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Abstract. We propose a component-based (CB) parametric model order reduction (pMOR)
formulation for parameterized nonlinear elliptic partial differential equations. CB-pMOR is designed
to deal with large-scale problems for which full-order solves are not affordable in a reasonable time
frame or parameters’ variations induce topology changes that prevent the application of monolithic
pPMOR techniques. We rely on the partition-of-unity method to devise global approximation spaces
from local reduced spaces, and on Galerkin projection to compute the global state estimate. We
propose a randomized data compression algorithm based on oversampling for the construction of
the components’ reduced spaces: the approach exploits random boundary conditions of controlled
smoothness on the oversampling boundary. We further propose an adaptive residual-based enrich-
ment algorithm that exploits global reduced-order solves on representative systems to update the
local reduced spaces. We prove exponential convergence of the enrichment procedure for linear coer-
cive problems; we further present numerical results for a two-dimensional nonlinear diffusion problem
to illustrate the many features of our methodology and demonstrate its effectiveness.
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1. Introduction.

1.1. Component-based model reduction for parameterized PDEs. Nu-
merical modeling and simulation is of paramount importance to predict the response,
improve the design, monitor the structural health of engineering systems, and gener-
ate digital twins [48, 58]. Several problems of interest involve repeated solutions of a
partial differential equation (PDE) for many values of the model parameters or require
real-time responses: these tasks are prohibitively expensive for standard (e.g., finite
element) methods. Parametric model order reduction (pMOR, [27, 30, 57]) aims to
reduce the marginal cost associated with the solution of parameterized systems over
a range of parameters. The goal of this paper is to develop a pMOR procedure for
large-scale nonlinear elliptic PDEs with parameter-induced topology changes. This
facilitates, e.g., building a digital twin from components equipped with local reduced-
order models [36, 37] and the adaptation of the digital twin by exchanging components
[36].

pPMOR techniques rely on an offline/online decomposition to reduce marginal
costs. During the offline phase, pMOR methods rely on several high-fidelity (HF)
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solves to generate a reduced-order model (ROM) for the solution field. During the
online phase, given a new value of the parameter, the ROM is solved to estimate
the solution field and relevant quantities of interest. Monolithic pMOR methods rely
on HF solves at the training stage, which might be unaffordable for very large-scale
problems. Furthermore, pMOR methods rely on the assumption that the solution
field is defined over a parameter-independent domain or over a family of diffeomorphic
domains: they thus cannot deal with problems for which parametric variations induce
topology changes.

To address these issues, several authors have proposed component-based (CB)
PMOR procedures (cf. [33] and the review [11]). During the offline stage, a library
of archetype components is defined and local reduced-order bases (ROBs) and local
ROMs are built fo each component; then, during the online stage, select components
from the library are instantiated to form the global system and the global solution
is estimated by coupling local ROMs. CB-pMOR strategies consist of two distinct
building blocks: (i) a rapid and reliable domain decomposition (DD) strategy for
online global predictions, and (ii) a localized training strategy exclusively based on
local solves for the construction of the local approximations.

CB-pMOR shares important features with multiscale methods [3, 39, 66, 50, 51,
52, 53, 44, 65, 61, 41, 70, 40, 19, 17, 13, 18]. Similarly to CB-pMOR, multiscale
methods rely on local solves to build suitable approximation spaces that are tailored
to the problem of interest. The emphasis in CB-pMOR is to devise and then exploit a
library of interoperable archetype components and associated ROMs that can be used
for a broad range of potentially parameter dependent problems in a specific domain
of interest.

1.2. Domain decomposition strategies within CB-pMOR. Since the sem-
inal work by Maday and Renquist [42]—that proposed a nonoverlapping nonconform-
ing reduced basis element method based on mortar DD—several authors have com-
bined DD methods with model reduction methods to devise effective CB-ROMs. As
discussed in detail in the review [11], we can distinguish between conforming nonover-
lapping approaches [33, 22, 65], nonconforming nonoverlapping approaches based on
Lagrange multipliers [31, 34, 42, 54], nonconforming nonoverlapping approaches based
on discontinuous Galerkin (DG) coupling [1, 2, 49], and overlapping methods [7, 12].
The vast majority of existing contributions (with few recent exceptions [5, 7, 31, 54])
are restricted to linear PDEs.

In this work, we rely on the partition-of-unity method (PUM) to devise global
approximation spaces from local reduced spaces, and on Galerkin projection to com-
pute the global state estimate. PUM was proposed by Babuska and Melenk in [4, 46]
and further developed and analyzed in the framework of generalized finite element
methods for multiscale problems (cf. [3]); PUM was also considered in the pMOR
literature for linear elliptic and parabolic problems [12, 60]. In the CB-pMOR frame-
work, PUM offers a general (i.e., independent of the underlying PDE) framework with
strong theoretical guarantees.

1.3. Localized training based on oversampling and randomization.
Given the domain  associated with a _given archetype component, oversampling
methods consist in (i) defining a patch Qovr > Q and a suitable local PDE problem
in Qovr, (ii) solving the local PDE for several choices of the boundary conditions on
8Qovr and then restricting the solution to Q and finally (iii) exploiting the results to
build a local approximation space for the solution in Q. Randomized methods rely
on independent and identically distributed (iid) samples of the boundary conditions
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on (a subset of) (’9ﬁovr: they thus require the introduction of a probability density
function for the functions defined on 9Qy;.

Oversampling methods exploit low-pass filtering properties of the differential
operator to identify low-dimensional structures: we refer to [67, Chapter 5] and
[65, Remark 3.3] for two representative working examples. In detail, Caccioppoli-type
inequalities (see, e.g., [25]) provide the theoretical foundations for the application of
oversampling methods to a particular class of PDEs. Oversampling methods have
been suggested and used extensively in the context of multiscale methods (see, e.g.,
[32, 3, 29, 44] and references therein) and then used as well in CB-pMOR [22, 65] for
linear PDEs.

As suggested in [12], randomized oversampling methods for linear parameter-
independent PDEs can be linked to randomized singular value decomposition (SVD)
techniques developed and analyzed in randomized numerical linear algebra [28, 45,
21, 43]: this link allows one to extend methodological and theoretical contributions in
randomized linear algebra to CB-pMOR. In particular, we can exploit concentration
inequalities to analyze the error of randomized techniques, and inform the choice of
the sampling distribution. The influence of the choice of the sampling distribution for
nonlinear PDEs remains an open question in CB-pMOR.

1.4. Contributions of the paper and outline. In this work, we propose a
CB-pMOR procedure based on the PUM for parametric nonlinear elliptic PDEs; we
do not require the nonlinear operator to be monotone. The contributions of the
paper are twofold. First, we propose a randomized data compression algorithm based
on oversampling: the approach relies on random samples of local parameters and
boundary conditions on the oversampling boundary. We propose a new sampler that
controls the smoothness of the boundary condition, and we empirically demonstrate its
effectiveness for a nonlinear diffusion problem. Second, we propose a basis enrichment
algorithm that relies on global reduced solves to enrich the local reduced spaces.
The algorithm relies on a local residual-based error indicator to identify boundary
conditions for which the local ROM is inaccurate and a rigorous global a posteriori
error bound as a termination criterion. We prove in-sample a priori exponential
convergence of the enrichment algorithm for linear coercive problems; we further
investigate performance for a nonlinear diffusion problem.

Our randomized algorithm reads as a randomized proper orthogonal decompo-
sition [74] with respect to parameter and boundary conditions. On the other hand,
the enrichment algorithm is closely related to the online enrichment strategy pro-
posed in [49] for nonoverlapping DG DD, and to the residual-based online enrichment
algorithm considered in [9] for linear problems. The major difference is that the en-
richment is performed at a training stage and aims to update the local approximation
spaces associated with the archetype components, rather than during the online stage
on the “instantiated components.” We note that in [31] the authors employ the ran-
domized boundary conditions proposed in [22] for nonlinear PDEs. In contrast, in
this manuscript, we try to generalize the approach of [12] for which one can show a
quasi-optimal convergence behavior for linear problems. The randomized approach in
[18] also aims at approximating nonlinear PDEs. To that end, the authors create a
dictionary of solutions by solving the PDE for random boundary conditions and con-
struct tangential approximations to the nonlinear map, which are then used to obtain
a solution with a Schwarz iteration. While the random boundary conditions in [18]
are chosen uniformly on the unit sphere considering, for instance, the H'/2-norm for
semilinear elliptic equations, we propose in this article to employ random boundary
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conditions of various prescribed smoothness to exploit the expected faster decay of
high frequencies from the boundary towards the interior of the target subdomains.

The outline of the paper is as follows. In section 2, we introduce the model
problem considered throughout the paper to illustrate the main definitions and to
numerically validate our proposal: the model problem involves a high-dimensional
(O(10?)) parameterization and topology changes. In section 3, we present the main
ideas and contributions of the paper. In section 4, we discuss the DD strategy based on
the PUM and we introduce local and global discrete approximation spaces; in section
5, we discuss the randomized localized data compression; in section 6, we present the
enrichment strategy; and in section 7 we present thorough numerical investigations
for the model problem. Section 8 concludes the paper. Appendix A summarizes the
notation.

