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Ecography The Landsat satellites provide decades of near-global surface reflectance measurements
2023: 06768 that are increasingly used to assess interannual changes in terrestrial ecosystem func-
doi: 10.1111/ecoe.06768 tion. These assessments often rely on spectral indices related to vegetation greenness

T & and productivity (e.g. Normalized Difference Vegetation Index, NDVI). Nevertheless,

Subject Editor: multiple factors impede multi-decadal assessments of spectral indices using Landsat
Michael Krabbe Borregaard satellite data, including ease of data access and cleaning, as well as lingering issues with
Editor-in-Chief: Miguel Aratjo cross-sensor calibration and challenges with irregular timing of cloud-free acquisitions.
Accepted 24 April 2023 To help address these problems, we developed the ‘LandsatTS” package for R. This

software package facilitates sample-based time series analysis of surface reflectance and
spectral indices derived from Landsat sensors. The package includes functions that
enable the extraction of the full Landsat 5, 7, and 8 records from Collection 2 for point
sample locations or small study regions using Google Earth Engine accessed directly
from R. Moreover, the package includes functions for 1) rigorous data cleaning, 2)
cross-sensor calibration, 3) phenological modeling, and 4) time series analysis. For
an example application, we show how ‘LandsatTS’ can be used to assess changes in
annual maximum vegetation greenness from 2000 to 2022 across the Noatak National
Preserve in northern Alaska, USA. Overall, this software provides a suite of functions
to enable broader use of Landsat satellite data for assessing and monitoring terrestrial
ecosystem function during recent decades across local to global geographic extents.

Keywords: cross-sensor calibration, Google Earth Engine, greening and browning,
Landsat, NDVI, spectral index

Background

Satellite remote sensing is crucial for assessing and monitoring how Earths terres-
trial ecosystems have changed during recent decades (National Academies of Sciences
2018). The Landsat satellites are particularly valuable in this regard because they are
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the longest continuously running satellite program and were
designed for terrestrial ecosystem monitoring at moderate spa-
tial resolution (Wulder et al. 2019). The first Landsat satellite
(Landsat 1) was launched in 1972 as a partnership between
NASA and the US Geological Survey (USGS) and since that
time a series of additional satellites have been launched, with
the most recent being Landsat 9 in 2021. The Landsat satel-
lites carry multispectral sensors that provide surface reflec-
tance measurements used for a wide range scientific and
land management applications (Wulder et al. 2019). These
include global monitoring of changes in forest canopy cover
(Hansen et al. 2013, Sexton et al. 2013), land cover and use
(Potapov et al. 2022), and surface water extent (Pekel et al.
2016), as well as regional- to biome-scale assessments of how
disturbance, land-use, and climate change are impacting ter-
restrial ecosystems (Wulder et al. 2004, Powell et al. 2010,
Ju and Masek 2016, Wang and Friedl 2019). Hence, the
Landsat program has become a cornerstone of Earth surface
monitoring. Yet there are challenges that hinder use of these
data by ecologists, land managers, and other non-remote
sensing specialists.

Here we present the ‘LandsatTS’ (i.e., Landsat Time Series)
software package for R (www.r-project.org) that enables
users to extract, process, and analyze time series of Landsat
surface reflectance measurements for sample locations any-
where on Earth. ‘LandsatTS” enables extraction of Landsat
5, 7, and 8 surface reflectance measurements from the full
Landsat Collection 2 dataset on Google Earth Engine (GEE;
Gorelick et al. 2017). Furthermore, ‘LandsatTS’ includes
functions that facilitate 1) data cleaning, 2) cross-sensor cali-
bration, 3) phenological modeling, and 4) time series anal-
ysis of vegetation greenness (Fig. 1, Table 1). This software
grew out of research projects focused on vegetation dynamics
across northern high-latitude ecosystems (Berner et al. 2020,
Berner and Goetz 2022) and is implemented within the free,
open-source, and widely used R statistical computing envi-
ronment (R Core Team 2021).

