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Abstract. We propose a component-based (CB) parametric model order reduction (pMOR)
formulation for parameterized nonlinear elliptic partial differential equations. CB-pMOR is designed
to deal with large-scale problems for which full-order solves are not affordable in a reasonable time
frame or parameters' variations induce topology changes that prevent the application of monolithic
pMOR techniques. We rely on the partition-of-unity method to devise global approximation spaces
from local reduced spaces, and on Galerkin projection to compute the global state estimate. We
propose a randomized data compression algorithm based on oversampling for the construction of
the components' reduced spaces: the approach exploits random boundary conditions of controlled
smoothness on the oversampling boundary. We further propose an adaptive residual-based enrich-
ment algorithm that exploits global reduced-order solves on representative systems to update the
local reduced spaces. We prove exponential convergence of the enrichment procedure for linear coer-
cive problems; we further present numerical results for a two-dimensional nonlinear diffusion problem
to illustrate the many features of our methodology and demonstrate its effectiveness.
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1. Introduction.

1.1. Component-based model reduction for parameterized PDEs. Nu-
merical modeling and simulation is of paramount importance to predict the response,
improve the design, monitor the structural health of engineering systems, and gener-
ate digital twins [48, 58]. Several problems of interest involve repeated solutions of a
partial differential equation (PDE) for many values of the model parameters or require
real-time responses: these tasks are prohibitively expensive for standard (e.g., finite
element) methods. Parametric model order reduction (pMOR, [27, 30, 57]) aims to
reduce the marginal cost associated with the solution of parameterized systems over
a range of parameters. The goal of this paper is to develop a pMOR procedure for
large-scale nonlinear elliptic PDEs with parameter-induced topology changes. This
facilitates, e.g., building a digital twin from components equipped with local reduced-
order models [36, 37] and the adaptation of the digital twin by exchanging components
[36].

pMOR techniques rely on an offline/online decomposition to reduce marginal
costs. During the offline phase, pMOR methods rely on several high-fidelity (HF)
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LOCALIZED MOR FOR NONLINEAR PDES A1301

solves to generate a reduced-order model (ROM) for the solution field. During the
online phase, given a new value of the parameter, the ROM is solved to estimate
the solution field and relevant quantities of interest. Monolithic pMOR methods rely
on HF solves at the training stage, which might be unaffordable for very large-scale
problems. Furthermore, pMOR methods rely on the assumption that the solution
field is defined over a parameter-independent domain or over a family of diffeomorphic
domains: they thus cannot deal with problems for which parametric variations induce
topology changes.

To address these issues, several authors have proposed component-based (CB)
pMOR procedures (cf. [33] and the review [11]). During the offline stage, a library
of archetype components is defined and local reduced-order bases (ROBs) and local
ROMs are built fo each component; then, during the online stage, select components
from the library are instantiated to form the global system and the global solution
is estimated by coupling local ROMs. CB-pMOR strategies consist of two distinct
building blocks: (i) a rapid and reliable domain decomposition (DD) strategy for
online global predictions, and (ii) a localized training strategy exclusively based on
local solves for the construction of the local approximations.

CB-pMOR shares important features with multiscale methods [3, 39, 66, 50, 51,
52, 53, 44, 65, 61, 41, 70, 40, 19, 17, 13, 18]. Similarly to CB-pMOR, multiscale
methods rely on local solves to build suitable approximation spaces that are tailored
to the problem of interest. The emphasis in CB-pMOR is to devise and then exploit a
library of interoperable archetype components and associated ROMs that can be used
for a broad range of potentially parameter dependent problems in a specific domain
of interest.

1.2. Domain decomposition strategies within CB-pMOR. Since the sem-
inal work by Maday and R{\e}nquist [42]---that proposed a nonoverlapping nonconform-
ing reduced basis element method based on mortar DD---several authors have com-
bined DD methods with model reduction methods to devise effective CB-ROMs. As
discussed in detail in the review [11], we can distinguish between conforming nonover-
lapping approaches [33, 22, 65], nonconforming nonoverlapping approaches based on
Lagrange multipliers [31, 34, 42, 54], nonconforming nonoverlapping approaches based
on discontinuous Galerkin (DG) coupling [1, 2, 49], and overlapping methods [7, 12].
The vast majority of existing contributions (with few recent exceptions [5, 7, 31, 54])
are restricted to linear PDEs.

In this work, we rely on the partition-of-unity method (PUM) to devise global
approximation spaces from local reduced spaces, and on Galerkin projection to com-
pute the global state estimate. PUM was proposed by Babu\v ska and Melenk in [4, 46]
and further developed and analyzed in the framework of generalized finite element
methods for multiscale problems (cf. [3]); PUM was also considered in the pMOR
literature for linear elliptic and parabolic problems [12, 60]. In the CB-pMOR frame-
work, PUM offers a general (i.e., independent of the underlying PDE) framework with
strong theoretical guarantees.

1.3. Localized training based on oversampling and randomization.

Given the domain \widehat \Omega associated with a given archetype component, oversampling
methods consist in (i) defining a patch \widehat \Omega ovr \supset \widehat \Omega and a suitable local PDE problem
in \widehat \Omega ovr, (ii) solving the local PDE for several choices of the boundary conditions on
\partial \widehat \Omega ovr and then restricting the solution to \widehat \Omega , and finally (iii) exploiting the results to
build a local approximation space for the solution in \widehat \Omega . Randomized methods rely
on independent and identically distributed (iid) samples of the boundary conditions
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A1302 KATHRIN SMETANA AND TOMMASO TADDEI

on (a subset of) \partial \widehat \Omega ovr: they thus require the introduction of a probability density
function for the functions defined on \partial \widehat \Omega ovr.

Oversampling methods exploit low-pass filtering properties of the differential
operator to identify low-dimensional structures: we refer to [67, Chapter 5] and
[65, Remark 3.3] for two representative working examples. In detail, Caccioppoli-type
inequalities (see, e.g., [25]) provide the theoretical foundations for the application of
oversampling methods to a particular class of PDEs. Oversampling methods have
been suggested and used extensively in the context of multiscale methods (see, e.g.,
[32, 3, 29, 44] and references therein) and then used as well in CB-pMOR [22, 65] for
linear PDEs.

As suggested in [12], randomized oversampling methods for linear parameter-
independent PDEs can be linked to randomized singular value decomposition (SVD)
techniques developed and analyzed in randomized numerical linear algebra [28, 45,
21, 43]: this link allows one to extend methodological and theoretical contributions in
randomized linear algebra to CB-pMOR. In particular, we can exploit concentration
inequalities to analyze the error of randomized techniques, and inform the choice of
the sampling distribution. The influence of the choice of the sampling distribution for
nonlinear PDEs remains an open question in CB-pMOR.

1.4. Contributions of the paper and outline. In this work, we propose a
CB-pMOR procedure based on the PUM for parametric nonlinear elliptic PDEs; we
do not require the nonlinear operator to be monotone. The contributions of the
paper are twofold. First, we propose a randomized data compression algorithm based
on oversampling: the approach relies on random samples of local parameters and
boundary conditions on the oversampling boundary. We propose a new sampler that
controls the smoothness of the boundary condition, and we empirically demonstrate its
effectiveness for a nonlinear diffusion problem. Second, we propose a basis enrichment
algorithm that relies on global reduced solves to enrich the local reduced spaces.
The algorithm relies on a local residual-based error indicator to identify boundary
conditions for which the local ROM is inaccurate and a rigorous global a posteriori
error bound as a termination criterion. We prove in-sample a priori exponential
convergence of the enrichment algorithm for linear coercive problems; we further
investigate performance for a nonlinear diffusion problem.

Our randomized algorithm reads as a randomized proper orthogonal decompo-
sition [74] with respect to parameter and boundary conditions. On the other hand,
the enrichment algorithm is closely related to the online enrichment strategy pro-
posed in [49] for nonoverlapping DG DD, and to the residual-based online enrichment
algorithm considered in [9] for linear problems. The major difference is that the en-
richment is performed at a training stage and aims to update the local approximation
spaces associated with the archetype components, rather than during the online stage
on the ``instantiated components."" We note that in [31] the authors employ the ran-
domized boundary conditions proposed in [22] for nonlinear PDEs. In contrast, in
this manuscript, we try to generalize the approach of [12] for which one can show a
quasi-optimal convergence behavior for linear problems. The randomized approach in
[18] also aims at approximating nonlinear PDEs. To that end, the authors create a
dictionary of solutions by solving the PDE for random boundary conditions and con-
struct tangential approximations to the nonlinear map, which are then used to obtain
a solution with a Schwarz iteration. While the random boundary conditions in [18]
are chosen uniformly on the unit sphere considering, for instance, the H1/2-norm for
semilinear elliptic equations, we propose in this article to employ random boundary
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LOCALIZED MOR FOR NONLINEAR PDES A1303

conditions of various prescribed smoothness to exploit the expected faster decay of
high frequencies from the boundary towards the interior of the target subdomains.

The outline of the paper is as follows. In section 2, we introduce the model
problem considered throughout the paper to illustrate the main definitions and to
numerically validate our proposal: the model problem involves a high-dimensional
(O(102)) parameterization and topology changes. In section 3, we present the main
ideas and contributions of the paper. In section 4, we discuss the DD strategy based on
the PUM and we introduce local and global discrete approximation spaces; in section
5, we discuss the randomized localized data compression; in section 6, we present the
enrichment strategy; and in section 7 we present thorough numerical investigations
for the model problem. Section 8 concludes the paper. Appendix A summarizes the
notation.

2. Model problem: Nonlinear diffusion. Given ndd \in \BbbN and H = 0.1, we
define the domains

(2.1) \Omega i+(j - 1)n\mathrm{d}\mathrm{d}
= \{ [x1 +H(i - 1), x2 +H(j  - 1)] : x1, x2 \in (0,H)\} 

for i, j = 1, . . . , ndd, and introduce the global domain \Omega =
\bigcup N\mathrm{d}\mathrm{d}

k=1\Omega k with Ndd = n2
dd.

We consider the problem of parametric nonlinear diffusion: for every parameter
\mu in the compact set of admissible parameters Pglo, find u\mu such that

(2.2)

\Biggl\{  - \nabla \cdot (\kappa \mu (x,u\mu )\nabla u\mu ) = f\mu in \Omega ,

u\mu = 0 on \partial \Omega ,

where for every \mu \in Pglo the function \kappa \mu :\BbbR \rightarrow \BbbR + is C2(\BbbR ) and uniformly elliptic and
bounded, i.e., there exist constants \kappa k > 0, k= 0,1,2,3, such that for all \mu \in Pglo

\kappa 0\| w\| 22 \leq \kappa \mu (u\mu )w \cdot w, \| \kappa \mu (u\mu )w\| 2 \leq \kappa 1\| w\| 2,
(2.3)

\| \kappa \prime \mu (u\mu )w\| 2 \leq \kappa 2\| w\| 2, \| \kappa \prime \prime \mu (u\mu )w\| 2 \leq \kappa 3\| w\| 2 \forall w \in \BbbR 2 \forall u\mu \in \BbbR ,

where \| \cdot \| 2 denotes the Euclidean norm in \BbbR 2. We further assume that the restriction
of \kappa \mu (u\mu ) to a subdomain \Omega k is the same for every subdomain and that the map
\mu \mapsto \rightarrow \kappa \mu is continuous.1 Moreover, we require that for every \mu \in P the function f\mu is
in L2(\Omega ) and that the function \mu \mapsto \rightarrow f\mu is continuous. This yields the existence of a
unique solution (see, e.g., [20]) of the variational form for any \mu \in P, find u\mu \in H1

0 (\Omega )
such that

(2.4)

\int 

\Omega 

\kappa \mu (u\mu )\nabla u\mu \nabla v=
\int 

\Omega 

f\mu v \forall v \in H1
0 (\Omega ).

While we focus on (2.2) in this paper to ease the exposition of ideas, we emphasize
that the proposed methods can be readily applied to other nonlinear elliptic PDEs.

