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ABSTRACT. Starting with a vertex-weighted pointed graph (T, u,vo), we form the free loop algebra So
defined in Hartglass-Penneys’ article on canonical C*-algebras associated to a planar algebra. Under mild
conditions, Sp is a non-nuclear simple C*-algebra with unique tracial state. There is a canonical polynomial
subalgebra A C Sp together with a Dirac number operator N such that (A, L?A, N) is a spectral triple.
We prove the Haagerup-type bound of Ozawa-Rieffel to verify (So, A, N) yields a compact quantum metric
space in the sense of Rieffel.

We give a weighted analog of Benjamini-Schramm convergence for vertex-weighted pointed graphs. As
our C*-algebras are non-nuclear, we adjust the Lip-norm coming from N to utilize the finite dimensional
filtration of A. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov-
Hausdorff convergence of the associated adjusted compact quantum metric spaces.

As an application, we apply our construction to the Guionnet-Jones-Shyakhtenko (GJS) C*-algebra as-
sociated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS
C~-algebras of many infinite families of planar algebras converge in quantum Gromov-Hausdorff distance.

1. INTRODUCTION

In Connes’ noncommutative geometry [Con89, Con94|, the notion of a spectral triple is an analog of a
space of smooth functions on a non-commutative manifold. In [Rie98, Rie99], Rieffel initiated the study of
noncommutative metric geometry via the notion of a compact quantum metric space. He then introduced
quantum Gromov-Hausdorff distance as a noncommutative analogue of Gromov-Hausdorff distance to
provide a framework for establishing convergence of certain spaces arising in the operator algebra and
high-energy physics literature [Rie04a, Rie04b].

To the best of our knowledge, all results proving convergence in quantum Gromov-Hausdorff distance
do so for sequences of nuclear C*-algebras, where finite-dimensional approximations are crucial in demon-
strating convergence [Rie04a, K109, Agul9, Lat17, JRZ18, KK21]. In this article, we prove a result about
quantum Gromov-Hausdorff convergence for compact quantum metric spaces associated to non-nuclear
free graph algebras produced from vertex-weighted pointed graphs.

Given an unoriented connected graph I' = (V, E) with an arbitrary vertex weighting p : V' — (0, 00),
we replace each edge ¢ € E between two distinct vertices by two oriented edges ¢,€°P € E in opposite
directions, and we replace each loop by a single oriented loop to obtain a strongly connected directed
graph [ = (V,E) which inherits the same weighting p. One forms the Toeplitz-Cuntz-Krieger graph

=

algebra T(T') [FR99] with generators £(¢) for e € E, and the free graph algebra [HP17] is given by
S(T,p) = C* (CO(V) U {aeﬁ(e) +aZle(ePe E}) c 7(F).

Here, each a. € (0,00) depends on the weighting of the source and target of €, which is chosen so that
S(T, p) has a semifinite trace Tr. By [Harl7], S(I', ) is simple exactly when

p(v) < > p(te); (1)
ccE
s(e)=v

we assume this condition in the sequel.
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Now there are canonical projections p, € S(I', u) for the vertices v € V, and by simplicity [HP17,
HP14, Harl7], each compression p,S(T, pu)p, is Morita equivalent to S(T', ). We thus consider pointed
weighted graphs, which are equipped with a basepoint vy € V' such that p(vg) = 1. We consider the free
loop algebra Sy = So(T', p) := Py, S(T, i) py,, which can be described as generated by loops on I' based at
vo. Under condition (1), So(T', ) also has unique trace [Harl7].

The loop algebra Sy has a dense x-subalgebra A of finite linear combinations of loops, which acts
by bounded operators on L?(A,trg) = L?(Sp,trg). Moreover, A is filtered by finite dimensional *-closed
subspaces A, of linear combinations of loops of length at most n, which satisfy A,, - A, C Apin and
Ap = Cl,. In this situation, by [OR05, Lemma 1.1], the formula

N = Z nProjy ca.
n>0

defines a Dirac number operator which has bounded commutator with elements of A. Thus (A4, L?A, N) is
a spectral triple in the sense of Connes [Con94]. We prove the Haagerup-type inequality of [OR05, Theorem
1.2], which gives the following theorem.