It has become easier to access and process Landsat data
since the archive was made publicly available in 2008
(Wulder et al. 2012) and a copy of the archive subsequently
hosted on GEE (Gorelick et al. 2017). The GEE cloud-
computing platform enables users to access and process
Landsat data using JavaScript and Python application pro-
gram interfaces (APIs), as well as with R through the ‘rgee’
package (www.r-project.org, Aybar et al. 2020). R is very
popular among ecologists (Lai et al. 2019), yet other exist-
ing R packages (www.r-project.org) only provide tools for
processing individual Landsat scenes. For instance, ‘landsat’
includes functions for radiometric and topographic cor-
rection of Landsat scenes (Goslee 2011), while ‘landsat8’
includes functions for computing top of atmosphere reflec-
tance, radiance, and/or brightness temperature on Landsat
scenes (dos Santos 2017). Thus, the ‘rgee’ package makes it
easier for ecologists to use the GEE platform and work with
Landsat data. Nevertheless, it remains non-trivial to not
only extract Landsat time series data using ‘rgee’, but also
to thoroughly clean the extracted data to ensure that only
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high-quality measurements are used in analyses. ‘LandsacTS’
therefore provides new tools for sample-based extraction
of full Landsat data records using ‘rgee’ to access the GEE.
Furthermore, ‘LandsatTS’ includes tools to rigorously clean
Landsat data using both pixel-level CFmask flags (e.g. cloud,
water; Zhu et al. 2015) and scene-level criteria (e.g. cloud
cover, solar zenith angle). Consequently, ‘LandsatTS’ helps
further broaden the community of researchers who can uti-
lize Landsat data for robust spatiotemporal analyses of ter-
restrial ecosystem dynamics.

Landsat time series analyses that use measurements from
multiple sensors are hindered by systematic biases in spectral
bands and indices among the Landsat 5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+),
and Landsat 8 Operational Land Imager (OLI) sensors (Ju
and Masek 2016, Roy et al. 2016, Berner et al. 2020, Berner
and Goetz 2022). If unaccounted for, these biases can intro-
duce pronounced artificial trends into combined time series,
such as spurious increases over time in spectral indices of
vegetation greenness including the widely used Normalized
Difference Vegetation Index (NDVI) (Sulla-Menashe et al.
2017). Prior approaches for cross-sensor calibration focused
on linear corrections for individual spectral bands and select
spectral indices (e.g. NDVI) using regional data (e.g. conti-
nental USA) from Landsat Collection 1 (Ju and Masek 2016,
Roy et al. 2016). While valuable, these published cross-sensor
calibration models do not account for potential non-linear-
ities, may not be suitable for other regions, and may not
be appropriate for the newer Landsat Collection 2 dataset.
Therefore, ‘LandsatTS’ includes functions to cross-calibrate
spectral bands and indices among Landsat 5, 7, and 8 using
either random forest machine learning or polynomial regres-
sion models. These models can be fit using the user’s dataset.
However, if the user’s dataset is too small to fit these models,
then, if appropriate, the user can choose to fit models using
pre-processed and staged Landsat data that were sampled
from across the Arctic tundra and boreal forest biomes. See
Supporting information for polynomial regression model
coefficients and evaluation metrics for this domain for each
spectral band and select indices (e.g. NDVI, EVI2, NBR).
Flexible implementation of cross-sensor calibration in the
‘LandsatTS” workflow enables the user to generate high-qual-
ity time series that are free from sensor-specific biases that can
otherwise induce spurious trends.

Vegetation phenology controls ecosystem processes (e.g.
photosynthesis) and is often assessed using spectral indices
(e.g. NDVI) derived from satellite measurements (Helman
2018, Zeng et al. 2020). Nevertheless, efforts to assess vegeta-
tion phenology using the Landsat satellites are complicated
by multiple factors that include 1) irregular timing of clear-
sky acquisitions within a growing season and 2) changes in
the annual number of clear-sky acquisitions across years as
new satellites were launched. These challenges are especially
acute in regions with short, cloudy growing seasons such as
the Arctic, where the median number of clear-sky growing
season measurements increased from 2 per year in 1995 to
7 per year in 2015 (Berner et al. 2020). Annual maximum
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Figure 1. Schematic illustrating functions and typical workflow of the ‘LandsatTS’ package. Each function is briefly described in Table 1,
with further details provided in the Supporting information and package documentation. ‘LandsatTS” has primary been used for assess-
ments of interannual variability and trends in vegetation greenness. However, ‘LandsatTS’ facilitates other Landsat time series analyses by
providing tools for general data extraction and processing. GEE, Google Earth Engine.

vegetation greenness is an important metric of vegeta-
tion phenology related to productivity (Berner et al. 2020,
Zengetal. 2020, Boyd et al. 2021), yet this metric is sensitive
to the timing and number of measurements made in a grow-
ing season. Consequently, simple calculations of this metric
tend to be artificially low early in the Landsat record but less
so during later years when more measurements are available,

which can introduce a spurious positive trend into a time
series (Berner et al. 2020). To address this issue, ‘LandsatTS’
includes tools to estimate annual maximum vegetation green-
ness based on site-specific phenological modeling that itera-
tively fits cubic splines to vegetation greenness time series.
Users interested in other aspects of vegetation phenology (e.g.
timing of spring onset or fall senescence) could extract and
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Table 1. Function names and descriptions. These are listed in the order typically used. A more detailed description of each function is pro-
vided in the Supporting information and package documentation. GEE, Google Earth Engine.