Example 2.1. As one specific example of (2.2) we consider the following model
problem that has been previously considered in [64], and is inspired by the model

1We note that this continuity assumption is necessary to draw samples from the parameters
later within the POD algorithm. We note that Lipschitz continuity in the parameter was assumed
for linear parameter dependent elliptic problems to show results on the approximation error caused
by the POD in the infinite dimensional setting [35]. So a theoretical analysis especially in infinite
dimensions or one that is robust with respect to the mesh size will likely require higher regularity
assumptions.
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A1304 KATHRIN SMETANA AND TOMMASO TADDEI

co
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int

Ω

(a) (b) (c)

Fig. 1. Nonlinear diffusion. (a) Instantiated archetype components. (b)--(c) solution fields for
N\mathrm{d}\mathrm{d} = 100 and two choices of the parameters.

for immiscible two-phase flows in porous media [47]. We introduce \widehat P = [0.1,0.2] \times 
[30,40], the permeability coefficient \kappa : \Omega \times \BbbR \times \bigotimes N\mathrm{d}\mathrm{d}

i=1
\widehat P \rightarrow \BbbR + such that \kappa | \Omega i

=
\kappa (x;u,\mu (1), . . . , \mu (N\mathrm{d}\mathrm{d}))| \Omega i

satisfies

(2.5a) \kappa 
\bigm| \bigm| 
\Omega i

=
36

\mu 
(i)
2

\left( 
 u(1 - u)

u3 + 12

\mu 
(i)
2

(1 - u)3

\right) 
 

2

+ \mu 
(i)
1 , i= 1, . . . ,Ndd,

and the source term

(2.5b) f(x; i \star ) = 100e - 50\| x - x\mathrm{c}, \mathrm{i} \star \| 2
21\Omega  \star 

i
(x).

The global parameter and the set of global admissible parameters for this problem are
thus \mu = [\mu (1), . . . , \mu (N\mathrm{d}\mathrm{d}), i \star ] and Pglo(ndd) :=

\bigotimes N\mathrm{d}\mathrm{d}

i=1
\widehat P\times \{ 1, . . . ,Ndd\} . In Figures 1(b)-

(c), we show the domain \Omega and selected solutions for different parameters \mu for Ndd =
100.

3. Motivation and explanation of key ideas and contributions. In this
manuscript, we aim at approximating the global solution of the parametric nonlinear
PDE by a CB ROM, where the local reduced basis functions are built from local
solutions of the PDE. Therefore, the local reduced basis functions somehow have
to capture all possible local behavior of the global solution. We illustrate why one
can hope to accurately approximate all possible local behavior of the solution with
relatively few local basis functions with an example [65, 60]: for the Laplacian on
the domain \Omega = ( - 2,2)\times (0,1) with homogeneous Neumann boundary conditions at
x2 = 0 and x2 = 1 and arbitrary Dirichlet conditions on x1 =  - 2 and x1 = 2 all
solutions are of the form

(3.1) u(x1, x2) = a0 + b0x1 +

\infty \sum 

n=1

cos(n\pi x2) [an cosh(n\pi x1) + bn sinh(n\pi x1)] ,

where an, bn \in \BbbR , n = 0, . . . ,\infty are determined by the Dirichlet boundary data pre-
scribed on x1 =  - 2 and x1 = 2. We observe in Fig. 2(a) an exponential decay of
the solutions in the interior of \Omega and that as a consequence most terms in the sum
in (3.1) will be numerically zero around x1 = 0. In addition, the more oscillations
we have on the Dirichlet boundary (e.g.,  - cos(8\pi y) versus  - cos(2\pi y)) the faster the
decay is in the interior of \Omega . All this implies that already few local basis functions---
here the functions cos(\pi y), cos(2\pi y), cos(3\pi y), . . .---can approximate all possible local
behavior of the solution well. One can show that these functions span an optimal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LOCALIZED MOR FOR NONLINEAR PDES A1305

−2 −1 0 1 2

0

0.2

0.4 n = 1

n = 2

n = 4

n = 8

(a) (b)

Fig. 2. (a) Solution u(x,2/3) for Dirichlet boundary conditions  - cos(n\pi y) for n= 1,2,4,8 for
the linear Laplace problem. (b) Solution u\mu of Example 2.1 with \mu 1 = 0.1, \mu 2 = 36, and random
boundary conditions.

approximation space in the sense of Kolmogorov [38] in the sense that they minimize
the approximation error among all spaces of the same dimension.

It has been shown that for general linear elliptic problems these optimal local
approximation spaces are spanned by the left singular vectors of a linear compact
operator that acts on the space of all local solutions of the PDE [3, 65, 41, 55]. In
addition, it has been demonstrated in [12] that by solving the PDE with random
boundary conditions on the boundary of a so-called oversampling domain that is
strictly larger than the target subdomain for which we wish to construct our reduced
space, and restricting the respective solutions to the target subdomain, one can ob-
tain an approximation of the optimal local approximation spaces. Remarkably, this
approximation provably converges with a convergence rate that is only slightly worse
than the optimal rate obtained by the optimal local approximation spaces [12, 28].

As the linear compact operator used for the construction of the optimal local ap-
proximation spaces for linear PDEs becomes a nonlinear operator for nonlinear PDEs,
a direct transfer of the above methods to nonlinear PDEs is not possible. However,
we observe in Figure 2(b) for nonlinear problems also that we still have a rapid decay
of high frequencies in the interior of the domain. We may thus hope that by prescrib-
ing random boundary conditions, the higher frequencies of these boundary conditions
decay, and that we might get a good approximation of the functions relevant for ap-
proximation in the interior for nonlinear PDEs also; we confirm this in the numerical
experiments in section 7. However, one also observes that the precise choice of the
random boundary conditions for nonlinear problems is much more challenging than
for linear problems as, e.g., for our considered problem here rapidly changing values of
the solution lead to a rapidly changing diffusion. Motivated by the observation that
higher frequencies seem to decay faster (cf. Figure 2(a)), we propose in subsection 5.2
to consider random boundary conditions such that the prescribed boundary datum
interpolates with high probability a function of given smoothness on the boundary of
the oversampling domain. We observe in the numerical experiments in Figure 9 that
prescribing a higher smoothness might make enlarging the oversampling domain, and
thus spending more computational resources, superfluous.

For linear elliptic PDEs solving the PDE for each basis function of the underlying
HF discretization on the boundary of the oversampling domain and restricting these
solutions to the target subdomain allows one to construct an approximation of all
local solutions of the PDE of any desired accuracy. However, for nonlinear PDEs
the main challenge is that the set of all local solutions of the PDE on the target
subdomain is no longer a linear vector space. We thus have to ensure that our chosen

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A1306 KATHRIN SMETANA AND TOMMASO TADDEI

boundary conditions that we use to construct our local reduced spaces are a good
representation of all boundary conditions that yield functions that are relevant for
approximation or, in short, the training set has to be rich enough. This is challenging
as we cannot assess at this point whether we have, e.g., chosen a good probability
distribution. Therefore, after generating the local reduced spaces via randomized
training we propose an adaptive algorithm in section 6 that iteratively (i) computes
the global reduced approximation obtained using a generalized finite element method
(gfem) with the current local approximation spaces; (ii) computes the local residuals
on each subdomain and marks a certain percentage of subdomains with the largest
residuals; (iii) solves the PDE locally on the marked subdomains prescribing the trace
of the global reduced solution as boundary conditions; and (iv) enriches the local
approximation spaces with a proper orthogonal decomposition (POD) basis for these
solutions. The algorithm terminates if a rigorous global a posteriori error estimator
based on local residuals that is derived in subsection 6.1 by means of the Brezzi--
Rappaz--Raviart theory [8, 14, 15, 72] lies below the prescribed tolerance. We prove
the exponential convergence of this adaptive algorithm for coercive linear problems in
subsection 6.3, noting that to the best of our knowledge even the case of noncoercive
linear problems is still an open problem. We demonstrate in numerical experiments a
nearly exponential convergence of the adaptive algorithm for the nonlinear diffusion
problem.

4. CB-ROM. In the following, we devise a CB-ROM for (2.2); we refer to
Appendix A for a complete overview of the notation. To that end, we introduce the
overlapping partition, which we will use in subsection 4.1 to define the partition of
unity

(4.1) \{ \omega i\} N\mathrm{d}\mathrm{d}

i=1 , \omega i =

\biggl\{ 
x\in \Omega : min

y\in \Omega i

\| x - y\| \infty < \delta over

\biggr\} 
, i= 1, . . . ,Ndd,

where, \delta over is the size of the overlap. Note that
\bigcup 

i \omega i =\Omega .
As motivated in section 3, we aim at generating local reduced models on each

subdomain \omega i, i= 1, . . . ,Ndd. Thanks to the assumptions in section 2, we may choose
to construct one reduced model for components in the interior, components in the
corner, or at the boundary, respectively; see Figure 1(a). Therefore, we introduce the
following archetype components: the ``corner"" (co) component is associated with the
corner elements of the partition \{ \omega i\} i; the ``edge"" (ed) component is associated with
the edge elements of \{ \omega i\} i; the ``internal"" (int) component is associated with the
internal elements of \{ \omega i\} i (see Figure 1(a)).

We denote by \widehat \Omega co, \widehat \Omega int, \widehat \Omega ed the spatial domains associated with the three ar-
chetypal components. For edge and corner components, we denote by \widehat \Gamma ed

dir,
\widehat \Gamma co
dir the

Dirichlet boundaries; furthermore, we introduce the local HF spaces associated with
the underlying HF discretization

(4.2) Yint \subset H1(\widehat \Omega int), Yed \subset H1
0,\widehat \Gamma \mathrm{e}\mathrm{d}

\mathrm{d}\mathrm{i}\mathrm{r}

(\widehat \Omega ed), Yco \subset H1
0,\widehat \Gamma \mathrm{c}\mathrm{o}

\mathrm{d}\mathrm{i}\mathrm{r}

(\widehat \Omega co)

and the corresponding (semi)norms \| \cdot \| \bullet with \bullet \in \{ co,ed,int\} that will be introduced
in (4.9). We denote by \frakL = \{ co,ed,int\} the library of archetype components, and by
L : \{ 1, . . . ,Ndd\} \rightarrow \frakL the function that associates each element of the partition \{ \omega i\} i
to the corresponding label; we further denote by \Phi i : \widehat \Omega Li \rightarrow \omega i the mapping from
the (appropriate) component to the ith element of the partition. We remark that
the mappings \Phi i are simple translations for all internal components, while they are
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LOCALIZED MOR FOR NONLINEAR PDES A1307

the composition of a rigid translation and a rotation for boundary (edge and corner)
components to ensure that \Phi i(\widehat \Gamma Li

dir) \subset \partial \Omega and thus to facilitate the imposition of
Dirichlet conditions.

4.1. Partition of unity method for localized model reduction. In [4, 46],
Babu\v ska and Melenk proposed the PUM to construct ansatz spaces with local prop-
erties. As discussed in [4], the PUM is designed to include a priori knowledge about
the PDE in the ansatz spaces, and it provides a systematic way to construct ansatz
spaces of any desired regularity. In the framework of CB-pMOR, the PUM provides a
systematic framework to construct global ansatz spaces and offers strong theoretical
guarantees concerning approximation and robustness.

Given the overlapping cover of \Omega , \{ \omega i\} N\mathrm{d}\mathrm{d}
i=1 , we denote byM the minimum constant

such that

(4.3a) \forall x\in \Omega , card\{ i\in \{ 1, . . . ,Ndd\} : x\in \omega i\} \leq M,

where card(A) denotes the cardinality of the discrete set A. Then, we define the
partition of unity (PoU) \{ \phi i\} N\mathrm{d}\mathrm{d}

i=1 such that

(4.3b)

\left\{ 
    
    

supp (\phi i)\subset \omega i, 0\leq \phi i(x)\leq 1, \| \nabla \phi i\| L\infty (\Omega ) \leq Ci,

N\mathrm{d}\mathrm{d}\sum 

j=1

\phi j(x) = 1, x\in \Omega , i= 1, . . . ,Ndd.

