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ABSTRACT
We investigate the spatial correlations of microscopic stresses in soft particulate gels using 2D and 3D numerical simulations. We use a recently
developed theoretical framework predicting the analytical form of stress–stress correlations in amorphous assemblies of athermal grains
that acquire rigidity under an external load. These correlations exhibit a pinch-point singularity in Fourier space. This leads to long-range
correlations and strong anisotropy in real space, which are at the origin of force-chains in granular solids. Our analysis of the model particulate
gels at low particle volume fractions demonstrates that stress–stress correlations in these soft materials have characteristics very similar to
those in granular solids and can be used to identify force chains. We show that the stress–stress correlations can distinguish floppy from rigid
gel networks and that the intensity patterns reflect changes in shear moduli and network topology, due to the emergence of rigid structures
during solidification.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131473

I. INTRODUCTION

Soft particulate gels consist of particulate matter (polymers, col-
loids, proteins, etc.) aggregated in a solid matrix, which is embedded
in a fluid and typically sparse and porous.1 Gels of this type are found
in the tissues of the body, food, drugs, personal care products, and
even construction materials, such as the cement used in concrete.2,3

Their structures can be very soft and re-configurable, and their stress
response is determined by a complex interplay between molecu-
lar cohesion or surface interactions, microstructural reorganization,
and external driving. As a consequence, understanding, predict-
ing, and designing the mechanics and rheology of these materials
remains very challenging.

While particulate gels can be extremely soft because of the over-
all low solid content, the strength of the interactions that drive the
aggregation of the colloidal units into the gel network must be large
enough, with respect to kBT, to overcome thermal fluctuations and
stabilize the gel structural elements and their connections.4,5 This
implies that the elasticity is largely enthalpic in nature in these gels,

contrarily to polymer networks, and that the interaction strength,
together with the total volume fraction of the solid content, controls
elastic moduli, viscoelastic spectra, and nonlinear response. Remark-
ably, the interaction strength alone does not allow one to predict the
gel properties. The morphology of the gel network, the structural
elements, and their connectivity may change a lot due to different
kinetics at play during the gel self-assembly, leading to huge varia-
tions of the mechanical response. This is sometimes the case even for
identical compositions of the initial particle solution.

The solidification processes through which particulate gels
form, initiated via, for example, irreversible fractal aggregation
or equilibrium phase separation, are typically sources of frozen-
in stresses6 and help build a memory in their history dependent
response:7 these processes determine how local stresses and mechan-
ical heterogeneities get embedded and remain frozen inside the gel
structure during gelation. The rigidity and elastic modulus attained
ultimately depend on the geometry of the microstructure that self-
assembles during solidification to accommodate the local and global
constraints of mechanical equilibrium. Consequently, significant
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structural correlations, induced, for example, by attractive interac-
tions, are naturally incorporated in the way stresses are transmitted
through the rigid backbone of the final solid. This process of self-
organization can provide an explanation for the possible emergence
of rigidity at very low densities in colloidal gels since the structural
correlations developed are precisely those that satisfy the constraints
of mechanical equilibrium, as shown in Ref. 8. The fact that this
self-organization occurs in overall amorphous and spatially het-
erogeneous structures naturally leads to stress localization that
manifests itself under deformation.9–12

The tendency to localize strain and stresses and the signature of
mechanical heterogeneities, shown under deformation, suggest that
stress transmission could be very anisotropic and strongly localized
even if the material is at rest,13 just as a result of the microstructural
development during gelation. As a consequence, force chains in a
granular solid, i.e., forces transmitted across a sample along lines of
grains forming a sparse network,14–18 may be relevant to the physics
of soft particulate gels. Detecting force chains and identifying the
stress bearing part of gel structures are, however, incredibly difficult
in experiments and elusive even in numerical simulations of model
materials, as they require disentangling mechanical heterogeneities
from structural heterogeneities and rely upon threshold values for
local stresses that are not easily justified. For amorphous solids,
recent theoretical studies have clarified that just the constraints
of mechanical equilibrium guarantee that the spatial correlations of
the stresses are long-ranged and anisotropic.19–22 The emergence of
elasticity can then be obtained, even in granular solids where the
grain contacts cannot be regarded as elastic springs, within a new
theoretical framework that can be mapped onto a tensorial elec-
tromagnetism with vector charges (VCT).23–25 In particular, this
VCT framework provides analytical predictions for the stress–stress
correlations, demonstrating that they are not only long-ranged but
also anisotropic, and clearly identifies the presence of force chains in
disordered assemblies of grains that are jammed under an external
load.