Step Function

Brief Description

Data extraction  [sat_get_pixel_centers

polygon.
Isat_export_ts

(Optional) Retrieve point coordinates of all Landsat 8 pixel centers that fall within a

Export full Landsat surface reflectance time series for a set of point coordinates

using GEE accessed from R.

Data processing  Isat_format_data

Prepare data exported from GEE, including parsing satellite names and renaming

and scaling bands.

Isat_clean_data

Filter out measurements based on presence of clouds, water, shadows, oblique

view angles, and other criteria.

[sat_summarize_data

(Optional) Summarize data availability at each site, such as total number and years

of observations.

Isat_neighborhood_mean

(Optional) For buffered sites, compute band-wise mean surface reflectance across

grid cells within the buffer.

Isat_calc_spectral_index

Calculate a variety of widely used spectral indices, such as the Normalized

Difference Vegetation Index (NDVI).

Isat_calibrate_rf

Cross-calibrate bands or spectral indices from Landsat 5/8 to match Landsat 7 using

Random Forest models.

Isat_calibrate_poly

Cross-calibrate bands or spectral indices from Landsat 5/8 to match Landsat 7 using

polynomial regression.

Isat_fit_phenological_curves

Characterize seasonal land surface phenology at each site by iteratively fitting

flexible cubic splines.
Isat_summarize_growing_seasons  Estimate various phenological metrics from fitted cubic splines, such as annual
maximum vegetation greenness.

Isat_evaluate_phenological_max

(Optional) Evaluate estimates of annual maximum vegetation greenness with

measurement availability.

Data analysis [sat_calc_trend

Calculate temporal trends using non-parametric Mann-Kendall trend tests and

Theil-Sen slope indicators.

Isat_plot_trend_hist

Plots a histogram of trends across sample sites.

process Landsat data using ‘LandsatTS’, but then capital-
ize on tools provided by other R packages (www.r-project.
org), such as the new ‘phenofit’ package that provides state-
of-the-art tools for fitting phenological models (Kong et al.
2022). Alternatively, users who are interested in phenological
modeling with other data sources (e.g. phenocams, MODIS)
could utilize functions from ‘LandsatTS’. More broadly,
while ‘LandsatTS’ provides tools focused on generating high-
quality vegetation greenness times series, it also enables users
to undertake other analyses that rely on cleaned and cross-
calibrated Landsat data.

LandsatTS’ includes an integrated suite of tools that
were originally developed to assess long-term changes in
vegetation greenness within the rapidly warming Arctic
tundra and boreal forest biomes (Berner et al. 2020, Berner
and Goetz 2022). This software implements a sample-
based approach that we found is well suited for assessing
vegetation dynamics and evaluating ecological hypoth-
eses in these cold northern biomes, while substantially
reducing computational burden compared with wall-
to-wall analyses. The sample-based approach is condu-
cive to rigorous propagation of uncertainty using Monte
Carlo simulations (Berner et al. 2020, Berner and Goetz
2022), which is important for improving confidence in
remote sensing analyses but seldom carried out because
of computational constraints (Myers-Smith et al. 2020).
Furthermore, the sample-based approach has helped vali-
date and interpret vegetation dynamics inferred from
spectral indices by enabling comparisons between satellite
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and field measurements across widely distributed site net-
works (Boyd et al. 2019, Berner et al. 2020, Boyd et al.
2021, Walker et al. 2021). These tools have also been
used to assess high-laticude vegetation responses to insect
outbreaks (Boyd et al. 2019, Boyd et al. 2021), wild-
fires (Gaglioti et al. 2021), and permafrost degradation
(Verdonen et al. 2020), as well as for syntheses focused on
high-latitude disturbance regimes (Foster et al. 2022) and
Arctic shrubification (Mekonnen et al. 2021). Among other
applications, these tools could further be used to comple-
ment field-based ecosystems monitoring in protected areas,
evaluate ecosystem impacts of extreme weather events (e.g.
droughts), and improve local to global mapping efforts by
enabling users to develop regression models for cross-sen-
sor calibration. In summary, ‘LandsatTS’ enables ecologists
and other researchers to extract and process Landsat time
series that can then be used to analyze vegetation phenol-
ogy or for other user-defined applications.