We say that \{ \phi i\} N\mathrm{d}\mathrm{d}
i=1 is of degree m if \{ \phi i\} N\mathrm{d}\mathrm{d}

i=1 \subset Cm(\Omega ;\BbbR ). Then, we define the PUM
spaces

(4.4) Xpum :=

\Biggl\{ 
N\mathrm{d}\mathrm{d}\sum 

i=1

\phi i\psi i : \psi i \in Xi

\Biggr\} 
\subset H1

0 (\Omega ),

where Xi = \{ \zeta \circ \Phi  - 1
i : \zeta \in YLi\} . Note that by construction \phi i\zeta \circ \Phi  - 1

i \in H1
0 (\omega i) and

can thus be trivially extended to \BbbR d. Next, given the reduced spaces \{ Z\bullet \} \bullet \in \frakL such
that Z\bullet \subset Y\bullet , we define the global reduced space

(4.5) Zgfem :=

\Biggl\{ 
N\mathrm{d}\mathrm{d}\sum 

i=1

\phi i\zeta i \circ \Phi  - 1
i : \zeta i \in ZLi

\Biggr\} 
\subset Xpum.

Theorem 4.1 provides a rigorous upper bound for the approximation properties of
the PUM space in \Omega ---the local approximation condition (4.6) provides the foundations
for the localized data compression strategy proposed in section 5.

Theorem 4.1 (see [4, Theorem 1]). Let u \in H1
0 (\Omega ). Assume that there exist

\zeta 1, . . ., \zeta N\mathrm{d}\mathrm{d}
such that \zeta i \circ \Phi i \in ZLi and

(4.6) \| u - \zeta i\| L2(\Omega \cap \omega i) \leq \epsilon i, \| \nabla u - \nabla \zeta i\| L2(\Omega \cap \omega i) \leq \epsilon \nabla ,i, i= 1, . . . ,Ndd,

for some positive constants \{ \epsilon i\} i and \{ \epsilon \nabla ,i\} i. Then, the function ugfem =
\sum N\mathrm{d}\mathrm{d}

i=1 \phi i\zeta i \in 
Zgfem satisfies

(4.7)

\left\{ 
       
       

\| u - ugfem\| L2(\Omega ) \leq 
\surd 
M

\sqrt{}    
N\mathrm{d}\mathrm{d}\sum 

i=1

\epsilon 2i ,

\| \nabla u - \nabla ugfem\| L2(\Omega ) \leq 
\surd 
2M

\sqrt{}    
N\mathrm{d}\mathrm{d}\sum 

i=1

C2
i \epsilon 

2
i + \epsilon 2\nabla ,i.
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A1308 KATHRIN SMETANA AND TOMMASO TADDEI

4.2. Discrete variational formulation and functional norms. We intro-
duce the functions \{ \widehat \phi \bullet \} \bullet such that 0 \leq \widehat \phi \bullet (x) \leq 1 in \BbbR d, \widehat \phi \bullet (x) = 0 if x /\in \widehat \Omega \bullet ,
\| \nabla \widehat \phi \bullet \| L2(\BbbR 2) \leq C\bullet . We observe that, if we define the functions \widetilde \phi i :\BbbR d \rightarrow \BbbR + satisfying
\widetilde \phi i| \omega i

= \widehat \phi Li \circ \Phi  - 1
j and \widetilde \phi i| \BbbR d\setminus \omega i

\equiv 0, we can show that the set \{ \phi i\} i such that

(4.8) \phi i =
1

\sum 
j\in Neigh)i

\widetilde \phi j
\widetilde \phi i \forall i= 1, . . . ,Ndd,

is a PoU subordinate to the cover \{ \omega i\} i. We introduce the local seminorms

(4.9) \| w\| \bullet = \| \widehat \phi \bullet w\| H1(\widehat \Omega \bullet ), \bullet \in \frakL .

Note that for this choice of the local norms, since the mappings \{ \Phi i\} i are rototrans-
lations, if \{ \zeta \bullet j \} nj=1 are orthonormal bases with respect to \| \cdot \| \bullet , then \{ \phi i\zeta Lij \} nj=1 is or-

thonormal in H1(\omega i) for i= 1, . . . ,Ndd. Given the spaces Xi,0 := \{ \phi i \zeta \circ \Phi  - 1
i : \zeta \in YLi\} 

for i= 1, . . . ,Ndd, we further introduce the inner products and induced norms

(4.10) (w,v)1,\omega i
=

\int 

\omega i

\nabla w \cdot \nabla v+wv dx, \| w\| 1,\omega i
=

\sqrt{} 
(w,w)1,\omega i

, w, v \in Xi,0;

the global norm \| w\| 1,\Omega =
\sqrt{} \int 

\Omega 
\| \nabla w\| 22 +w2 dx; and the dual norms

(4.11) \| f\|  - 1,\omega i
= sup

v\in Xi,0

f(v)

\| v\| 1,\omega i

, \| F\|  - 1,\Omega = sup
v\in X\mathrm{p}\mathrm{u}\mathrm{m}

f(v)

\| v\| 1,\Omega 
, i= 1, . . . ,Ndd,

for f \in X\prime 
i,0 and F \in X\prime 

pum.
Then, we introduce the HF problem: given \mu \in Pglo, find u\mu \in Xpum such that

(4.12a) \frakR \mu (u\mu , v) = 0 \forall v \in Xpum,

where

(4.12b) \frakR \mu (w,v) :=

\int 

\Omega 

\eta \mu (x; w,v)dx with \eta \mu (x;w,v) = \kappa \mu (x;w)\nabla w \cdot \nabla v - f\mu v

and \frakR \mu :Xpum \rightarrow X\prime 
pum.

4.3. Residual assembly and algebraic formulation of the reduced order

model. We omit dependence of \Omega and Pglo on ndd to shorten notation. We consider
the Galerkin ROM

(4.13) find \widehat u\mu \in Zgfem : \frakR \mu (\widehat u\mu , v) = 0 \forall v \in Zgfem.

Given the local approximation spaces \{ Z\bullet \} \bullet \in \frakL with bases2 \{ \zeta \bullet i \} ni=1, we define the
basis of Zgfem \{ \zeta i,j\} i,j such that

(4.14a) \zeta i,j = \zeta 
Lj

i \circ \Phi  - 1
i \phi j , i= 1, . . . , n, j = 1, . . . ,Ndd.

Given u\in Zgfem, we set N := nNdd and we denote by u\in \BbbR N the vector of coefficients
such that

(4.14b) u=

N\mathrm{d}\mathrm{d}\sum 

j=1

n\sum 

i=1

(u)i+(j - 1)n \zeta i,j .

2Here, we choose n = dim(Z\mathrm{i}\mathrm{n}\mathrm{t}) = dim(Z\mathrm{e}\mathrm{d}) = dim(Z\mathrm{c}\mathrm{o}). This choice simplifies notation and is
also convenient for code vectorization. The extension to reduced spaces of arbitrary size is straight-
forward.
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LOCALIZED MOR FOR NONLINEAR PDES A1309

Then, we introduce the discrete residual R :\BbbR N \times Pglo \rightarrow \BbbR N such that

(4.15a) (R\mu (u))i+(j - 1)n = \frakR \mu (u, \zeta i,j)

and the algebraic nonlinear problem associated with (4.13),

(4.15b) find \widehat u\mu \in \BbbR N such that R\mu (\widehat u\mu ) = 0.

In order to discuss the practical evaluation of the discrete residual R\mu in (4.15a),
we define Neighi = \{ j : \omega i \cap \omega j \not = \emptyset \} . Then, we observe that

\frakR \mu (\widehat u\mu , \zeta i,j) =
\int 

\omega i

\eta \mu 

\Bigl( 
x; \widehat u\mu 

\bigm| \bigm| 
\omega i
, \zeta i,j

\Bigr) 
dx

=

\int 

\widehat \Omega Li

\widehat \eta (i)\mu 

\Bigl( 
x;

\Bigl( 
\widehat u\mu 

\bigm| \bigm| 
\omega i

\Bigr) 
\circ \Phi i , \zeta 

Lj

i
\widehat \phi Lj

\Bigr) 
dx,(4.16a)

where

(4.16b) \widehat \eta (i)\mu (x;w, v) =
\Bigl( 
\kappa \mu (\Phi i(x);w)\nabla \Phi  - 1

i \nabla \Phi  - T
i \nabla w \cdot \nabla v  - \widetilde f\mu v

\Bigr) 
det (\nabla \Phi i)

with \widetilde f\mu = f\mu \circ \Phi i. Since \{ \Phi i\} i are rototranslations, (4.16b) reduces to

(4.16c) \widehat \eta (i)\mu (x;w,v) = \kappa \mu (\Phi i(x);w)\nabla w \cdot \nabla v  - \widetilde f\mu v.

We observe that the Jacobian J\mu (\cdot ) of the algebraic residual R\mu (\cdot ) is sparse
for large values of Ndd. More precisely, exploiting (4.16) and \widehat u\mu | \omega i

=
\sum 

j\in Neighi\sum n
i=1(\widehat u\mu )i+(j - 1)n\zeta i,j , it is easy to verify that the number of nonzero elements of

J\mu (\cdot ) is bounded by

(4.17) nnz (J\mu (u))\leq 
N\mathrm{d}\mathrm{d}\sum 

i=1

n2card(Neighi) =O
\bigl( 
n2Ndd

\bigr) 
\forall u\in \BbbR N .

For the model problem considered in this work we have card(Neighi) \leq 9 for i =
1, . . . ,Ndd.

Assembly of the residual in (4.16) is extremely expensive due to the need to inte-
grate over all instantiated components \{ \widehat \Omega Li\} . To speed up computations, we should
thus resort to hyperreduction techniques [6, 16, 24, 59, 73]. The choice of the hyperre-
duction procedure strongly depends on the PDE model of interest, on the underlying
HF numerical scheme, and on the geometrical parameterization; we refer to [69] for a
discussion on the treatment of geometry parameterizations. We further observe that
evaluation of (4.16a) involves evaluation of \widehat u\mu in the mapped quadrature points of the

mesh \widehat \Omega Li ; this evaluation is extremely expensive for unstructured meshes and thus
requires a specialized treatment. The development of specialized hyperreduction tech-
niques for CB-pMOR is part of ongoing research and is not addressed in the present
work.

5. Data compression: Randomized localized training. The aim of this
section is to devise an actionable procedure to build the local approximation spaces
Z\bullet \subset Y\bullet for \bullet \in \frakL such that

(5.1) min
\zeta \in ZLi

\| u\mu 
\bigm| \bigm| 
\omega i

 - \zeta \circ \Phi  - 1
i \| 1,\omega i

\leq \varepsilon tol for i= 1, . . . ,Ndd, \mu \in Pglo(ndd),
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Fig. 3. Nonlinear diffusion. Archetype components with corresponding oversampling domain.

where \varepsilon tol > 0 is a prescribed tolerance. Condition (5.1) implies that the local spaces
Zint,Zco,Zed should approximate the manifolds

(5.2) M\bullet =
\Bigl\{ 
u\mu 

\bigm| \bigm| 
\omega i

\circ \Phi i : Li = \bullet , \mu \in Pglo(ndd), ndd \in \BbbN 
\Bigr\} 
\subset Y\bullet 

for \bullet \in \frakL . The computation of snapshots that belong to the manifolds \{ M\bullet \} \bullet requires
solving global problems and is thus unfeasible in our framework. Instead, in subsection
5.1, we propose to rely on oversampling to identify an actionable localized manifold \widetilde M
for which we can compute snapshots; then, in subsection 5.2, we propose a randomized
training algorithm to construct local approximation spaces.

