditional density p(y|x) and nonparametric marginal density p(y),
in this paper we propose an innovative inverse propensity weighting approach to construct
valid estimators of population parameters in the presence of nonignorable item nonreponse in

y, assuming the following two assumptions on the propensity:

(A1) The covariate vector & = (u, z) with a non-constant sub-vector z such that p(r|y,x) =

p(r|y,u) and p(y|z) = p(y|u, 2) depends on z.

(A2) Given (y,u), components of r are conditionally independent and, for each j = 1,..., k, the
probability of observing the jth component of y is 7;(y,u, 8;), where 6; is an unknown

parameter vector and 7; is a known function of (y,w) when 6; is known.

The covariate z in (Al) is referred to as a nonresponse instrument (Wang et al., 2014; Zhao
and Shao, 2015). The existence of a nonresponse instrument that can be excluded from the
propensity is almost necessary for handling nonignorable nonresponse (Wang et al., 2014; Zhao
and Shao, 2015; Shao and Wang, 2016). Also, as discussed earlier, the parametric assumption
on propensity is needed as p(y|x) is nonparametric. Finally, the conditional independence of
components of r given (y, ) in (A2) is actually reasonable in many applications with item non-
response, as the conditional independence is not the same as the unconditional independence
of components of r.

Under (A2), conditioned on (y, u), the nonresponse propensity m;(y, u, 8;) not only directly
depends on the entire y and possibly w, but also varies with j (component). No general result
is available under this type of item nonresponse in the literature. The closest is Li and Shao
(2021), but it assumes that given (y,wu), components of r are identically distributed, which
may not be realistic when components of y have different distributions (see the real data
example in Section 4).

Our main methodology is introduced in Section 2, followed by some simulation results in

Section 3 and one real data example in Section 4.



2 Methodology

Let (y;, x;,7i), i = 1,...,n, be identically distributed and independently sampled from the
population of (y,x,r). Values of x; are always observed and components of y; are observed
if and only if the corresponding components of r; are equal to one. Under assumptions (A1l)-
(A2), we propose to estimate population parameters using inverse propensity weighting, based

on observed data in (y;, x;,7;), i = 1,...,n.

2.1 Estimation when 6,’s are known

To illustrate the idea, we consider estimating population mean p; = E(y;), where y; is the
jth component of y and j is a fixed integer between 1 and k. Estimation of other parameters
is discussed in the end of this subsection.

In this subsection, we assume that 8,’s in (A2) are known. Estimation of 8,’s is considered
in the next subsection. For r; and y;, denote their jth components by 7;; and y;;, respectively.

The simple inverse propensity weighting estimator,

n
Tij Yij
Z /Z 7T_] yzauu

i—1 i (Yi, ui, 0

which works for the univariate case of k = 1, does not work because 7;(y;, u;, 8;) cannot be
computed when y; has a missing component [ # j. Thus, we propose the following estimator

of p1; using composite inverse propensity weighting:

n
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where 0 is a vector with 64, ..., 8, as sub-vectors assumed to be known at this moment. Since
the product r;1 - - - 4 is used, we must use the product 7 (y;, u;, 1) - - - T, (y;, u;, 0)) as weights,

which can be computed when r;; - -7, = 1. To see why 11;(0) in (1) is asymptotically valid

=)

as n — 00, note that
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where the third equality follows from the independence of ;;’s conditioned on (y;, u;) and the
last equality follows from E(r;;|y;, w;) = 7;(yi, ui, 0;), under (A1)-(A2). The consistency and
asymptotic normality of ;(6) as n — oo can be established by applying standard arguments
and the central limit theorem, under some moment conditions, since the right hand side of (1)
is a ratio of sums of independent random variables.

In this way, other population characteristics can be similarly estimated. For example, if
we want to estimate the distribution of the jth component of y at a point ¢, then we just need
to replace y;; by the indicator of y;; < t in the previous discussion. Quantiles can then be
estimated. Estimators of correlation between two components of y and between y and « can

be similarly derived. We can also estimate parameters defined by some estimating equations.