Theorem A. The Dirac number operator N induces a Lip-norm L on A, making (So, A, L) a compact
quantum metric space in the sense of Rieffel [Rie04a).

Thus given a connected, vertex-weighted pointed graph (T', i, vp), we get a canonical compact quantum
metric space. Given a sequence of connected vertex-weighted graphs (I'y,, i, ), we say it converges locally
uniformly to a limit (I',v) if essentially on every ball of radius R about v, the graphs I';, eventually
coincide with I', and the weights converge pointwise. This is a weighted analog of Benjamini-Schramm
convergence [BS01]. (See Definition 3.9 for the precise definition.) With this definition in hand, we can ask
whether the associated compact quantum metric spaces (So(Ty, pn), A(Tp, pin), Ly,) converge in quantum
Gromov-Hausdorff distance to (So(T", u), A(T, ), L).

Unfortunately, we were unable to solve this question due to two main problems. First, projecting an
element in A, onto A,_1 can increase the operator norm, similar to how truncating a Fourier series can
increase the sup norm. Second, these algebras are non-nuclear, so we are missing the finite dimensional
approximations which were essential to the results [Rie04a, K1.09, Agul9, Lat17, JRZ18, KK21].

In analogous situations [Rie99, Agul6], one replaces the Lip-norm L with another Lip-norm £ produced
by a Minkowski functional. In our setup, we choose £ so that it agrees with L on the spaces A, © A,,_1 of
homogeneous loops, i.e., spans of loops of the same length n. While this produces a less canonical compact
quantum metric space, these adjusted quantum metrics take advantage of the intrinsic finite-dimensional
spaces A, S A,_1 of homogeneous loops, which replace the finite dimensional approximations in the nuclear
setting. In §3.3 below, we are able to prove that these compact quantum metric spaces converge in quantum
Gromov-Hausdorff distance to the desired limit.

Theorem B. If the sequence of vertex-weighted pointed graphs (Fk,,uk,vg) converges locally uniformly to
(T, p,v0), then the induced compact quantum metric spaces (So(Tk, pr), ATk, pr), Li) converge in quantum
Gromov-Hausdorff distance to (So(T, u), AT, p), L).

Application to subfactor theory. The original motivation in our two articles [HP17, HP14] was to

develop a connection between subfactor theory and C*-algebras with a view toward connections to Connes’

non-commutative geometry [Con94]. The standard invariant of a finite index subfactor forms a shaded

subfactor planar algebra [Jon21]. Here, we work with unshaded unitary factor planar algebras, which

correspond to symmetrically self-dual bifinite bimodules over some factor [BHP12, Pen20]. The more

categorically minded reader may choose to work directly with a unitary tensor category as in [HHP20].
A special application of the setup in this article is when:

e ' is the principal graph of an unshaded unitary factor planar algebra P,,
e 1 is a quantum dimension vertex-weighting which satisfies the Frobenius-Perron condition, and
e vy = *, the distinguished vertex corresponding to the empty diagram/monoidal unit object.
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In this case, the cutdown Sy of S(T', ) at vg = * is isomorphic to the Guionnet-Jones-Shlyakhtenko (GJS)
C*-algebra [HP17, HP14]. This algebra is the C*-completion of the graded algebra Gry arising from their
diagrammatic reproof [GJS10] of Popa’s celebrated subfactor reconstruction theorem [Pop95].