5.1. Oversampling. We fix i\in \{ 1, . . . ,Ndd\} such that Li = \bullet , and we define the
patch \widehat \Omega \bullet 

ovr \subset \BbbR 2 with input boundary \widehat \Gamma \bullet 
in \subset \partial \widehat \Omega \bullet 

ovr. We extend the mapping \Phi i to \widehat \Omega \bullet 
ovr

and we define \Omega ovr,i := \Phi i(\widehat \Omega \bullet 
ovr)---for the considered model problem, the mappings

\{ \Phi i\} i are linear maps that can be trivially extended to \BbbR 2. As depicted in Figure 3,
we consider \Omega ovr,i =

\bigcup 
j\in Neighi

\Omega j , where Neighi = \{ j : \omega i \cap \omega j \not = \emptyset \} .
We denote by ui,\mu the restriction of the solution u\mu to \Omega ovr,i and we define \widetilde ui,\mu :=

ui,\mu \circ \Phi i. We observe that \widetilde ui,\mu solves the problem (cf. (4.16c)):

(5.3a)

\int 

\widehat \Omega \bullet 
\mathrm{o}\mathrm{v}\mathrm{r}

\kappa \mu (\widetilde ui,\mu )\nabla \widetilde ui,\mu \cdot \nabla v dx =

\int 

\widehat \Omega \bullet 
\mathrm{o}\mathrm{v}\mathrm{r}

f\mu v dx \forall v \in Yovr
i,0

with \widetilde ui,\mu | \widehat \Gamma \mathrm{i}\mathrm{n}
= ui,\mu \circ \Phi i and Yovr

i,0 = \{ v \circ \Phi i : v| \Omega \mathrm{o}\mathrm{v}\mathrm{r},i \in Xpum, v| \partial \Omega \mathrm{o}\mathrm{v}\mathrm{r},i = 0\} \subset H1
0 (

\widehat \Omega \bullet 
ovr).

Therefore, \widetilde ui,\mu is a function of the subset of parameters that are active in \Omega ovr,i and of

the boundary datum. We denote by P\bullet the active parameters and by G\bullet \subset H1/2(\widehat \Gamma \bullet 
in)

the domain for which (5.3a) is well-posed. Then, we introduce the transfer operator
T \bullet :G\bullet \times P\bullet \rightarrow Y\bullet such that T \bullet 

\mu (g) = u| \widehat \Omega \bullet where u satisfies (5.3a) with u| \partial \widehat \Omega \bullet 
\mathrm{o}\mathrm{v}\mathrm{r}\setminus \widehat \Gamma \bullet 

\mathrm{i}\mathrm{n}
= 0

and u| \widehat \Gamma \bullet 

\mathrm{i}\mathrm{n}
= g.

To provide a concrete reference, for the model problem considered in the numerical

investigations, we find P\bullet =
\bigotimes N\bullet 

\mathrm{d}\mathrm{d}
i=1

\widehat P\times \{ 1, . . . ,N\bullet 
dd,0\} , where N\bullet 

dd = card(Neighi) and
i \star = 0 means that the source term is outside the patch. Note that the parameterization
P\bullet is associated withthe archetype component of interest and is independent of the
size of the system (i.e., the number of subdomains Ndd).

We define the (unknown) set Gtrue,\bullet \subset H1/2(\widehat \Gamma \bullet 
in) that contains all possible

restrictions of the solution field to the input boundary for all instantiated com-
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LOCALIZED MOR FOR NONLINEAR PDES A1311

ponents \omega i of type \bullet , all parameters, and all choices of ndd; clearly, we have

M\bullet = \{ T \bullet 
\mu (g) : g \in Gtrue,\bullet , \mu \in P\bullet \} . If we introduce the ``approximation"" \widetilde G\bullet 

of
Gtrue,\bullet , we obtain the localized manifold

(5.3b) \widetilde M
\bullet 
=

\Bigl\{ 
T \bullet 
\mu (g) : g \in \widetilde G\bullet 

, \mu \in P\bullet 
\Bigr\} 
.

We observe that snapshots of \widetilde M
\bullet 
can be computed by solving local problems

in the patch \widehat \Omega \bullet 
ovr for prescribed choices of the active parameters \mu \in P\bullet and the

boundary conditions. The patch \widehat \Omega \bullet 
ovr should be significantly smaller than \Omega to en-

sure rapid computations; at the same time, \widehat \Omega \bullet 
ovr should be large enough to ensure

decay of high-frequency modes on \widehat \Gamma \bullet 
in. Recently it was shown in [41] that for lin-

ear diffusion problems the local approximation error decays exponentially in the dis-
tance between \widehat \Omega \bullet 

ovr and the target subdomain. Here, we investigate the effect of
the size of the oversampling domain numerically in section 7 to provide some guid-
ance on the choice of the oversampling size for the nonlinear diffusion problem of
section 2.

The choice of the set of boundary conditions \widetilde G\bullet 
is of paramount importance;

clearly, \widetilde G\bullet 
should be rich enough to ensure that supw\in M\bullet dist(w,\widetilde M

\bullet 
)\leq \varepsilon tol. Since the

problem is nonlinear, generating a discrete representative approximation of the high-

dimensional set \widetilde G\bullet 
is also particularly challenging. In the next section, we directly

prescribe probability density functions (pdfs) p\bullet bc of the space of boundary conditions

for all \bullet \in \frakL : the set \widetilde G\bullet 
is thus defined as the support of the pdf p\bullet bc.

5.2. Randomized training. Algorithm 5.1 illustrates the randomized training
procedure. The algorithm reads as a randomized POD [74] with respect to parameter
and boundary conditions: the inputs of the algorithm are the number of training
points ntrain, the size of the sought reduced spaces n, the inner product (\cdot , \cdot )\bullet , and
the pdfs \{ p\bullet \mu , p\bullet bc\} for the archetype component \bullet \in \frakL ; the output is the reduced space
Z\bullet . Here, the notation

Z=POD
\Bigl( 
\{ u(i)\} n\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

i=1 , (\cdot , \cdot )\bullet , n
\Bigr) 

means that Z is the n-dimensional POD space associated with the snapshot set
\{ u(i)\} n\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

i=1 and the inner product (\cdot , \cdot )\bullet .
It is well known that the POD is optimal in L2(p\bullet \mu \times p\bullet bc) in the limit ntrain \rightarrow \infty ;

however, since the pdfs p\bullet \mu , p
\bullet 
bc are chosen a priori, they might not be representative

of the true distributions for the global systems. Provided that additional information
on the class of global systems of interest is available, these observations motivate the
enrichment strategy proposed in section 6.

Algorithm 5.1 Randomized localized training.
Inputs: ntrain size of training set, n size of the ROB, (\cdot , \cdot )\bullet inner product, p\bullet \mu , p

\bullet 
bc

pdfs for the component \bullet \in \frakL .
Output: Z\bullet local approximation space for the component \bullet \in \frakL .

1: Generate \mu (k) iid\sim p\bullet \mu , g
(k) iid\sim p\bullet bc, k= 1, . . . , ntrain.

2: Compute uk = T \bullet 
\mu (k)(g

(k)) for k= 1, . . . , ntrain.

3: Z\bullet =POD(\{ uk\} n\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

k=1 , (\cdot , \cdot )\bullet , n).
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A1312 KATHRIN SMETANA AND TOMMASO TADDEI

Remark 5.1 (probabilistic a posteriori error estimation). Given \bullet \in \frakL , ntest addi-

tional simulations \{ u(i)\} n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}
i=1 \subset \widetilde M

\bullet 
, and the space Z\bullet , we introduce the error indicator

(5.4) \widehat E\bullet :=
1

ntest

n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}\sum 

i=1

\| u(i)  - \Pi \bullet 
Z\bullet u(i)\| \bullet 

\| u(i)\| \bullet 
,

which measures the average relative projection error on the test set \{ u(i)\} i. Here,
\Pi \bullet 

Z\bullet :Y\bullet \rightarrow Z\bullet is the projection operator on Z\bullet . Provided that u(i) = T \bullet 
\mu (i)(g

(i)) with

\mu (i) iid\sim p\bullet \mu and g(i)
iid\sim p\bullet bc, then (5.4) is an unbiased estimator of the expected relative

projection error

(5.5) E\bullet :=\BbbE \mu \sim p\bullet 
\mu ,g\sim p\bullet 

\mathrm{b}\mathrm{c}

\biggl[ \| T \bullet 
\mu (g) - \Pi Z\bullet T\mu (g)\| \bullet 

\| T \bullet 
\mu (g)\| \bullet 

\biggr] 
.

Note that the error indicator provides a measure of the performance of Z\bullet for the
particular choice of the sampling distribution.

Choice of random parameters. The oversampling domains \{ \widehat \Omega \bullet 
ovr\} \bullet \in \frakL in

Figure 3 contain N\bullet 
dd subdomains (cf. Figure 3). For the model problem consid-

ered in this work, we set

(5.6)

\mu =
\Bigl[ 
\mu (1), . . . , \mu (N\bullet 

\mathrm{d}\mathrm{d}), i \star 
\Bigr] 
, \mu (i) iid\sim Uniform

\Bigl( 
\widehat P
\Bigr) 
,

Pr (i \star = t) =

\biggl\{ p\mathrm{s}\mathrm{r}\mathrm{c}

N\bullet 

\mathrm{d}\mathrm{d}
, t= 1, . . . ,N\bullet 

dd,

1 - psrc, t= 0,

where psrc is the probability that a source term is present in the patch. If Ndd is

known a priori, we might set ps =
N\bullet 

\mathrm{d}\mathrm{d}

N\mathrm{d}\mathrm{d}
. In this work, however, we consider psrc = 0.5.

Random boundary conditions. As motivated in section 3 we aim at defining
a random boundary datum that interpolates with high probability a function of given
smoothness in order to benefit from the expected more rapid decay of higher frequen-
cies; cf. Figure 2(b). To that end, we rely on the definition of fractional Sobolev
spaces via the Fourier transform.

In detail, we introduce the curvilinear coordinate s \in [0,1] (cf. Figure 3); then,
given Nf \in \BbbN and \alpha \in \BbbR +, we define the complex-valued random field \widetilde g such that

(5.7) \widetilde g(s;cre,cim) =
N\mathrm{f} - 1\sum 

k=0

crek+1 + icimk+1\sqrt{} 
1 + (2\pi k)2\alpha 

e2\pi ksi, crek , c
im
k

iid\sim N(0,1).

Recalling that for any k, k\prime = 0, . . . ,Nf  - 1 and \alpha \in \BbbN , we have

\int 1

0

e2\pi ksi e - 2\pi k\prime si ds= \delta k,k\prime ,
d\alpha 

ds\alpha 
e2\pi ksi = (2\pi ki)\alpha e2\pi ksi,

(2\pi ki)\alpha ( - 2\pi k\prime i)\alpha = (4\pi 2kk\prime )\alpha ,

we find that

\| \widetilde g(\cdot ;cre,cim)\| 2H\alpha (0,1) =\| \widetilde g(\cdot ;cre,cim)\| 2L2(0,1) + \| \widetilde g(\alpha )(\cdot ;cre,cim)\| 2L2(0,1)

=

N\mathrm{f} - 1\sum 

k=0

\bigl( 
crek+1 + icimk+1

\bigr) \bigl( 
crek+1  - icimk+1

\bigr) 
=

N\mathrm{f}\sum 

k=1

(crek )
2
+

\bigl( 
cimk

\bigr) 2
.
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LOCALIZED MOR FOR NONLINEAR PDES A1313

(a) α = 1 (b) α = 2 (c) α = 3

Fig. 4. Samples of random boundary conditions for 3 choices of \alpha .

Algorithm 5.2 Random sample generator of boundary conditions.
Inputs: Nf, \alpha (cf. (5.7)), \=umax \in (0,1], \bullet \in \frakL .
Output: g : [0,1]\rightarrow [0,1) boundary condition.

1: Draw cre,cim \in \BbbR N\mathrm{f} s.t. crek , c
im
k

iid\sim N(0,1).

