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Computation is intertwined with essentially all aspects of physics research and is invaluable for
physicists’ careers. Despite its disciplinary importance, integration of computation into physics education
remains a challenge and, moreover, has tended to be constructed narrowly as a route to solving physics
problems. Here, we broaden Physics Education Research’s conception of computation by constructing a
metamodel—a model of modeling—incorporating insights on computational modeling from the philoso-
phy of science and prior work. The metamodel is formulated in terms of practices, things physicists do, and
how these inform one another. We operationalize this metamodel in an educational environment that
incorporates making, the creation of shared physical and digital artifacts, intended to promote students’
agency, creativity, and self-expression alongside doing physics. We present a content analysis of student
work from initial implementations of this approach to illustrate the very complex epistemic maneuvers
students make as they engaged in computational modeling. We demonstrate how our metamodel can be
used to understand student practices and conclude with implications of the metamodel for instruction and

future research.
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I. INTRODUCTION

Despite its fundamental importance to physics practice,
the integration of computation into physics pedagogy has
only begun to take place surprisingly recently. Responding to
the difficulty of sustaining educational change in higher
education [1,2], initiatives such as the partnership for
integration of computation into undergraduate physics
(PICUP) have successfully built supportive communities
for faculty to develop and adopt computational projects and
assignments [3,4] and the American Association of Physics
Teachers (AAPT) has produced a valuable report to facilitate
institutional changes [4,5]. While these efforts have met with
success, large-scale adoption of modern computation in
physics education and integration with interactive engage-
ment methods remains challenging [6,7]. Where opportu-
nities for students to engage in computation remain limited or
unavailable, students are unable to learn these ever more
important skills.

One of the main objectives of efforts to promote
computation is to better prepare students for active
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contributions to physics research [8] or for contemporary
careers in science, technology, engineering, and mathemat-
ics (STEM) [9]. The key to such preparation is to offer
students the opportunity to engage in a broad range of
professional scientific practices in the classroom [10,11].
However, computational projects and assignments in phys-
ics education are often framed as problems on particular
domains of physics involving systems specified by the
instructor [12]. A trained scientist, however, is not someone
who has simply studied a large set of such exemplars: they
have also developed a critical evaluation of the problems to
be able to use them as resources, with appropriate justi-
fication, for solving novel problems or conducting new
scientific inquiries. Hence, critical evaluation must be
central to scientific training.

An alternative framing that better reflects how physicists
use computation would instead focus on computational
practices, such as numerical analysis, coding, testing, and
visualization [5,13,14]. Such a framing lends itself natu-
rally to a project-based approach as has been developed by
several authors [7,14-16] and provides us with an oppor-
tunity to utilize work in K-12 science education scientific
practice [17-19]. As with the National Research Council’s
Framework on K-12 science education, we “use the term
‘practices’ instead of a term such as ‘skills’ to emphasize
that engaging in scientific investigation requires not only
skill but also knowledge that is specific to each practice”

Published by the American Physical Society
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[20] (p. 30). Understanding computational physics practi-
ces in classrooms and professional physics is valuable to
physics education broadly since computation is inextri-
cably interwoven into all aspects of physics: Computers are
used to design experiments, collect, analyze, and visualize
data, perform simulations, and construct and test math-
ematical theories.

Motivated by this enriched perspective on computation,
it is natural to ask: How do we design educational
environments where students can engage in computational
practices and other physics practices and how can we
theoretically ground such design? As an answer to this
question, in this paper, we will propose a metamodel—a
model of modeling processes—of knowledge production in
computational physics that will then be leveraged to design
and analyze projects intended to empower students to
cultivate these practices. Our work here is inspired by
our reading of relevant literature from philosophers of
science: Staley provides an epistemological perspective on
experimentation grounded in scientific practice [21-23]
while Humphreys offers a nuanced perspective on simu-
lation and more generally on computational models [24].
We, therefore, define computation as much more than just a
set of methods used to numerically solve problems that
cannot be solved analytically but as a dynamic set of
practices that are central and necessary to the production of
scientific knowledge and that are explicitly or implicitly
performed by scientists when they successfully create
physics knowledge.

Note that our use of the term “knowledge” deliberately
does not commiit to a particular conceptual analysis of that
idea. Following Dewey [25] and Pierce [26], we instead
draw from the pragmatic tradition in philosophy of science
to think of knowledge as the product of a successfully
executed act of inquiry, where its success is evaluated by
the acceptability of the outcome to a community of
investigators. A pragmatic account of computation, there-
fore, seeks to describe how computational activities,
suitably conducted, generate outcomes that can serve as
the premise of future inquiries, including experimental
ones, but could also be further refined.

By framing our approach to computation in pragmatic
philosophy, we can adopt a working conception of model,
theory, and knowledge that evades contested epistemologi-
cal analyses. Rather, we can focus on the development of
teaching strategies that rely on the expertise of practicing
scientists who are not trained in epistemology. The prag-
matic approach aligns well with physics education research
(PER) efforts to reposition the classroom as a place for
students to do physics rather than imbibe knowledge [27]. It
also deters us from evaluating student work as correct or
incorrect, in line with PER recommendations [27,28]. The
emphasis of our study will therefore be on what is done by
students, the things they produce, the resources they use,
and the relationships between practices, resources, and

products, rather than on the syntactic or semantic structure
of the computation. As we will discuss in Sec. Il A, this is a
very different perspective on computational modeling than
has been previously adopted in PER.

As will be discussed in subsequent sections of this paper,
our new metamodel provides a theoretical foundation for
education design and research in computational physics. It
is used to ground our design research [29] approach to
explore how students engage in, and learn with, computa-
tional practices as they undertake an act of scientific
inquiry. Design research allows us to build new educational
environments while also developing new theoretical posi-
tions on how learning takes form in computational activity.
Motivated by our metamodel, we adopt making, an open-
ended but intentional learning activity that centralizes self-
expression, materiality, design, and iteration [30,31]. As we
shall show, making enables students to produce and
computationally model phenomena in a way that reflects
physics disciplinary practices that are essentially absent in
typical classrooms.

In Sec. II of this paper, we examine prior research on
modeling and metamodeling in science education research,
and we provide an expanded view of computational
modeling from the philosophy of science. We then develop,
in Sec. III, our new metamodel for computational physics
taking into account these considerations. Note that our
metamodel is not limited to computational physics contexts
but may be used in a broader range of learning environ-
ments. In Sec. IV, we describe the design of the course
projects which operationalized our metamodel, while the
details of their implementation are presented in Sec. V.
Using data collected in Spring 2019, we examine student
work in Sec. VI using our metamodel to identify how
students engaged in computational modeling within the
designed context. We discuss these initial experiences in
Sec. VII and compare our approach with other theoretical
perspectives on computation in physics. We also propose
possible research directions to understand how to further
optimize these practices and conclude with the implications
of our metamodel in Sec. VIIIL.

II. BACKGROUND

A. Modeling and metamodeling in physics education

Metamodels have proven a productive resource for
physics education researchers to design and assess inter-
ventions, from curricula to individual assignments, from
the foundation of the field. In pioneering work, Hestenes
proposed a model-centered instructional strategy that
focused on building students’ conceptual understanding
of physical reality [32]. Nonetheless, this early work did
not consider computational models specifically, and the
philosophical understanding of modeling has evolved
significantly since then (see, for example [24,33,34], to
name a few). In addition, Hestenes focused on the structure

010121-2



PHYSICALITY, MODELING, AND AGENCY IN A ...

PHYS. REV. PHYS. EDUC. RES. 19, 010121 (2023)

of scientific knowledge he saw in professional scientific
practices, rather than on the knowledge creation and
revision processes at play in these practices, limiting the
practical use of such metamodeling in physics education.
These limitations motivate the present work.

Nevertheless, the resulting Modeling Instruction curricu-
lum met with considerable success and has inspired a number
of related efforts. Of particular pertinence to the present work
is the Matter and Interactions curriculum that includes a
significant computational component [10] and popularized
the VPYTHON environment within the physics community.
Chabay et al. [10] describe the benefits of computation in this
context as providing new representations through data
structures and visualization as well as promoting open-ended
exploration and stimulating creativity.

Brewe’s careful re-exposition of Modeling Instruction
applied to introductory physics [35] presents a cyclic
metamodel that includes as steps identification of phenom-
ena and appropriate representations, coordination of repre-
sentations, application of knowledge and tools, abstraction
and generalization, and continued incremental development.
Like Hestenes, Brewe emphasizes the reflection of scientific
practice in pedagogy and notes the rich problem-solving
experiences that this makes possible.

A number of authors have since developed more sophis-
ticated metamodels. Zwickl et al. [36] constructed a
metamodel for modeling, in physics laboratories that
incorporates both modeling of the physical system of
interest and the measurement process, comparison of the
results with predictions, and iteration. In a later paper [37],
they clarified their metamodel slightly to emphasize that
iteration could include revision of the physical or meas-
urement model or the experiment. Their metamodel pro-
vided a rich tool to analyze student thinking in think-aloud
interviews based on their lab work [37].

As a vivid illustration of the utility of metamodels as
theoretical tools for design and analysis in PER, a number
of other authors have used and even further refined, Zwickl
et al’s metamodel, later referred to as the Modeling
Framework for Experimental Physics [38], to examine
the intersection of modeling and troubleshooting [39] or to
develop assessment instruments for electronics laboratories
[40], to cite a few examples. By carefully analyzing video
data of student work, Refs. [39,40] reveal that students
engaged in different modeling subtasks almost simulta-
neously, which parallels some of our earlier observations
about the deep interconnection between various modeling
components as we reported in Ref. [14].

A serious limitation of the above metamodels developed
for physics education is that they conceive modeling solely
in its representational relationship to phenomena. However,
models could also be used, for example, to predict, design
protocols, enhance performance, develop a critical evalu-
ation of other models or of themselves, build something, or
even price a product. In a valuable recent paper, Russ and

Odden draw upon research from psychology and philoso-
phy of science to argue that modeling should indeed not be
separated from evidence-based reasoning, because both
these activities are located in a broader epistemological
context [41]: modeling guides which evidence to collect, to
create mechanistic explanations, and to make claims about
causality.