Here, we use the predictions of the VCT framework to com-
pute the stress–stress correlations in model particulate gels obtained
from 2D and 3D numerical simulations. We find that the inten-
sity patterns of these correlations in Fourier and real space share
several common features with the patterns detected in experiments
and simulations of granular solids, as well as those predicted by
the VCT framework.24,25 In particular, we recover the anisotropy
of the stress–stress correlations, which therefore becomes an indi-
cator of the presence of force chains in particulate gels. Moreover,
we show that the stress–stress correlations distinguish floppy from
rigid gels and are sensitive to the distance of the model gel from
the rigidity threshold. These results pave the way to developing a
further understanding of stress transmission in soft materials and
provide the first basis to develop a VCT framework for soft gel
materials.

This paper is organized as follows: Section II provides the
details of the calculations performed: In Subsection II A, we
briefly review the basic ingredients of the VCT framework and its
predictions for the stress–stress correlations in granular solids, while
Subsection II B contains information on the numerical models and
simulations used. In Subsection II C, the calculations of the stress
correlations are described. We then discuss the results in Sec. III and
provide a summary and outlook in Sec. IV.

II. THEORY PREDICTIONS AND NUMERICAL
SIMULATIONS
A. Elasticity theory of athermal amorphous solids
and VCT framework

At the heart of the mechanical response of jammed amorphous
solids is the nature of the force-bearing networks that obey the
constraints of mechanical equilibrium. Implemented locally: each
particle satisfies the constraints of force and torque balance. Here,
bold symbols with hats denote tensors, bold symbols without hats
denote vectors, and nonbold symbols denote components of tensors
and vectors.

In a continuum formulation, the conditions of force balance
expressed in terms of the stress tensor (σ̂) are given by

@iσij = f external
j , (1)

where σij is the stress component and f external
j is the component

of the external force. The torque balance leads to the symmetry
of the stress tensor. However, in D dimensions, the conditions of
mechanical equilibrium are not enough to solve for the D(D + 1)�2
components of the stress tensor. Canonical continuum elasticity
solves for the stress components by defining the strain in terms of
the displacement field from the crystal reference structure, which
is uniquely defined, and uses the constitutive relation of linear
elasticity to obtain a complete set of equations.26,27,42 In the case of an
amorphous solid, there is no unique reference structure to define the
strain, so the continuum elasticity description does not work. The
VCT framework described in Ref. 24 provides a stress-only frame-
work to describe elasticity in such a solid. This stress-only theory of
elasticity is defined by equations that bear a remarkable similarity to
that of classical elasticity theory,25

@iσij = f external
j ,

Eij = 1
2
(@iφj + @jφi) �⇒ �iab�jcd@a@cEbd = 0,

σij = (δijkl + χijkl)Ekl ≡ KijklEkl.

(2)

Here, σ̂ is the stress–tensor field, which is related to Ê via an emer-
gent elastic modulus tensor K̂ . K̂ maps to the rank-4 polarizability
tensor (χ̂) of the VCT dielectric. Ê plays a role analogous to the
strain tensor in classical elasticity theory. External body forces, such
as gravity, are represented by f external. The two crucial differences
from classical elasticity theory are that (a) the physical displace-
ment field defining strain is replaced by the φ field, which is a
gauge potential since there is no unique reference structure, and
(b) the K̂ tensor is an emergent elastic modulus tensor that reflects
the coarse-grained properties of the self-assembled, force-bearing
network.