Here, we illustrate a typical workflow (Fig. 1) and briefly
describe each function (Table 1), as well as provide an exam-
ple application focused on vegetation dynamics across the
Noatak National Preserve, USA, and instructions for pack-
age installation. Detailed descriptions of each function are
included in the Supporting information and package user
manual. Additional examples and information are provided
in a vignette that is included as Supporting information
and accessible from within R, as well as on the ‘LandsatTS’
GitHub  repository  (hteps://github.com/logan-berner/
LandsatTS).
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Example application: vegetation greenness
trends in the Noatak National Preserve, USA

Here we provide an example analysis of interannual changes
in vegetation greenness from 2000 to 2022 within the
Noatak National Preserve in northern Alaska, USA (Fig. 2).
The Noatak National Preserve is a vast wilderness of moun-
tainous Arctic and alpine tundra that encompasses the larg-
est undisturbed watershed in North America. The preserve is
about 2.6 million hectares of roadless lands that were desig-
nated in 1980 to maintain ecological integrity, protect habi-
tat and archeological resources, and provide opportunities for
scientific research (US National Park Service 2023). Recent
ecological research found climate warming substantially
increased growth rates of white spruce Picea glauca and led to
rapid expansion of trees and tall shrubs into tundra over the
past half century in parts of the preserve (Suarez et al. 1999,
Terskaia et al. 2020, Dial et al. 2022). The impacts of cli-
mate change are increasingly evident in the Noatak National
Preserve and underscore the importance of sustained and
cost-effective ecological monitoring and assessment.

Annual maximum vegetation greenness is related to tun-
dra aboveground biomass and productivity, making it an
important ecological metric that can be monitored using

satellite remote sensing (Jia et al. 2003, Raynolds et al. 2012,
Berner et al. 2018, Bhatt et al. 2021). We therefore demon-
strate how multidecadal changes in annual maximum veg-
etation greenness can be readily assessed across the preserve
using Landsat satellite data. In this section, we guide the
reader through the analysis code with example output fig-
ures and tables that are generated by the ‘LandsatTS’ func-
tions. Please note that Code Box 1 requires access to GEE
for exporting Landsat data; however, Code Boxes 2—4 can
be run without access to GEE because they rely on a dataset
provided with the package.

Part 1: Export Landsat time series from Google Earth
Engine

To start, we create a random sample of points within the
Noatak National Preserve and then export Landsat time
series for each sample point using GEE (Code Box 1). To
facilitate our example, we include the preserve boundary as
a simple feature polygon dataset (‘noatak.sf’) in ‘LandsatTS’.
Users could alternatively read in their own shapefile using
sf-:st_read() or create a collection of spatial points (e.g. field
sites) using sf:sz_sf{) (Pebesma 2018). We load the preserve
boundary dataset, create a simple random sample of 7 points

Figure 2. Screenshot of a leaflet interactive map showing the Noatak National Preserve boundary in northern Alaska, USA, and 100 random

sample points within the preserve. Landsat time series data were extracted for each of these sample points. Base map from ESRI World

Imagery (ESRI 2022).
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within the boundary using the sf::sz_sample function, give
each sample a unique identifier, and then create an interac-
tive map showing preserve and sample point locations using
‘leaflec’ (Fig. 2) (Cheng et al. 2022). We then initialize GEE
and submit a task to GEE that for each sample point exports
all Landsat 5, 7, and 8 measurements made between day of
year 152 (beginning of June) and 273 (end of September)
from 1985 to 2022. For expediency, this example exports
data for three random sample points, which took ~ 11 min
and yielded ~ 800 B of data written to a folder called ‘earth_
engine’ on the user’s Google Drive. Exporting four decades
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of summer Landsat data for 100 sample points took ~ 6 h
and yielded ~ 28 MB of data, while exporting data for 1000
sample points took ~ 15 h with four tasks running in paral-
lel and yielded ~ 280 MB of data. To facilitate subsequent
parts of this example, we include Landsat data for 100 sample
points as a dataset (‘noatak.dt’) in ‘LandsatTS’. Data export
progress can be monitored using the GEE task manager in
the web browser (https://code.earthengine.google.com/tasks)
or with the R console using the ee_monitoring() function pro-
vided by ‘rgee’. The CSV file(s) containing the raw exports
need to be copied from the user’s Google Drive to the local
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https://code.earthengine.google.com/tasks)

machine that will carry out the subsequent processing using
‘LandsatTS’. The files can be copied manually or using the
rgee::ee_drive_to_local() function. Once the records are avail-
able locally, they need to be cleaned and processed into veg-
etation index time series as detailed in the next section.