In a prior paper [14], we presented an earlier iteration of
our computational physics course designed to encourage
students to engage in scientific practices. Central to the
design was a tentative metamodel, depicted in Fig. I, of
computational physics that was constructed from literature
and interviews with domain practitioners. This model
proved useful for connecting the practices of professional
physicists to those of our students as well as designing
rubrics: Ref. [14] contains detailed descriptions of what
these practices might look like in student work. However,
as we continued to develop the computational physics
course, we found this metamodel did not capture the
nonlinear and complex practices we saw in our students
and our own work as physicists who use computation in
research. These observations motivated us to develop the
revised metamodel presented in Sec. IIL.

Some practices in our prior metamodel were also
identified as important in other physics education work
[5,13], and its iterative nature parallels other models that
have been used to analyze computation in science and
engineering [42—44]. Nonetheless, the connectivity that we
proposed departs significantly from prior metamodels
explicitly or implicitly proposed in PER to study compu-
tation: we found that scientists tended to hop between
practices in a very complex manner rather than in a strict
order. This parallels observations in other disciplines [45—
47]. Further, by focusing on the practices involved in an
inquiry, rather than the content of a model, our prior
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FIG. 1.  Prior metamodel of knowledge production in computa-
tional physics [14]. Arrows denote how the results of certain
practices are used by a scientist to facilitate others.
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metamodel is not limited only to representational modeling
and is already implicitly grounded in pragmatic philosophy.

To redesign our metamodel, we need a better under-
standing of what modeling phenomena entail. The next
section draws upon the impressive philosophy of science
work [21-24] that provides a sophisticated view of com-
putational models. Note that while the question of what
constitutes a model is certainly very complex (see, for
example, [33]), adopting a pragmatic approach allows us to
focus instead on how physicists engage in modeling
practices in the production of computational physics
knowledge.

B. Computational models

Perhaps surprisingly, given the connections between
computation and modeling, the question of how computa-
tional models might differ from other kinds of the model—
and the consequences for instruction—has received little
scrutiny within PER. Fortunately, the work of the philoso-
pher Humphreys [24] offers sharp insight into this question.
Humphreys argues that computational models have six
components:

1. A computational template, which incorporates both
the equations to be solved and additional necessary
information specified. For example, the Schrodinger
equation or Newton’s second law are schemas or
theoretical templates that are computationally
intractable until a potential or force function is
specified. We note that the choice of these additional
components themselves can be models and may or
may not be computational in nature. Moreover,
computational templates need not be built on laws
or theories (as in agent-based modeling and some
types of machine learning).

2. Construction assumptions. These can include both
the assumptions of the theoretical templates used
and those adopted specifically for the model and not
drawn from a general theory. Assumptions might
include the type of model required, and what
abstractions, constraints, and approximations are
appropriate. Some of these assumptions might be
for physical reasons, but others could be for prag-
matic reasons, i.e., to facilitate calculations.

3. The correction set specifies in advance the ways in
which the computational template must be adjusted if
it fails to match empirical data. This necessarily
involves changes to the construction assumptions,
such as refining approximations or relaxing con-
straints.

4. An interpretation of how the model is supposed to
represent the physical system, incorporating both
ontology (a map from components of the model to
components of the physical system) and causal
structure.

5. The initial justification of the template may be
revised for empirical or pragmatic reasons.

6. An output representation, including a data file or
visualization.

As a very brief example, a scientist might construct a
computational model of a pendulum using Lagrangian
mechanics together with a gravitational potential and an
Euler-Cromer integrator as the computational template.
The scientist might initially model the real pendulum as a
point mass connected to a massless inextensible string
in vacuo—the construction assumptions. The model’s
correction set, ways that the model could be revised, might
include incorporating the mass of the string, drag, etc. or
revising the choice of integrator. The model’s interpretation
is that the trajectory of the mass is explicitly represented by
a (time dependent) position vector, while the string is
represented by a constraint. Justification of the template
used might involve prior knowledge of the physical string’s
mass relative to the bob. The completed program might
produce a number of output representations, including the
raw trajectory data from the program’s output, graphs of the
trajectory, or even an animation.

Even for such a simple physical system, Humphreys’
picture enables us to see the many elements of a computa-
tional model that are not simply representational. It also
describes how a model may be revised: Once the initial
template is chosen, for example, it can be refined by
assessing the assumptions, comparing with data, and
adjusting the template according to the correction set.
The initially predicted trajectory of the pendulum may
not match the experimental data, for example, and show a
diminishing amplitude; the scientist might therefore sus-
pect the need to incorporate damping into the model.
Hence, implicit in this account of what a computational
model is is a metamodel of how such models are to be
constructed and revised which is described in detail
in Ref. [24].

Humphreys’ conception of computational modeling
focuses our attention on the epistemic import of models,
helps us locate them in an epistemological framework, and
accounts for nuances in how they are used in science. It
invites us to look beyond the representational aspects of a
computational model. The richness of the above construc-
tion provides a detailed lens to compare models: The same
computational template could be used to model different
systems, even in different disciplines, and the differences
between such models would lie in the correction set,
justification, or interpretation. Similarly, two models could
have strongly overlapping assumptions and a common or
nearly common correction set but use different computa-
tional templates. Our example model of a pendulum might
equally well have been constructed using Newton’s laws
rather than the Lagrangian approach, without one outcome
being more “true” than the other.
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Here, we will adopt a complementary but distinct
approach from Humphreys. He, as we have described,
identified components of a computational model and
showed that they are more than a theory or a representation
and instead comprise a network of elements that enable a
“core” theory to reach calculated predictions. For the
classroom environment, we are interested in how models
are built. Indeed, scientists themselves may lack a clear
understanding of what a model is but are still able to make
one. We will therefore leverage the work of other philos-
ophers, particularly Kent Staley [21-23], who have con-
sidered knowledge production by scientific inquiry. By
focusing on practices, what is done in computational
modeling, rather than on the structure of a model, and
treating models themselves as resources to be used to
perform these activities, we are able to recover many of the
same components that Humphreys identifies, while being
able to operationalize these components, i.e., to map them
to what scientists are actually doing when they are
modeling.

For the present work, the philosophy of science literature
motivates us to think more expansively about what could

happen in a physics classroom and how to make students
think more explicitly about their modeling work. Alongside
creating programs, exploring algorithms, visualizing data,
etc., students could also, to name just a few possibilities,
justify their models, critically examine different assump-
tions, templates, and even entirely different models, and
embark on creating and revising models in response to data.
In order to facilitate this, we will develop in the next
section, a practice-based view of computation, in effect, a
revised version of Fig. 1, that incorporates some of the key
insights from the philosophy of science, adapted to the
pragmatic epistemological framework adopted here that
allows us to more directly connect to the work and practice
of students and physicists.

1. METAMODEL

To construct our revised metamodel of computational
physics, we begin by re-examining our prior metamodel:
We observe that the web of practices in Fig. 1 may be
considerably disentangled by dividing them into two
categories, which we shall refer to as production and
critique, respectively. These practices inform, utilize, and

Expertise Literature Data
Standards Used to assess whether X . i
Models of objectives have been met Epistemic Pragmatic
Evidence \‘
Resources - - Objectives
Use to design Guide what to
critique produce
Alter Design
Use objectives tosts ,f,';‘i’, et
Submit to critique criteria Validation/
Implementing Cross
Pl . S — checking
anning . . . isualizing
Production Modeling Critique
Running \_/ Debugging
Concluding Testing
) Propose revisions Studying
Interpreting rels?jlfsog B
programs
Report results of Numerical
Representin: iti
P ot 9 Products the critique Analysis
Target model Programs Documentation Publications

Become resources for future
inquiries

FIG. 2. Revised metamodel of knowledge production in computational physics including the following five components: In a scientific
inquiry, a scientist undertakes a cycle of production and critique practices to meet their objectives. In doing so, they use resources. The
outcome of a successful inquiry is scientific products that become resources for future inquiries. Illustrative examples of each
component are shown as disks. Arrows depict how elements of the metamodel inform or are used by one another in an inquiry.
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create resources, products, and objectives. These resources,
products, and objectives consist of tangible artifacts such as
programs, references, and reports as well as abstractions
such as computational and conceptual models and
knowledge.

The new metamodel is displayed schematically in Fig. 2
which depicts how the various components inform one
another (arrows) together with examples of each compo-
nent (disks). The examples enumerated in our revised
metamodel are not meant to be comprehensive, but rather
what we have identified through literature, as discussed
above, as well as student and professional practice, as
discussed in Ref. [14] and later in this paper. To assist the
reader in interpreting our description of the metamodel,
examples of the enumerated items from students’ engage-
ment in computational physics are shown in Tables I and II.
We provide these here to assist in defining the various terms
used. The context for these examples is provided in
Secs. IV and VL

Production practices relate to the creation of scientific
artifacts and ultimately products; critique practices relate to
the evaluation of the outcomes of the production tasks and

the resulting computational model with respect to the
objectives of the inquiry and the standards that are targeted.
These include standards of evidence (e.g., estimates of
uncertainties on quantitative results) which are used as
resources to assess if the objectives of a scientific inquiry
have been met, as discussed by Beauchemin in Ref. [48],
and by Ritson and Staley in Ref. [49].

As illustrated in Fig. 2, practitioners draw upon a variety
of resources to perform the scientific practices that enable
them to meet the objectives of their inquiry. Resources
include many kinds of existing model, theories and
templates, data, experimental results, their own expertise,
aforementioned standards of evidence, etc. Some of these,
such as literature, are artifacts that exist in tangible form.
Others, such as expertise and models, may primarily exist
as knowledge or other types of abstractions. The same
resources may be used for many different scientific
inquiries, but some practices might also require very
specific resources. Production and critique are therefore
seen as two different ways of using resources to meet the
epistemic objective(s) of the inquiry, but also at validating
the computational model resulting from the entire process.