2. Model problem: Nonlinear diffusion. Given ngq € N and H = 0.1, we
define the domains

(2.1) Qi+(j71)ndd = {[.1‘1 —|—H(Z — 1),.132 +H(] — 1)] L X1,T € (O,H)}

for i,j =1,...,nq44, and introduce the global domain Q = UkNi‘i Qi with Ngq =n3,.
We consider the problem of parametric nonlinear diffusion: for every parameter
 in the compact set of admissible parameters %1, find u,, such that

=V (ku(z,up) Vu,) = f inQ,
u, =0 on 01,

(2.2)

where for every u € Pg1, the function x, : R — R, is C?(R) and uniformly elliptic and
bounded, i.e., there exist constants x>0, k=0,1,2,3, such that for all p € Py,

rollwll3 < mu(w)w - w, s (u)wllz < sallwllz,

Ik, (uwllz < kollwlla, 5y (wa)wllz < wsllwllz Yw €R® Vu, €R,

where ||+ ||2 denotes the Euclidean norm in R%. We further assume that the restriction
of k,(uy) to a subdomain €, is the same for every subdomain and that the map
> Ky, is continuous.! Moreover, we require that for every p € # the function f,, is
in L?(Q) and that the function p+— f, is continuous. This yields the existence of a
unique solution (see, e.g., [20]) of the variational form for any p € P, find u, € H}(Q)
such that

(2.4) /Qn“(u“)VuHVv:/Qfﬂv Vv € Hy ().

While we focus on (2.2) in this paper to ease the exposition of ideas, we emphasize
that the proposed methods can be readily applied to other nonlinear elliptic PDEs.

Ezample 2.1. As one specific example of (2.2) we consider the following model
problem that has been previously considered in [64], and is inspired by the model

1We note that this continuity assumption is necessary to draw samples from the parameters
later within the POD algorithm. We note that Lipschitz continuity in the parameter was assumed
for linear parameter dependent elliptic problems to show results on the approximation error caused
by the POD in the infinite dimensional setting [35]. So a theoretical analysis especially in infinite
dimensions or one that is robust with respect to the mesh size will likely require higher regularity
assumptions.
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F1G. 1. Nonlinear diffusion. (a) Instantiated archetype components. (b)—(c) solution fields for
Ngq =100 and two choices of the parameters.

for immiscible two-phase flows in porous media [47]. We introduce P =10.1,0.2] x
[30,40], the permeability coefficient x : Q@ x R x ®f\i’f@ — R, such that &|g, =
wo(wsu, M. pVaa))| g satisfies

2
36 u(l —u) ()

(2.5&) Kl = G - +py’, 1=1,...,Nqq,
o= g0

and the source term
(2.5b) Fla;i*) = 100e~0leve o g, (2).

The global parameter and the set of global admissible parameters for this problem are
thus = [, ..., uWMad) *] and Pyio(naq) := ®fidf Px{1,...,Nqq}. In Figures 1(b)-
(c), we show the domain  and selected solutions for different parameters p for Ngq =
100.

3. Motivation and explanation of key ideas and contributions. In this
manuscript, we aim at approximating the global solution of the parametric nonlinear
PDE by a CB ROM, where the local reduced basis functions are built from local
solutions of the PDE. Therefore, the local reduced basis functions somehow have
to capture all possible local behavior of the global solution. We illustrate why one
can hope to accurately approximate all possible local behavior of the solution with
relatively few local basis functions with an example [65, 60]: for the Laplacian on
the domain Q = (—2,2) x (0,1) with homogeneous Neumann boundary conditions at
29 = 0 and zo = 1 and arbitrary Dirichlet conditions on x; = —2 and x; = 2 all
solutions are of the form

oo
(3.1) u(z1,x2) = ag + box1 + Z cos(nmxs) [a, cosh(nmxy) + by, sinh(nwaq)],

n=1

where a,,b, € R, n =0,...,00 are determined by the Dirichlet boundary data pre-
scribed on 7 = —2 and 7 = 2. We observe in Fig. 2(a) an exponential decay of
the solutions in the interior of €2 and that as a consequence most terms in the sum
in (3.1) will be numerically zero around x; = 0. In addition, the more oscillations
we have on the Dirichlet boundary (e.g., —cos(8my) versus — cos(2my)) the faster the
decay is in the interior of 2. All this implies that already few local basis functions—
here the functions cos(my),cos(2my), cos(3my), .. —can approximate all possible local
behavior of the solution well. One can show that these functions span an optimal
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F1G. 2. (a) Solution u(x,2/3) for Dirichlet boundary conditions — cos(nmy) for n=1,2,4,8 for
the linear Laplace problem. (b) Solution u, of Example 2.1 with puy = 0.1, pe = 36, and random
boundary conditions.

approximation space in the sense of Kolmogorov [38] in the sense that they minimize
the approximation error among all spaces of the same dimension.

It has been shown that for general linear elliptic problems these optimal local
approximation spaces are spanned by the left singular vectors of a linear compact
operator that acts on the space of all local solutions of the PDE [3, 65, 41, 55]. In
addition, it has been demonstrated in [12] that by solving the PDE with random
boundary conditions on the boundary of a so-called oversampling domain that is
strictly larger than the target subdomain for which we wish to construct our reduced
space, and restricting the respective solutions to the target subdomain, one can ob-
tain an approximation of the optimal local approximation spaces. Remarkably, this
approximation provably converges with a convergence rate that is only slightly worse
than the optimal rate obtained by the optimal local approximation spaces [12, 28].

As the linear compact operator used for the construction of the optimal local ap-
proximation spaces for linear PDEs becomes a nonlinear operator for nonlinear PDEs,
a direct transfer of the above methods to nonlinear PDEs is not possible. However,
we observe in Figure 2(b) for nonlinear problems also that we still have a rapid decay
of high frequencies in the interior of the domain. We may thus hope that by prescrib-
ing random boundary conditions, the higher frequencies of these boundary conditions
decay, and that we might get a good approximation of the functions relevant for ap-
proximation in the interior for nonlinear PDEs also; we confirm this in the numerical
experiments in section 7. However, one also observes that the precise choice of the
random boundary conditions for nonlinear problems is much more challenging than
for linear problems as, e.g., for our considered problem here rapidly changing values of
the solution lead to a rapidly changing diffusion. Motivated by the observation that
higher frequencies seem to decay faster (cf. Figure 2(a)), we propose in subsection 5.2
to consider random boundary conditions such that the prescribed boundary datum
interpolates with high probability a function of given smoothness on the boundary of
the oversampling domain. We observe in the numerical experiments in Figure 9 that
prescribing a higher smoothness might make enlarging the oversampling domain, and
thus spending more computational resources, superfluous.

For linear elliptic PDEs solving the PDE for each basis function of the underlying
HF discretization on the boundary of the oversampling domain and restricting these
solutions to the target subdomain allows one to construct an approximation of all
local solutions of the PDE of any desired accuracy. However, for nonlinear PDEs
the main challenge is that the set of all local solutions of the PDE on the target
subdomain is no longer a linear vector space. We thus have to ensure that our chosen
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boundary conditions that we use to construct our local reduced spaces are a good
representation of all boundary conditions that yield functions that are relevant for
approximation or, in short, the training set has to be rich enough. This is challenging
as we cannot assess at this point whether we have, e.g., chosen a good probability
distribution. Therefore, after generating the local reduced spaces via randomized
training we propose an adaptive algorithm in section 6 that iteratively (i) computes
the global reduced approximation obtained using a generalized finite element method
(gfem) with the current local approximation spaces; (ii) computes the local residuals
on each subdomain and marks a certain percentage of subdomains with the largest
residuals; (iii) solves the PDE locally on the marked subdomains prescribing the trace
of the global reduced solution as boundary conditions; and (iv) enriches the local
approximation spaces with a proper orthogonal decomposition (POD) basis for these
solutions. The algorithm terminates if a rigorous global a posteriori error estimator
based on local residuals that is derived in subsection 6.1 by means of the Brezzi-
Rappaz—Raviart theory [8, 14, 15, 72] lies below the prescribed tolerance. We prove
the exponential convergence of this adaptive algorithm for coercive linear problems in
subsection 6.3, noting that to the best of our knowledge even the case of noncoercive
linear problems is still an open problem. We demonstrate in numerical experiments a
nearly exponential convergence of the adaptive algorithm for the nonlinear diffusion
problem.

4. CB-ROM. In the following, we devise a CB-ROM for (2.2); we refer to
Appendix A for a complete overview of the notation. To that end, we introduce the
overlapping partition, which we will use in subsection 4.1 to define the partition of
unity

(4.1) {wl}fidf, wi{xGQ:mgl ||xy||oo<5over},i1,...,Ndd,
yeil;

where, dover is the size of the overlap. Note that | J, w; = Q.