When P, = NC,, the factor planar algebra of non-commuting polynomials on self-adjoint variables
X1,...,X,, Grg is exactly the algebra of non-commutative polynomials, and Sy is Voiculescu’s reduced
C*-algebra generated by n free semi-circular elements. Thus we may view Grg C Sg as a smooth subalgebra
of polynomials inside the algebra of non-commuatative continuous functions. We are thus in a position to
study Connes’ non-commutative geometry via Dirac operators and spectral triples [Con94].

In subfactor theory, there are many examples of local uniform graph convergence. For instance, we
have examples coming from quantum groups at roots of unity [Jon83, Wen88, GdIHJ89, Wen90, Xu98],
continuous families of subfactors [BNP07], and from composites at a fixed index [BH96, Liul5]. A particular
application to subfactor theory is Corollary C below, which holds in much more generality than stated. In
the corollary below, (A, i) denotes the pointed vertex-weighted Coxeter-Dynkin diagram

[.1] [.2} [3.} I G where [n] = il and =ex (2711' >

q-q! TP )
This is the principal graph of the Temperley-Lieb-Jones (TLJ) subfactor with index 4 cos?(r/(n + 1)) =
(g +q1)? [Jon83].

Corollary C. For a fized n, the GJS C*-algebra So(An, pn) of the TLJ (sub)factor planar algebra gives
a compact quantum metric space when equipped with the Lip-norm L, from the Dirac number operator.
Adjusting our Lip-norm to L, as in Theorem B, the associated compact quantum metric spaces converge in

quantum Gromov-Hausdorff distance to the adjusted compact quantum metric space of the GJS C*-algebra
of TLJ at ¢ = 1.

Acknowledgements. The authors would like to thank Cain Edie-Michell, Farzad Fathizadeh, Matilde
Marcolli, Marc Rieffel, and Robin Tucker-Drob for helpful conversations and comments. David Penneys
was supported by NSF DMS grants 1500387/1655912 and 1654159.

2. BACKGROUND

2.1. Compact quantum metric spaces. We rapidly recall the notions of Gromov-Hausdorff distance,
order unit space, compact quantum metric space, and quantum Gromov-Hausdorff distance from [Rie04a].

Definition 2.1. Suppose we have two compact subsets X,Y of a metric space (Z,p). The Hausdorff
distance between X and Y is given by
distg(X,Y) :=inf{r > 0|X C N,(Y) and Y C N,(X)},
where for A C Z, N,(A) is the r-neighborhood of A:
N, (A) :={z € Z]there is an a € A with p(z,a) < r}.

Definition 2.2. Now suppose (X, px) and (Y, py) are independent compact metric spaces. Let X ITY be
the disjoint union of X and Y, and let M(px, py) be the set of all metrics p on X I Y such that

e p induces the disjoint union topology on X I1Y, and

* plx = px and ply = py.
The Gromov-Hausdorff distance between (X, px) and (Y, py) is given by

distau (X, Y) = inf {dist{;(X,Y)|X,Y C (X 1Y, p) and p € M(px,py)} -

Definition 2.3. An order unit space (V,e) is a real vector space V together with a partial order < with
an element e called the order unit which satisfies

e (order unit) For every v € V| there is an r > 0 such that v < re.
e (Archimedian property) If v < re for all r > 0, then v < 0.
3



An order unit space has a norm, which is given by [|v|| = inf {r > 0|—re < v < re}.

Example 2.4. Suppose A is a unital C*-algebra. Then the self-adjoint elements A, of A form an order
unit space with order unit 14.

Definition 2.5. Suppose (V,e) is an order unit space.

e A state of (Ve) is a continuous linear functional g € V* such that u(e) =1 = ||u||. The space of
states on (V,e) is denoted S(V). Given a seminorm L on (V,e), it induces a [0, oo]-valued metric
on S(V) by

pr(p,v) = sup {|pu(v) — v(v)||L(v) < 1}.
e A Lip-norm on (V,e) is a seminorm L on V such that
(1) L(v) = 0 if and only if v € Re.
(2) The topology on S(V) induced by py, is the weak™ topology.
Note that (2) above implies py, is a genuine metric on S(V') which takes only finite values.