TABLE 1. Examples of abstractions and artifacts in the metamodel identified from student work.
Construct Definition Example
Objectives  Epistemic objectives The target knowledge Half-pipe group initially seeks to model
the motion of their oscillator.
Pragmatic objectives Practical targets Students aim to create code that runs efficiently.
Resources  Expertise Experience and background knowledge  All students had at least 2 years
of undergraduate physics training.
Models An existing model Multiple groups used the Lagrangian approach.
Data (Numerical) information gathered All groups collected video data.
for the purpose of analysis
Standards of evidence  Reference criteria to assess the All groups used visual superposition
quality of evidence available of experimental and simulated
trajectory as a criterion for fit.
Literature Papers, textbooks, etc. The iron bar group used a damping
term from a paper provided
by the instructor.
Products Target model A model that is an outcome of Describing the position of the iron bar

a scientific inquiry

Programs Code expressing intent to the computer
Documentation Comments, notes, and ancillary
text facilitating use and
understanding of programs
Publications Documents for disseminating results

oscillator as a function of time.

All groups turn in a Jupyter notebook
that is executable by the course instructor.

Jupyter notebooks incorporated documentation
integrated with the code.

All student groups produced reports
on their findings and presented
their findings to the class.

010121-6



PHYSICALITY, MODELING, AND AGENCY IN A ...

PHYS. REV. PHYS. EDUC. RES. 19, 010121 (2023)

TABLE II.

Examples of practices in the metamodel identified from student work.

Practice

Definition

Example

Production Planning

Implementation

Running

Representing data

Structure of code and algorithms

are identified ahead of implementation

Writing a program

Executing a program to produce
results

Processing data into a form
amenable for computation or
visualization

The iron bar group created a PYTHON
class prototype for organizing their code.

All groups collaboratively wrote
and implemented Jupyter notebooks.

All groups executed programs
to generate the results they presented.

The torsion group processed their
data to be over a different interval
than the —z to # interval output by their sensor.

The half-pipe group attributes the greater damping of
the heavier mass to greater movement of the
ramp (and therefore energy lost to that movement).

The iron bar group concluded that
the effective potential satisfactorily
modeled the behavior of their system.

Students in the half-pipe group continuously

Interpreting Relating the outputs of a model to
observable quantities or phenomena

Concluding Claims about the outcome of the
project based on production
and critique

Critique Testing Comparing the output of the program

to expected results or data

Debugging Editing the program to ensure

it produces intended results

Numerical analysis Predicting or analyzing the

performance of a program

in terms of cost, error or stability

Visualization Conversion of data into
a graphical display
Validation Performing two or more different

calculations and comparing
the results

Robustness studies
of a computational model

Establishing the domain of validity

tested their code in several phases
as they modeled the ramp and then
the motion of the cylinder.

The iron bar group recognized that the BoxPlot tool
cannot represent their data in the way they intended.

The torsion group compares how
the error between the numerical
and analytical solution change over time.

The torsion group produced multiple
visualizations to verify that their
algorithm reconstructed the trajectory properly.

The torsion group compared both their numerical
and analytical models to their experimental data.

The half-pipe group used their computational
model to analyze the motion of different
objects on their ramp.

We do not consider the resources, the products, or the
practices that we listed under production and critique to be
exhaustive. Professional physicists as well as students may
engage in a broader range of practices that would fall under
these umbrellas. Similarly, “resources” should be under-
stood broadly. For example, we consider expertise to be not
only consist of the skills developed over years of practicing
physics but also scientists’ expertise developed in their
daily lives including ways of constructing, observing, and
knowing.

In this view, progress is made by the scientist by
producing a computational artifact and data while perform-
ing critique. The scientist will test whether the model yields

internally consistent results, for example, if the approx-
imations made are a posteriori found to be satisfied and
conserved quantities are indeed conserved. They will also
determine whether the results satisfy their objectives. If not,
they may revise components of the model or resort to
further production. New resources might also be brought to
bear. They may even revise the objectives themselves or
modify the standards of evidence desired, e.g., by increas-
ing or lowering the targeted precision of a calculation. New
tests might then be proposed, the computational model
revised or further critique performed and the process
continues. Hence, “iteration” in our new metamodel ulti-
mately corresponds to revising the resources and/or
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objectives based on data. The process continues until the
scientist meets the objectives of the inquiry with reference
to standards of evidence—precision, statistical signifi-
cance, size of dataset—that is acceptable to them and
arising from their disciplinary context (which often
includes substantial revision of the objectives in the face
of pragmatic constraints). The outcomes of the inquiry,
which could include programs, manuscripts, data, presen-
tations, and new knowledge then become resources for
future inquiries.

The above epistemological account is inspired by the
epistemological framework proposed by Staley for securing
evidence produced in an experimental inquiry [21-23] and
is fully rooted in a pragmatist perspective. Staley and one of
the authors of this paper (P.H.B.) are in process of
developing this framework into a broader epistemological
model of experimentation in the physical sciences. We
therefore anticipate that this metamodel, presented in
Fig. 2, might be further revised in the future as the broader
framework emerges. The version proposed here represents
an application of this work to computational physics
practices—which can guide the design of learning
environments.

Our revised metamodel provides a design tool that
enables us to identify instructional activity within this
framework as well as a diagnostic tool to understand how
students engaged in the various scientific practices in
computational physics. It allows us to create educational
materials that focus on some or all of the computational
practices elucidated by our metamodel. For example, it is
possible to envisage a project primarily focused on the
production mode, which would involve a concrete, well-
posed problem and the students writing and running the
code. Similarly, a project focused on the critique mode
might involve running a preexisting code or using an
existing dataset and having the students interpret the
output.

One of the key elements of our metamodel, which was
also an important feature of our earlier work, is that
scientists (including students as shown in Refs. [39—41])
maneuver within these categories frequently and arbitrarily
and also traverse between them: for example, having
produced data the scientist offers it for critique, which
may then involve revisions to the products or the resource
models. The iterative nature of the metamodel therefore
allows for the possibility that the inquiry process can itself
impact the resources that are used in the process and even
lead to the creation of new resources to advance the inquiry.
This mirrors work in engineering education on the “co-
evolution” of problems and solutions [50-52] and work in
philosophy of science describing how the natural world
“pushes back™ on our understandings to drive scientific
advancement [53]. The assumptions made, the level of
sophistication of the models used to solve a particular
computational problem, and the techniques employed in

the production mode can all be modified as a result of
critique (as Humphreys envisages). With reference to our
example in Sec. II B, the scientist’s desire to improve on the
precision of the pendulum computational model might lead
to using more sophisticated models of friction and mass
distribution as input to the calculation being performed.

We also stress that the metamodel is inherently multi-
scale: In conducting an inquiry, a scientist or student may
encounter a missing resource, such as a missing parameter
or experimental technique. To provide the resource, the
investigator must often conduct a new inquiry with its own
objectives and standards of evidence [54]. Perhaps, a
simulation can be identified from literature but must be
applied to the particular system of interest to estimate the
missing parameter, for example. Or a new experimental
technique can be identified from literature but must be
demonstrated and validated on suitable test cases. The
metamodel applies equally to these embedded acts of
inquiry, which aim to produce missing resources and
enable the broader inquiry to continue.

The metamodel also accounts for the ad hoc procedures
by which scientific inquiry appears to be conducted: The
space of possibilities offered by all the resources that could
be brought to bear is very large. The process by which the
inquiry objectives are met and the products that result from
the inquiry are not unique. As a consequence, different
choice of resources can be used to reach the same ends, and
there are multiple ways by which these ends could be
reached.

Within the scope of an inquiry, some models may be
protected, i.e., ones that the scientist is unwilling to revise
and others may be revisionable, i.e., those that the scientist
is prepared to modify as a consequence of critique
practices. We stress that “protected” and “revisionable”
models are not used here in the Lakatosian sense [55]; what
we consider as protected or not is specific to a particular
computational problem. The category of revisionable
models approximately corresponds to Humphreys’ notion
of the correction set associated with a computational model
but is framed here from the viewpoint of practices con-
sistent with the pragmatic approach adopted in this work.

Protected resources typically consist of background
knowledge about both target and ancillary phenomena,
as well as knowledge of computational models that have
been successful in the past for the relevant domain of
physics. They are used to inform the production activity as
well as constrain the design and implementation.
Revisionable models will often include hypotheses about
the target and ancillary phenomena, extension of back-
ground knowledge about both types, and new features of
the computational model. Critique activities may lead the
scientist to propose revisions to these components of the
model. Both protected and revisionable modeling are used
to design tests that facilitate critique: For example, they are
often used in estimates of systematic uncertainties.
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Our distinction between revisionable and protected
accounts for the observation that there exists a multitude
of pathways to solve a problem. Hence, a scientist will
typically adopt a pragmatic attitude of limiting the space of
resources that will be put into scrutiny at one time. The very
same computational problem tackled by a different team of
scientists can, and commonly does, lead to a different set of
protected and revisionable models. Ultimately, no model is
always protected over the space of all scientific activity, but
in an individual investigation, a particular model may be.
Since the investigator has the choice of which resources
will be used in the inquiry, as well as what will be protected
and what will not, the same should apply to the classroom:
students should be free of the resources they use to solve a
given problem and of deciding which ones can be revised
and which ones will not.

This observation offers a strong motivation for encour-
aging student agency in class projects, whereby students are
empowered to make decisions about what they want to think
about and the ways they explore these curiosities [56]. In
order for students to engage in many of the various activities
that comprise computational modeling, as well as navigate
the relations between them, it is also essential that the
educational environment facilitates and promotes student
agency. Agency has attracted significant attention in science
education and PER specifically and will be discussed further
in the course design section below. For now, we simply note
that each connection between critique and production offers a
potential opportunity for student agency, in addition to the
choice of resources, objectives, and products discussed
earlier. We therefore direct our use of the metamodel toward
situations that both expand and deepen the intellectual
possibilities available to students to do science.

One of our goals in this work is to design course projects
that enable students to explore the totality of the computa-
tional modeling process, so our design must aim quite
broadly. If it is successful, we might expect to see in their
work at least:

1. An identifiable target, i.e., an observation, a con-
ceived, or reported phenomenon, a known physical
effect.

2. Objectives for the computational work. This might
include qualitatively describing the target phenome-
non, interpolating between asymptotic cases, fitting
data, and producing a desired physical effect.