2: Draw X1,X2,X3
iid\sim Uniform(0, \=umax), set a=min\{ X1,X2\} , b=max\{ X1,X2\} .

3: Set g(1) = Real[\widetilde g(\cdot ;cre,cim)].
4: if \bullet = int then

5: g= a+ b - a
maxg(1) - ming(1)

\bigl( 
g(1)  - ming(1)

\bigr) 
.

6: else

7: g(2)(s) = g(1) (0.7s).

8: g(3)(s) =
\Bigl( 
a+ b - a

maxg(2) - ming(2)

\bigl( 
g(2)  - ming(2)

\bigr) \Bigr) 
s(1 - s).

9: g= X3

maxg(3) g
(3).

10: end if

The latter implies that the random variable X := \| \widetilde g(\cdot ;cre,cim)\| 2H\alpha (0,1) is distrib-

uted as a \chi 2 distribution with 2Nf degrees of freedom; therefore, the parameter \alpha 
in (5.7) controls (in a probabilistic sense) the Sobolev regularity of the datum \widetilde g.
The function in \widetilde G\bullet 

that we prescribe as (random) boundary conditions then interpo-
lates the real part of \widetilde g times some scaling factor as discussed in the next paragraph.
Thus, the prescribed boundary datum interpolates with high probability a function of
given smoothness on the boundary of the oversampling domain. We illustrate this in
Figure 4, which depicts samples of the random field g - gavg with g=Real[\widetilde g(\cdot ;cre,cim)]
and gavg =

\int 1

0
g(s)ds for Nf = 20 and increasing values of the smoothness pa-

rameter \alpha . We observe that, as \alpha increases, the samples become increasingly
smooth.

In order to choose p\bullet bc, exploiting a physical argument---the solution u\mu to (2.2)
represents water saturation---we anticipate that u\mu \in [0, \=umax] for some \=umax < 1.
Furthermore, we wish to devise samplers that reflect the Sobolev regularity of the
datum g. For these reasons, we propose to consider the procedure in Algorithm 5.2
to generate random samples of the boundary condition. We first generate a sample
of the random field \widetilde g in (5.7) and we extract its real part (cf. line 3). If \bullet = int, we
simply rescale the datum to ensure that the image of g, Im[g], is contained in [0, \=umax]

(cf. line 5); if \bullet \in \{ co,ed\} , since by construction dk

dsk
g(1)(0) = dk

dsk
g(1)(1) for k \in \BbbN , we
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A1314 KATHRIN SMETANA AND TOMMASO TADDEI

define g(2)(s) = g(1) (cs) with3 c = 0.7 (cf. line 7); then, we enforce that g(s) = 0 for
s\in \{ 0,1\} and g\geq 0 (cf. line 8); finally, in line 9, we ensure that Im[g]\subset [0, \=umax].

In the numerical experiments, we provide samples of the boundary conditions for
various values of \alpha \in \BbbR + and we investigate performance for the model problem con-
sidered. In particular, we discuss the impact of the choice of \alpha . Note that the sampling
strategy proposed in this section depends on several parameters---Nf, \alpha , \=umax in Algo-
rithm 5.2 and psrc in (5.6)---that might be difficult to tune. This observation justifies
the use of a few global reduced solves at the training stage to improve performance
of the CB-ROM.

6. Basis enrichment based on reduced global solves. In several contexts, it
is possible to identify at the training stage a class of global configurations of interest.
To provide a concrete reference for the model problem of section 2, we might be
interested in solving the global PDE for (i) any choice of ndd \in \{ ndd,LB, . . . , ndd,UB\} 
with ndd,LB, ndd,UB \in \BbbN , (ii) any \mu (i) \in \widehat P, (iii) up to nsrc distinct sources. The
aim of this section is to devise a localized training procedure with adaptive global
enrichment that exploits prior knowledge about the global system to enrich the local
spaces. In subsection 6.1, we present a residual-based error estimator that will be
used to drive the enrichment strategy; in subsection 6.2, we present the training
procedure; in subsection 6.3, we present an a priori convergence result for linear
coercive problems. As in section 5, we assume that the system is described by a single
archetype component to shorten notation.

6.1. Residual-based error estimation. Exploiting notation introduced in
subsection 4.3, given i \in \{ 1, . . . ,Ndd\} , and u \in H1(\Omega ), we define the local Riesz
elements \psi \mu [u]\in Xi,0 as

(6.1a) (\psi \mu [u], v)1,\omega i
=

\int 

\omega i

\widehat \eta (i)\mu (x;u, v) dx \forall v \in Xi,0,

and the dual residual

(6.1b) \frakr (i)\mu [u] := \| \psi \mu [u]\| 1,\omega i
.

Next, Lemma 6.1 provides an upper bound for the global dual residual in terms of
the localized dual residuals \{ \frakr (i)[\cdot ]\} i. The proof of Lemma 6.1 can be found in [10,
Proposition 5.1], and is also provided for the sake of completeness in section SM1.

Lemma 6.1. Let \{ \phi i\} i be a PoU that satisfies (4.3). Then, given u \in Xpum, we
have

(6.2) \| \frakR \mu (u, \cdot )\|  - 1,\Omega \leq 
\surd 
M

\biggl( 
max

i=1,...,N\mathrm{d}\mathrm{d}

Cr
i

\biggr) \sqrt{}    
N \mathrm{d}\mathrm{d}\sum 

i=1

\Bigl( 
\frakr 
(i)
\mu [u]

\Bigr) 2

with Cr
i :=

\sqrt{} 
max\{ Ci +C2

i + 1,2\} .
We will employ the local residuals (6.1b) to mark instantiated components of the
partitions where the error is large; see subsection 6.2. Let us also note that as the
infinite-dimensional analogon of \frakR \mu as a map from H1

0 (\Omega ) to H
 - 1(\Omega ) is not in C1, one

cannot expect that the \| \cdot \|  - 1,\Omega -norm of the residual (see (4.11) for the definitions)

3The choice c= 0.7 is not crucial for the methodology.
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LOCALIZED MOR FOR NONLINEAR PDES A1315

stays bounded if the mesh size goes to zero. As a remedy one may consider \frakR \mu as
a mapping from W 1,p

0 (\Omega ) to W - 1,p(\Omega ), p > 2; see [14, 56, 64]. As this significantly
complicates the calculations of the dual norms, we opt here for assuming that the
dimension of the HF space is fixed and consider the \| \cdot \|  - 1,\Omega -norm. We may then
define the error indicator

(6.3) \Delta \mu =

\sqrt{}    
N\mathrm{d}\mathrm{d},\mu \sum 

i=1

\bigl( 
\frakr i\mu 

\bigr) 2
.

For linear problems it is straightforward to derive a rigorous a posteriori bound based
on \frakR \mu [\cdot ] (see, e.g., [4, 11]). Here, we combine Lemma 6.1 with the Brezzi--Rappaz--
Raviart (BRR) theory [8, 14] to derive a rigorous residual-based error bound for the
global error; see, in particular, [15, 72] for the application of the BRR theory in the
context of model order reduction. To that end, if we denote by \frakR \prime 

\mu (\widehat u\mu ) the Fr\'echet
derivative of \frakR \mu at \widehat u\mu , we require that

0<\beta 2,p := inf
w\in X\mathrm{p}\mathrm{u}\mathrm{m}

| w| 1,\Omega \not =0

sup
v\in X\mathrm{p}\mathrm{u}\mathrm{m}

| v| 1,\Omega \not =0

\langle \frakR \prime 
\mu (\widehat u\mu )w,v\rangle 

| w| 1,\Omega | v| 1,\Omega 
,(6.4)

and that there exist constants \gamma 2,p and L2,p such that

\langle \frakR \prime 
\mu (\widehat u\mu )w,v\rangle \leq \gamma 2,p| w| W 1,p(\Omega )| v| 1,\Omega ,(6.5)

\| \frakR \prime 
\mu (\widehat u\mu ) - \frakR \prime 

\mu (w)\| \leq L2,p | \widehat u\mu  - w | W 1,p(\Omega )(6.6)

for w \in B(\widehat u\mu ,R) \subset Xpum and v \in Xpum. Here, R is supposed to be sufficiently
large and | w| 1,\Omega := \| \nabla w\| L2(\Omega ) and | w| W 1,p(\Omega ) := \| \nabla w\| Lp(\Omega ). We note that condi-
tions (6.4)--(6.6) are satisfied for the considered model problem (2.2) in the infinite-
dimensional setting albeit potentially with different norms [62, Theorem 3.4], while
the inf-sup condition (6.4) can be verified a posteriori. To obtain a proximity indica-
tor [72, 15], which is based on localized and easily computable residuals via the Riesz
representation, we employ, as in [64], the finite dimensionality of Xpum and define
ch := supv\in X\mathrm{p}\mathrm{u}\mathrm{m}

(| v| W 1,p(\Omega ))/| v| 1,\Omega and

(6.7) \tau \mu ,p :=
2L2,pch
\beta 2
2,p

\surd 
M

\biggl( 
max

i=1,...,N\mathrm{d}\mathrm{d}

Cr
i

\biggr) \sqrt{}    
N \mathrm{d}\mathrm{d}\sum 

i=1

\Bigl( 
\frakr 
(i)
\mu [u]

\Bigr) 2

.

The proximity indicator \tau \mu ,p will be used to validate whether \widehat u\mu is close enough to
u\mu within the adaptive Algorithm 6.1. We obtain the following result.

Proposition 6.2 (global a posteriori error bound). Let \tau \mu ,p < 1 and (6.4), (6.5),

and (6.6) be fulfilled. Then there exists a unique solution u\mu \in B(\widehat u\mu , \beta 2,p

L2,pch
)\subset Xpum

of (4.12) and the error estimator

(6.8) \Delta \mu ,p :=
\beta 2,p
L2,pch

(1 - 
\sqrt{} 
1 - \tau \mu ,p)

satisfies

(6.9) \| \widehat u\mu  - u\mu \| 1,\Omega \leq \Delta \mu ,p.
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A1316 KATHRIN SMETANA AND TOMMASO TADDEI

Proof. Lemma 6.1 and \tau \mu ,p < 1 imply that \widetilde \tau \mu ,p :=
2L2,pch
\beta 2
2,p

\| \frakR \mu (\widehat u\mu , \cdot )\|  - 1,\Omega < 1.

The existence of a unique solution u\mu \in B(\widehat u\mu , \beta 2,p

L2,pch
) of (4.12) and

(6.10) | \widehat u\mu  - u\mu | 1,\Omega \leq \beta 2,p
L2,pch

(1 - 
\sqrt{} 

1 - \widetilde \tau \mu ,p)

then follows using standard arguments in the BRR theory (see [15, 72, 14, 56] and for
this particular PDE [62]). As the function t(x) := 1 - 

\surd 
1 - x is strictly increasing on

(0,1), applying Lemma 6.1 to the right side of (6.10) concludes the proof.

Remark 6.3 (discussion of the result). It is well known that for nonlinear PDEs
the dual norm of the residual can only be used as an a posteriori error estimator if the
approximation is already close to the HF solution (see, e.g., [14, 71]). Relying solely
on the dual norm of the residual can therefore be problematic as it may seem that
the approximation error is acceptable even though that might not be the case. The
proximity indicator \tau \mu ,p (6.7), which only relies on computable constants, can be used
to assess, whether indeed the approximation \widehat u\mu is close enough to u\mu such that the
error estimation (6.9) is valid. While the proximity indicator \tau \mu ,p (6.7) and thus the
a posteriori error estimator (6.8) solely rely on the dual norms of local residuals that
can be computed on the components and therefore do not require any global solutions,
the constants L2,p and \beta 2,p are global constants. We will discuss some strategies on
how to estimate these constants in Remark 6.4. To the best of our knowledge even
for linear elliptic PDEs there are no results in the conforming setting that solely rely
on local constants (the a posteriori error estimators in [10, 63], e.g., both contain
the global coercivity constant). A fully localizable a posteriori error estimator for
nonlinear nonmonotone PDEs would therefore be at least a paper on its own and is
thus beyond the scope of this paper.