The VCT framework makes explicit predictions about the
stress–stress correlations and the stress response in terms of the
emergent elastic modulus tensor, K̂ . Here, we summarize crucial
features of the stress–stress correlations. (i) A hallmark of the theory
is the appearance of a characteristic pinch-point in the stress–stress
correlations, Cijkl(q) = �σij(q)σkl(−q)�. A function of the wave
vector � q � has a pinch-point singularity in � q � = 0 if its value at
q = 0 depends only on the orientation of any line passing through
q = 0. This means the dependence of the stress–stress correlations is
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only on the angular coordinates in Fourier space for q→ 0. These
predictions have been tested against experimental measurements
in frictional granular materials and against model assemblies of
frictionless soft grains in 2D and 3D. (ii) The chain-like structures
seen, for example, in experiments using photoelastic discs24,28 and
commonly referred to as force-chains, are a visual representation
of the highly anisotropic nature of Cijkl. (iii) The q-space correla-
tions predicted by the theory, and observed in experiments, imply
a power-law decay at large lengthscales: �σkl(r)σkl(0)�∝ ±1�rD,
where the plus sign appears for longitudinal correlations and the
minus sign for transverse correlations. In this paper, we analyze the
stress-correlations in numerical simulations of 2D and 3D particle
gels using the VCT framework.

B. Simulation details
Gel configurations in two and three dimensions are obtained

using models of N interacting colloidal particles that undergo gela-
tion as described in Refs. 8, 10, and 29–31. We perform Molec-
ular Dynamics (MD) simulations in a cubic (square in 2D) box
of size L with periodic boundary conditions. To prepare the gels,
we first reach thermal equilibrium at a high temperature and
then slowly quench the particle configurations to different tar-
get temperatures T, i.e., with different cooling rates Cr , using a
Nosé–Hoover thermostat and allowing the particles to aggregate and
form gel networks.29,32 The mechanical equilibrium in the final gel
states is obtained by slowly withdrawing all kinetic energies with
overdamped dynamics, following the protocol described in Refs. 8,
10, and 31. All the simulations are performed using LAMMPS33

modified by us to include specific particle interactions.
For 2D gels, we consider N = 10 000 monodisperse

particles interacting via a short range attractive potential
U(r) = A��a(d�r)18 − (d�r)16�, where r is the interparticle
distance, and A and a are dimensionless constants. The values of
A = 6.27 and a = 0.85 are chosen to obtain a short-ranged attractive
well of depth � and range rc ≈ 0.3d (the potential is cut and shifted
to 0 at large distances). In 3D, we consider N ≈ 16 000 monodis-
perse particles that interact via the same short range attractive
interactions plus an angular term that introduces bending rigidity
to inter-particle bonds.10,30,31

All the simulation quantities described in the following are
expressed in reduced units; thus, d is used as the unit of length, �
is used as the unit of energy, and m (the particle mass) is used as the
unit of mass. The reduced temperature is expressed in units ��kB,
where kB is the Boltzmann’s constant. The unit of stress is therefore
��d3. When performing the quenches into aggregation from a high
temperature, the cooling rate Cr is defined as �T��t, where �T is
the distance between the initial and target temperatures in the gela-
tion protocol described earlier and �t is the duration of the quench,
with the unit time τ0 being d

�
m��. We define an approximate vol-

ume fraction ϕ = πd2N
4L2 and ϕ = πd3N

6L3 in two and three dimensions,
respectively, where d is chosen as the particle diameter.

We consider that a gel configuration is rigid if the elastic
component of the linear viscoelastic shear modulus at a low fre-
quency is larger than the viscous component, which is true if there
is a percolating rigid cluster. In 2D, we characterize such rigid gel
configurations using the pebble game algorithm, which identifies a
rigid cluster as a cluster where all the degrees of freedom are blocked

by contacts or constraints except for the degrees of freedom of the
overall translations or rotations of the whole cluster. Therefore, in a
rigid gel, there could be isolated particles or other small rigid clus-
ters that are not part of the spanning cluster; however, the floppy
modes associated with these isolated particles are not relevant to the
low frequency elastic response of the sample. We call a gel floppy
if in the particle configuration though there is a spanning network
of aggregated particles, such network is not rigid according to the
pebble game algorithm.8,34 In 3D, we take another approach. We
compute the linear viscoelastic response of the gels and obtain their
low frequency moduli.29,30,35 For rigid gels, the low frequency storage
modulus is larger than the loss component.