3. Standards that determine whether these objectives
are met, such as the quality of fit expected, or which
features of the phenomenon the computational work
should display.

4. Identification of resources from which the model is
drawn. This includes general background knowl-
edge or the computational template (e.g., Newton’s
equations) but also contextual knowledge required to
apply the general theory or model to the target
phenomenon and meet the objectives.

5. Identification of ancillary phenomena that must also
be modeled to meet the objectives.

This is not an exhaustive list, but some factors we shall
use in our later analysis. We will later examine a selection
of student work in Sec. VI with reference to these criteria
and suggest further refinements in Sec. VII.

IV. COURSE DESIGN

Our epistemological account of computational modeling
and the associated metamodel were used to inform the
design of computational physics projects in the classroom.
Building from a design research approach [29], we have
theorized and designed a learning environment to support
computational approaches to disciplinary learning in sci-
ence while also studying how the theoretical proposals
unfold in activity. The broader project involves work from
K-12, examining aspects of teacher learning, student
learning, and the ways relationships to disciplinary prac-
tice, tools, and co-learners are renegotiated through making
[57] as will be further discussed in Sec. IV B below.

The design enactment described here is an extension and
elaboration of the computational making approach in K-12
settings to the university computational physics course.
This was driven largely by a conjecture that computational
making would allow further investigation of how students
move from observable physical behaviors in the world to
computational models and solutions. By making space for
students to act with agency both over the physical systems
they build and over the computational modeling of those
systems, we aimed to create an environment that mimics
the professional practice of computational modeling in
physics.

A. Epistemic and pragmatic agency

As we discussed in the preceding section, a crucial
requirement to provide students with the opportunity to
perform the full range of activities we envisage as important
to computational modeling is agency [56]. Agency plays a
key role in scientific practice because progress in science is
not linear and there are often fundamentally different ways
to solve problems, conduct inquiries in science, or conceive
phenomena. Which models are protected and which ones
are revisionable, for example, is based on practical working
principles rather than on epistemological virtues as dis-
cussed in the previous section.

The philosopher Ritson has scrutinized the epistemic
role that the interrelated idea of creativity has on exper-
imental physics, defining creativity as “the capacity to
increase the epistemic value of a measurement by trans-
forming the model of a routine measurement process” [58].
Agency offers to scientists the possibility of revising,
iterating, and improving the outcome of an inquiry, as
well as its objectives and hence its ultimate epistemic value.
Agency therefore allows for creativity in experimental
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science in Ritson’s sense. For pragmatists, inquiries are a
means to meeting objectives, and hence there is a consid-
erable role for creativity in doing science. The same
argument there applies to computational modeling as
considered here.

We also distinguish between students’ agency over their
pragmatic or practical goals (e.g., what materials should be
chosen for constructing an oscillator) and agency over their
epistemic goals (e.g., what qualifies as a sufficient agree-
ment between the computational model and physical
system). We refer to the former as pragmatic agency
[59] and the latter as epistemic agency [60,61]. These
two constructs are intertwined and overlapping, as seen in
our metamodel: students may make practical decisions
about how best to plan and execute their code that has
consequences for how they draw conclusions based on that
code. Together, students’ opportunities to make decisions
and evaluate the outcomes of those decisions constitute
agency [62] and contribute to conditions supportive of
epistemic practices that sustain computational modeling
activity [63].

Within physics education research, the role of agency,
including epistemic agency, has been studied in the context
of undergraduate laboratories. [64—70]. While offering
encouraging insights into how lab settings contribute to
students’ developing disciplinary practices, this work has
largely not addressed the role of computational thinking or
modeling. It is our contention that incorporating making
can bridge deliberate efforts to center student agency with
the goal of cultivating computational modeling activities.

B. Computational making

Our enlarged conception of computational modeling
includes how scientists may go back and forth between
seeing phenomena in the world to modeling those phenom-
ena computationally. This suggests a focused and elabo-
rated attention to the physical and material aspects of
phenomena—to the “stuff” in the world that people engage
with, have histories with, and can manipulate and explore.
Making transforms these histories with materials into
resources to be used in the computational inquiry. To
operationalize these practices in our design, we briefly
introduce the idea of computational making, one of us
(B.E. G.) has studied in K-12 settings [57].

In our computational-making environment, students are
explicitly positioned as producing knowledge in the class-
room through the selection and iterative manipulation of
materials in conversation with computational tools, prac-
tices, and artifacts. Making is transdisciplinary and multi-
modal [31]: students can leverage resources, knowledge,
and practices beyond just their prior experiences as
physicists. Its generative and flexible nature opens space
to examine the utility and explanatory power of the
metamodel in designing improved environments for phys-
ics education.

Computational making specifically draws on attempts to
define “computational thinking” [71-73] alongside ele-
ments of design and making [74], to propose a kind of
structured and iterative approach to learning in the proc-
esses of making [75]. It reflects the nonlinear maneuvering
between production and critique observed in scientific
collaboration and discourse [76] and provides a multiplicity
of paths for student work, all of which are aligned with our
pragmatic construction of computational modeling in
Sec. III. In this way, the computational making environ-
ment provides opportunities for both epistemic and prag-
matic agency, as they iteratively make and model and
engage in inquiry and scientific practices.

Prior examinations of computational systems pushing
beyond programming in science learning justify our pro-
posed approach. The production and critique of computa-
tional artifacts support learning in disciplinary pursuits [76]
expanding depictions of computation from programming
and simulation-based representational environments into
physical objects and arrangements of materials in the world
[77,78]. We note connections with constructionist ideas
[79] of learners as agents. Seen through a constructionist
lens [80], making provides an environment of “powerful
ideas” [81] that affords new ways of thinking, of putting
knowledge to use, and of making personal and epistemo-
logical connections with other domains of knowledge. We
also leverage the idea of public artifacts [82] as an
organizing principle, both as the products of making and
the resulting computational model itself. A subsequent
paper will examine the making component of our design in
more detail and we discuss connections between our work
and other theoretical approaches to computation below in
Sec. VII A.

C. Designing for agency and computational making

The computational physics course has undergone several
revisions since the first implementation in 2015, which was
described in Ref. [14]. From its inception, the course has
been designed to support students engaging in computa-
tional physics practices through project-based learning. The
original projects allowed for significant student agency:
though most project outcomes were predetermined, stu-
dents were given substantial freedom in how to reach those
outcomes. Students in the class have decided on deadlines
and the nature of products through collaborative discussion
and voting when a consensus could not be reached. Thus,
pragmatic agency and, to a lesser extent epistemic agency,
has been core to the design of the course. As our metamodel
was further developed, T.J. A. revised the course to allow
for greater epistemic agency within the projects by reduc-
ing the number of set outcomes in projects and encouraging
students to set their own targets.

For the 2019 implementation, the course was substan-
tially revised in collaboration with BEG to enact the design
principle of computational making [57]. One goal of
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FIG. 3.
students. Materials are selected to provide a wide variety of
properties, each be usable in more than one way, and to avoid
obviously resembling lab items such as springs, masses.

A selection of making materials provided to the

introducing these projects was to allow students to engage
with a wider array of physics practices via activities that
involve data collection and experimental design.

This revision targeted two projects, including the oscil-
lator project described here. Students are given access to a
constrained set of materials (Fig. 3) and encouraged to
explore their materials in multiple ways before beginning to
collect data or model computationally. These making
projects include the following elements:

An open-ended prompt that invites exploration rather
than focusing on a particular scenario. We have used “make
something that moves” in K-12 work and “make an
oscillator” as described below. The prompt could also
incorporate a physical demonstration.

Construction of a physical artifact from provided and
found materials. Adequate time must be provided to
explore materials, produce first iterations (or “drafts”),
and revise the artifacts, including space to explore curious
and unexpected material behaviors.

Quantitatively characterizing phenomena: This could
include image or video capture, cameras, and tracking
software, e.g., Tracker [83,84], but might also involve
logging and processing the output of other available sensors
such as temperature or magnetic field [85].

Producing a computational model: Of the particular
artifact constructed, incorporating decisions about repre-
sentations, algorithms, what to include, etc.

Critique activities and iteration including comparing
simulated and experimentally obtained data, revising,
iterating, and choosing alternative representations, and
revisiting and revising the physical artifacts themselves.

Making projects in other environments has enabled low
stakes, creative, playful exploration of phenomena, provide
a rich opportunity to explore materials and material

relationships, and flatten hierarchies such as those that
exist between teachers and students [86].

The prompts are carefully chosen: Students confronted
with a table of materials and a simple directive—Make an
oscillator—are positioned as designers, with agency over
how to initiate the construction of an object and the
formulation of a problem [87]. Students are thus offered
a large range of possibilities for resources, activities, and
even objectives to be considered.

As well as the initial prompt, a second design lever
available to the instructor is the choice of materials
provided. In selecting the materials, mostly obtained from
a craft store, we specifically chose items that had a wide
range of physical properties in terms of rigidity, malle-
ability, and texture. We also avoided objects that explicitly
resembled “masses” or “springs” that might obviously
recall textbook representations of oscillators.

The projects take place over 4-5 class periods in a
semester-long computational physics course offered to a
mix of undergraduate and graduate students including
physics, math, and CS majors, all with some programming
experience. The majority of class time is used for group
work and the students work in teams of 3—4 students.

In this paper, we focus on the third project in the course,
which begins with a challenge “make an oscillator.”
Students use a variety of provided materials to make as
many kind of oscillators as they can and present them to the
class in the first session of the project. In subsequent
sessions, the students refine, combine, or make completely
new oscillators, characterize their motion experimentally,
and build a computational model of one of their oscillators.
They compare and refine both their experiment, taking
additional data where necessary and improving imaging or
changing the oscillator to test predictions, and the model,
incorporating additional effects or comparing different
aspects of the model with data. The activity was designed
to provide a sufficiently open-ended task to enable students
to identify phenomena of interest, articulate epistemic
objectives, and have the opportunity to make revisions
both to the model and the physical oscillator. It also
incorporated numerous opportunities for students to share
progress with the class and exchange ideas.