Part 2: Format, clean, and summarize Landsat data
in preparation for analysis

We load the Landsat data into R, format and clean the data,
and then examine data availability. Here, we provide Landsat
data for the 100 sample points as a dataset in ‘LandsatTS’;
however, the dataset alternatively could be read into R as a
data.table using the fread() function from the ‘data.table’
package (Dowle and Srinivasan 2021). Once loaded into R,
we formart the dataset for analysis using laz_format_dara(),
which formats column names and scales the band values,
among other necessary formatting. We then clean the dataset
using lsat_clean_data() to filter out clouds, snow, and water,
as well as radiometric and geometric errors. For these field
sites, lsat_clean_data() removed 78 625 of 99 600 observations
(78.94%), including one sample point located in water. We
then check the availability of clear-sky Landsat observations for
the remaining 99 sample points using laz_summarize_data().
On average (+ 1 SD), each sample point had 212 + 48 clear-
sky observations made between 1985 and 2022. The annual
number of observations is typically small before the year 2000,
as highlighted by the figure generated by the function (Fig. 3).

Part 3: Generate cross-calibrated time series of
annual maximum vegetation greenness

To generate time series of annual maximum vegetation
g ; g
greenness for each sample point, we 1) compute NDVI, 2)

Median count with 2.5th and 97.5th percentiles

2

)
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Figure 3. Annual availability of quality screened summer Landsat
observations summarized across sample points in the Noatak
National Preserve as returned by the function lat_summarize_
data(). Summaries are based on observations acquired between day
of year 152 (beginning of June) and 273 (end of September). Note
the limited availability of observations before the year 2000. Lines
with points denote median counts while shaded bands encompass
the 2.5th to 97.5th percentiles of counts among sample points.

cross-calibrate NDVI among Landsat sensors, and then 3)
estimate annual maximum NDVI (NDVImax) using phe-
nological modeling. First, we calculate NDVI using fsar_
cale_spectral_index(), which supports calculating a variety of
commonly used spectral indices. There are systematic differ-
ences in NDVI among Landsat sensors, so next we calibrate
NDVI from Landsat 5 TM and Landsat 8 OLI to match
Landsat 7 ETM+, which has measurements that temporally
overlap with the other two sensors. We cross-calibrate NDVI
among sensors using lsar_calibrate_poly() to fit and apply
polynomial regression models. As the number of field sites

# Load required R packages
require (LandsatTS)

require (data.table)
require (tidyverse)

require (sf)

require (leaflet)

require (mapview)

data (noatak.dt)
# Format the exported data

Code Box 2. Format, clean, and summarize Landsat data in preparation for analysis

# Load Landsat data for Noatak sites, or read in file using data.table::fread() .

noatak.dt <- lsat format data(noatak.dt)

# Clean the data by filtering out clouds,
noatak.dt <- lsat clean data (noatak.dt)

snow, water, etc.

# Summarize the availability of Landsat data for each pixel
lsat summarize data(noatak.dt)

(Fig. 3)

# Continue to Code Box 3...
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Figure 4. Relationships between Landsat 7 Normalized Difference Vegetation Index (NDVI) and both (a) Landsat 5 NDVI and (b) Landsat 8
NDVT using (left panels) original data and (right panels) data that were calibrated using polynomial regression models. Each point is a sample
location from the Arctic—Boreal domain with temporally overlapping measurements from pairs of Landsat sensors. Orange diagonal lines
depict 1:1 relationships. Model performance metrics are provided in Table 2. Cross-calibration substantially reduces biases between sensors.

in this dataset is rather small, we use a pre-processed dataset
of Landsat observations that were randomly sampled from
across northern high-latitudes ecosystems and are included
for this purpose with ‘LandsatTS’. The function gener-
ates and returns a series of graphs (Fig. 4) and tabular data
(Table 2) that help with evaluating model performance and
can optionally be written to a user-specified directory. As
desired, calibration visually (Fig. 4) and statistically (Table 2)
reduced the bias between Landsat 7 NDVI and Landsat 5
and 8 NDVI.