Definition 2.6. A compact quantum metric space is a triple (V, e, L) where (V,e) is an order unit space
and L is a Lip-norm on (V,e).

The most important example for this article is the case when V is a norm-dense subspaces of Ag,
for a unital C*-algebra A. In particular, we care about the case that A is obtained from a wunital pre
C*-algebra, which consists of a pair (A, ¢) where A is a unital complex x-algebra and ¢ : A — C is a
positive linear functional (¢(a*a) > 0) with ¢(14) = 1¢ such that the left action of A on L?(A4,¢) is by
bounded operators. Given a Lip-norm L on Ag, which induces the weak™ topology on S(A), we denote
the corresponding compact quantum metric space by (A, A, L).

The following criterion will be useful in determining whether L is a Lip-norm on a unital C*-algebra
A coming from a pre C*-algebra (A, ¢).

Proposition 2.7 (JOR05, Prop. 1.3]). Let (A, ¢) be a unital pre C*-algebra, and let L be a seminorm on
A. Then L is a Lip-norm if and only if

{a € A|L(a) <1 and ¢(a) = 0}
is a norm totally bounded subset of A.
Definition 2.8 ([Rie04a, Sections 3 and 4]). Suppose we have compact quantum metric spaces (V, ey, Ly)
and (W, ey, Ly). Then (V@& W, (ey,ew)) is an order unit space. Let M(V, W) be the set of all Lip-norms
L on VoW which induce Ly on (V,ey ) and Ly on (W, ey ), and let 7y : VAW — Vand my : VOW — W
denote the canonical projections whose dual maps 7j, : (S(V),pr,) 2 ¢ = pony € (S(V @ W), pr) and

iy (SW),pLy) 2 ¢ = pomw € (S(V @& W), pr) are isometries (see [Rie04a, Proposition 3.1]). The
quantum Gromov-Hausdroff distance between (V, ey, Ly) and (W, ey, Lyy) is

disty(V, W) := inf {dist}* (73, (S(V)), 73y, (S(W)))|L € M(Ly, L)} .

Remark 2.9. This quantity actually dominates the Gromov-Hausdorff distance between the state spaces.
Indeed, the Gromov-Hausdorff distance distg takes into account all possible isometric embeddings into
any metric space, not just the particular embeddings into the metric space S(V @ W) that define dist,. As
distgy is defined as an infimum, dist, must dominate distgp.

The following lemma will help in providing important estimates later.

Lemma 2.10. Let (V,e, L) be a compact quantum metric space, and let W C V' be a unital subspace
(e € W) such that (W, e, Llw) is a compact quantum metric space. If p € S(V'), then

dist,(V, W) < 2dist]({a € V| L(a) <1 and ¢(a) = 0},{a € W | L|w(a) < 1 and ¢(a) = 0}).

Here, dist‘f‘;,” is the Hausdor(f distance in (V,e) with respect to the norm from Definition 2.3.
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Proof. By [Lat16, Thm. 6.3], we have that
dist,(V, W) < 2dist|({a € V | L(a) <1}, {a € W | LIw(a) < 1}).
However, by the discussion preceding [Lat16, Def. 3.14], we have that
distll({a € V | L(a) < 1},{fa € W | Llw(a) < 1})
< dist!({a € V| L(a) <1 and ¢(a) = 0},{a € W | LIy (a) < 1 and ¢(a) = 0}),
which completes the proof. ]

2.2. The Ozawa-Rieffel criterion. In [OR05], Ozawa and Rieffel give criteria to determine when a
filtered x-algebra with a tracial state gives a compact quantum metric space. We now recall their setup
and theorem.