As motivated in section 3, we aim at generating local reduced models on each
subdomain w;, ¢ =1,..., Ngq. Thanks to the assumptions in section 2, we may choose
to construct one reduced model for components in the interior, components in the
corner, or at the boundary, respectively; see Figure 1(a). Therefore, we introduce the
following archetype components: the “corner” (co) component is associated with the
corner elements of the partition {w; };; the “edge” (ed) component is associated with
the edge elements of {w;};; the “internal” (int) component is associated with the
internal elements of {w;}; (see Figure 1(a)).

We denote by Q°, Q" Q4 the spatial domains associated with the three ar-
chetypal components. For edge and corner components, we denote by Ffi?r,Fg‘i’r the
Dirichlet boundaries; furthermore, we introduce the local HF spaces associated with
the underlying HF discretization
(42) Y HNQM), U C Hy e (), U C Hy g, (Q°°)

** dir

0 0.,

and the corresponding (semi)norms ||-||e with e € {co,ed, int} that will be introduced
n (4.9). We denote by £ = {co,ed, int} the library of archetype components, and by
L:{l,...,Naa} — £ the function that associates each element of the partition {w;};
to the corresponding label; we further denote by ®; : QY — w; the mapping from
the (appropriate) component to the ith element of the partition. We remark that
the mappings ®; are simple translations for all internal components, while they are
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the composition of a rigid translation and a rotation for boundary (edge and corner)
components to ensure that @i(F]&iir) C 0N and thus to facilitate the imposition of
Dirichlet conditions.

4.1. Partition of unity method for localized model reduction. In [4, 46],
Babuska and Melenk proposed the PUM to construct ansatz spaces with local prop-
erties. As discussed in [4], the PUM is designed to include a priori knowledge about
the PDE in the ansatz spaces, and it provides a systematic way to construct ansatz
spaces of any desired regularity. In the framework of CB-pMOR, the PUM provides a
systematic framework to construct global ansatz spaces and offers strong theoretical
guarantees concerning approximation and robustness.

Given the overlapping cover of €2, {wz}f\i’f, we denote by M the minimum constant
such that

(4.3a) VeeQ, card{ie{l,...,Nag}:z€w;} <M,

where card(A) denotes the cardinality of the discrete set A. Then, we define the
partition of unity (PoU) {¢;}% such that

supp (¢i) Cwi, 0<i(z) <1, [[Véillp=(a) < Ci

(43b) Naa
Z(b](‘r):lv Z‘GQ, izl,...,Ndd.
j=1

We say that {¢;} ! is of degree m if {¢;} % € C™ (4 R). Then, we define the PUM
spaces

Nad
(4.4) Lpum = {Z@zpi D € x} C HL(Q),

i=1
where X; = {Co®; ' : ¢ € Y+}. Note that by construction ¢;¢ o ®;* € H{(w;) and
can thus be trivially extended to R?. Next, given the reduced spaces {Z®}ece such
that Z* C Y*, we define the global reduced space

Nada
(4.5) Zgfom = {Z ¢iGio® " 1 G ez } C Lpum.
i=1
Theorem 4.1 provides a rigorous upper bound for the approximation properties of
the PUM space in Q2—the local approximation condition (4.6) provides the foundations
for the localized data compression strategy proposed in section 5.

THEOREM 4.1 (see [4, Theorem 1]). Let u € H(2). Assume that there exist
Ciyevey CNgy Such that (o ®; € Z4 and

(4.6) lu = Cille2(nw) < €5 IVu—=VGllz2nw) <e€vi, i=1,..., Naq,

for some positive constants {e;}; and {ev ;}i. Then, the function ugfem = Zfidf 0i(; €

Lgfem Salisfies

Naa

[u — ugfeml2(0) < VM 2637
i=1

(4.7) .

VU — Vugfom|| 22 () < V2M ZCEE? +eg
i=1
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4.2. Discrete variational formulation and functional norms. We intro-
duce the functions {qb’}. such that 0 < (b'( ) <1 in RY, (b'( ) =0if z ¢ Q°,
||V¢ I L2(®2) < C’ We observe that, if we define the functions ¢; : R — R+ satlsfylng
d)z|w1 ¢5L7 o®; ! and ¢Z|Rd\wi =0, we can show that the set {¢;}; such that

1 ~
(4.8) pi=———=¢; Vi=1,..., Nqq,

ZjENeigh)i ¢J

is a PoU subordinate to the cover {w;};. We introduce the local seminorms
(4.9) [wlle = [10° Wl g1 (@0 @€ L.

Note that for this choice of the local norms, since the mappings {®;}; are rototrans-
lations, if {¢}}_; are orthonormal bases with respect to | - ||, then {(bZC }i_y is or-
thonormal in Hl(wz) for i =1,..., Nqq. Given the spaces X; ¢ := {¢; Co®; * C ey}
fori=1,..., Ngq, we further introduce the inner products and induced norms

(4.10) (w,V)10; = Vw-Vo+wvde, |w)iw =1/(0, W1, w,ve€Xio;

Wi

= \/fQ |[Vwl||3 + w? dz; and the dual norms

(411)  [florw = sup 2
veXio 11|10 VEXpum

for f € X[, and F € X,

pum*

Then, we introduce the HF problem: given u € Pg10, find u, € Xpum such that

the global norm

v .
, |1 Fll=1,0 = sup £ ), i=1,...,Nqq,
U\lQ

s

(4.12a) Ru(up,v)=0 Ve Xpum,

where

(4.12b) R, (w,v) ::/ Nu(x; w,v)de with 7, (z;w,v) = ku(z;w)Vw - Vo — fuo
Q

and R, : Lpum — X7,

pum*

4.3. Residual assembly and algebraic formulation of the reduced order
model. We omit dependence of {2 and #,, on nqq to shorten notation. We consider
the Galerkin ROM

(4.13) find @, € Zgom : Ry (T, v) =0 V0 € Zgtom.

Given the local approximation spaces {Z®}ece with bases® {¢?}7 ;, we define the
basis of Zgfem {(i,j}i,; such that
(4.14a) Gj=Clod g, i=1,...,n, j=1,..., Naa.

Given u € Lgfem, We set N :=nNgq and we denote by u € RY the vector of coefficients
such that

Ndd n

(4.14b) u= ZZ i+(—1)n Gig-

j=11=1
2Here, we choose n = dim(Z™) = dim(Z°®d) = dim(Z°®). This choice simplifies notation and is

also convenient for code vectorization. The extension to reduced spaces of arbitrary size is straight-
forward.
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Then, we introduce the discrete residual R : RY x Pglo — RY such that
(4.150) (R (W), 1y = P (1:Gi)
and the algebraic nonlinear problem associated with (4.13),
(4.15b) find i, € RY such that R, (4d,)=0.

In order to discuss the practical evaluation of the discrete residual R, in (4.15a),
we define Neigh; = {j :w; Nw; # 0}. Then, we observe that

mu(aumci,j) :/ ym (Jj’aﬂ|w1 ’Ci7j) dx

(4.16a) :/m 7 (x; (auywi) o ®; (Y 551]‘) dz,

where

(4.16b) Y (w3w, v) = (HM(@i(x);w)V@;lvq);TVw Vo — };v) det (V,)
with fu = fu o ®;. Since {®;}, are rototranslations, (4.16b) reduces to

(4.16¢) nA(lf) (z;w,v) = Kku(Pi(z);w)Vw - Vo — f;v.

We observe that the Jacobian J,(-) of the algebraic residual R,(-) is sparse
for large values of Ngq. More precisely, exploiting (4.16) and %,|., = ZjeNei gh,
Z?:l(ﬁu)w(jq)nﬁi,j» it is easy to verify that the number of nonzero elements of
J,.(+) is bounded by

Naa
(4.17) nnz (J,(u)) < Z n?card(Neigh,) = O (nQNdd) VueRVN.

i=1

For the model problem considered in this work we have card(Neigh;) < 9 for i =
1,...,Nyq-

Assembly of the residual in (4.16) is extremely expensive due to the need to inte-
grate over all instantiated components {Q%}. To speed up computations, we should
thus resort to hyperreduction techniques [6, 16, 24, 59, 73]. The choice of the hyperre-
duction procedure strongly depends on the PDE model of interest, on the underlying
HF numerical scheme, and on the geometrical parameterization; we refer to [69] for a
discussion on the treatment of geometry parameterizations. We further observe that
evaluation of (4.16a) involves evaluation of u,, in the mapped quadrature points of the
mesh SA)Li; this evaluation is extremely expensive for unstructured meshes and thus
requires a specialized treatment. The development of specialized hyperreduction tech-
niques for CB-pMOR is part of ongoing research and is not addressed in the present
work.