2.2 Estimation of 8

To complete our proposed methodology we need to remove the assumption that 8 is known,
by constructing an estimator OAj of 8, for each j under (A1)-(A2). To estimate 8, we follow the
approach of generalized method of moments (GMM) in Wang et al. (2014) for the univariate
response, but we need to add a novel modification to handle the multivariate y.

A brief description of the GMM is as follows. Let ¢ be the parameter vector to estimate,
which is a unique solution to E{g(¢)} = 0 with an [-dimensional vector estimating function
g whose tth component is ¢;(y, x,r,¢), t = 1,...,l. The functions g1, ..., g; are chosen so that
[ is not less than the dimension of ¢ and at the true parameter value ¢, E{0g(¢)/0p} is of
full rank. Let g,(¢) be the I-dimensional vector whose tth component is the sample average
n~t Yo 9t(Yi, @i, i ), t =1,..., 1. If [ is the same as the dimension of ¢, then we estimate
@ by @ such that g,(@¢) = 0. If [ is larger than the dimension of ¢, we apply the following
two-step GMM (Hansen, 1982; Hall, 2005):

1. Obtain ¢ by minimizing {g, ()} gn (), where a” is the transpose of column vector a.
2. Obtain ¢ by minimizing {gn(cp)}Tﬁ\/gn(go), where W is the inverse of [ x | matrix whose
(t, ') element is n~! o1 9t (Y, i, i, @) gy (Yi, iy i, ).
The optimization can be solved by using the MATLAB or R function fminsearch.

For our problem, it remains to specify the form of the estimating function g. Suppose first

that the nonresponse instrument z is discrete and has s categories, say z € {z1,...,25}. A



straightforward extension of the approach in Wang et al. (2014) (from univariate response to

multivariate y) is using

9(6) = {Wl(y,uﬂl)'“m(y,u,@k) _1}1]’ @

where 6 = (67, ..., Og)T, r;j is the jth component of the vector r of response indicators and v

is the (s 4 g)-dimensional vector whose first s components are indicators of z = z;, t = 1, ..., s,
and the rest ¢ components are the g-dimensional covariate vector w in (A1)-(A2). With this
choice of g, E{g(6)} = 0 under (A1)-(A2).

However, there is a problem: [ = s + ¢ may be smaller than the dimension of 6. For

example, if u is continuous and

Tr](y>u70]) = {1+eXp(a]+ny+7]Tu)}_lv j = 177k7 (3)

Lo . . Lo . . Lo . . R . T T
where «; is univariate, 3; is k-dimensional, 7; is g-dimensional, and 6; = (aj,,Bj Y

)T
with dimension ¢ + k + 1, then [ = s + ¢ > k(¢ + k + 1) (the dimension of ) means that
s > (k—1)q + k(k + 1), which may be unrealistic. For instance, when ¢ = 0 (there is no u),
s > k(k + 1) requires that z has at least k(k + 1) categories.

To overcome this difficulty we consider the following modification. First, we construct k
overlapped subsets D1, ..., D of the entire data set, where D;, contains data from units whose
y;» may be missing but all other components are observed, h = 1,...,k. With the notation
r; = the jth component of r, Dy, = {ri =--- =141 = 7441 = --- =1, = 1}. Table 1 provides
an example of Dy, Dy, D3 in the case of k = 3 and n = 30.

Then, we estimate 6; one at a time, j = 1,...,k. For each j, we use data in D, and

estimating function
Ty

1) (9.) — s
g (HJ)_{WJ‘(?J,MGJ) 1}5J 7 @

where 0; is the indicator of set D;, v; is the vector whose first s 4+ ¢ components are the same
as those of v in (2), the rest k — 1 components are yi, ..., yj—1, Yj+1,---, Yk, and y; is the tth
component of y. Note that g(j)(Oj) in (4) can always be computed, since when ¢; = 1, all y,
with ¢t # j are observed.