Remark 6.4 (estimation of constants). Regarding the estimation of the constant
ch in the inverse inequality, we refer to classical results, e.g., in [23] noting that the
global inverse inequality only requires the measure of \Omega . Estimating the constant
L2,p relies on estimates of the constant in the Poincar\'e inequality for Lp, W 1,p and
the Sobolev embedding inequality \| v\| C0(\Omega ) \leq cE | v| W 1,p(\Omega ) (see, e.g., [62, subsection
3.1.2]). The estimation of cE can be easily localized. An estimate of the constant in
the Poincar\'e inequality involving the measure of \Omega can be found in [26, (7.44)] for
functions that are zero on \partial \Omega . We hope that if the local reduced bases contain the
constant function it is maybe possible to obtain localized and more precise estimates
of the Poincar\'e constant. Finally, similarly to [63], we propose to use a localized
model order reduction approximation of \beta 2,p. In detail, we suggest using the following

heuristic and hierarchical estimator \beta app
2,p := infw\in \widetilde Z\mathrm{g}\mathrm{f}\mathrm{e}\mathrm{m}

supv\in \widetilde Z\mathrm{g}\mathrm{f}\mathrm{e}\mathrm{m}

\langle \frakR \prime 

\mu (\widehat u\mu )w,v\rangle 
| w| 1,\Omega | v| 1,\Omega , where

Zgfem \subsetneq \widetilde Zgfem \subset Xpum. We conjecture that using a certain number of additional local
basis functions per component might already yield an acceptable estimate of \beta 2,p.

6.2. Adaptive algorithm. We introduce the pdfs \{ p\bullet \mu , p\bullet bc : \bullet \in \frakL \} for localized
sampling and the pdf pglo\mu that is used to generate global problems. In the numerical

examples, we consider ndd \sim Uniform(\{ 4, . . . ,12\} ), \mu (i) iid\sim Uniform(\widehat P), and we assume
that exactly one source term is active in \Omega (that is, nsrc = 1). Given the partition
\{ \omega i\} i, we define the local solution operators

(6.11) T (i)
\mu :Xi \rightarrow Xi,0 s.t. \frakR \mu 

\Bigl( 
u+ T (i)

\mu (u), v
\Bigr) 
= 0 \forall v \in Xi,0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

3
 t

o
 1

2
8
.1

7
6
.2

5
4
.1

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



LOCALIZED MOR FOR NONLINEAR PDES A1317

Algorithm 6.1 Randomized localized training with global enrichment.
Inputs (localized training): nloctrain = number of solves, nloc = size of the POD spaces,
\{ p\bullet \mu , p\bullet bc\} \bullet sampling pdfs.

Inputs (enrichment): nglo
train = number of global simulations per iteration, nglo =

number of modes added at each iteration, maxit = maximum number of outer loop
iterations, tol = tolerance for termination criterion, pglo\mu = global configuration
sampler, mr = percentage of marked components at each iteration.

Outputs: \{ Z\bullet \} \bullet \in \frakL local approximation spaces.
Localized training

1: Apply Algorithm 5.1 to obtain the local spaces \{ Z\bullet \} \bullet \in \frakL .
Enrichment

1: Sample nglo
train configurations \mu (k) iid\sim pglo\mu , Ptrain := \{ \mu (k)\} k

2: for \ell = 1, . . . ,maxit do

3: Initialize the datasets D\bullet = \emptyset for \bullet \in \{ co,ed,int\} .
4: for \mu \in Ptrain do

5: Compute \widehat u\mu using the PUM-CB-ROM (cf. section 4).

6: Compute local residuals (6.1) \frakr i\mu = \frakr 
(i)
\mu [\widehat u\mu ] for i= 1, . . . ,Ndd,\mu .

7: for \bullet \in \frakL do

8: Mark the mr \% instantiated components of type \bullet with the largest
residual, \{ \omega i\} i\in I\mu \mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k},\bullet 

.

9: Solve the local problems (6.11) in \{ \omega i\} i\in I\mu \mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k},\bullet 
, u\bullet i,\mu = 1

\phi i
T

(i)
\mu (\widehat u\mu | \omega i

).

10: Augment the dataset D\bullet =D\bullet \cup \{ u\bullet i,\mu \circ \Phi i : i\in I
\mu 
mark,\bullet \} .

11: end for

12: Compute \Delta \mu ,p (6.8) with approximate constants.
13: end for

14: Update the POD spaces Z\bullet =Z\bullet \cup POD(\{ w - \Pi Z\bullet w :w \in D\bullet \} , (\cdot , \cdot )\bullet , nglo).
15: if max\mu \in P\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n} \Delta \mu ,p < tol then
16: BREAK

17: end if

18: end for

for i = 1, . . . ,Ndd,\mu . The particular choice of the operators \{ T (i)
\mu \} i in (6.11) is moti-

vated by the convergence analysis in subsection 6.3 (cf. line 6 of Algorithm 6.2).
Algorithm 6.1 contains the data compression procedure. First, we initial-

ize the local spaces using Algorithm 5.1. Then, we sample nglo
train configurations

Ptrain = \{ \mu (k)\} n
\mathrm{g}\mathrm{l}\mathrm{o}
\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

k=1 with \mu (k) iid\sim pglo\mu , and we proceed with the enrichment itera-
tions. At the \ell th iteration, for each \mu \in Ptrain, we resort to the CB-ROM pro-
posed in section 4 to estimate the solution \widehat u\mu ; we compute the local residuals (6.1)

\frakr i\mu = \frakr 
(i)
\mu [\widehat u\mu ], i = 1, . . . ,Ndd,\mu , and, for all \bullet \in \frakL , we mark the mr\% instantiated

components of type \bullet with the largest residual, I\mu mark,\bullet \subset \{ 1, . . . ,Ndd,\mu \} . Then, we
solve (6.11) to obtain the local fields u\bullet i,\mu for all i\in I

\mu 
mark,\bullet (cf. line 9), and we update

the dataset of simulations D\bullet associated with the marked elements of type \bullet (cf. line
10). In view of the termination condition, we further compute the error estimator
\Delta \mu ,p (6.8) with approximate constants. At the end of the loop over the parameters,
we update the local spaces using POD (cf. subsection 5.2) (cf. line 14), and we check
if max\mu \in P\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n} \Delta \mu ,p is below a user-defined tolerance.
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A1318 KATHRIN SMETANA AND TOMMASO TADDEI

The solution to (6.11) is performed over the domain \omega i (or equivalently \widehat \Omega Li \subset 
\widehat \Omega Li
ovr), and the Newton solver can be initialized with the null solution; for this reason,

it is significantly cheaper than the solution to (5.3a). We observe that the local
solutions u\bullet i,\mu (cf. line 9) are not well-defined on \partial \omega i (i.e., division of 0 by 0); however,
since we are ultimately interested in the PUM space Zgfem (4.5) and due to the choice
of the local norm \| \cdot \| \bullet (cf. (4.9)), this issue does not affect our procedure. We further
observe that several steps of the algorithm are embarrassingly parallelizable: the loop
over the configurations (cf. lines 4 to 13), the computation of the residuals (cf. line
6), the solution to the local problems (cf. line 9).

We observe that the performance of Algorithm 6.1 depends on the choice of sev-
eral hyperparameters and in particular on the number of modes nglo added at each
iteration. In the POD literature, the size of the POD space is typically chosen based
on an energy criterion (see, e.g., [57, eq. (6.12)]). A thorough investigation of the sen-
sitivity of Algorithm 6.1 with respect to nglo is beyond the scope of the present paper.
Choosing small values of nglo requires more outer-loop iterations for any prescribed
accuracy; however, since the CB-ROM is more and more accurate as the iteration
count \ell increases, we envision that reducing the size of nglo might lead to more accu-
rate reduced spaces for any fixed dimension; therefore, the choice of nglo ultimately
reflects a trade-off between offline costs and online efficiency.

Remark 6.5 (computational complexity of Algorithm 6.1). The computational
costs of Algorithm 6.1 are dominated by the solutions of the PDE and the compu-
tations of the local residuals on the subdomains or oversampling domains. In detail,
conducting the randomized local training in Algorithm 5.1 requires ntrain solutions of
the PDE on the oversampling domain for each archetype component, which can how-
ever be performed in an embarrassingly parallel manner. Similarly we can use a ran-
domized SVD [28] to compute the POD basis that is also amenable to parallelization.

As the reduced basis functions for one subdomain \omega i have joint support only
with the reduced basis functions of very few other subdomains \omega j , we expect that
each of the dim(Ptrain) solutions of the global reduced system should scale linearly
in the number of subdomains Ndd (see also (6.1a)) and, at worst quadratically in the
dimension of the local reduced spaces \{ Z\bullet \} \bullet \in \frakL if one resorts to a conjugate gradient
method within Newton's method. The dim(Ptrain) \cdot Ndd,\mu computations of the dual

norms of the local residuals \frakr 
(i)
\mu require the solutions of dim(Ptrain) \cdot Ndd,\mu local linear

PDEs (6.1a) to compute the corresponding Riesz representatives. As we solve in line
9 of Algorithm 6.1 the local problems only for the marked subdomains, we do not
expect these computational costs to be dominating. The same applies for the POD
to be performed in line 14.

6.3. A priori convergence analysis for coercive linear problems. We
study the in-sample a priori convergence of the enrichment procedure in Algorithm
6.1; we consider the case of linear coercive problems, and we apply the simplified
randomized procedure contained in Algorithm 6.2; the proof follows the argument
of [9, Theorem 1]. To clarify the presentation and avoid unnecessary notation, we
assume Ptrain = \{ \mu \} , and we omit dependency on \mu ; in the supplementary material
(KSTT supplement.pdf [local/web 224KB]), we discuss the extension to multiple
configurations. We also assume that the cardinality of the library of components is
equal to one and we omit dependency on \bullet .

We define the model problem,

(6.12) find u\in X : \frakR (u, v) = f(v) - a(u, v) = 0 \forall v \in X,
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Algorithm 6.2 Simplified randomized localized training with global enrichment.
1: Initialize Z=Z0.

2: Sample nglo
train = 1 configurations \mu \sim pglo\mu , Ptrain := \{ \mu \} 

3: for \ell = 0, . . . ,maxit do

4: Compute \widehat u\ell using the PUM-CB-ROM (cf. section 4).
5: Find k= argmaxi=1,...,N\mathrm{d}\mathrm{d}

\frakr (i)[\widehat u\ell ].
6: Solve the local problem: find T (k)(\widehat u\ell )\in Xk,0 such that

\frakR (\widehat u\ell + T (k)(\widehat u\ell ), v) = 0 for all v \in Xk,0.
7: Define u \star = 1

\phi k
T (k)(\widehat u\ell ) and update the local space Z=Z\cup span\{ u \star \circ \Phi k\} .

8: end for

where H1
0 (\Omega ) \subset X\subset H1(\Omega ) is a suitable Hilbert space on \Omega . We also introduce the

energy norm and the associated dual norm:

(6.13) \| w\| a =
\sqrt{} 
a(w,w) \forall w \in X, \| f\| X\prime = sup

v\in X

f(v)

\| v\| a
\forall f \in X\prime .

Given the partition \{ \omega i\} N\mathrm{d}\mathrm{d}
i=1 , we further define the associated mappings \{ \Phi i\} N\mathrm{d}\mathrm{d}

i=1 , the
associated PoU \{ \phi i\} N\mathrm{d}\mathrm{d}

i=1 , and the local spaces Xi = H1(\omega i) \cap X and Xi,0 = H1
0 (\omega i).

Then, we define the local dual residual norms such that

(6.14) \frakr (i)[u] = sup
v\in Xi,0

\frakR (u, v)

\| v\| a
, i= 1, . . . ,Ndd.