5. Data compression: Randomized localized training. The aim of this
section is to devise an actionable procedure to build the local approximation spaces
Z* C Y* for e € £ such that

(5.1) qré%; Huﬂ|wi —Co @;1“110-% <etor fori=1,...,Nad, € Pgio(naa),
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F1c. 3. Nonlinear diffusion. Archetype components with corresponding oversampling domain.

where €401 > 0 is a prescribed tolerance. Condition (5.1) implies that the local spaces
Zint zeo Zed should approximate the manifolds

(52) me = {U'N’wi o®; : L;= ®, e ‘@glo(ndd)v Ndq € N} - y.

for e € £. The computation of snapshots that belong to the manifolds {171°}4 requires
solving global problems and is thus unfeasible in our framework. Instead, in subsection
5.1, we propose to rely on oversampling to identify an actionable localized manifold 771
for which we can compute snapshots; then, in subsection 5.2, we propose a randomized
training algorithm to construct local approximation spaces.

5.1. Oversampling. We fix i€ {1,..., Nga} such that L; = e, and we define the
patch Qovr C R? with input boundary e c an We extend the mapping ®; to Q
and we define Qoyr; = P; (Qovr) —for the considered model problem, the mapplngs
{®;}; are linear maps that can be trivially extended to R?. As depicted in Figure 3,
we consider Qoyr; = UJengh Q;, where Neigh, = {j :w; Nw; #0}.

We denote by u; , the restriction of the solution w, to Qoyr,; and we define @; ,, :
u;,, 0 ®;. We observe that u; ,, solves the problem (cf. (4.16¢)):

(5.3a) /A K (Ui 1)V, - Vode = /A fuvdx VYve y;)}f
Q3 Q8
with ;|5 —uzuoq) and Yy ={vo ®;:vlq,,, ; € Xpum; Vo0, ; =0} C H Q).

Therefore, ul . is a function of the subset of parameters that are active in {4y, ; and of
the boundary datum. We denote by #* the active parameters and by G* C H 1/ 2(1’" )
the domain for which (5.3a) is well-posed. Then, we introduce the transfer operator
T*:G* x P* — Y* such that T (g) = u|g. where u satisfies (5.3a) with u‘aﬁg‘/r\f;n =0
and ulg, =g.

To provide a concrete referenge, for the model problem considered in the numerical
investigations, we find #* = ®ZV:‘1{‘ Px{1,...,N3,,0}, where N2, = card(Neigh;) and
1* = 0 means that the source term is outside the patch. Note that the parameterization
&* is associated withthe archetype component of interest and is independent of the
size of the system (i.e., the number of subdomains Ngq).

We define the (unknown) set G'ue* C H'/2(T'$)) that contains all possible
restrictions of the solution field to the input boundary for all instantiated com-
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ponents w; of type e, all parameters, and all choices of ngq; clearly, we have
me = {Ts(g) : g € G"™*,u € P*}. If we introduce the “approximation” C° of
Gtue® we obtain the localized manifold

(5.3b) nz:{zxm:geéﬂue@}.

We observe that snapshots of M" can be computed by solving local problems
in the patch Qovr for prescribed choices of the active parameters p € #* and the
boundary conditions. The patch Qovr should be significantly smaller than € to en-
sure rapid computations; at the same time, Qovr should be large enough to ensure
decay of high-frequency modes on I‘in. Recently it was shown in [41] that for lin-
ear diffusion problems the local approximation error decays exponentially in the dis-
tance between Q(')vr and the target subdomain. Here, we investigate the effect of
the size of the oversampling domain numerically in section 7 to provide some guid-
ance on the choice of the oversampling size for the nonlinear diffusion problem of
section 2. .

The ChOlce of the set of boundary conditions ¢ is of paramount importance;
clearly, g should be rich enough to ensure that sup,,¢y;e dist(w, m ) < é&tol. Since the
problem is nonhnear generating a discrete representative approximation of the high-
dimensional set (° is also particularly challenging. In the next section, we directly
prescribe probability den51ty functions (pdfs) py,. of the space of boundary conditions

for all e € £: the set Q is thus defined as the support of the pdf p}.

2. Randomized training. Algorithm 5.1 illustrates the randomized training
procedure. The algorithm reads as a randomized POD [74] with respect to parameter
and boundary conditions: the inputs of the algorithm are the number of training
points Nyrain, the size of the sought reduced spaces n, the inner product (-,-)s, and
the pdfs {p},, p}.} for the archetype component e € £; the output is the reduced space
Z*. Here, the notation

Z=POD ({u}225", (), n)

means that Z is the n-dimensional POD space associated with the snapshot set
{u®}eei and the inner product (-,-)e.

It is well known that the POD is optimal in L? (p; X pp.) in the limit Ngrain — 00;
however, since the pdfs pj,,p},. are chosen a priori, they might not be representative
of the true distributions for the global systems. Provided that additional information
on the class of global systems of interest is available, these observations motivate the
enrichment strategy proposed in section 6.

Algorithm 5.1 Randomized localized training.
Inputs: nipain size of training set, n size of the ROB, (-,-)e inner product, p5, pp.
pdfs for the component e € £.

Output: Z* local approximation space for the component e € £.

1:  Generate u(k) ifiglp gt* )HN(}pb s k=1,..., Ntrain-

2: Compute uk = T' ) (g") for k=1,..., Ntrain-
3: =POD({u” }"‘”““ (-, )esn).
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Remark 5.1 (probabilistic a posteriori error estimation). Given e € £ nesy addi-
tional simulations {u(}7*%* C M, and the space Z°, we introduce the error indicator

1 Hu(i)—H:Z-.u(i)H.

(5.4) E* = , ,
[u@]la

Ntest =1

which measures the average relative projection error on the test set {u(')} Here,
IT%. : y° — L° is the projection operator on Z*. Provided that u(®) = =T, 5 (W) with

,u(j) ~ p;, and g Ny ph., then (5.4) is an unbiased estimator of the eXpected relative
projection error

17 (9) — MzeTyu(g)lls
1T (9)lle

(5.5) E*® = Epinpg gng,

Note that the error indicator provides a measure of the performance of Z*® for the
particular choice of the sampling distribution.

Choice of random parameters. The oversampling domains {ﬁ;vr}.eg in
Figure 3 contain NJ; subdomains (cf. Figure 3). For the model problem consid-
ered in this work, we set

W= [u(l), e 7/1(N5d),i*] . p 2 Uniform (@) ,

(56) Dsrc t=1 N.
Pr(i*t){ Nio e Ndas
1= psre, t:O’

where pg.. is the probability that a source term is present in the patch. If Ngq is
known a priori, we might set ps = N . In this work, however, we consider pg.. =0.5.

Random boundary condltlons. As motivated in section 3 we aim at defining
a random boundary datum that interpolates with high probability a function of given
smoothness in order to benefit from the expected more rapid decay of higher frequen-
cies; cf. Figure 2(b). To that end, we rely on the definition of fractional Sobolev
spaces via the Fourier transform.

In detail, we introduce the curvilinear coordinate s € [0,1] (cf. Figure 3); then,
given Ny € N and o € R, , we define the complex-valued random field g such that

N¢—1

~ CkJrl lckJrl 27rksi re _im iid
5.7 S; ., cn et ~1(0,1).
(5.7) g(sic E 1+ (2nk)%a k> Ck (0,1)

Recalling that for any k, k' =0,..., Nt — 1 and a € N, we have

(o3

! d
X s . .
/ 6271'](351 6727rk 51 g — 5k,k’, y a627rk51 (27Tki)a€2ﬂ—k51,
0 S

(27mki)¥(—2mk'1)® = (4n2kk")*,

we find that
IG(5€, ™) [Fra0,1) =l €7, €™ F2 0.0y + 5 (5€7,6™) 7201
Ne—1 Nt 5
= (Ghr +icgh) (i —icih) = Z () + (")
k=0 k=1
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(a) a=1 b)) a=2

Fic. 4. Samples of random boundary conditions for 3 choices of c.

Algorithm 5.2 Random sample generator of boundary conditions.
Inputs: N, o (cf. (5.7)), tmax € (0,1], 0 € £.
Output: g:[0,1] = [0,1) boundary condition.

1: Draw ¢, c™ € RM s.t. ¢f¢, cim £ n(,1).

2: Draw X, X5, X3 id Uniform (0, @mayx), set a =min{X;, X2}, b=max{X;, Xs}.
3: Set gtV = Reallg(-;c™,c™)].

4: if e=1int then

5 g=a+t oo (9 —ming®).

6: else

7 g (s)=gM (0.75).

8 g®¥(s)= (a+ g g (97 —ming(z’)) s(1—s).

9: 9= mai((;(x?)g(?))'

10: end if

The latter implies that the random variable X := ||§(~;cre,cim)||§{a(071) is distrib-
uted as a x? distribution with 2/N; degrees of freedom; therefore, the parameter o
in (5.7) controlsNQin a probabilistic sense) the Sobolev regularity of the datum g.
The function in ¢ that we prescribe as (random) boundary conditions then interpo-
lates the real part of g times some scaling factor as discussed in the next paragraph.
Thus, the prescribed boundary datum interpolates with high probability a function of
given smoothness on the boundary of the oversampling domain. We illustrate this in
Figure 4, which depicts samples of the random field g— gayg With g = Real[g(-;c™, c¢™)]
and gavg = fol g(s)ds for Ny = 20 and increasing values of the smoothness pa-
rameter «. We observe that, as « increases, the samples become increasingly
smooth.