Besides the fact that the estimating function g in (2) involves all 6;’s and the estimating
function ¢\9) in (4) involves 6; only, another key difference between g and g% is that the

observed components of y other than the jth component are used as “covariates” and included



in the vector v; in (4). In this way, we not only make use of the partially observed responses in
y (note that 1 - - -, = 1 if and only if all components of y are observed), but also include more
components in the estimating function so that [ = s + ¢+ k — 1 is typically large enough for
our purpose of estimating 8;. For example, in the case of (3), the dimension of 6; is ¢+ k +1;
hence, |l =s+q+k—12>qg+k+1 is the same as s > 2, which naturally holds as long as z is
not a constant. However, if we do not include the last £ — 1 components in v;, i.e., v; in (4)
is replaced by v defined in (2), then the dimension of g\9) is s 4+ ¢, which is smaller than the
dimension of 8; in the case of (3) unless s > k + 1. Therefore, using v; instead of v ensures
that our procedure has a larger scope in application.

A GMM estimator §j of 8; can be computed using the estimating function g\ in (4) and
data set D;. Since Dj’s are overlapped, some data are repeatedly used in the estimation of
0., ...,0;.

To see why the function g\)(8;) in (4) produces asymptotically valid estimator of @, note

E{g")(0,)} = E {E [ — y7u w0 }5jvj Y u, (53'”
H rj\y,ué)_l} (Uj‘.%u(s)}

ﬂ](yauv 0 )

that

I
&

where the second equality follows from the independence between z and r; conditioned on
(y,u,0;) and the last equality follows from E(rj|y,u,d;) = E(rj|ly,u) = 7j(y,u,6;) under
(A1)-(A2).

When z has continuous components, we can apply the method by discretizing z into s
categories or use s moments of z as components of v. If z = 2 is a univariate continuous
covariate, then typically we use s = 2 with the first and second components of v; being 1 and
z, respectively.

Once 61, ..., B, are obtained, we estimate ; by ﬁ](é), obtained by substituting @ in 12;(8)

in (1) with 6 = é\T, ,§T . Note that the entire 5, not just §-, should be used in [,
J J

according to (1).



2.3 Asymptotic theory

Under the same regularity conditions assumed in Wang et al. (2014), consistency and
asymptotic normality of 5]- can be established and details are omitted. For the point estimator

1;(0), its consistency and asymptotic normality can be established. We provide the main

argument below and omit the details of proof. Define

1
Vg i, 0) = 71 (Yi, wi, 01) - - T (Yi, wi, Or)
7(0) = 1 zn:(m i) Y(Yi, wi, 0),
i
and .
G(6) = i;(m e Tik)Yig (Y, wi, 0).

~ ~

Then, by (1), 7i;(8) = ¢;(6)/7(6) and

V@ 1) = — o [VIG® ~ )~ pyv/afr(@ - )]

Assume that Vi(y,u,0) = 09¥(y,u,0)/00 exists and each component of Vi (y,u,d) —
Vi (y,u,0) is bounded in absolute value by H(y,u)||d — 0| with E{H(y,u)} < oo, where
| - || is the Ly norm. This assumption holds if 7;(y, u,8;)’s are given by (3). Then, by the

consistency of the GMM estimator OA,

~ ~

Vn{(i(0) — pi} = vn{(;(0) — pi} +vn{(;(0) — ¢;(0)}
= vn{{(0) — pj} + \}ﬁ ;(m Tk Vi {w(yi, u;, 0) — ) (yy, w;, 9)}

= Vn{G(0) — py} + \/15 > (rin i)y Vi (yi, i, 0)(0 — 0) + 0p(1)
=1

n

= V/n{G(0) — u;} + {i > (rin ik Vo (yi, wi, 9)} V(8 - 0) + 0,(1)

i=1

= \/’ﬁ{i > (i rik)yig (Y, wi, 0) — Mj} + A(0)Vn(6 — 6) + 0,(1),
=1

where A(0) = E{(ri1 - 7ik)yi; Vi (yi, u;,0) }, 0p(1) denotes a term converging to 0 in proba-

bility as n — oo, and the last equality follows from the law of large numbers and the definition



of (;(@). Similarly,

Vi{r(8) — 1} = Vn{r(8) — 1} + \/ﬁmé —7(0)}
=Vn{r(0) -1} + —= Z Til Tk { W (yi,ui, 0) — ?ﬂ(yi,ui,e)}