V. IMPLEMENTATION

The oscillator project described above was included in
the offerings of the course each spring from 2019 to 2022;
each of these iterations involved 18-30 students. Slack was
used as the primary communication platform for the course,
with PYTHON and Jupyter as the recommended environment
for computation. In-class activities consisted of supported
group work, where the instructor would join each group
1-2 times per period, short “microlectures” on a key topic
of interest and communication and reflection activities. In
this paper, we focus on student projects from 2019, as the
implementation of the course was most thoroughly
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TABLEIIIL. Class sequence of “Make an Oscillator” activity from Spring 2019 session, together with a summary of instructor prompts.
Session Activities Prompts
1 Project introduction Challenge to “make an oscillator” from instructor.
Students make prototype oscillators.
Students share a prototype to the class.
2 Students familiar with Tracker give tips. “Let’s get some data.”
Groups form and begin refining oscillators. Students invited to mix groups.
3 Q&A. Microlecture on documenting process. Explanation of the importance of iteration
with reference to engineering practices.
Students work on refining oscillators and capturing data.
4 Group presentations on their progress. Parameters for one slide presentation.
5 Optional microlecture on Lagrangian mechanics. Make a computer model
Groups begin modeling. “Work out what equations we want to solve”
6 Modeling and further refinement or data collection.
7 Class reflection on activity.

documented through video recording and not disrupted by
the COVID-19 pandemic. A timeline for each project
reconstructed from observational data is displayed in
Table III. The table briefly summarizes when verbal
prompts were given to the students as reconstructed from
the video data; further details are provided in the Appendix.
For each project, student groups were asked to submit their
code, a 1-2 page summary report, and an individual self
assessment [14]. Some groups also included videos and
images of their oscillators as part of their submission.

A. Data collection

Observations of the class sessions involving computa-
tional making were conducted by members of the research
team, and field notes [88] were generated by each observer.
Additionally, video recordings were made of students
working around the materials table and in their project
groups. Roving cameras were used [89] to capture specific
interactions such as students reconciling their computa-
tional model with empirical data through the reinterpreta-
tions of the physical oscillators they built. Finally, student
presentations were recorded, and all work submitted for the
course was collected for analysis. In this paper, we focus on
content analysis of student work.

VI. ANALYSIS AND RESULTS

We now operationalize the metamodel presented in
Sec. III to analyze student work. Our objective in doing
so is to better understand what students are doing in their
projects, how they maneuver between production and

critique practices and to identify possible improvements
to the design. To achieve this, we present the results of
content analysis [90,91] of students’ written work and code
in the oscillator project introduced in Sec. IV. Ongoing
studies of the remaining data corpus continue, including
deeper interaction analyses to map relationships between
the activity structures, the metamodel, and students’ dis-
course. Our process is based on a thorough review and
accounting of the components students included in their
assignments. Attention has been given to the particular
physics principles students discussed (e.g., causes of
energy dissipation), reference to particular aspects of the
metamodel (e.g., resources, objectives, and products),
computational approaches (e.g., Lagrangian methods)
and descriptions of how they engaged in different computa-
tional modeling practices (e.g., iterations, validations, etc.).
As our process is primarily descriptive and involves
identifying features of student work that reflect items from
our metamodel that we identified through philosophical
constructs in addition to student and professional practice,
our approach follows content analysis as described by
Vaismodari and colleagues [91].

Here we will trace the work of three groups, one that made
a skateboard style half pipe, one that made a pendulum with
an iron bar and a magnetic bob, and one that made a torsion
oscillator. Across these three groups, we first describe their
pathway through the project. Then, we analyze their written
work using the metamodel as a framework for understanding
their activities and practices. Finally, we conclude with a
summary of examples of other activities from our metamodel
seen from these three groups.
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FIG. 4. Half-pipe group. (a) Initial idea, (b) second iteration, (c) final production iteration of the oscillator, (d) ramp profile fit to
polynomial functions [notebook], (e) table of extracted energy dissipation coefficients [report], (f) Fits of model to experimental data for
different rollers and ramps [report]. Note that text size has been increased for legibility purposes, however subfigure captions are
verbatim what the students wrote. The red dashed line has been added to illustrate our interpretation of what the group refers to as an

“envelope.”.

A. Qualitative summary of groups’ trajectories

First, we offer a description of how three groups
navigated the oscillator project. These descriptions are
constructed from their written documents as well as video
of the students working in class. Then, we present a
thematic analysis of this work using the five main compo-
nents of our metamodel—products, production, objectives,
resources, and critique—as the organizing themes.

1. The half-pipe group

The half-pipe group decided to base their oscillator on a
skateboard ramp, examining how a cylindrical object
would move after being released on one side. They began
their design with a simple piece of cardstock, held between
two hands [Fig. 4(a)]. They quickly recognized that they
needed to fix the edges of the paper and decided to elevate
the two sides of the cardstock on a table [Fig. 4(b)]. They
collected video data in this configuration with both a
wooden dowel and a metal rod as the cylinders. They then
explored a steeper ramp [Fig. 4(c)] with the same two

objects. This steeper ramp was made up of two pieces of
cardstock taped together at the bottom, creating a slight “V”’
shape. They took data for the four possible combinations of
metal vs wood cylinders and high vs low slope they created
and compared these data to one another.

The group used the Lagrangian framework to build their
model, with Euler-Lagrange (E-L) equations,

dx

du dh
— =2,
dt

ar -~ Tax " (1)
where x is the horizontal position of the roller and u its time
derivative. The function A(x) describes the height of the
ramp as a function of x and S is an energy dissipation
coefficient that combines multiple possible sources of
dissipation. They fitted h(x) using a polynomial from
experimental data to a piecewise polynomial and reported
this fitting process separately [Fig. 4(d)]. Having found a
suitable form for h(x), they integrated Eq. (1) using a
forward Euler integrator from initial position x, and
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Iron bar group. (a) Snapshot of oscillator; the bob is a magnet and the iron bar is held onto a wooden frame with tape.

(b) Student-generated cartoon depicting oscillator configuration at different points in the motion; note tilted magnetic bob at base
[report]. (c) Visualization showing maxima and minima detected by their algorithm [notebook]. (d) Division of time into “quarter
periods” [notebook]. (e) Length of quarter periods as a function of time for motion toward and away from the iron bar (“in” and “out”)
[report]. (f) Final fitted data [report]. Note that text size has been increased for legibility purposes, however, subfigure captions are

verbatim what the students wrote.

velocity u, and created multiple visualizations, including
animations, of the motion.

As they began to compare the predictions of their
computational model with their experimental data, the
half-pipe group found they could not bring the two into
good visual alignment by adjusting the free parameters x),
uy, and . They speculated that this was because of physical
effects not included in their model. Instead, they decided to
focus on determining the drag dissipation coefficient f
from the “envelope” of the trajectory, i.e., the spatial
positions of the stationary points [see dashed red line that
has been added as an annotation to Fig. 4(f), upper left
panel]. They adjusted the parameters of their model to
visually align the envelopes of the predicted and exper-
imental trajectories and reported the fitted values of f in a

table [Fig. 4(e)] together with the final plots [Fig. 4(f)]. The
group concluded their report by articulating future objec-
tives they would have wished to investigate if they had
more time.

2. The iron bar group

The iron bar group began exploring how to create an
oscillator out of magnets and magnetic materials. As
displayed in Fig. 5(a), they settled on a design involving
a bar magnet arranged vertically as a bob pendulum
swinging over an iron bar arranged horizontally. They
were able to visually observe the damping effects of the
magnetic interaction as well as a difference in the behavior
of the magnet on the down swings and upswings of the
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oscillation [see Fig. 5(b)]. To understand the differences
between the upswing and downswings of the oscillator,
they broke the motion into “quarter periods” to analyze
separately [see Figs. 5(c)-5(e)]. To model this situation,
they used the Lagrangian framework and attempted to build
a computational model incorporating several physical
effects. To construct the Euler-Lagrange equations, they
used an analytical expression for the moment of inertia to
compute the kinetic energy and included a gravitational
potential,

V = mgR(1 — cos ). (2)

They also incorporated damping using a Rayleigh
dissipation function from a paper provided by the
instructor [92],

D = pé?, (3)

where f is a damping coefficient that could account for
multiple damping forces. They solved the resulting E-L
equations using a backwards Euler method. They first used
this computational model to estimate the damping coef-
ficient by visually fitting the output of the program to the
data but could not achieve a satisfactory fit. After this, they
included an effective potential into their E-L equation,

A
[R(1 —cos @) + Ry)¥

4)

to account for the influence of the magnet. They estimated
the parameter R, representing the closest point of approach
that the magnetic bob makes with the bar, from the
geometry of the system, and treated A and N as fitting
parameters. They were able to achieve a visual fit that they
considered satisfactory with this additional effective poten-
tial term [Fig. 5(f)].

They noted that their ability to check their model against
their data was limited by the frame rate of their video data.
Their analytical approaches did not account for this, so their
final write-up includes the binned experimental data.

3. The torsion oscillator group

The torsion group began experimenting with different
objects hung from a string. They tried several spinning
objects before settling on a horizontal metal bar, which was
easier to capture with video and Tracker [Figs. 6(a)-6(c)]. As
Tracker initially output data from —z to z, they had to process
their data before modeling them in order to get a continuous
trajectory from the discontinuous distribution they first
obtained as “raw data”, as can be seen in Figs. 6(d)-6(f).

Like the iron bar group, the torsion group conducted both
analytical and numerical analysis. They modeled their
system as a torsional harmonic oscillator: they used the

Newtonian framework and Hooke’s law to construct a
differential equation for the oscillator’s motion,

d*0 do

where 6 is the angular position, / is the moment of inertia,
C is an angular damping constant, k is a spring constant to
be fitted and 7 is a driving torque. They used an analytical
result for I = {5m(I* + w?) using the measured length !
and width w of their bar and treated C and k as parameters
to be estimated from experimental data. They discussed
how the model Eq. (5) may not accurately predict the
motion of their oscillator, which was attached to regular
craft string made up of multiple fibers.