In order to choose p}., exploiting a physical argument—the solution u, to (2.2)
represents water saturation—we anticipate that u, € [0, Wmax] for some Gpmax < 1.
Furthermore, we wish to devise samplers that reflect the Sobolev regularity of the
datum g. For these reasons, we propose to consider the procedure in Algorithm 5.2
to generate random samples of the boundary condition. We first generate a sample
of the random field g in (5.7) and we extract its real part (cf. line 3). If e = int, we
simply rescale the datum to ensure that the image of g, Im[g], is contained in [0, tmax]
(cf. line 5); if @ € {co,ed}, since by construction %g(l)(()) = ;%g(l)(l) for ke N, we
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define g®(s) = g™V (es) with® ¢ = 0.7 (cf. line 7); then, we enforce that g(s) =0 for
s€{0,1} and g >0 (cf. line 8); finally, in line 9, we ensure that Im[g] C [0, Gmax]-

In the numerical experiments, we provide samples of the boundary conditions for
various values of o € R} and we investigate performance for the model problem con-
sidered. In particular, we discuss the impact of the choice of a. Note that the sampling
strategy proposed in this section depends on several parameters—Ng, @, Umax in Algo-
rithm 5.2 and pg in (5.6)—that might be difficult to tune. This observation justifies
the use of a few global reduced solves at the training stage to improve performance
of the CB-ROM.

6. Basis enrichment based on reduced global solves. In several contexts, it
is possible to identify at the training stage a class of global configurations of interest.
To provide a concrete reference for the model problem of section 2, we might be
interested in solving the global PDE for (i) any choice of nqq € {ndda,LB,.-.,ndd,uB}
with ngqLp,naq,us € N, (i) any p e :@7 (iii) up to mge distinct sources. The
aim of this section is to devise a localized training procedure with adaptive global
enrichment that exploits prior knowledge about the global system to enrich the local
spaces. In subsection 6.1, we present a residual-based error estimator that will be
used to drive the enrichment strategy; in subsection 6.2, we present the training
procedure; in subsection 6.3, we present an a priori convergence result for linear
coercive problems. As in section 5, we assume that the system is described by a single
archetype component to shorten notation.

6.1. Residual-based error estimation. Exploiting notation introduced in
subsection 4.3, given i € {1,...,Naq}, and u € H(Q), we define the local Riesz
elements ¢, [u] € X; o as

(6.1a) (Yulu),v) . = / Al(f) (z;u,v) de Yve Xy,

and the dual residual

(6.1b) e ful = w1,

Next, Lemma 6.1 provides an upper bound for the global dual residual in terms of
the localized dual residuals {t(V[-]};. The proof of Lemma 6.1 can be found in [10,
Proposition 5.1], and is also provided for the sake of completeness in section SMI.

LEMMA 6.1. Let {¢:}; be a PoU that satisfies (4.3). Then, given u € Xpym, we
have

(62) 198,010 < VT (a1 )

i=1,...,Nda

with CF := y/max{C; + C? + 1,2}.

We will employ the local residuals (6.1b) to mark instantiated components of the
partitions where the error is large; see subsection 6.2. Let us also note that as the
infinite-dimensional analogon of R, as a map from H{ () to H~!(2) is not in C"!, one
cannot expect that the || - || -1 o-norm of the residual (see (4.11) for the definitions)

3The choice ¢=0.7 is not crucial for the methodology.
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stays bounded if the mesh size goes to zero. As a remedy one may consider R, as
a mapping from Wol’p(ﬂ) to W=LP(Q), p > 2; see [14, 56, 64]. As this significantly
complicates the calculations of the dual norms, we opt here for assuming that the
dimension of the HF space is fixed and consider the || - ||—1,o-norm. We may then
define the error indicator

(6.3) A, =

For linear problems it is straightforward to derive a rigorous a posteriori bound based
on R,[-] (see, e.g., 4, 11]). Here, we combine Lemma 6.1 with the Brezzi-Rappaz—-
Raviart (BRR) theory [8, 14] to derive a rigorous residual-based error bound for the
global error; see, in particular, [15, 72] for the application of the BRR theory in the
context of model order reduction. To that end, if we denote by 9, (%) the Fréchet
derivative of i, at u,, we require that

(R, (Up)w, v)
6.4 0<fBo,:= inf sup —en/ 0
(6.4) 2P wexpumvexfum lwlialv),e

[wl1,070]v]; 070

and that there exist constants 72, and Lo, such that

(6.5) (R, (U )w,v) < v2plwlwrr(e) Vg,
(6.6) 193, (@) = R, ()| < Lo [Ty — wlwrr (@)

for w € B(uu, R) C Xpum and v € Xpum. Here, R is supposed to be sufficiently
large and |wli o = |[|[Vw| 120y and |w|w1.rq) = [|[Vw|[zrq). We note that condi-
tions (6.4)—(6.6) are satisfied for the considered model problem (2.2) in the infinite-
dimensional setting albeit potentially with different norms [62, Theorem 3.4], while
the inf-sup condition (6.4) can be verified a posteriori. To obtain a proximity indica-
tor [72, 15], which is based on localized and easily computable residuals via the Riesz
representation, we employ, as in [64], the finite dimensionality of Xpum and define

Cp = SUpvex’pum( vlwie)/[vl1,0 and

6 o 2L2,pchm max CF Jii(t(i)[U])Q
. Hop T Bg,p i=1,..,Naa i=1 8 '

The proximity indicator 7, , will be used to validate whether %, is close enough to
u,, within the adaptive Algorithm 6.1. We obtain the following result.

PROPOSITION 6.2 (global a posteriori error bound). Let 7, , <1 and (6.4), (6.5),
and (6.6) be fulfilled. Then there exists a unique solution u, € B(u,, Bap ) c XLpum

Lg,pch

of (4.12) and the error estimator

(6.8) Aum:_@(l_ V31—Tup)

L2,pch
satisfies

(6.9) Hau - uqu,Q < Apup-
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Proof. Lemma 6.1 and 7,, < 1 imply that 7, , = 2%25’30" 1R, (W, )| 1,0 < 1.
2,p
The existence of a unique solution u, € B(u,, L?Ti;) of (4.12) and

(6.10) [ty —

Lo S L/BA(l —v1- 7~'u,p)
2,pCh

then follows using standard arguments in the BRR theory (see [15, 72, 14, 56] and for
this particular PDE [62]). As the function t(z) :=1— /1 — z is strictly increasing on
(0,1), applying Lemma 6.1 to the right side of (6.10) concludes the proof. O

Remark 6.3 (discussion of the result). It is well known that for nonlinear PDEs
the dual norm of the residual can only be used as an a posteriori error estimator if the
approximation is already close to the HF solution (see, e.g., [14, 71]). Relying solely
on the dual norm of the residual can therefore be problematic as it may seem that
the approximation error is acceptable even though that might not be the case. The
proximity indicator 7, , (6.7), which only relies on computable constants, can be used
to assess, whether indeed the approximation u, is close enough to w, such that the
error estimation (6.9) is valid. While the proximity indicator 7, (6.7) and thus the
a posteriori error estimator (6.8) solely rely on the dual norms of local residuals that
can be computed on the components and therefore do not require any global solutions,
the constants L, and B2, are global constants. We will discuss some strategies on
how to estimate these constants in Remark 6.4. To the best of our knowledge even
for linear elliptic PDEs there are no results in the conforming setting that solely rely
on local constants (the a posteriori error estimators in [10, 63], e.g., both contain
the global coercivity constant). A fully localizable a posteriori error estimator for
nonlinear nonmonotone PDEs would therefore be at least a paper on its own and is
thus beyond the scope of this paper.

Remark 6.4 (estimation of constants). Regarding the estimation of the constant
c¢p, in the inverse inequality, we refer to classical results, e.g., in [23] noting that the
global inverse inequality only requires the measure of ). Estimating the constant
Ly, relies on estimates of the constant in the Poincaré inequality for L?, WhP and
the Sobolev embedding inequality [[v][co) < celvlwirq) (see, e.g., [62, subsection
3.1.2]). The estimation of cg can be easily localized. An estimate of the constant in
the Poincaré inequality involving the measure of {2 can be found in [26, (7.44)] for
functions that are zero on 0f). We hope that if the local reduced bases contain the
constant function it is maybe possible to obtain localized and more precise estimates
of the Poincaré constant. Finally, similarly to [63], we propose to use a localized

model order reduction approximation of 35 ,. In detail, we suggest using the following
(R}, (@ )w,v)

5 T T
WELgferm Supvezgfcm |lwl1,elv]i,a where

heuristic and hierarchical estimator 45°7 := inf

Zgtem & 2gfem C Xpum- We conjecture that using a certain number of additional local

=

basis functions per component might already yield an acceptable estimate of 3 p.