n

= Vn{r(0) — 1} + {711 D (v i) Vi (i, wi, 0)} V(6 — ) + op(1)

i=1
1 < ~
= \/ﬁ {n Z(Til s rik)w(yi,ui, 0) — 1} + B(G)\/ﬁ(e — 9) + Op(l),
i=1
where B(0) = E{(ri1 - ra) Vi (yi, u;, 0)}. From the theory in Wang et al. (2014), the GMM

estimator 6 has the property that
1 n
V(6 - 0) = ﬁ;mi?wi) + op(1), (5)

where ¢ is an unknown vector function with E{¢(y, )} = 0 and a finite positive definite ma-
trix E{¢(y,x)d(y,x)T}. Then the asymptotic normality of /n{; (5) — 1} with asymptotic

mean 0 follows from the joint asymptotic normality of the following vector,

. (i1 -+ i) Yij (Yi, i, 0) — pj
NG Z (riv- - rie) (i, u;, 0) — 1 (6)
=1
o(yi, x;)

However, the asymptotic variance of \/n{; (5) — pj;} is very complicated, because it involves
not only the asymptotic variances of the three components in (6), but also their asymptotic
covariances, and the form of function ¢ in (5) is complicated (Wang et al., 2014). Thus, we do
not try to obtain an explicit form of the asymptotic variance of ﬁ](g) Instead, we recommend
the bootstrap method for variance estimation or inference. Using the previous arguments, we
can show that the bootstrap analog ﬁ;k (5*) is asymptotically normal and the general bootstrap
theory (Shao and Tu , 1995) ensures that the bootstrap variance estimators are consistent.
Applying the bootstrap effectively avoids the complicated derivation of asymptotic variances,
at the expense of a large amount of computations. In Section 3, the performance of bootstrap

standard error (squared root of variance estimator) is evaluated by simulations.



3 Simulation Results

We carry out a simulation study to investigate the finite sample performance of our pro-
posed ﬁj(g) given by (1) as an estimator of the marginal population mean pu; = E(y;),
j=1,...,k, with 0 estimated by the GMM estimator 6 derived in Section 2.2.

We consider a panel size k = 4 and sample size n = 1,200, reflexing the panel and sample
sizes in the real data AIDS Clinical Trial Group 193A example presented in Section 4. A
univariate and continuous covariate z is considered with logz ~ N(2.9,1). Given z, y;’s are
conditionally independent, logy; ~ N (0.4 + 0.91og z,0.82), logys ~ N(0.6 + 0.81og z,0.82),
logys ~ N(0.840.71og 2,0.8%), and log 4 ~ N(0.9+40.61og z,0.8%). The true marginal means
are p11 = 41.89, pp = 35.16, puz = 29.81, and puy = 23.10. These pu;’s are chosen to match the
estimated values in the real data example considered in Section 4.

The nonresponse propensity is given by (3) with w = 0, «;’s and 3;’s shown in Tables 2-3 for
settings 1-2, respectively. The parameter values o; and 3; are chosen so that the unconditional
nonresponse probability matches the observed proportion in the real data example for every
Jj. The difference in two settings is that all coefficients in front of y;’s in the propensity (3) are
positive in setting 1 so that larger values of y; have a higher probability to be nonresponse,
whereas in setting 2, the coefficients may be positive or negative. The covariate z in the real
data example is the baseline response and is used as nonresponse instrument in the estimation.

To evaluate the performance, we include two other estimators, the naive estimator = the
sample mean of observed values of y; and the sample mean of y; with full data (no nonresponse)
available in the simulation as nonresponse is constructed. The naive estimator is theoretically
biased due to nonignorable nonresponse and is included to see the effect of bias; the full data
sample mean is used as a standard.

Based on 1,000 simulation runs, Tables 2-3 report, for settings 1-2 respectively, simulation
average of estimates of y;, bias, bias in percentage, standard deviation of the estimate, average
of the standard error obtained by bootstrap with size 200, and coverage probability of the
approximate 95% confidence interval with limits = estimate + 1.96(bootstrap standard error).
Results are given for j = 1,2, 3,4 and three estimators, based on the proposed, naive, and full
data methods. In the calculation of the proposed estimator given by (1), the GMM estimator
§j is calculated using the MATLAB or R function fminsearch with initial value 8; = 0. Since

z is continuous, we use (1, z) as the first two components of v; in (4).