As a step towards estimating annual NDVI__, we fit phe-
nological models to the calibrated NDVI time series using
lsat_fit_phenological_curves(). The function automatically
returns a figure with Landsat observations and fitted phe-
nological curves for nine random sample locations in the
dataset (Fig. 5). Each phenological curve characterizes the

seasonal progression of NDVI using observations pooled
over a multi-year period (here a 7-year moving window) and
should be smooth and hump-shaped. Beware of phenologi-
cal curves with long straight lines that could suggest inad-
equate seasonal distribution of data used when fitting the
curves. Phenological models were not fit for three sites that
were minimally vegetated (NDVI < 0.15) because it is chal-
lenging to extract a meaningful vegetation phenology signal
under these conditions. After fitting phenological models for
94 field sites, we then generated growing season summary
statistics, including estimates of NDVI,_, using lat_summa-
rize_growing_seasons(). The lsat_evaluate_phenological max()
can be used to output a figure that allows for visually assess-
ing the performance of modeled NDVI__ (Fig. 6). In the
case of the Noatak example dataset, modeled estimates of
NDVI  tend to be biased slightly low (- 1%) when only

max

Table 2. Summary of original biases, performance of polynomial regression models for cross-sensor calibration, and post-calibration biases in
Normalized Difference Vegetation Index (NDVI) between Landsat 7 ETM+ and either Landsat 5 TM or Landsat 8 OLI. Each model was trained
using 75% of available data selected at random and then cross-validated using the remaining 25% of data. RMSE, root mean squared error.

Number of sites Original data Cross-validated error metrics
Satellite sensor  Train Eval. RMSE  Median bias  Median % bias r? RMSE Median bias ~ Median % bias
Landsat 5 TM 5237 1746 0.052 -0.04 —6.1 0.974 0.032 < 0.01 < 0.1
Landsat 8 OLI 5927 1976 0.050 0.03 4.9 0.965 0.035 < 0.01 < 0.1
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Figure 5. Seasonal progression of Landsat Normalized Difference Vegetation Index (NDVI) and phenological curves for nine random
sample points in the Noatak National Preserve. Each dot is an observation that is colored by the year of acquisition ranging between 1985
and 2022. Each line represents a phenological curve that was fit to observations pooled over a 7-year window centered on the focal year as
indicated by the color of the line. Color coding helps illustrate how individual curves are fit to observations. These figures can visually
highlight long-term changes in phenology and can provide a quick visual assessment of how well curves are being fit to observations, espe-

cially when the function is run using the parameter test.run =TRUE.

one or two observations are available from a growing season
(Fig. 6), yet there were rarely such few observations during
the period from 2000 to 2022 (Fig. 3). The final step fol-
lowing the cross-calibration and phenological modeling is the
time series analysis.

Part 4: Analyze vegetation greenness time series

Finally, we evaluate the interannual trend in NDVI_ from
2000 to 2022 for each sample point. We calculate temporal
trends using the lar_cale_rrend() function that implements
and summarizes non-parametric trend assessments (Table 3).
Note how we use the ‘yrs’” argument to restrict the time series
analysis to the years between 2000 and 2022 to avoid using
the low number of observations in the record prior to the

turn of the millennium. We then create a histogram of recent

NDVI,  trends using bat_plot_trend_hist() (Fig. 7) and also
create an interactive map showing the trend at each sample
point (Fig. 8). These figures indicate extensive greening across

the study area in recent decades.

Results and interpretation of the example analysis

Our analysis showed annual maximum vegetation greenness
(i.e. NDVI ) increased 5.5 + 10.8% (mean + 1 SD) from
2000 to 2022 across sample points in the Noatak National
Preserve (Fig. 7). During these years, vegetation green-
ness increased by at least 10% at 20% of sample points.
Vegetation greenness systematically (x=0.10) increased at
32% of sample points, decreased at 1% of sample points,
and exhibited no systematic change at the remaining 67% of
sample points. Greening was especially prevalent in western
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Figure 6. Raw estimates of annual maximum Normalized Difference
Vegetation Index (NDVI) (NDVI ) are biased low when only a
few Landsat observations are available from a given growing season,
whereas phenologically modeled estimates of NDVI,  are mini-
mally impacted by the availability of observations. The figure sum-
marizes how raw and modeled estimates of NDVI _ differ from
observed NDVI _ based on number of observations, as determined

using lsat_evaluate_phenological_max().

parts of the preserve, as well as along in the northern foothills
of the Brooks Range (Fig. 8).