6.2. Adaptive algorithm. We introduce the pdfs {pl'“;zot')C ;e € £} for localized
sampling and the pdf p%}o that is used to generate global problems. In the numerical

examples, we consider ngq ~ Uniform({4,...,12}), u®® £ Uniform (%), and we assume
that exactly one source term is active in Q (that is, ng. = 1). Given the partition
{w;}i, we define the local solution operators

(611) T;SZ) Iz %Ii,() S.t. ERM (U‘i’jjlgl)(u),’l}) =0 Vwve xw
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Algorithm 6.1 Randomized localized training with global enrichment.
Inputs (localized training): nicS, = number of solves, n'°¢ = size of the POD spaces,
{p},, Ph }o sampling pdfs.

Inputs (enrichment): ntgizin = number of global simulations per iteration, n8° =

number of modes added at each iteration, maxit = maximum number of outer loop
iterations, tol = tolerance for termination criterion, pﬁlo = global configuration
sampler, m, = percentage of marked components at each iteration.

Outputs: {Z*}ece local approximation spaces.
Localized training

1:  Apply Algorithm 5.1 to obtain the local spaces {Z®}ecse-
~Enrichment
1: Sample ”%:Zin configurations p(*) nwdpﬁlo, Pirain = {pF }x
2: for /=1,... maxit do
3: Initialize the datasets D®* =0 for e € {co,ed, int}.
4: for p € Pirain do
5: Compute @, using the PUM-CB-ROM (cf. section 4).
6: Compute local residuals (6.1) ¢!, = t,(f) [w,] for i=1,..., Nad -
7 for e € £ do
8: Mark the m, % instantiated components of type e with the largest
residual, {w;}iere .
9: Solve the local problems (6.11) in {wi}iEIﬁmk,,v uf , = %Tﬁl)(ﬂﬂwi).
10: Augment the dataset D* =D* U {uf , 0 ®;:i €I, }-
11: end for
12: Compute A, , (6.8) with approximate constants.

13: end for
14: Update the POD spaces Z* = Z* UPOD({w — Ilzew : w € D*}, (-, -)e,n®).

15: if max,cp, ., Au,p <tol then
16: BREAK

17: end if

18: end for

for i=1,...,Ngq,,. The particular choice of the operators {T,Ez)}i in (6.11) is moti-

vated by the convergence analysis in subsection 6.3 (cf. line 6 of Algorithm 6.2).
Algorithm 6.1 contains the data compression procedure. First, we initial-

ize the local spaces using Algorithm 5.1. Then, we sample nfrlzin configurations

Phrain = {u(k)};if“ with ,u(’“) id pﬁlo, and we proceed with the enrichment itera-

tions. At the fth iteration, for each p € Pirain, we resort to the CB-ROM pro-

posed é% section 4 to estimate the solution u,; we compute the local residuals (6.1)

3

v, =t [ay), i=1,...,Naau, and, for all e € £, we mark the m,% instantiated

components of type e with the largest residual, I# C {1,...,Naq,u}. Then, we

mark,e

solve (6.11) to obtain the local fields ug , for all i € I}, | (cf. line 9), and we update
the dataset of simulations @*® associated with the marked elements of type e (cf. line
10). In view of the termination condition, we further compute the error estimator
A, p (6.8) with approximate constants. At the end of the loop over the parameters,
we update the local spaces using POD (cf. subsection 5.2) (cf. line 14), and we check

if max,ep, i Au,p is below a user-defined tolerance.
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_ The solution to (6.11) is performed over the domain w; (or equivalently Qb
Qi ), and the Newton solver can be initialized with the null solution; for this reason,
it is significantly cheaper than the solution to (5.3a). We observe that the local
solutions u? , (cf. line 9) are not well-defined on dw; (i.e., division of 0 by 0); however,
since we are ultimately interested in the PUM space Zgfem (4.5) and due to the choice
of the local norm || - ||e (cf. (4.9)), this issue does not affect our procedure. We further
observe that several steps of the algorithm are embarrassingly parallelizable: the loop
over the configurations (cf. lines 4 to 13), the computation of the residuals (cf. line
6), the solution to the local problems (cf. line 9).

We observe that the performance of Algorithm 6.1 depends on the choice of sev-
eral hyperparameters and in particular on the number of modes n&° added at each
iteration. In the POD literature, the size of the POD space is typically chosen based
on an energy criterion (see, e.g., [57, eq. (6.12)]). A thorough investigation of the sen-
sitivity of Algorithm 6.1 with respect to n8° is beyond the scope of the present paper.
Choosing small values of n#!° requires more outer-loop iterations for any prescribed
accuracy; however, since the CB-ROM is more and more accurate as the iteration
count ¢ increases, we envision that reducing the size of n&'° might lead to more accu-
rate reduced spaces for any fixed dimension; therefore, the choice of n8'° ultimately
reflects a trade-off between offline costs and online efficiency.

Remark 6.5 (computational complexity of Algorithm 6.1). The computational
costs of Algorithm 6.1 are dominated by the solutions of the PDE and the compu-
tations of the local residuals on the subdomains or oversampling domains. In detail,
conducting the randomized local training in Algorithm 5.1 requires n;,i, solutions of
the PDE on the oversampling domain for each archetype component, which can how-
ever be performed in an embarrassingly parallel manner. Similarly we can use a ran-
domized SVD [28] to compute the POD basis that is also amenable to parallelization.

As the reduced basis functions for one subdomain w; have joint support only
with the reduced basis functions of very few other subdomains w;, we expect that
each of the dim(Pyya;n) solutions of the global reduced system should scale linearly
in the number of subdomains Nqq (see also (6.1a)) and, at worst quadratically in the
dimension of the local reduced spaces {Z°®}e¢c ¢ if one resorts to a conjugate gradient
method within Newton’s method. The dim(Piain) - Nga,, computations of the dual
norms of the local residuals t,(f) require the solutions of dim(Pyain) - NVag,, local linear
PDEs (6.1a) to compute the corresponding Riesz representatives. As we solve in line
9 of Algorithm 6.1 the local problems only for the marked subdomains, we do not
expect these computational costs to be dominating. The same applies for the POD
to be performed in line 14.

6.3. A priori convergence analysis for coercive linear problems. We
study the in-sample a priori convergence of the enrichment procedure in Algorithm
6.1; we consider the case of linear coercive problems, and we apply the simplified
randomized procedure contained in Algorithm 6.2; the proof follows the argument
of [9, Theorem 1]. To clarify the presentation and avoid unnecessary notation, we
assume Pyrain = {1}, and we omit dependency on y; in the supplementary material
(KSTT_supplement.pdf [local/web 224KB|), we discuss the extension to multiple
configurations. We also assume that the cardinality of the library of components is
equal to one and we omit dependency on e.

We define the model problem,

(6.12) findue X : R(u,v) = f(v) —alu,v) =0 Yvel,
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Algorithm 6.2 Simplified randomized localized training with global enrichment.
1: Initialize Z = Zj.

2:  Sample nfrlzin =1 configurations p ~ pﬁlo, Prirain = {1}
3: for /=0,...,maxit do
4: Compute U, using the PUM-CB-ROM (cf. section 4).
5: Find k = argmax;—1,_ n,, t[uy).
6: Solve the local problem: find 7'%) (ug) € Xj,0 such that
R(tp + T (Uy),v) =0 for all v e Xy p.
7 Define u* = (ﬁl—kT(’“) (t¢) and update the local space Z = Z U span{u* o @ }.
8: end for

where H}(Q) C X’'C HY(Q) is a suitable Hilbert space on . We also introduce the
energy norm and the associated dual norm:

(6.13) |lw|e = Va(w,w) YweX, Hf||3¢vzsupM VfeX'.

veX ||v||a

Given the partition {w;} Y% we further define the associated mappings {®;} %!, the
associated PoU {¢;} N4, and the local spaces X; = H'(w;) N X and Xio = H} (w;).
Then, we define the local dual residual norms such that

; R
(6.14) t@u] = sup (u,v)’
veXio |Ivlla

Finally, we denote by ¢, the constant such that (see (6.2))

(6.15) 1R ()| xr < pu

Proposition 6.6 shows that the reconstruction error decreases exponentially with
respect to the iteration count ¢ for any choice of the initial reduced space.

PROPOSITION 6.6. The sequence of PUM-CB-ROM solutions {Up}s=12. .. satis-
N t/2 N
fies llu=Tiella < (1= 522-) " llu=Toll.

Next the lemma summarizes two standard results that will be used in the proof
of Proposition 6.6.