The torsion group solved Eq. (5) using the Runge-Kutta
integrator in SciPy. They also considered an analytical
solution,

0 = Ae™* cos(wt + ¢), (6)

where A the amplitude, @ the damped resonant frequency, a
the reciprocal of the damping coefficient, and ¢ the phase
shift are all parameters to be fitted.

They then compared the quality of the analytical and
numerical fits to data, as presented in Figs. 6(g) and 6(h).
They observed, from their examination of the fits, that both
methods failed to model the oscillator after the first few
seconds. Note that in their work, the students mislabeled
“frames” as “seconds.” This discrepancy may account for
very different fit parameters they found in analytical and
numerical models.

B. Content analysis

A key aspect of our metamodel is that the practices
involved in critique and production are closely tied to the
resources, products, and objectives deployed. These items
are therefore best understood through their connections to
each other. For this reason, we organize our analysis of
student work focusing on three items within the metamo-
del, while describing their connections to other items in our
analysis: (i) the critique practice of visualization, (ii) the
resource of standards of evidence, and (iii) epistemic
objectives. We use these as three organizing themes for
thematic content analysis.

This analysis has a dual purpose: we argue for the
validity of our metamodel given we see the items from the
model in student work, and we show how we can use our
metamodel to understand aspects of student work. We
could achieve the same aims using different items from the
metamodel: it would be possible to organize the analysis
around data as a theme and analyze how students represent
and visualize that data. We have chosen the three themes of
visualization, standards of evidence, and epistemic objec-
tives primarily to minimize repeated analysis of the same
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FIG. 6. Torsion group. (a) Sketch of the torsional oscillator. (b) Snapshots from a submitted movie of the oscillator rotating.
(c) Visualization of the position of two tracked points as a function of time. Note text in red was added here to aid clarity. (d) Angular

displacement (¢) as initially reconstructed. (e) Intermediate

plot displaying where their algorithm identified discontinuities. (f) Final

continuous angular displacement function. (g) Numerical, analytical, and experimental data. (h) Plots of the discrepancies: numerical-

experimental and analytical-experimental.

excerpts of student work. We also have clear evidence of = nonfunctioning code. Similarly, the students in this iter-
these themes in student reports and Jupyter notebooks.  ation of the course did not consistently cite literature they
Some practices, such as debugging, are not always dis-  consulted during their project, nor did they consistently
cussed in these products as students delete or edit  describe their planning processes.
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FIG. 7. Students’ intermediate visualizations of experimental
and simulated trajectories from the half-pipe group’s report.
Legend position on 7(a) is from the student work. The text behind
the semitransparent legend reads “Dowel (X, y) coordinates over
time on steep ramp”.

1. Visualization

All student groups produced multiple visualizations
during their work following production activities like
gathering data or running the program. Visualizations
allowed them to critique their data, what their code was
computing and the performance of their code. The visu-
alization process often shaped the epistemic and pragmatic
objectives of the inquiry.

As described earlier, the torsion group used multiple
visualizations in the course of reconstructing a continuous
experimental trajectory. They examined raw data from
Tracker with a visual representation [Fig. 6(e)] and then
showed a different representation [Fig. 6(d)] after their
initial processing. They used a visual representation to
validate/cross-check that their algorithm had found dis-
continuities in 0(¢) correctly [Fig. 6(e)]. Their final assess-
ment that the embedded modeling process had succeeded
was based on a plot of the final reconstructed trajectory
[Fig. 6(D].

Visualization played a key role in the half-pipe group’s
decision to change the epistemic objective of their project.

They describe how they produced multiple visual repre-
sentations in their notebook:

“In the steps below, we analze [sic] each of our for [sic]
experiments individually. We play around with the beta-
term (energy-loss coefficient) and other constants (e.g.,
initial velocity) to fit our simulation to the observed
data. We visualize the observed and simulated paths
side-by-side in a variety of graphical manners.” [half-
pipe group, Jupyter notebook)

Examples of intermediate plots they produced in their
notebook are shown in Fig. 7. These visual artifacts were
central to the group’s assessment of whether their epistemic
objective had been met and hence whether their inquiry had
been successful. Their standard of success was whether
there was satisfactory agreement in the visual superposition
of their experimental data with their simulated trajectory.

In this case, they determined that they could not
adequately model the actual motion and changed their
epistemic objective as described above. With the scope of
the inquiry restricted to matching the envelopes of the
trajectories, the half-pipe group used similar plots displayed
in their report [Fig. 4(f)] to provide evidence that their
modeling had met this more limited objective; hence these
visual representations became part of the product of the
inquiry.

The iron bar group noticed from their video and by
observing their apparatus that the orientation of the magnet
changed depending on whether it was moving away from
or toward the iron bar. They incorporated this into a
“cartoon” of the motion Fig. 5(b).

Using their expertise and background knowledge to
hypothesize that the change in orientation affected the
damping behavior, this group set a secondary epistemic
objective:

“[To] see if quarter-periods in which the pendulum was
swinging inwards towards the iron block were of a
different length than quarter-periods when it was swing-
ing away from the block.” [iron bar group, report]

To validate this, the group first produced code that deter-
mined the minima and maxima of the trajectory and tested
that this had worked with a visual representation [Fig. 5(c)].
They next used the results to create a visual representation
that emphasized the duration of the portions of the
motion toward and away from the iron bar [Fig. 5(d)].
Dividing the motion into “quarter periods,” they plotted the
duration of these in order in Fig. 5(e). This allowed them to
conclude,

“Periods converge over time but initially there is a large
difference between inward swinging and outward
swinging quarter periods.” [iron bar group, report]
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thus achieving the epistemic objective of their subsidiary
inquiry.

With these examples, we see visualizations as important
things in their own right. Within the context of a complete
inquiry process—including embedded inquiries—they
often have their own distinct objectives. Further, they arise
both in a critique mode, e.g., as resources are used to
validate the computational model and also to communicate
the outcomes of the inquiry as part of the products.

2. Standards of evidence

As the groups engaged in critique activities, they used
various standards of evidence as resources to determine
whether the evidence they had acquired met their objectives
or not.

The half-pipe group used a qualitative standard for
agreement, whether model and data could be satisfactorily
superposed visually, in modeling the shape of the ramp
[Fig. 4(d)], which formed an embedded act of inquiry in its
own right:

“Visually, the cubic approximation as seen above more
closely aligns with the actual path taken by the dowel,
especially at the far left and right end. Thus, the cubic
approximation will be used for the flat ramp configu-
ration.” [half-pipe group, Jupyter notebook)

As discussed earlier, they could not meet this same standard
for assessing the success of the broader modeling process:

“getting the simulated position vs function curve to
align with the observed data was impossible” [half-pipe
group, report]

They instead stated a new qualitative standard for agree-
ment between model and experiment with reference to their
revised objectives:

“if the position vs. time curves aren’t superimposed
upon one another, as long as the crests are reaching the
same heights, we have satisfactorily modeled the sce-
nario, even if the crests are not simultaneous with
respect to time. [half-pipe group, report)

Other groups used similar standards of evidence: the iron
bar group performed a manual fit by adjusting parameters
and reported their fitted values in the report [see Fig. 5(f)].
The torsion group similarly displayed superposed simulated
and experimental trajectories [Fig. 6(g)] and additionally
plotted residuals between models and data [Fig. 6(h)].

The iron bar also compared data with and without the
iron bar to provide evidence that the motion of the magnet
was more strongly damped when the iron bar was present:

“It does appear however that this dampening seems to be
very prominent at maximum angular velocity, when the

magnet is close to the iron bar. Second, the period of
oscillation is distinctively shorter than the period of the
same oscillator without the magnet. This shows that the
magnetic interaction is indeed present and having a
strong effect on the oscillator.” [iron bar group, Jupyter
notebook]

They hence used both qualitative evidence, superposed
trajectories in a visualization, and quantitative evidence,
calculated periods, to justify including the effective poten-
tial in their model. We see this exercise as an embedded
inquiry in its own right, the results of which become
a resource they used to justify aspects of the broader
inquiry.

The half-pipe group articulated reasons why their model
could not fully predict the observed trajectories by enu-
merating physical effects they had not incorporated into
the model:

“We believe that this is due to the enumerable variables
not accounted for by our simulator: air resistance,
angular momentum, etc. [half-pipe group, report]

In doing so, they are implicitly identifying the disagreement
between model and data as due to systematic effects rather
than random error. Rather that try to incorporate these
missing components in the model, they chose to narrow
their inquiry and reframe their epistemic objectives. We
suspect that this decision was shaped by pragmatic con-
straints such as the availability of resources (background
knowledge, time) because the group identified missing
effects as “Future objectives” in their report. Specifically,
they wanted to

“investigate alternative equations for energy loss (e.g.,
energy loss proportional to square of velocity, energy
loss proportional to acceleration, etc.)” [half-pipe
group, report]

and

“find a roller with a mass similar to that of the metal
dowel but with a much larger moment of inertia; this
would allow us to separate the effects of greater roller
mass and greater roller moment of inertia” [half-pipe
group, report]

We interpret their decision to recenter their inquiry on
focusing on reproducing the envelope of the trajectory as
one that could encapsulate many effects into a single energy
loss coefficient that could be more simply measured and
modeled.

The iron bar group, in contrast, made a conscious effort
as they iterated between production and critique to control
systematic effects:
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“A second iteration of this oscillator was constructed,
replacing the string with two plastic cables to stop any
radial or rotational motion of the pendulum.” [iron bar
group, report]

as did the torsion group:

“We began with a wooden ring, suspended using a rope,
that would rotate around the center of the circle.
However, in order to make data collection and physical
modeling easier, it helped to have a heavier mass with
more continuous surface to video-capture” [torsion
group, report]

In these examples, we see the groups using standards of
evidence to assess whether their objectives have been met,
to justify aspects of their model, and making a conscious
effort to articulate or control for systematic effects as a
result of critique. Nonetheless, as we discuss below, this
aspect offers further opportunities for refinement of our
instructional design. In future iterations of the design, we
might provide students with additional resources to more
clearly quantify their standards of evidence, to characterize
and control systematic effects, and to provide uncertainty
estimates as part of the products of their inquiry.