Finally, we denote by cpu the constant such that (see (6.2))

(6.15) \| \frakR \mu (u, \cdot )\| X\prime \leq cpu

\sqrt{}    
N \mathrm{d}\mathrm{d}\sum 

i=1

\bigl( 
\frakr (i)[u]

\bigr) 2
.

Proposition 6.6 shows that the reconstruction error decreases exponentially with
respect to the iteration count \ell for any choice of the initial reduced space.

Proposition 6.6. The sequence of PUM-CB-ROM solutions \{ \widehat u\ell \} \ell =1,2,... satis-

fies \| u - \widehat u\ell \| a \leq 
\Bigl( 
1 - 1

N\mathrm{d}\mathrm{d}c2\mathrm{p}\mathrm{u}

\Bigr) \ell /2

\| u - \widehat u0\| a.
Next the lemma summarizes two standard results that will be used in the proof

of Proposition 6.6.

Lemma 6.7. Let Zgfem \subset X and let \widehat u \in Zgfem satisfy \frakR (\widehat u, v) = 0 \forall v \in Zgfem.
Then, we have

\| \widehat u - u\| a = inf
\varphi \in Z\mathrm{g}\mathrm{f}\mathrm{e}\mathrm{m}

\| \varphi  - u\| a,(6.16a)

\| \widehat u - u\| a = \| \frakR (u, \cdot )\| X\prime .(6.16b)

Proof (Proposition 6.6). Exploiting (6.15) and then (6.16b), we find

(6.17)
\Bigl( 
\frakr (k)[\widehat u\ell ]

\Bigr) 2

\geq 1

Ndd

N\mathrm{d}\mathrm{d}\sum 

j=1

\Bigl( 
\frakr (j)[\widehat u\ell ]

\Bigr) 2

\geq 1

Nddc2pu
\| \frakR (\widehat u\ell , \cdot )\| 2X\prime =

1

Nddc2pu
\| u - \widehat u\ell \| 2a.
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By construction, ulock = T (k)(\widehat u\ell ) in Algorithm 6.2 belongs to Z
(\ell +1)
gfem . As a result, if

we consider \varphi = \widehat u\ell + ulock in (6.16a), we find

\| u - \widehat u\ell +1\| 2a \leq \| u - \widehat u\ell  - ulock \| 2a = \| u - \widehat u\ell \| 2a  - 2a
\bigl( 
u - \widehat u\ell , ulock

\bigr) 
+ \| uk\| 2a.

Since

a
\bigl( 
u - \widehat u\ell , ulock

\bigr) 
=\frakR 

\bigl( 
\widehat u\ell + ulock , ulock

\bigr) 
\underbrace{}  \underbrace{}  

=0

+\| ulock \| 2a = \| ulock \| 2a

and

\| ulock \| a = sup
v\in Xk,0

a(ulock , v)

\| v\| a
= sup

v\in Xk,0

\frakR (u - \widehat u\ell , v)
\| v\| a

= \frakr (k)[\widehat u\ell ],

we obtain

(6.18) \| u - \widehat u\ell +1\| 2a \leq \| u - \widehat u\ell \| 2a  - 
\Bigl( 
\frakr (k)[\widehat u\ell ]

\Bigr) 2

.

By combining (6.17) and (6.18), we obtain

\| u - \widehat u\ell +1\| 2a \leq 
\biggl( 
1 - 1

Nddc2pu

\biggr) 
\| u - \widehat u\ell \| 2a,

which completes the proof.

7. Numerical results. In subsection 7.1, we investigate performance of the ran-
domized sampling algorithm for a linear problem; then, in subsection 7.2, we consider
the nonlinear diffusion problem introduced in section 2. Numerical simulations are
performed in MATLAB 2020b on a commodity laptop.

7.1. Performance of randomized training for a linear problem. We first
provide numerical investigations for the linear advection-diffusion-reaction problem

\Biggl\{  - \nabla \cdot 
\bigl( 
\mu 1\kappa \nabla u\mu ,g + [\mu 2, \mu 3]

Tu\mu ,g
\bigr) 
+ \mu 4u\mu ,g = 0 in \Omega ovr = (0,0.3)2,

u\mu ,g = g on \partial \Omega ovr =: \Gamma in,

where \kappa (x) = 1
1+\| x\| 2

2
and \mu = [\mu 1, \mu 2, \mu 3, \mu 4]\in P= [0.2,1]\times [ - 1,1]2\times [0,1]. We consider

the extracted domain \widehat \Omega = (0.1,0.2)2. The linear problem allows us to compare our
randomized method with a previously developed data compression algorithm. Note
that the transfer operator T : (\mu , g) \mapsto \rightarrow u\mu ,g| \widehat \Omega is nonlinear due to the presence of
parameters. We discretize the problem using the finite element method based on
cubic (P3) polynomials with Nin = 360 degrees of freedom on the boundary \Gamma in.

We compare performance of our randomized algorithm with the approach in [68]
(TE+POD): given the training set Ptrain = \{ \mu k\} n\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

k=1 \subset P, we first solve ntrain
independent transfer eigenproblems [3] for each value of the parameter and then we use
POD to combine the resulting spaces. We refer to [68] for further details and analysis,
and we refer to [65] for a similar data compression algorithm. In the numerical
experiments, we set ntrain = 100: this implies that TE+POD is required to solve
ntrain \cdot Nin = 36000 PDEs. We envision that the total number of PDE solves can
be reduced up to O(n \cdot ntrain) by resorting to Krylov methods to solve the transfer
eigenproblem; we refer to the above-mentioned literature for further details.
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(a) smooth training
smooth test

(b) Gaussian training
smooth test

(c) smooth training
Gaussian test

(d) Gaussian training
Gaussian test

Fig. 5. Linear problem. Out-of-sample performance; comparison with deterministic training
for Nr = 100 choices of the random samples and for two fixed test sets. (a)--(b) Smooth test set.
(c)--(d) Gaussian test set.

We set p\mu = Uniform(P) and we consider samples of the random field g =
Real[\widetilde g(\cdot ;cre,cim)] (cf. (5.7)) with Nf = 20. Given the restriction of the finite element
Lagrangian basis to the input boundary \{ \phi fei \} i\in I\mathrm{d}\mathrm{i}\mathrm{r} , we further define the random field

(7.1) g(x;c) :=
\sum 

i\in I\mathrm{d}\mathrm{i}\mathrm{r}

ci\phi 
fe
i (x) with ci

iid\sim N(0,1),

which is used below for comparison. To assess performance, we compare the maximum
relative projection error

(7.2)

Emax,rel(Z) := max
j=1,...,n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

\| \Pi Z\bot u\mu (j),g(j) | \widehat \Omega \| H1(\widehat \Omega )

\| u\mu (j),g(j) | \widehat \Omega \| H1(\widehat \Omega )

, \mu (j) iid\sim Uniform(P), g(j)
iid\sim pbc,

for the two choices of pbc---``smooth"" (with \alpha = 1) and ``Gaussian"" (7.1)---and ntest =
100.

Figure 5 shows the results for smooth and Gaussian training and test sets. Here,
we consider training sets of size ntrain = 50 in Algorithm 5.1; furthermore, we compare
error bar plots based on 100 independent choices of the training set. We observe
that our smooth sampling strategy is nearly as effective as TE+POD for n \lesssim 40
for both smooth and Gaussian test sets. This result empirically demonstrates that
randomized methods are extremely effective for identifying dominant POD modes
even for nonlinear transfer operators. We further observe that Gaussian sampling

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 6. Linear problem. Effectivity of the error indicator \eta =
\widehat E(ntest=10)
\widehat E(ntest=100)

for 100 independent

runs and for both Gaussian and smooth training.

is clearly inferior when tested on smooth data, while it performs as accurately as
smooth sampling on the Gaussian test set: we conjecture that this behavior is due to
the low-pass filtering properties of the differential operator.

In Figure 6, we show the behavior of the error indicator \widehat E in Remark 5.1; more

precisely, we show boxplots of the approximate effectivity \eta =
\widehat E(n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}=10)
\widehat E(n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}=100)

for 100

independent runs and for both Gaussian and smooth training. Note that, with very
high probability, \eta \in [0.5,1.5]. Note also, however, that \widehat E strongly depends on the
choice of the sampling distribution, which in practice is largely unknown.

7.2. Application to the nonlinear diffusion problem. We consider the ap-
plication to the nonlinear diffusion problem introduced in section 2. We discretize
the problem using a Q3 spectral element method based on a structured grid with 961
degrees of freedom in each subdomain \Omega i. We apply Algorithm 5.2 with ntrain = 200;
we set \{ p\bullet \mu \} \bullet as discussed in subsection 5.2 and we consider the smooth sampler de-
scribed in Algorithm 5.2 for Nf = 20 and various choices of \alpha and \=umax. We further
compare performance with randomized training based on the random field

g\bullet (x;c) :=
\sum 

i\in I\bullet \mathrm{d}\mathrm{i}\mathrm{r}

\frakf (ci, \=umax)\phi 
fe,\bullet 
i (x), ci

iid\sim N

\biggl( 
\=umax

2
,
\=u2max

4

\biggr) 
,

\frakf (c, u) =max\{ min\{ c, u\} ,0\} ,(7.3)

where \{ I\bullet dir\} \bullet denotes the set of indices of the mesh on the patch input boundaries and
\{ \phi fe,\bullet i \} \bullet are the Lagrangian bases associated with the HF discretization. We refer to
the sampling procedure in Algorithm 5.2 as smooth sampling ; we refer to the sampling
procedure based on (7.3) as Gaussian sampling . Nonlinear systems are solved using
a standard Newton's method with line search.

We consider a piecewise tensorized bilinear PoU \{ \phi i+(j - 1)n\mathrm{d}\mathrm{d}
(x) = \phi 1di (x1)\phi 

1d
j (x2)

\} n\mathrm{d}\mathrm{d}
i,j=1, where \{ \phi 1di \} i is a PoU subordinate to the cover

\{ \omega 1d
i = ((i - 1)H  - \delta over/2, iH + \delta over/2)\} n\mathrm{d}\mathrm{d}

i=1.

For this choice of the PoU, we have that \| d
dx\phi 

1d
i \| L\infty (\Omega ) =

1
\delta \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}

and thus the constants

Ci in (4.3b) are given by Ci =
\surd 
2

\delta \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}
for i = 1, . . . ,Ndd. Note that, since we impose

Dirichlet conditions on \partial \Omega , we can consider
\bigcup N\mathrm{d}\mathrm{d}

i=1 \omega i =\Omega . Note also that the constant
M in (4.3a) is equal to four.
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LOCALIZED MOR FOR NONLINEAR PDES A1323

It is possible to verify that, for the proposed PoU, there exist \widehat \phi int, \widehat \phi co, \widehat \phi ed such
that

\phi i = \widehat \phi Li \circ \Phi  - 1
i : i= 1, . . . ,Ndd,

for any choice of ndd \in \BbbN ; this is due to the particular choice of the mappings \{ \Phi i\} i
and of the archetype components.

7.2.1. Localized training. We compute ntest = 30 global solutions for ndd =
10 (Ndd = 100) components; then, we define the test datasets \{ D\bullet \} \bullet \in \{ co,ed,int\} by
extracting the solution in each element of \BbbV --- card(D\bullet ) = 1920 (resp., 120,960) for
the internal (resp., corner, edge) component. Finally, we introduce the localized error
indicators

(7.4) E\bullet 
avg,rel(Z

\bullet ) =
1

card(D\bullet )

\sum 

w\in D\bullet 

\| w - \Pi Z\bullet w\| \bullet 
\| w\| \bullet 

, \bullet \in \frakL ,

which are used to assess performance.
Figure 7 shows random samples of the boundary conditions on \Gamma in for internal and

edge components as provided by Algorithm 5.2 for various choices of \alpha and Nf = 20
and \=umax = 0.5. As for the linear case, the value of \alpha encodes the spatial smoothness
of the samples. We further observe that Algorithm 5.2 automatically enforces the
proper condition at the extrema s = 0 and s = 1 --- g(0) = g(1) = 0 for \bullet \in \{ co,ed\} ,
g(0) = g(1) for \bullet = int.