In 2D, we show data for ϕ = 0.5 at T = 0.3 (floppy gels)
and T = 0.18 (rigid gels). In 3D, we analyze gels obtained using
the cooling rates Cr = 9 × 10−5��(τ0kB), and 9 × 10−2��(τ0kB) at
ϕ = 0.125, 0.075, and 0.05. All the data for the stress correlations have
been averaged over 200 and 20 independently generated samples in
2D and 3D, respectively.

C. Computing stress correlation functions
To compute the stress correlations in the gel samples, we

coarse-grain the stress fluctuations in Fourier space by imposing a
cutoff at large q, corresponding to qmax = 2π�d, i.e., we do not con-
sider any stress fluctuations occurring at length scales shorter than d.
The lower q cutoff in Fourier space is set by the simulation box size
qmin = 2π�L and the periodic boundary conditions. Following Refs.
24 and 25, for every particle p, we compute its contribution to the
stress as the force-moment tensor defined as

σ̂p = Nc�
s=1

rp,s ⊗ fp,s, (3)

where rp,s is the vector connecting the center of particles p and s,
and f p,s is the force between them. Nc is the number of neighbors of
particle p within the interaction range rp,s ≤ rc.

The force-moment tensor in Fourier space is given by

σ̂(q) = N�
p=1

σ̂p exp(iq ⋅ rp), (4)

where q stands for the wave vector and rp is the p-th particle position
vector. To obtain the stress tensor in Fourier space, we need to divide
Eq. (4) by the volume (area) V of the simulation box; however, for
simplicity, we ignore the constant factor of 1�V in our calculations.
The stress correlations in Fourier space are computed using

Cklmn(q) = ��σkl(q)�σmn(−q)�, (5)

�σkl(q) = N�
p=1
(σkl p − �σkl�) exp(iq ⋅ rp), (6)

where σkl p denotes kl-component of the stress tensor of particle
p, and �σkl represents the fluctuation of the stress tensor with
respect to the average value �σkl�. The angular brackets �⋅ ⋅ ⋅� denote
an ensemble average, where each sample is first averaged over all
the particles. For 3D gels, the computation of σ̂p also includes the
contribution from the three body or angular term of the interaction
potential.36
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From the stress correlation calculations, we construct maps of
the correlation intensity in Fourier space in polar (q, θ) representa-
tion for 2D gels for a range of q from 2π�L to 56π�L. For the angular
variation of the correlations, along with radial averaging, the data are
also averaged over a small angular bin width of ≈6○ to reduce noise.
For comparison, we also compute the correlations in real space along
both x and y direction with the coarse-graining length d.

In 3D, the range of q used is from 2π�L to 42π�L, the stress
correlations are averaged over � q � and projected in 2D using the
Hammer projection coordinate system (Hx, Hy).24,25 Hx and Hy are
computed using

Hx = 2
√

2 cos α sin β�2�
1 + cos α cos β�2 ,

Hy =
√

2 sin α�
1 + cos α cos β�2 ,

where α and β are the latitude and longitude, respectively.
α = θ − π�2 and β = Φ, where (θ, Φ) are the spherical polar coor-
dinate angles.

All stress correlations are scaled by the maximum value of the
Cxxxx correlation function.

III. RESULTS
We now discuss the results obtained for 2D and 3D model

particulate gels in mechanical equilibrium.
As discussed in the Introduction, soft particulate gels have