3. Epistemic objectives

Two of the three groups, the iron bar group and the half-
pipe group, documented how their epistemic objectives
shifted during their work in their reports and Jupyter
notebooks in detail.

The iron bar group describe two initial epistemic
objectives in the form of research questions:

“Can we find a reasonable model for the magnetic
potential of the pendulum in order to accurately fit the
data? Our second was a bit more abstract: Is the magnet
doing something to this system that we can’t model?”
[iron bar group, report)

The first question is an elaboration of the assigned task,
to model the behavior of the oscillator, and identifying the
influence of the magnet as a particular target. To meet this
objective, they incorporated the magnetic effect through an
effective potential Eq. (4) in the Lagrangian framework.
They described that simplifications were needed to do so:

“For simplification, assuming the iron bar to be infinite
a guess at the potential introduced by the magnetic field
could be of the form [see Eq. (4)] The reasoning behind
this potential form is that the strength of the magnetic
field decreases with distance, and the R term represents
the minimum distance between the bob and the iron bar
in the model we build.” [iron bar group, report]

This group did not possess the resources necessary to
construct a more detailed model of the magnetic inter-
action, so for “simplification” they chose to use their
expertise to deduce an approximate form—a “guess” as
they put it—but nonetheless one consistent with their
expectations for how a model of the magnetic interaction
should behave. The acceptability of this submodel ulti-
mately was determined by its utility in meeting their
objectives for the broader inquiry. The group found that
doing so enabled them to successfully model the behavior
of the magnetic pendulum and hence they considered that
they succeeded in their first epistemic objective.

Their second epistemic objective, which they describe as
more “abstract”, was to identify features of their system
that are not captured by their model. While they initially
identified this as a target for understanding, their conclu-
sions reflected a different stance toward this goal (here N is
a parameter from the effective potential):

“The equation for angular acceleration derived in this
project does, at larger than expected values of N,
simulate the physical system we created in class.
Determining the exact reasoning behind this would
be a fun project however due to time constraints could
not fall within the scope of this assignment.” [iron bar
group, report]

The iron bar group describes how their value of N is
surprising but determine that understanding the detailed
physical mechanism is beyond the scope of the assignment.
This group therefore abandoned their second epistemic
objective of tying behavior of the magnet to specific
physical phenomena.

This shift appears to emerge because they felt they had
met their first epistemic objective: they were satisfied with
the quality of fit between model and data. They also lacked
an important resource, the time needed to carry out the
additional work necessary, and hence made the decision
that they did not need to go above and beyond the stated
requirements of the assignment, satisfying the implied
pragmatic objective of completing the work on time.

The half-pipe group began with an initial epistemic
objective of creating a computational model that exactly
matched the data. However, they shifted their epistemic
objectives after failing to obtain a high quality fit between
their data and computational model, as identified through
visualizations [see Fig. 4(f)]:

“We quickly learned that no matter how hard we tried,
getting the simulated position vs function curve to align
with the observed data was impossible. We believe that
this is due to the enumerable variables not accounted for
by our simulator: air resistance, angular momentum,
etc. [half-pipe group, report]
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They inspected their fits in order to interpret their results.
They identified that the computational model did appear to
capture the feature of energy dissipation. They decided to
focus on matching the envelope of the model and exper-
imental trajectories instead:

“However, in order to simulate the energy loss, we only
cared that the total energy at any given point in time
matched between the observed data and theoretical
model. Thus, when assigning and tweaking the energy
dissipation coefficients, we were more concerned with
making the observed data and simulated model share
common upper and lower envelopes. In other words,
even if the position vs. time curves aren’t superimposed
upon one another, as long as the crests are reaching the
same heights, we have satisfactorily modeled the sce-
nario, even if the crests are not simultaneous with
respect to time.” [half-pipe group, report|

The half-pipe group determined that they could not meet
their original epistemic objective according to their
(implied) criterion for quality of fit. Rather than abandon
the inquiry, this group realized they had the resources,
including expertise, background knowledge, available data,
etc., to model a subphenomenon of the oscillation, the
energy dissipation coefficient [see Figs. 4(e) and 4(f)].
They therefore changed their epistemic objective to this
new target. They were able to reuse the computational
model already created, running their program repeatedly
with different parameters to model the total energy loss.

These examples illustrate the fluidity of both scientific
inquiries and models, which can evolve dynamically as the
work proceeds: In both cases, initial iterations of produc-
tion of models and data were followed by critique,
including visualization, with reference to the groups’
respective epistemic objectives as well as pragmatic objec-
tives such as completing the inquiry in the time available.
As a result of this, both groups felt that they lacked the
resources to undertake the full program as originally
envisioned. Instead, they altered the scope of their inquiry
by dropping a secondary objective, in the case of the iron
bar group, or by restricting the initial objective to some-
thing they believed they could achieve for the half-pipe
group. Their inquiry then proceeded with modified objec-
tives, but deployed resources already available—including
their code and data—to the new target.

VII. DISCUSSION

Our metamodel is based upon philosophy of science
[24,34,48,49,58], research in PER on modeling and other
metamodels [32,35-37,39,40,68,93], and prior work on
computational physics education, both by our group [14]
and others [3,7,10,13,94]. Through content analysis of
student work, we show that our metamodel accurately

reflects the computational physics practices we see in
student work.

In this analysis of student work, we are able to under-
stand students’ practice of computation within a learning
environment where students were afforded agency both
about what to model and how to model. In this environ-
ment, the students conducted essentially all the components
of an act of scientific inquiry, as viewed through the lens of
our metamodel. The highly nonlinear structure of the
metamodel allows us to see the ways by which students
make progress through their computational work, and in
particular, the maneuvers that they make. As students
engage in various practices, they generate different types
of artifacts and knowledge, and their epistemic and prag-
matic goals evolve over time.

The interplay of making physical objects and computa-
tional modeling, which we refer to as computational
making, allows students to engage in an act of scientific
inquiry in which they use the practices of physics: They
work to collect data, analyze, and simplify physical models
and draw conclusions about how their physical apparatuses
work. As scientists do, they use resources and produce
products communicating their results and making them
available for further inquiry. In this way, we see students
engage in computation not only as a tool to use while doing
physics but as a core part of what it means to do physics.

While we have shown that the computational making
environment is particularly well suited to supporting
students’ in engaging in a wide range of computational
physics practices (as discussed in more detail below in
Sec. VIIB), we expect to see some of the identified
practices in other less open-learning environments, con-
sistent with the work of Caballero and colleagues
[3,7,13,94]. We anticipate our metamodel also offers
new ways to design instructional elements that target
subsets of scientific inquiry. For example, an introductory
course might scaffold assignments that focus on various
aspects of inquiry, building up to a complete act of inquiry.
Existing assignments might be redesigned to emphasize
some of the practices identified and offer additional
opportunities for agency.

A. Comparison with other theoretical
approaches to computation

We now briefly consider our metamodel with reference
to other theoretical approaches to computation that are
being used in the physics education community and
beyond. We stress that we do not believe that any single
theoretical lens (including ours) is sufficient to describe a
phenomenon as complex as computation, which by its
nature is transdisciplinary, involves multiple representa-
tions and kinds of activity, and used for many different
purposes even within physics as we noted in the intro-
duction. Rather, we see these theoretical lenses as both
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highlighting certain aspects of computation and facilitating
the organization of communities of researchers interested in
advancing our understanding of computation. A more
detailed comparison of these perspectives is left to
future work.

The first of these, constructionism, has been extremely
influential in computing education and has been exploited
in part by other physics projects such as PheT [95] and
VPYTHON [96]. Originally articulated by Papert [79,81],
constructionism as a pedagogy involves students creating
digital things such as code and documentation, as well as
physical objects [97]. While constructionists anticipate the
different and transformative affordances offered by com-
putational representations [98], constructionism has influ-
enced the design of our environment rather than the
metamodel as we shall discuss in more detail in a future
paper. For example, computational making honors con-
structionist commitments to learners as agents, emphasizes
the creation of shared things, and aims to include histor-
ically marginalized groups. However, constructionism by
design embraces epistemological pluralism [99], i.e., it
evades a specific formulation of knowledge production for
the purpose of advancing equity, enabling students to bring
their own knowledge to the classroom. We try to retain this
aspect—a student’s prior knowledge is a resource in our
metamodel—while nonetheless providing a detailed meta-
model of scientific inquiry.

A second lens, computational thinking, emerged from an
opinion piece by Wing [71] who argued that many
computer science practices, e.g., thinking recursively,
abstraction and decomposition, constituted a “universally
applicable attitude and skill set” that should be taught to
others outside the discipline. It has become very popular in
the STEM and computer science education literature in
recent years [73], and there is an emerging body of work in
physics that has used these ideas productively [100,101].
Nonetheless, computational thinking has some important
limitations: It was not formulated with reference to physics
and hence does not incorporate physics practices. Further, it
does not provide a coherent description of how computer
science practices inform one another to advance knowl-
edge, even within computer science. That is to say, it is not
an exclusively computer science equivalent to our meta-
model. Rather, we believe that computational thinking
represents a potentially rich source of practices [102] that
could be incorporated into our metamodel in both produc-
tion and critique modes.

The final lens considered here, computational literacy, is
grounded in the work of Andrea DiSessa who theorized
computation as a new type of literacy that fundamentally
changes how students think and learn [103,104]. The
literacy metaphor emphasizes communication and social
processes. Hence, computational literacy may call our
attention to the kinds of resources available to the students,
the products they produce, as well as how students

communicate in the process of an inquiry. Odden and
coworkers have recently demonstrated DiSessa’s idea of
“computational essays,” notebooks that combine code, text
and figures to communicate an idea, as tools to scaffold
professional physics practice [93,105]. Seeing these as
documentary evidence of an inquiry, our metamodel
provides additional tools to interpret epistemic maneuvers
made by the students mirroring our content analysis here.
Equally, computational literacy enriches the space of
possible products that could be produced by students in
our metamodel and offers theoretical tools to interpret the
collaborative and social communication processes by
which the inquiry was conducted.