Figure 8 shows the behavior of the relative errors (7.4) for the three components
for smooth sampling for three choices of \alpha (Nf = 20, \=umax = 0.5), and for Gaussian
sampling (7.3). To provide a reference, we also show the performance of the POD spa-
ces based on the datasets \{ D\bullet 

test\} \bullet \in \{ co,ed,int\} (``bench"") generated using 30 additional
global simulations with Ndd = 100 components. We observe that smooth sampling
outperforms Gaussian sampling for the boundary components; we believe that this is

(a) α = 1 (b) α = 2 (c) α = 3

(d) α = 1 (e) α = 2 (f) α = 3

Fig. 7. Nonlinear problem. Samples of random boundary conditions for three choices of \alpha 
(Nf = 20, \=umax = 0.5). (a)--(b)--(c) Internal component. (d)--(e)--(f) Edge component.
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(a) internal component
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(b) edge component

10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

n

α = 0.5

α = 1

α = 2

Gauss

bench

(c) corner component

Fig. 8. Nonlinear problem. Local approximation errors (7.4) for three choices of \alpha (Nf = 20,
\=umax = 0.5), and for Gaussian sampling (7.3). Comparison with POD spaces based on the datasets
\{ D\bullet 

test\} \bullet \in \{ co,ed,int\} generated using 30 additional global simulations with Ndd = 100 components
(bench).
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10 20 30 40

n

H
?
= 0.04

H
?
= 0.09

(b) edge component, α = 4

10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

n

H
?
= 0.04

H
?
= 0.09

(c) corner component, α = 4

10 20 30 40

10
−4

10
−3

10
−2

10
−1

10
0

n

E
a
v
g
,r
el

H
?
= 0.04

H
?
= 0.09

(d) internal component, Gauss
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(f) corner component, Gauss

Fig. 9. Nonlinear problem. Local approximation errors (7.4) for \alpha = 4 (Nf = 20, \=umax = 0.5),
and for Gaussian sampling (7.3), for two choices of H \star .

due to the presence of strong Dirichlet conditions on \partial \widehat \Omega \bullet 
ovr \setminus \widehat \Gamma \bullet 

in. We further observe
that results weakly depend on the choice of \alpha .

In Figure 9, we investigate the choice of the oversampling size. As described in
Figure 3, in all numerical tests we consider the oversampling domains

\widehat \Omega \bullet 
ovr =

\Biggl\{ 
x\in \BbbR 2 : inf

y\in \widehat \Omega \bullet 

\| x - y\| \infty <H \star :=H  - \delta over,

\Biggr\} 
,

where H = 0.1 is the size of the internal domains (cf. (4.6)) and \delta ovr = 0.01 and
thus H \star = 0.09. In Figure 9, we reproduce the same results as Figure 8 with H \star =
0.04, for the three components, for \alpha = 4 and for Gaussian sampling. We observe
that for this particular problem we can consider a significantly smaller oversampling
domain without significant deterioration of performance; we also note that Gaussian
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Fig. 10. Nonlinear problem. Performance of the PUM CB-ROM on ntest = 30 global solutions
for Ndd = 100. (a) Galerkin error versus projection error. (b) Projection error for two choices of
the parameters in Algorithm 5.2.

sampling is more sensitive to the oversampling size. It thus seems that for this test
case choosing boundary conditions that interpolate with high probability a function
of higher smoothness (here H4(\Gamma in)) and thus excluding higher frequencies makes
enlarging the oversampling domain unnecessary.

Figure 10 shows the performance of the CB-ROM based on the PUM. In Fig-
ure 10(a), we show the average global L2 and H1 relative errors over the test set of
ntest = 30 global simulations and we also compare these with the H1 relative projec-

tion error, 1
n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

\sum n\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

i=1

\| u(i) - \Pi Z\mathrm{g}\mathrm{f}\mathrm{e}\mathrm{m}
u(i)\| 1,\Omega 

\| u(i)\| 1,\Omega 
. We here consider \=umax = 0.5, Nf = 20, and

\alpha = 1. We observe that Galerkin projection is nearly optimal for all choices of n;
we further observe exponential convergence with respect to n. In Figure 10(b), we
compare the H1 relative projection error for \=umax = 0.5, Nf = 20, and \alpha = 1 with the
results obtained for \=umax = 0.75, Nf = 20, and \alpha = 4; we observe that results weakly
depend on the choice of these two hyperparameters.

7.2.2. Adaptive enrichment. We apply Algorithm 6.1 with error indicator
\Delta \mu (6.3) to the model problem of subsection 7.2. We consider nloctrain = 30, nloc =
20, we set \{ p\bullet \mu \} \bullet as discussed in subsection 5.2, and we generate random samples
of boundary conditions at input ports based on (i) Algorithm 5.2 with Nf = 20,
\=umax = 0.5, \alpha = 1 or (ii) on iid realizations of (7.3). We further consider nglo

train = 50,
nglo = 10, maxit= 3, and we generate global configurations using the strategy outlined
in subsection 6.2. We assess performance based on ntest = 20 out-of-sample randomly
chosen configurations.

Figures 11(a) and (b) show boxplots of the relative H1 error after each iteration of
the training algorithm---iteration 0 corresponds to the performance of the CB-ROM
without global enrichment. Iteration 0 corresponds to a reduced space of size n= 20;
iterations it= 1,2,3 correspond to reduced spaces of size n= 20+ 10 \cdot it. We observe
that the enrichment iterations significantly improve performance of the CB-ROM
and reduce the impact of the initial sampling distribution. Figure 11(c) shows the
correlation between the residual indicator (6.3) and the relative H1 error on the test
set for all iterations of the enrichment algorithm for smooth sampling; Figure 11(d)
shows the effectivity of the error indicator \eta = \Delta \mu /Erel for smooth sampling. We
observe that the residual indicator is strongly correlated with the global error.

Figure 12 shows the maximum relative in-sample and out-of-sample H1 error for
the same sampling strategies considered in Figure 11. To facilitate the interpretation,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/1

5
/2

3
 t

o
 1

2
8
.1

7
6
.2

5
4
.1

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



A1326 KATHRIN SMETANA AND TOMMASO TADDEI

(a) (b)

(c) (d)

Fig. 11. Nonlinear problem; Adaptive enrichment. (a)--(b) box plots of the relative H1 error
on the test set for smooth and Gaussian sampling of localized BCs. (c) Correlation between \Delta \mu and
relative H1 error (smooth sampling). (d) Out-of-sample effectivity of the error indicator \Delta \mu /Erel

(6.3) (smooth sampling).
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(a) α = 1
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(b) Gauss

Fig. 12. Nonlinear problem; adaptive enrichment. Behavior of the maximum relative error on
training (in-sample) and test (out-of-sample) sets for smooth (\alpha = 1) and Gaussian sampling.

we also provide the fitted exponential curve \widehat E = exp(\alpha n + \beta ) obtained by discard-
ing the first datapoint. For this model problem, numerical results suggest nearly
exponential in-sample convergence of the adaptive enrichment strategy.

8. Conclusions and perspectives. We presented a CB-pMOR method for
parameterized elliptic nonlinear PDEs. The approach relies on the definition of several
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archetype components and associated local ROBs and ROMs. CB-pMOR rely on two
building blocks: (i) a localized training strategy for the construction of the local
approximation spaces, and (ii) a DD strategy for online global predictions. In this
paper, we proposed a localized data compression procedure based on oversampling
and randomized sampling of boundary conditions of controlled smoothness, and we
relied on the PUM to devise global approximation spaces and on Galerkin projection
to estimate the global state. Finally, we proposed an adaptive enrichment procedure
that exploits global CB-ROM solves to improve approximation properties of the local
reduced spaces.

Numerical results for a nonlinear diffusion problem show the impact of the sam-
pling distribution on performance: given a class of nonlinear PDEs, it is thus neces-
sary to devise an effective sampler that is informed by the problem of interest. The
approach presented in this work (cf. Algorithm 5.2) is simple to implement, and in-
corporates relevant features of the problem of interest---lower and upper bounds for
the solution, Sobolev regularity, Dirichlet boundary conditions. However, it depends
on several hyperparameters that might be difficult to set a priori. In this respect, we
numerically showed that the proposed enrichment strategy reduces the impact of the
initial sampling distribution.

In the future, we wish to extend the approach in several directions. First, we
wish to devise specialized hyperreduction strategies for CB-pMOR methods based on
the PUM: hyperreduction is key to reduce efficient online memory and computational
costs. Second, we wish to develop rigorous a posteriori error estimators for nonlinear
PDEs for online certification. Third, we wish to analyze performance of randomized
algorithms for nonlinear operators; this analysis is key to providing mathematical
foundations for randomized methods for nonlinear problems and also informing the
choice of the sampling distribution.

Appendix A. Notation.

Quantities associated with the archetype component \bullet \in \frakL = \{ co,ed,int\} : \widehat \Omega \bullet 

reference domain, \widehat \Gamma \bullet 
dir \subset \partial \widehat \Omega \bullet Dirichlet boundary, Y\bullet \subset H1

0,\widehat \Gamma \bullet 

\mathrm{d}\mathrm{i}\mathrm{r}

(\widehat \Omega \bullet ) HF discretization,

\widehat \phi : \BbbR d \rightarrow \BbbR + reference PoU (cf. subsection 4.2), \| \cdot \| \bullet seminorm used for POD (cf.
(4.9)), Z\bullet = span\{ \zeta \bullet i \} ni=1 \subset Y\bullet reduced space.

Oversampling. \widehat \Omega \bullet 
ovr \supset \widehat \Omega \bullet oversampling domain (or patch), \widehat \Gamma \bullet 

in \subset \partial \widehat \Omega \bullet 
ovr input

boundary, G\bullet \subset H1/2(\widehat \Gamma \bullet 
in) space of admissible boundary conditions for the local so-

lution operator, P\bullet active parameter domain in \widehat \Omega \bullet 
ovr, T

\bullet : G\bullet \times P\bullet \rightarrow Y\bullet transfer
operator, p\bullet \mu and p\bullet bc pdfs of the distributions over P\bullet and G\bullet used for localized
training (cf. Algorithm 5.1).

Instantiated system. \{ \omega i\} N\mathrm{d}\mathrm{d}
i=1 instantiated components, Neighi = \{ j : \omega i \cap \omega j \not = \emptyset \} 

index of the neighboring elements of \omega i, Pglo global parameter domain, L : \{ 1, . . . ,Ndd\} 
\rightarrow \frakL function that returns the label of each instantiated component, \Phi i : \widehat \Omega Li \rightarrow \omega i

geometric mappings, \{ \phi i\} N\mathrm{d}\mathrm{d}
i=1 instantiated PoU (cf. (4.8)), Xi := \{ \zeta \circ \Phi  - 1

i : \zeta \in YLi\} ,
Xi,0 := \{ \phi i \zeta \circ \Phi  - 1

i : \zeta \in YLi\} local HF spaces, Xpum PUM space (cf. (4.4)), Zgfem

global reduced space (cf. (4.5)), \frakR :Xpum \times Xpum \times Pglo \rightarrow \BbbR global variational form
(cf. (4.12)), u\mu solution to (4.12) for \mu \in Pglo, \widehat u\mu solution to the Galerkin ROM (4.13)

for \mu \in Pglo, \{ \zeta i,j = \zeta 
Lj

i \circ \Phi  - 1
j : i= 1, . . . , n, j = 1, . . . ,Ndd\} global ROB (cf. (4.14a)).

Enrichment. \frakr 
(i)
\mu : Xpum\times \rightarrow \BbbR + local residual (4.16b) for the component \omega i,

\Delta \mu : Xpum\times \rightarrow \BbbR + global error indicator (6.3), T
(i)
\mu : Xi \rightarrow Xi,0 local solution

correction operators (3.1).
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