strong structural heterogeneities that depend on the aggregation
kinetics and the path to gelation. These structural heterogeneities are
associated with stress heterogeneities; however, the microstructural
origin of the stress heterogeneities is not easily identified. Figure 1
shows snapshots of a rigid gel close to the rigidity threshold8 (bot-
tom panels) and a floppy gel (top panels) from our 2D simulations.
The particles are colored according to their magnitude of xx and xy
components of σ̂p computed using Eq. (3). The configurations in
the top and bottom panels show connectivity percolation; however,
the spanning rigid cluster, which was identified using the pebble
game algorithm, is present only in the configuration of the bottom
panel. In the floppy gel case, the particle stresses show strong, spa-
tially uncorrelated fluctuations. In the rigid case, we observe that
the particle stresses are spatially correlated and extended. For these
numerical samples, these components of the stress tensor have a
magnitude varying between −10��d3 and 8��d3. If we use the whole
range for σxx p and σxy p in the color maps, the gels appear mechan-
ically homogeneous, as they are overall soft. By zooming in the
stress variation down to �σij � 1��d3, chain-like patterns become
visible in the stress maps of rigid gels. Floppy gels feature relatively
large stress fluctuations even at this large stress magnification. These,
however, appear randomly distributed and uncorrelated. For rigid
gels, instead, the stress fluctuations display an anisotropic pat-
tern, which strongly suggests an anisotropic and localized stress
correlation across the sample and is reminiscent of force chains in
granular packings.14–18,28

These qualitative observations can be quantitatively confirmed
by analyzing the intensity maps of the stress correlations for the

FIG. 1. Snapshots of 2D gel showing xx and xy components of the particle stresses
for a floppy (top row) and rigid gel (bottom row).

corresponding component of the stress tensor, as shown in Fig. 2
(left). While for floppy gels the stress–stress correlation maps do
not feature any distinctive pattern, for rigid gels they do. The pat-
terns indicate both the presence of correlations that span the whole

FIG. 2. Stress correlations Cxxxx and Cxyxy in Fourier space for the floppy and rigid
gel in the top and bottom row, respectively.
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FIG. 3. Stress correlations Cyyyy (top row) and Cxxyy (bottom row) in q-space (left panel) and real space (right panel). In the middle panel, the angular dependence of the
q-space correlations is shown.

system and that they do so in a very directional and anisotropic fash-
ion, in spite of the particle interactions and the overall gels being
isotropic. The Cxxxx map obtained from the rigid gels shows a large
q cutoff in the correlations, which simply reflects the fact that well
inside the gel branches the material is spatially and mechanically
homogeneous. However, the correlation intensity is significant
(along the qx axis) even for the smallest q, i.e., for distances up to
the whole system size. The value of Cxxxx being zero along the line
qy = 0 indicates that the forces can propagate approximately only
along their own direction and very unlikely perpendicular to it. At
q ≈ 0, the correlation intensity depends only on θ, which is a sig-
nature of a pinch-point singularity. This is a direct consequence of
force balance, as discussed in Sec. II A, and provides a quantitative
evidence to the presence of force chains. The same characteristics,
i.e., the long range correlations and the strong anisotropy indicated
by the angular dependence, are also present in the four-lobe pattern
of the Cxyxy map for the rigid gels (Fig. 2 right). We note that for Cxyxy
the signal at low q is much weaker, since shear stresses are vanishing
as there is no deformation applied.

The two-lobe pattern in Cxxxx and four-lobe pattern in
Cxyxy for the rigid gels are identical to the correlation pat-
terns already obtained in experiments and simulations of
granular solids, confirming the pinch-point structure of stress

correlations in Fourier space predicted by the elasticity theory of the
VCT framework.24 In Fig. 3, we also show the Cyyyy (top) and Cxxyy
(bottom) maps for the 2D rigid gels in Fourier space (left) and the
corresponding radially averaged angular plots (center). The stress
correlation maps in the real space (right) complement, and confirm,
the insight gained with the maps of the correlations in Fourier space.
The remaining stress correlations for 2D gels that consider all other
stress tensor components are shown in Appendix A. These maps
quantitatively establish the similarity of stress transmission in soft
gels and in granular solids. They support the idea that the rigidity
and elasticity of soft particulate gels, when particle interactions
are sufficiently large with respect to kBT, can be fundamentally
understood as emerging properties that are the result of the local
and global constraints imposed by mechanical equilibrium, rather
than being just a consequence of their microscopic interactions. We
note that, as briefly discussed in Sec. II A [see Eq. (2)], in the VCT
framework, the angular dependence of the correlation intensity
(Fig. 3 center) provides direct information on the properties of the
emerging elastic tensor K̂ .