These remotely sensed changes suggest tundra produc-
tivity and biomass increased in recent decades across large
parts of the Noatak National Preserve. These changes are
consistent with observed warming-induced expansion
of trees and tall shrubs in the preserve (Tape et al. 2006,
Terskaia et al. 2020, Dial et al. 2022), as well as with rising
summer temperatures increasing the productivity of exist-
ing vegetation in this cold tundra environment (Suarez et al.
1999, Berner et al. 2020, Dial et al. 2022). This preserve
is also one of the most fire-prone regions in the Arctic and
observed greening trends could partially be related to his-
torical fires causing near-surface permafrost thaw, nutrient
release, and subsequent shrub proliferation (Gaglioti et al.
2021). Greening in the preserve generally mirrors changes

that have been observed more broadly across the Arctic
tundra biome, though greening was slightly more preva-
lent in the preserve than in the broader Arctic (32% ver-
sus 27% of sample points, respectively) (Berner et al. 2020,
Mekonnen et al. 2021).

This example analysis was based on Landsat data from
100 random sample points, yet nearly identical results were
obtained when the analysis was performed using 1000 sam-
ple points. Further insight into recent ecological changes
could be garnered using a higher sample density with samples
stratified by land cover type, ecological land unit, manage-
ment unit, or other factors (Gaglioti et al. 2021, Berner and
Goetz 2022). Nevertheless, Landsat data from even a rela-
tively small random sample (n=100) enabled robust infer-
ence about recent ecological changes that occurred over the
past two decades within one of the most remote protected
areas in the USA.

Package installation

The R package ‘LandsatTS’ is publicly available through a
GitHub code repository. Users will need to have installed the
R software environment on their computer. The ‘LandsatTS’
package is operating system agnostic and can be installed
from within R using the install_github() function from the
‘devtools’ package:

devtools::install github("logan-ber-
ner/LandsatTs")

If the user would like to access the vignette from within
R, then include the argument build_vignettes= TRUE when
installing the package. Installation will compile the package
from source code on the user’s computer, as well as acquire and
configure external package dependencies (Table 4). However,
to use the data extraction and preparation functions, users
will need an account on GEE, and to have installed and
configured the ‘rgee’ package to access GEE from R. Please
see the GEE (https://earthengine.google.com/) and ‘rgee’

Table 3. Abridged summary of annual maximum Normalized Difference Vegetation Index (NDVI__) trends from 2000 to 2022 for each
sample point (Sample ID) as generated using the function /sat_calc_trend(). Trends were assessed for each sample point by removing tem-
poral autocorrelation and then applying a Mann—Kendall trend test (Tau statistic and P-value provided). Slopes were calculated using the

Theil-Sen slope estimators.

Sample ID Latitude Longitude N Slope Intercept Tau P-value  Total change Total change (%)
S_1 67.70765 —157.404 22 0.00109 0.5918 0.181 0.2639 0.025 4.2
S_10 68.23443 -158.416 23 0.00127 0.6144 0.091 0.5728 0.029 4.7
S_11 67.8104 -157.097 21 0.0017 0.6366 0.105 0.5376 0.039 6.1
S_12 67.81419 -160.017 23 0.00155 0.6943 0.108 0.4986 0.036 5.2
S_13 68.12915 -161.226 23 0.00209 0.5268 0.541 < 0.001 0.048 9.1
S_14 68.26632 -157.32 23 0.00067 0.2369 0.403 0.0095 0.015 6.3
S_15 67.87087 -156.911 22 0.00073 0.6307 0.01 0.9759 0.017 2.7
S_16 68.18229 -156.824 23 0.00048 0.6445 0.065 0.693 0.011 1.7
S_17 67.64494 —158.002 23 0.00314 0.6726 0.541 < 0.001 0.072 10.7
S_18 67.94227 -161.809 23 —0.00086 0.7419 -0.152 0.3377 -0.020 -2.7
S_19 67.76848 —162.447 23 0.00623 0.5918 0.784 < 0.001 0.025 4.2