10



From the simulation results in Tables 2-3, the performance of proposed estimator (1) can be
summarized as follows. It has negligible bias: the largest biases are 3.1% and 2.4% and the rest
of biases are all smaller than 2%. The coverage probability of the related confidence interval is
close to 95%; the worst cases are in setting 1: 0.932 when j = 1 and 0.934 when j = 2, but even
the full data approach may also have coverage probabilities 0.932 and 0.936. The bootstrap
standard error for the proposed method performs well in general, and is sometimes a little
bit conservative, which results in slightly conservative coverage probability of the confidence
interval.

In setting 1 where larger y; values have higher probability to be missing data, the naive
estimator has a negative bias. Although the bias is around —5% only, it still affects considerably
the coverage probability of the related confidence interval. In setting 2, when smaller y; values
have higher probability to be missing data (j = 2 or 4), the naive estimator has a small positive
bias = 2.3% and 3.7% so that its coverage probability is acceptable. This appears by luck but

cannot support the naive approach of ignoring nonignorable nonresponse.

4 A Real Data Example

For illustration, we apply our proposed estimation method to the AIDS Clinical Trial Group
193A data set, which can be found at https://www.hsph.harvard.edu/fitzmaur/ala/cd4.txt.
Longitudinal responses, the CD4 cell counts, were collected from HIV-AIDS patients with
advanced immune suppression. After removing some patients with abnormal data, we focus
on 1,271 patients with responses in four time intervals, (4,12], (12,20], (20,28], (28,36], denoted
as Y1, Y2, Y3, Y4.

The longitudinal response y = (y1,...,44)” has item nonresponse, as summarized in Table
4. The item nonresponse is due to adverse events, low-grade toxic reactions, the desire to seek
other therapies, death, and some other reasons. Previous experiences from doctors and Cho
et al. (2016) found that a steep decline in the CD4 cell count indicates the disease progression,
and patients with low CD4 cell counts are more likely to miss the scheduled study visits as
compared to patients with normal CD4. Therefore, nonresponse of the CD4 cell count is likely
related to itself and is nonignorable (Cho et al., 2016; Yuan and Yin, 2010).

We apply our proposed method in Section 2 to estimate p; = E(y;), j = 1,...,4, with

11



the always observed z = the baseline CD4 measurement as the instrument described in (A1).
Since z is the baseline CD4 cell count and y is the after-baseline CD4 cell count vector, based
on the reason of nonresponse described previously, it is reasonable to assume that the item
nonresponse of y is unrelated with the baseline z once we conditioned on y, i.e., (A1) holds
with z as an instrument. To apply the proposed method, we assume model (3) with = z,
i.e., there is no other covariate.

The proposed estimates for j = 1, ...,4 are shown in Table 5, together with their bootstrap
standard errors with bootstrap size 200. For comparison, we also include in Table 5 the sample
mean of observed values of y; (naive estimate ignoring nonresponse), the differences between
the proposed and naive estimates, and the bootstrap standard errors for differences.

From Table 5, the proposed estimates show a more serious decline in CD4 cell count over
the time than naive estimates, although naive estimates also indicate the decline. Compared
with 2 times the standard error, the difference between the proposed and naive estimates is

significant at j = 4.
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Table 1. Example of Dy, Dy, D3 when k = 3 and n = 30

(r; is the indicator of whether y; is observed)

Dy D3

D,

entire dataset

1 T2 T3

unit

1 T2 rs

unit

1 T2 T3

unit

Tt Tre T3

unit

11

10

12
14
15
17

12

15
17
18

16
17

22

23

10
11

21

28

12
13

28

28
30

14
15
16
17
18
19
20
21

22
23

24
25
26

27
28
29
30
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Table 2. Simulation results for the estimation of j; in setting 1

(n = 1,200, bootstrap size = 200, simulation runs = 1,000)