In the case of 3D gels, we have computed all 21 stress–stress
correlations. We discuss some of them here in detail, while the
remaining ones are shown in Appendix B. A snapshot of one of
the gel networks [at volume fraction ϕ = 0.125 and obtained with
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FIG. 4. (Top panel) Snapshot of the gel network at ϕ = 0.125, only the bonds are
shown. The particle bonds are red if the particle stress is positive and blue if the
particle stress is negative. The bond width is proportional to the magnitude of the
stress. (Bottom panel) Hammer projection of Cxxxx in Fourier space of the 3D gels
at ϕ = 0.125.

cooling rate Cr = 9 × 10−5��(τ0kB)] is shown in Fig. 4 (top panel).
We have colored the particle bonds in red if the xx component
of the particle stress is positive (tension) and blue if it is nega-
tive (compression) to highlight how, even with this information,
the presence of force chains or stress localization cannot be easily
detected. However, the maps of the corresponding stress correla-
tion function clearly reveal their presence; furthermore, in this case,
all stress–stress correlations are long-ranged, as determined by the
mechanical equilibrium constraints;19,22 the 2D Hammer projection
of the correlation intensity for the fluctuations of the xx component
of the stress tensor (Fig. 4, bottom panel) are strongly anisotropic,
with the angular pattern indicating that stress transmit across the
sample along specific and localized directions.

When comparing our data to the results in Ref. 24, we notice
interesting quantitative differences in the corresponding angular
plots. This suggests that the obvious significant differences between
the overall elastic behavior of gels and granular solids can also be
further investigated with this approach. In Fig. 5, we compare the
intensity pattern of Czzzz in rigid gels (top) and granular solids (bot-
tom, from Ref. 25) to point out the striking difference in the angular
dependence. As we increase the dimensionality of the space from
2D to 3D, the number of possible stress–stress correlation functions
increases from 6 to 21, which provides more opportunity to iden-
tify the differences in the correlation patterns between the granular
and gels case. We also note that our 3D gel model also features a

bending rigidity term in the particle–particle interactions, which
is not present in the 2D case. This might also account for some
additional differences in the intensity patterns between 2D and 3D,
compared to the granular case. The map obtained for a model
granular solid shows that the stress–stress correlations are basically
independent on the azimuthal angle, Φ, and only depend on θ,
whereas the pattern for the gels indicates a strong dependence on
both θ and Φ, which confirms that this approach is able not just to
reveal similarities and common traits but also to identify differences.
With this respect, we think that this striking difference in the angular
dependence may be related to the fact that all structures in a granu-
lar solid can only transmit compression or shear stresses, whereas
in gels tension can also be transmitted. All the remaining stress
correlations from 3D gels at ϕ = 0.125 are shown in Appendix B.

The patterns of the stress correlations in gels are sensitive to
the distance from the rigidity threshold, as shown by the Cxzzz maps
in Fig. 6 at different ϕ = 0.125, 0.075 and 0.05 obtained for cool-
ing rate Cr = 9 × 10−5��(τ0kB). As the volume fraction increases the
local connectivity and gel moduli increase. At ϕ = 0.05, the net-
works are sparse, spatially heterogeneous, and barely rigid, as also
discussed in Refs. 30 and 37, and their elasticity modulus is very
small. When particle volume fraction increases, the gels obtained
with the same cooling rate become stiffer, more locally connected,
and move away from the rigidity threshold. The stress correlations at
different densities, interestingly, have the same general pattern.
However, this pattern becomes increasingly blurred as the gels
approach the rigidity threshold (Fig. 6 from left to right). A similar

FIG. 5. Comparison of Czzzz of gels at ϕ = 0.125 (top figure) with the isotropic
jammed solids (bottom figure). The jammed solids’ data are from Ref. 25.
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FIG. 6. Hammer projection of Cxzzz for the gel configurations at packing fraction 0.125 (left), 0.075 (middle) and 0.05 (right). The gel configurations are prepared with cooling
rate Cr = 9 × 10−5��(τ0kB).