Page 11 of 15

9sudo1T suowo)) dAnear) aqesrjdde oy £q pauroAoS a1 sa[dNIR YO (SN JO SI[NI 10J A1RIqIT dUIUQ AJ[IA\ UO (SUONIPUOD-PUB-SULIS}/WI0D" AO[IM " ATRIqI[uT[uo//:sdNY) suonipuo)) pue swa ], 3y 39S "[£207/90/02] uo Areiqi aurjuQ A[IM 89,90 5099/1111°(01/10p/wod Aoim Areiqrourjuo//:sdiy woiy papeofumod ‘0 £8500091


https://earthengine.google.com/

[} ©
L '

Number of sample sites
w

0. I
-20 -10 0 10 20
Relative change in Landsat NDVImax from 2000 to 2022 (%)

Figure 7. Histogram of relative change in Landsat Normalized
Difference Vegetation Index (NDVI) NDVI, _ from 2000 to 2022
among sample points across the Noatak National Preserve. Relative
changes in percent are calculated based on the Theil-Sen slope and

intercept estimates (Table 3).

(hteps://r-spatial.github.io/rgee/) websites for details on sign-
ing up for an account and configuring ‘rgee’, respectively.

Conclusions

The ‘LandsatTS’ package for R facilitates extracting and
processing Landsat surface reflectance time series, as well as
generating and analyzing metrics of vegetation greenness and
other spectral indices. We demonstrated the functionality
of this software by analyzing changes in annual maximum
vegetation greenness from 2000 to 2022 across the Noatak
National Preserve in northern Alaska, USA. However, we
would like to highlight that these tools are also well suited
for sample-based analyses of vegetation dynamics across geo-
graphic regions ranging from individual field sites to entire
terrestrial biomes (Berner et al. 2020, Berner and Goetz
2022). To date, ‘LandsatTS’ has been used for ecological
studies focused on the Arctic tundra and boreal forest biomes,
but many of the functions could be used for studies focused
on lower latitude ecosystems, especially ecosystems without a
mult-modal growing season. Overall, this software provides
a suite of functions to enable broader use of Landsat satellite

NDVimax trend

B greening
no_trend

¥ browning

Leaflet| Tiles @ Esri— Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP. UPR-EGP, and the GIS User Community

Figure 8. Screenshot of a leaflet interactive map showing the trends in Normalized Difference Vegetation Index (NDVI) NDVImax from
2000 to 2022 for sample points in the Noatak National Preserve located in northern Alaska, USA. The symbol for each sample point is
colored based on a combination of NDVImax trend direction and significance (x=0.10), and then sized based on the magnitude of relative
change. For leaflet code simplicity, symbol size varies even for sample points without a significantly significant trend. Base map from ESRI

World Imagery (ESRI 2022).
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Table 4. Package dependencies required by ‘LandsatTS’, including
the package version tested.

Package name Version Citation
‘crayon’ 1.4.2 Csardi (2021)

‘broom’ 1.0.4 Robinson et al. (2023)
‘data.table’ 1.14.2 Dowle and Srinivasan (2021)
‘dplyr’ 1.0.7 Wickham et al. (2021)
‘ggplot2’ 3.3.5 Wickham (2016)

‘ggpubr’ 0.4.0 Kassambara (2020)

‘magrittr’ 2.0.1 Bache and Wickham (2020)
‘mapview’ 2.10.0 Appelhans et al. (2021)
‘purrr’ 0.3.4 Henry and Wickham (2020)
‘R.utils’ 2.11.0 Bengtsson (2021)

‘ranger’ 0.13.1 Wright and Ziegler (2017)
‘rgee’ 1.1.5 Aybar et al. (2020)

‘sf’ 1.0-4 Pebesma (2018)

‘stats’ 4.1.1 www.r-project.org

‘stringr’ 1.4.0 Wickham (2019)

‘tidyr’ 1.1.4 Wickham (2021)

‘700’ 1.8.9 Zeileis and Grothendieck (2005)
‘zyp’ 0.10-1.1  Bronaugh and Werner (2019)

darta for assessing and monitoring Earth’s land surface over

the past four decades in a sample-based framework suitable

for local to global geographic extents.

To cite ‘LandsatTS’ or acknowledge its use, cite this
Software note as follows, substituting the version of the appli-
cation that you used for ‘ver. 1.0’

Berner, L. T., Assmann, J. J., Normand, S. and Goetz, S. J. 2023.
‘LandsatTS’: an R package to facilitate retrieval, cleaning, cross-
calibration, and phenological modeling of Landsat time series
data. — Ecography 2023: ¢06768 (ver. 1.0).
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