LEMMA 6.7. Let Zgfem C X and let U € Lgfem satisfy R(U,v) =0 Vv € Lgfem-
Then, we have

6.16 u—ullo= 1inf — Ulla,
(6.163) @=ula=_inf Jo—ul

gfem

(6.16D) @ = ulla = 19R(u, ) [lx-

Proof (Proposition 6.6). Exploiting (6.15) and then (6.16b), we find

617) (<90) > 2 3% () 2 L 1% = o ol
Naa = Nddcpu 4 Nddeu
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(£+1)

afem - As a result, if

By construction, uj°® = T")(7,) in Algorithm 6.2 belongs to Z
we consider ¢ =1 + ul°® in (6.16a), we find
loc||2

lu—Tesa |17 < M — e — wi2®)7 = llu — el — 2a (w =g, i) + [|ugll-

Since
a (u— g, up®) = R (Te +u, wid) +wi|[7 = [|lug®||2
=0
and
loc =~
R(u— ~
el = sup QD) gy BT o)
velno MVl vexio vl
we obtain
2
(6.18) = e 12 < lw = el = (M)
By combining (6.17) and (6.18), we obtain
1
T L —ay|?
Hu uf-‘rl”a = Nddcl%u Hu u@“aa
which completes the proof. ]

7. Numerical results. In subsection 7.1, we investigate performance of the ran-
domized sampling algorithm for a linear problem; then, in subsection 7.2, we consider
the nonlinear diffusion problem introduced in section 2. Numerical simulations are
performed in MATLAB 2020b on a commodity laptop.

7.1. Performance of randomized training for a linear problem. We first
provide numerical investigations for the linear advection-diffusion-reaction problem

{ =V (116Vuyg + [p2, p3)Tupg) + patiyg =0 inQoue = (0,0.3)%,

Up,g =9 on aQovr = 1—‘liny

where k(z) = m and p = [, 2, p3, pa] € P=10.2,1]x[-1,1]2x[0,1]. We consider
the extracted domain £ = (0.1,0.2)%. The linear problem allows us to compare our
randomized method with a previously developed data compression algorithm. Note
that the transfer operator T' : (i,g) — u,4|g is nonlinear due to the presence of
parameters. We discretize the problem using the finite element method based on
cubic (P3) polynomials with N;, =360 degrees of freedom on the boundary T'j,.

We compare performance of our randomized algorithm with the approach in [68]
(TE+POD): given the training set Piyain = {uk}zz‘f“ C P, we first solve nipain
independent transfer eigenproblems [3] for each value of the parameter and then we use
POD to combine the resulting spaces. We refer to [68] for further details and analysis,
and we refer to [65] for a similar data compression algorithm. In the numerical
experiments, we set nipin = 100: this implies that TE +POD is required to solve
Ntrain - NVin = 36000 PDEs. We envision that the total number of PDE solves can
be reduced up to O(n - Nirain) by resorting to Krylov methods to solve the transfer
eigenproblem; we refer to the above-mentioned literature for further details.
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10°
_10%
a
5
107
—+TE+POD
o rnd
10°
0 10 20 30 40 50
n n
(a) smooth training (b) Gaussian training
smooth test smooth test
10° 10°
_10? _102
‘
g £
M4 M
10” 10”
—+TE+POD —TE+POD
d d
10 = 108 =
0 10 20 30 40 50 0 10 20 30 40 50
n n
(¢) smooth training (d) Gaussian training
Gaussian test Gaussian test

F1G. 5. Linear problem. Out-of-sample performance; comparison with deterministic training
for Ny =100 choices of the random samples and for two fized test sets. (a)—(b) Smooth test set.
(c)—(d) Gaussian test set.

We set p, = Uniform(%) and we consider samples of the random field g =
Real[g(+;c*, ¢™)] (cf. (5.7)) with N¢=20. Given the restriction of the finite element
Lagrangian basis to the input boundary {¢{};cr,.., we further define the random field

(7.1) g(z;c):= Z cigbfe(x) with ciifisn(O,l),
1€ 1dir

which is used below for comparison. To assess performance, we compare the maximum
relative projection error

(7.2)
Mz u,6) g lgll goe ;
Ermaxsel(Z):=  max 1),g @) u()
J=1,...,Nest Huu(j)7g(j)|ﬁ||H1(ﬁ)

i Uniform (%), g(j) irigpbc,

for the two choices of pp.—“smooth” (with a=1) and “Gaussian” (7.1)—and nest =
100.

Figure 5 shows the results for smooth and Gaussian training and test sets. Here,
we consider training sets of size niyai; = 50 in Algorithm 5.1; furthermore, we compare
error bar plots based on 100 independent choices of the training set. We observe
that our smooth sampling strategy is nearly as effective as TE+ POD for n < 40
for both smooth and Gaussian test sets. This result empirically demonstrates that
randomized methods are extremely effective for identifying dominant POD modes
even for nonlinear transfer operators. We further observe that Gaussian sampling
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effectivity

smooth Gauss

FiG. 6. Linear problem. Effectivity of the error indicator n= L(uest=10). for 100 independent

E(niest=100)
runs and for both Gaussian and smooth training.

is clearly inferior when tested on smooth data, while it performs as accurately as
smooth sampling on the Gaussian test set: we conjecture that this behavior is due to
the low-pass filtering properties of the differential operator.

In Figure 6, we show the behavior of the error indicator E in Remark 5.1; more

precisely, we show boxplots of the approximate effectivity n = % for 100
test —

independent runs and for both Gaussian and smooth training. Note that, with very

high probability, n € [0.5,1.5]. Note also, however, that E strongly depends on the

choice of the sampling distribution, which in practice is largely unknown.

7.2. Application to the nonlinear diffusion problem. We consider the ap-
plication to the nonlinear diffusion problem introduced in section 2. We discretize
the problem using a Q3 spectral element method based on a structured grid with 961
degrees of freedom in each subdomain ;. We apply Algorithm 5.2 with nyain, = 200;
we set {pf, }o as discussed in subsection 5.2 and we consider the smooth sampler de-
scribed in Algorithm 5.2 for Ny = 20 and various choices of a and Uy,. We further
compare performance with randomized training based on the random field

.. — —9
)= Y oo, e 2 (T T,

;
€18 2 4
dir

(7.3) f(c,u) = max{min{c,u},0},

where {IY;,}e denotes the set of indices of the mesh on the patch input boundaries and
{(bge"}. are the Lagrangian bases associated with the HF discretization. We refer to
the sampling procedure in Algorithm 5.2 as smooth sampling; we refer to the sampling
procedure based on (7.3) as Gaussian sampling. Nonlinear systems are solved using
a standard Newton’s method with line search.

We consider a piecewise tensorized bilinear PoU {¢; 4 (j—1)nq, () = ;¢ (21) ¢ (x2)
}idd,, where {¢14}; is a PoU subordinate to the cover

{wild = ((1 = 1)H — over/2,iH + Sover/2) };21.

For this choice of the PoU, we have that || %qﬁ}dHLoo(Q) = % and thus the constants
C; in (4.3b) are given by C; = % for i =1,...,Ngq. Note that, since we impose

Dirichlet conditions on 0€2, we can consider vazdf w; = . Note also that the constant
M in (4.3a) is equal to four.
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It is possible to verify that, for the proposed PoU, there exist q/ﬁ\mt,a“’, aed such
that

di=¢ i o® T i=1,..., Ny,

for any choice of ngq € N; this is due to the particular choice of the mappings {®;};
and of the archetype components.

7.2.1. Localized training. We compute nies; = 30 global solutions for ngq =
10 (Ngqa = 100) components; then, we define the test datasets {?D®}ecicoed,int} DY
extracting the solution in each element of V — card(®*®) = 1920 (resp., 120,960) for
the internal (resp., corner, edge) component. Finally, we introduce the localized error
indicators

(7.4) s (T = 1 Z ||waZ.wH,, ecs,

eIl T card(D0) &, e

which are used to assess performance.

Figure 7 shows random samples of the boundary conditions on I';, for internal and
edge components as provided by Algorithm 5.2 for various choices of o and Ny = 20
and Umax = 0.5. As for the linear case, the value of « encodes the spatial smoothness
of the samples. We further observe that Algorithm 5.2 automatically enforces the
proper condition at the extrema s =0 and s =1 — g(0) = g(1) =0 for e € {co,ed},
g(0) =g(1) for e =int.