% of standard standard coverage

J missing  method  estimate  bias bias %  deviation error prob.
1 30.75 proposed 42.44  0.552 0.013  7.705 7.896 0.932
naive 39.76  -2.129 -0.0561  2.448 2.441 0.784

full data  41.92  0.034 0.001  2.180 2.150 0.936

2 2457 proposed 35.76  0.599 0.017  6.246 6.223 0.934
naive 33.92  -1.241 -0.035 1.836 1.792 0.827

full data  35.21  0.048 0.001  1.636 1.628 0.943

3 46.66 proposed 30.75 0.933 0.031  6.035 5.911 0.956
naive 28.09 -1.720 -0.058  1.582 1.583 0.747

full data  29.91  0.095 0.003  1.236 1.245 0.948

4 39.03 proposed 23.65 0.543 0.024  4.355 4.317 0.956
naive 22.06 -1.040 -0.045 1.079 1.053 0.780

full data  23.06 -0.048 -0.002  0.908 0.861 0.932

mi(y,0;) = {1+ exp(o; + Bjy)}" j=1,...4

ar = —1.2, 87 = (0.1,0.01,0.01, 0.01
= (0.01,0.1,0.01, 0.01
as = —0.5, BT = (0.01,0.01,0.1,0.01
= (0.01,0.01,0.01, 0.1

Qg — —15, ,Bg

Oy = —08, ,BZ

)
)
)
)
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Table 3. Simulation results for the estimation of 11, in setting 2

(n = 1,200, bootstrap size = 200, simulation runs = 1,000)

% of standard standard coverage

J missing  method  estimate  bias bias %  deviation error prob.
1 3047 proposed 42.26 0.375 0.009  6.979 7.176 0.941
naive 39.58 -2.310 -0.055  2.464 2.382 0.769

full data  41.98  0.090 0.002  2.138 2.145 0.943

2 2279 proposed 35.63 0471 0.013  4.891 5.498 0.961
naive 35.96  0.796 0.023  1.916 1.857 0.946

full data  35.18  0.017 0.001  1.682 1.604 0.929

3 48.19 proposed 30.14 0.324 0.011  4.699 5.292 0.960
naive 28.40 -1.413 -0.047  1.656 1.598 0.797

full data  29.87  0.052 0.002 1.264 1.227 0.935

4 40.08 proposed 23.53 0426 0.018  3.734 3.989 0.951
naive 22.96  0.854 0.037  1.154 1.150 0.926

full data  23.12  0.019 0.001 0.879 0.862 0.946

mi(y,0;) = {1 +exp(a; + Bfy)} 1, j=1,...4
a; = —1.3, BT = (0.1,0.02,0.02,0.02)
ap = —1.1, BT = (0.02, —0.1,0.02,0.02)

(
as = —0.3, BT = (—0.02,0.02,0.1, —0.02)
ay = —0.2, BT = (0.02,0.02, —0.02, —0.1)
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Table 4. Nonresponse pattern of y in the example

Nonresponse pattern ~ Number of
Ty To T3 T4 st observations

0 0 0 0 O 121
1 0 0 0 1 82
0 1 0 0 1 o7
0 0 1 0 1 11
0o 0 0 1 1 7
11 0 0 2 69
1 0 1 0 2 37
1 0 0 1 2 11
o 1 1 0 2 41
0O 1 0 1 2 119
o 0 1 1 2 2
11 1 0 3 94
11 0 1 3 118
1 0 1 1 3 34
o 1 1 1 3 31
11 1 1 4 437

Total 1271

T3:r1—|—r2—|—r3+r4

18



Table 5. Estimates and standard errors of y;’s in the example

% of standard

7 missing method estimate error
1 30.61 proposed 38.09 2.670
naive 35.70 1.416

differencet 2.395 2.158
2 24.00 proposed 32.21 2.132

naive 34.68 1.490
difference  —2.468 1.779
3 45.95  proposed 27.44 2.653
naive 27.68 1.366
difference —0.236  2.540
4 40.28  proposed 24.42 1.687
naive 28.51 1.435
difference  —4.085 1.667

t difference = proposed — naive
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