B. Implications for instruction

Our metamodel allows us to identify student progress
through complex, nonlinear scientific inquiries that may
even include subsidiary inquiries themselves. While many
other computational physics courses focus on specific
programming or numerical analysis skills that students
may use in later courses or research [106,107] or are
focused on specific domains of physics problems [15], our
approach instead focuses on students’ developing a “grasp
of practice” [17] of computational modeling in physics.
The practice-based approach seems particularly timely
given that Artificial Intelligence tools, such as the recently
announced ChatGPT [108], are able to produce correct
solutions to some physics textbook problems.

The design of our course connects to and builds upon
other work on computational modeling, including compu-
tational modeling introductory courses [10,94,109] while
also drawing on research in K-12 STEM education
[17,76,92,110]. Those developing college-level computa-
tional physics courses may benefit from exploring curricula
and methods from these other sources in addition to
integrating making projects into the curricula.

We see in our learning environment that supports
students’ agency over what to model and how to model
better mirrors the often chaotic practices and activity of
professional scientists: the challenge is often not how to
program a particular feature of a model, but rather how to
make progress through a complex space of object, resour-
ces, and necessary products.

Our metamodel provides a convenient tool grounded in
philosophy of science to understand, provide feedback on
and potentially assess student practice and work. In
particular, the metamodel may allow a suitably trained
instructor to notice productive scientific activity, even when
it might not appear “correct,” and make sense of that
activity in the context of the inquiry taking place. It may
call to the instructors’ attention key moments, which may
happen infrequently and might otherwise be challenging to
spot, where students make epistemic decisions around what
type of knowledge to create. It enriches the space of
possible instructional maneuvers: for example, the
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instructor might encourage students to move from produc-
tion or critique modes or vice versa and offer ideas for
practices they could use.

The metamodel may also support instructors in identify-
ing what practices students may need further support in
while engaging in computation. As we observe in the above
analysis, some practices emerge more naturally than others
and strategic interventions by the instructor may yield
considerable improvements. For example, as students
assess the quality of evidence available from their work,
the instructor could notice and call students’ attention to the
standards of evidence at stake. They could provide further
resources for quantitative measures of evidence, estimating
uncertainties, etc.

Presenting students with the metamodel may help
students’ understand their own progress as well as provid-
ing a tool to support metacognition [111] and reflective
practice [112] in their computational work. Exploring
training strategies for instructors and students on how to
use the metamodel and how they actually use it are targets
of our future work.

C. Implications for research and open questions

Our metamodel in this work was used to design projects
and inform a content analysis of student work from
computational making projects. As the metamodel provides
a lens for student engagement, a next step in this work is to
use the metamodel to inform video analysis of students
engaging in this work. By analyzing written work, we can
identify what was done but not by whom and how students
navigated their pathways through activities as a group.
Furthermore, we would like to understand how students
and groups interact with each other—in this course, groups
regularly presented intermediate work to their classmates.
Video interaction analysis [113] and analysis of the written
work of all groups in a class—not just the three presented
here—would provide further insight. Such work would also
provide the opportunity to study the role of the instructor in
facilitating students’ computational work and provide
further recommendations for instruction.

While our metamodel is a valuable tool for designing
curricula and understanding student practice, we do not
believe the practices, artifacts, and knowledge listed in our
metamodel are (or need be) comprehensive. Further exami-
nation of the computational practices of professional
physicists and students will likely expand our view further.
We anticipate that emerging computational methods from
data science and machine learning methods can be readily
accommodated in our framework, because although these
part from traditional physics uses of computing, they
nonetheless contribute to the overall act of scientific
inquiry.

It is also interesting to imagine uses of our metamodel
beyond the domain of physics in which we have formulated
it. Cognitive ethnographic accounts of scientists and

engineers engaging in model building in biological scien-
ces [114-116] demonstrate scientists using resources,
standards of evidence, validation of models, and engaging
in embedded acts of inquiry and many other practices
present in our metamodel. Even so, the kinds of model that
result from inquiry and how models are used to generate
knowledge may look quite different from physics. A close
reexamination of these and other valuable datasets through
the lens of our metamodel might enable education research-
ers working in these other disciplines to design educational
environments analogous to ours.

We therefore believe the overarching components of the
metamodel: resources, objectives, products, production,
and critique will provide a valuable framework for con-
ducting further research into other computational physics
learning environments such as P? [109] and C2STEM
[117]. In particular, taking expansive views of both
resources and products may help identify the diverse ways
in which students may be “productive” in their work. That
productivity may consist of developing accurate computa-
tional models or a deeper understanding of the physics
content. It may also consist of engaging in the practices of
physics and computation as productive disciplinary
engagement [118,119], even if students fail to produce
functional code [120,121].

By positioning students’ intuition, lived experience, and
even identity as resources [122], we can design making
projects that position students from all backgrounds as
developing experts, similar to Basu et al.’s description of
critical science agency [123]. Furthermore, by asking
students to present a range of different products, we more
closely mirror scientific communication. Indeed, we note
that our work emphasizes communication in a similar way
as recent works on computational literacy [93,105].

Finally, we see this work as an important step in
designing physics classroom spaces that center students’
agency. While physics education researchers have studied
the role of agency—albeit in a limited way—in instruc-
tional laboratories [64,67], less attention has been paid to
how to design other types of classes around student agency.
Even efforts on lab reform might benefit from a clear
metamodel for experimental inquiry such as provided by
extensions of our metamodel. Furthermore, the metamodel
may help us understand the iterative, nonlinear nature of
students concerted activities [124], another area that has
been understudied in PER.

VIII. CONCLUSION

In this work, we have presented a metamodel of
computational modeling. This metamodel is grounded in
philosophy of science, particularly the work of Staley [21-
23] and inspired by Humphreys’s careful analysis of
computational models [24]. It is also grounded in profes-
sional practices of computational physicists which have
been examined by a number of authors [5,13,14].
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Our five overarching components within the metamodel
are objectives, resources, products, production, and cri-
tique. Within each of those components are categories of
practices (in production and critique), artifacts (in products
and resources), and abstraction and knowledge (in prod-
ucts, resources, and objectives). We then described a
computational physics course designed with the principles
of agency and computational making and used our meta-
model to analyze student work from that course.

Our metamodel provides an invaluable lens for under-
standing student engagement and practice in computational
physics, both as a goal in and of itself and for identifying
how students’ computational practices relate to those of
professional physicists more broadly. Furthermore, the
metamodel provides insight into how to go about refining
our design and incorporating computation into other
learning environments: it is crucial to value the inevitably
nonlinear and idiosyncratic nature of student work as this
mirrors the practice of scientists more generally. In exerting
agency over their pragmatic and epistemic objectives, we
see students engaging in a wide range of production and
critique practices. Rather than measuring student learning
as their ability to reach predetermined objectives or master
particular skills, the metamodel gives us a framework for
valuing student progress as developing a grasp of computa-
tional practice [17].

Our work should also significantly expand PER’s con-
struction of modeling in contexts outside computational
modeling, because our metamodel moves beyond the
representational view implicit or explicit in much prior
work [10,32,35]. We build upon an important thread
running through PER to create environments where stu-
dents do physics and where students’ thinking and prior
knowledge are valued [27,28]; our metamodel provides a
valuable resource for making sense of what doing physics
might look like.

Certain aspects of our metamodel parallel, and may
further inform, analogous efforts to create metamodels of
experimentation for laboratory design [36,68,69]. Our
making environment, to be elaborated further in a sub-
sequent paper, affords students a great deal of agency, both
epistemic agency as has been a target of lab reform [64—70]
and many other kinds of agency such as pragmatic and
material agency. The very complex maneuvers theorized
and described here justify and reinforce the need for deeper
theoretical lenses through which we can view computa-
tional work [93,105] and physics more generally.
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APPENDIX: INSTRUCTOR PROMPTS

Here, we detail instructor prompts provided to the
students at various points in the project.

A slide is projected as students walk into the room for the
start of project 3:

“Make an oscillator”

“Record with your phone”

“Share photos and videos on Box or the Slack channel
for project 37

The instructor introduced the project as follows:

“Can we focus our attention to...here—the center of the
room—rather than the front, for a change? We’re going
to do something slightly different for project 3. In
project 1 and 2 we approached the physical system
computationally. For project 3, we’re going to start with
the physical system. And we have on these tables we
have a collection of strings, and wires, and tape, and
markers, and I guess there are cocktail sticks, and
tongue depressors, some piece of dowel, various card-
boards of different weights, bobs, playdough rolls,
hoops, and cutters, cutting mats, and rulers, and
slicers... and all sorts of things we can use to manipulate
these materials. There’s some little pieces of plastic as
well. Oh yeah, and magnets. Those are fun.”

“The challenge for today’s class is to make an oscil-
lator.”

“You do not have to make one, you can make as many as
you want. The thing I insist on is that as you’re making
oscillators 1 want you to document [emphasized this
word] the thing you make and what it does. Record what
it does. With your cell phone, you can make a video of it
oscillating, or doing whatever it does. Share your
photos and videos of your oscillators as you go along.
I’'m going to bring in a couple more materials with some
more magnets that we can play around with. You can do
this individually, or in small groups. You can wonder
around. You can move. You can reorganize as you will.”
[Transcript from video data)

Throughout the project, the instructor emphasized that
all of the course’s projects are opportunities to develop
professional practice of computational modeling by using
what you know to explore something new (in ways that
the students’ chose). Students were encouraged to docu-
ment their oscillator and develop their computational
model by noticing the behavior of what they made, write
down what they understood to be happening, connect the
behavior to disciplinary theories, and find places to
expand their understanding. As students refined their
documentation and collected data of their oscillator’s
motion, they were encouraged to iterate their design,
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goals, and data collection. On day 4 (of the six class
periods), students delivered a one-slide presentation
explaining “What is your oscillator? What do you think
is important to model? What do you actually want to get
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