Figure 8 shows the behavior of the relative errors (7.4) for the three components
for smooth sampling for three choices of a (Nt = 20, lmax = 0.5), and for Gaussian
sampling (7.3). To provide a reference, we also show the performance of the POD spa-
ces based on the datasets {Dfe; }eccoea,int} (bench”) generated using 30 additional
global simulations with Ngq = 100 components. We observe that smooth sampling
outperforms Gaussian sampling for the boundary components; we believe that this is

06 06 06
20.4 . ,‘/‘»- 20.4 30'4\/\
EY 7/ EY EY
o.zm 02/ 0.2\M\
/ 3
AN _
0 0 0
0o 02 04 06 08 1 o 02 04 06 08 1 0o 02 04 06 08 1
s s s
(a) a=1 (b)) a=2 (c)a=3
05 05 05
04 e 04 04
A~
03 o~ 03 / . 03
= - = 7 = /—\
02 ; i 02 { 02 /
~ by
e , /
01 ) 01 - s 01 1/
J % SR / \
0!’{ Y 0 5 0 S
0 0.2 04 06 08 0 02 04 06 08 ) 0.2 04 06 08
s s s
(d)a=1 (e) a=2 (f) a=3

F1G. 7. Nonlinear problem. Samples of random boundary conditions for three choices of
=20, Umaz =0.5). (a)—(b)—(c) Internal component. —(e)— ge component.
Ny=20 0.5 b I l d f) Ed
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FIG. 8. Nonlinear problem. Local approzimation errors (7.4) for three choices of a (Ny= 20,
Umaz = 0.5), and for Gaussian sampling (7.3). Comparison with POD spaces based on the datasets
{D}est}oc{co,eq,inty generated using 30 additional global simulations with Ngq = 100 components
(bench).
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FIG. 9. Nonlinear problem. Local approzimation errors (7.4) for a =4 (Ny= 20, tmaz = 0.5),
and for Gaussian sampling (7.3), for two choices of H*.

due to the presence of strong Dirichlet conditions on (%Alc'm \ffn We further observe
that results weakly depend on the choice of a.

In Figure 9, we investigate the choice of the oversampling size. As described in
Figure 3, in all numerical tests we consider the oversampling domains

Qs = reR?: inf ||z —ylloo <H" :=H — dover, ¢ »
yeNe

where H = 0.1 is the size of the internal domains (cf. (4.6)) and dovy = 0.01 and
thus H* = 0.09. In Figure 9, we reproduce the same results as Figure 8 with H* =
0.04, for the three components, for « = 4 and for Gaussian sampling. We observe

that for this particular problem we can consider a significantly smaller oversampling
domain without significant deterioration of performance; we also note that Gaussian
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F1G. 10. Nonlinear problem. Performance of the PUM CB-ROM on niest = 30 global solutions
for Ngg = 100. (a) Galerkin error versus projection error. (b) Projection error for two choices of
the parameters in Algorithm 5.2.

sampling is more sensitive to the oversampling size. It thus seems that for this test
case choosing boundary conditions that interpolate with high probability a function
of higher smoothness (here H*(T,)) and thus excluding higher frequencies makes
enlarging the oversampling domain unnecessary.

Figure 10 shows the performance of the CB-ROM based on the PUM. In Fig-
ure 10(a), we show the average global L? and H'! relative errors over the test set of
Ntest = 30 global simulations and we also compare these with the H' relative projec-

@ _11 0)

tion error, —L— Y "rest i L “ HI’Q. We here consider tiy,ax = 0.5, Ny = 20, and
ey Svi=1 g el . .

a = 1. We observe that Galerkin projection is nearly optimal for all choices of n;

we further observe exponential convergence with respect to n. In Figure 10(b), we

compare the H' relative projection error for max = 0.5, N = 20, and o = 1 with the

results obtained for @y,.x = 0.75, Ny = 20, and « = 4; we observe that results weakly

depend on the choice of these two hyperparameters.

gfem

7.2.2. Adaptive enrichment. We apply Algorithm 6.1 with error indicator
A, (6.3) to the model problem of subsection 7.2. We consider nlo¢, = 30, nl°¢ =
20, we set {p;}. as discussed in subsection 5.2, and we generate random samples
of boundary conditions at input ports based on (i) Algorithm 5.2 with Ny = 20,
limax = 0.5, @ =1 or (i) on iid realizations of (7.3). We further consider nf. = 50,
n#l° =10, maxit= 3, and we generate global configurations using the strategy outlined
in subsection 6.2. We assess performance based on nies; = 20 out-of-sample randomly
chosen configurations.

Figures 11(a) and (b) show boxplots of the relative H! error after each iteration of
the training algorithm—iteration 0 corresponds to the performance of the CB-ROM
without global enrichment. Iteration 0 corresponds to a reduced space of size n = 20;
iterations it = 1,2, 3 correspond to reduced spaces of size n =20+ 10 - it. We observe
that the enrichment iterations significantly improve performance of the CB-ROM
and reduce the impact of the initial sampling distribution. Figure 11(c) shows the
correlation between the residual indicator (6.3) and the relative H! error on the test
set for all iterations of the enrichment algorithm for smooth sampling; Figure 11(d)
shows the effectivity of the error indicator n = A, /E,e for smooth sampling. We
observe that the residual indicator is strongly correlated with the global error.

Figure 12 shows the maximum relative in-sample and out-of-sample H' error for
the same sampling strategies considered in Figure 11. To facilitate the interpretation,
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FiG. 11. Nonlinear problem; Adaptive enrichment. (a)—(b) boz plots of the relative H' error
on the test set for smooth and Gaussian sampling of localized BCs. (c) Correlation between A, and
relative H error (smooth sampling). (d) Out-of-sample effectivity of the error indicator Ay /Eye
(6.3) (smooth sampling).
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F1G. 12. Nonlinear problem; adaptive enrichment. Behavior of the mazimum relative error on
training (in-sample) and test (out-of-sample) sets for smooth (a=1) and Gaussian sampling.

we also provide the fitted exponential curve E= exp(an + () obtained by discard-
ing the first datapoint. For this model problem, numerical results suggest nearly
exponential in-sample convergence of the adaptive enrichment strategy.

8. Conclusions and perspectives. We presented a CB-pMOR method for
parameterized elliptic nonlinear PDEs. The approach relies on the definition of several
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archetype components and associated local ROBs and ROMs. CB-pMOR rely on two
building blocks: (i) a localized training strategy for the construction of the local
approximation spaces, and (ii) a DD strategy for online global predictions. In this
paper, we proposed a localized data compression procedure based on oversampling
and randomized sampling of boundary conditions of controlled smoothness, and we
relied on the PUM to devise global approximation spaces and on Galerkin projection
to estimate the global state. Finally, we proposed an adaptive enrichment procedure
that exploits global CB-ROM solves to improve approximation properties of the local
reduced spaces.

Numerical results for a nonlinear diffusion problem show the impact of the sam-
pling distribution on performance: given a class of nonlinear PDEs, it is thus neces-
sary to devise an effective sampler that is informed by the problem of interest. The
approach presented in this work (cf. Algorithm 5.2) is simple to implement, and in-
corporates relevant features of the problem of interest—lower and upper bounds for
the solution, Sobolev regularity, Dirichlet boundary conditions. However, it depends
on several hyperparameters that might be difficult to set a priori. In this respect, we
numerically showed that the proposed enrichment strategy reduces the impact of the
initial sampling distribution.

In the future, we wish to extend the approach in several directions. First, we
wish to devise specialized hyperreduction strategies for CB-pMOR, methods based on
the PUM: hyperreduction is key to reduce efficient online memory and computational
costs. Second, we wish to develop rigorous a posteriori error estimators for nonlinear
PDEs for online certification. Third, we wish to analyze performance of randomized
algorithms for nonlinear operators; this analysis is key to providing mathematical
foundations for randomized methods for nonlinear problems and also informing the
choice of the sampling distribution.

Appendix A. Notation. R
Quantities associated with the archetype component o € £ = {co,ed,int}: Q°
reference domain, I'§;. C 9§2* Dirichlet boundary, Y* C Hé Fio (Q2*) HF discretization,

>T dir

¢ : RY — R, reference PoU (cf. subsection 4.2), || - ||e seminorm used for POD (cf.
(4.9)), Z* =span{(’}7_; C Y* reduced space.

Oversampling. ﬁ;xr S0 oversampling domain (or patch), fl'n C 8§;w input
boundary, ¢* ¢ H'/? (T'2,) space of admissible boundary conditions for the local so-
lution operator, #* active parameter domain in Q2 ., T° : G* x #* — Y°* transfer

operator, p; and pp. pdfs of the distributions over #* and G* used for localized
training (cf. Algorithm 5.1).

Instantiated system. {w;} %' instantiated components, Neigh, = {5 : w; Nw; # 0}
index of the neighboring elements of w;, Py, global parameter domain, L {1’; .y Naa}
— £ function that returns the label of each instantiated component, ®; : QY — w;
geometric mappings, {¢;} % instantiated PoU (cf. (4.8)), X;:={Co®; ' : ¢ € Y-},
Xio:={piCo®; ' : ¢ € Y} local HF spaces, Xpum PUM space (cf. (4.4)), Zgtom
global reduced space (cf. (4.5)), R: Lpum X Lpum X Pglo — R global variational form
(cf. (4.12)), u,, solution to (4.12) for p € Pgio, U, solution to the Galerkin ROM (4.13)
for pu € Pyio, {Gij=¢7 0@ vi=1,...,m,j=1,...,Naq} global ROB (cf. (4.14a)).

Enrichment. tEf) ¢ Lpum X — R4 local residual (_4.16b) for the component w;,
A, Xpumx — Ry global error indicator (6.3), Tﬁl) : X — X0 local solution
correction operators (3.1).
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