trend is observed in the correlations of all stress components. These
findings support the idea that the stress correlation intensity varia-
tion is directly related to the elastic moduli, suggesting that they may
be used to detect the distance from the rigidity threshold and provide
information on the marginal stability of the gels. We also confirm
these findings by varying, for the same particle volume fraction, the
cooling rate at which the gel is formed, since the increasing this rate
leads to gels that are weaker and closer to the rigidity threshold.37 By
comparing, for example, the stress correlation map in Fig. 7, which
shows Cxzzz for ϕ = 0.125 at Cr = 9 × 10−2��(τ0kB), with the first
map on the left of Fig. 6 [corresponding to the same volume fraction
and Cr = 9 × 10−5��(τ0kB)], we can notice how again the correlation
pattern becomes more blurred for weaker and more marginal gels.
Clearly, the gels with the same density but different network elas-
ticity result in changes in the stress–stress correlations. Since these
are systems that are out of equilibrium, it is not obvious that there
is a relation between the correlation function and the response func-
tion. Our results show that there could be such a relation. The VCT

FIG. 7. Hammer projection of Cxzzz for the gel configurations at ϕ = 0.125 and
Cr = 9 × 10−2��(τ0kB).

theory relates stress correlations to the elastic moduli with a
one-to-one map between the full set of stress-correlations and the
components of the K̂ tensor.24,25

IV. SUMMARY
In summary, we have demonstrated the presence of force

chains in soft particulate gels by computing the stress–stress cor-
relation functions in 2D and 3D model gels. The stress correlation
patterns distinguish the rigid gels from the floppy gels and display
the same general characteristics as granular solids, i.e., the strong
angular dependence and the pinch point singularity predicted by a
stress-only theoretical framework (the VCT framework in Ref. 24),
where the elastic response is a property emerging only from the
constraints of mechanical equilibrium without resorting to the con-
stitutive relation of linear elasticity. We also demonstrate that the
stress–stress correlation patterns highlight distinctive differences
between gels and granular solids and that these patterns are sensi-
tive to variation of the gel moduli due to changes in the gel topology
and marginal stability, not simply to the gel density. These results
are consistent with the idea that the stress–stress correlation patterns
can provide further information on the tensorial properties of the
emerging elasticity in these materials. Stress–stress correlation pat-
terns have been measured in experiments on granular solids using
photoelastic disks (see Ref. 24); however, this is clearly much more
challenging for experiments on particulate gels, where measurement
techniques to extract local stresses and their spatial distributions are
still being developed.38–41 Moreover, using the angular dependence
of the stress–stress correlation functions obtained from simulations
to extract the properties of the elastic tensor would provide predic-
tions for the overall mechanical response to different deformation
modes (e.g., shear, compression, and extension), which are acces-
sible in mechanical and rheological experiments. This information,
testable on a broad range of gels and experimental conditions, could
then be fed back to the theory to obtain the stress–stress correlation
patterns from the experiments. Hence, further developing the analy-
sis proposed here seems a promising route to gain novel insight into
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the emerging elasticity of soft particulate gels and its connection to
stress localization.
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APPENDIX A: 2D CORRELATION FUNCTIONS

In Fig. 3, we show data for Cyyyy and Cxxyy. Here, we show all
the remaining stress correlations for the rigid gels. The correlation
functions are computed using Eq. (5). The angular dependence of
these correlation functions matches with the granular case (Fig. 8).24

FIG. 8. The stress correlation functions for the 2D rigid gels.
The three columns show the stress correlation in q–space,
and the corresponding radially averaged angular plots and
the stress correlation in real space, respectively.
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APPENDIX B: STRESS CORRELATIONS IN FOURIER
SPACE FOR 3D GELS

In this paper, we show Cxxxx, Czzzz , and Cxzzz correlation func-
tions of gels at ϕ = 0.125. In Fig. 9, the remaining 18 correlation
functions are shown.

FIG. 9. The q-space stress correlations for 3D gels at
ϕ = 0.125.
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