Assumptions 2.11. For this section, A is a unital complex *-algebra equipped with a trace tr : A — C
such that (A, tr) is a pre C*-algebra. We further assume:

e A is filtered by *-closed finite dimensional subspaces. That is, there are finite dimensional *-closed
subspaces Ag C A; C Ay C --- whose union is A which satisfy A, - A, C Apgn.

e The ground algebra Ay is trivial, i.e., Ag = Cl4.

e The left (and right) action(s) of A on (A, tr) is bounded in || - ||2, and thus extends to an action on
H = L?(A, tr) by bounded operators.

Under these assumptions, we set W,, = A,, © A,_1 which is finite dimensional, and we let P, be the
orthogonal projection from H onto W,,.

Definition 2.12. The Dirac number operator is defined by N := )" . nP,, which is closable with dense
domain. -

One has the following lemma due to [ORO05].

Lemma 2.13 ([OR05, Lemma 1.1]). For every a € A, [N,a] is densely defined and extends to a bounded
operator on H.

Using this lemma, we define a seminorm L on A by L(a) = ||[IV, a]||. Observe that L vanishes exactly
on Ag =Cly. We set A= A A main result of [ORO05] is the following theorem:
Theorem 2.14 ([OR05, Theorem 1.2]). If there exists a C' > 0 such that for all m,n,k € N and aj, € Wy,
[ PmarPoll < Cllak |2,
then (A, A, L) is a compact quantum metric space.

2.3. Free graph algebras. Let I' = (V| F) be a countable, connected, locally finite, undirected graph,
and let v : V' — Rs( be a weighting on the vertices. (The examples in the later part of this article will
be principal graphs of (sub)factor planar algebras with a quantum dimension weighting which satisfies the
Frobenius-Perron condition.)

We now follow the construction from [HP17], summarized in [Harl7, Section 2.1].
Definition 2.15. From our undirected graph I', we form a directed graph [= (V, E, s,t) as follows.

(1) For each e € E which has endpoints « # 8 in V', we get two directed edges € and €°P in E such that
s(e) =t(e?) = a and s(eP) =t(e) = B.

(2) For each e € E which is a loop at the vertex ~y, we get one directed edge € € E with s(e) = t(e) = .

Note that I’ inheirits the weighting p from T



The algebra Cy(V) is the C*-algebra generated by the indicator functions p, for v € V acting on £*(V).
The Cy(V) Hilbert bimodule & is the completion of the space of formal finite C-linear combinations of
edges of E, under the Co(V)-valued inner product given by (e, €) = de,e'Pr(e)- The action of Co(V') on X is
given by po€ = 0, ()€ and epg = dq 4(e)€-

We then form the Pimsner-Fock space

FO=cMaeP K .

The spaces ®C X are spanned by elements of the form ¢; ® - -+ ® €, such that €1 - - ¢, is a path in L.
For each edge ¢ € E7 we get bounded creation and annihilation operators on F (f) given by
le) (1@ Qey) =e®Re1®-- Qe
e)" (1@ Rep) = <6|61>C’0(V)62 R Q€.

The Pimsner-Toeplitz algebra T(I) is the C*-algebra generated by the £(¢), £(e)*. It should be noted
that since the tensor products are balanced over Cy(V'), it follows that £(€) (e; ® - - - ® €,) = 0 whenever

t(e) # s(e1).
Definition 2.16. The free graph algebra S = S(I', 1) is generated by the edge elements

X, = acl(e) +a t0(eP) where ae =

Note that a;l = aeor. We set X, := X + Xcop.

We now give the structure of the free graph algebra. There is a conditional expectation E : S(I', u) —
Co(V) given by E(z) = 3,y ) (v|zv)co(v)- We have the following lemma.

Lemma 2.17 ([GJS11, HP17]). The algebras S., = C*(Co(V),X.) are free with amalgamation over
Co(V') with respect to the conditional expectation E, i.e.

S(Tp)= =* (Se,,uaE)-
Co(V)

Furthermore, po E defines a (semifinite) a trace Tr on S.

One can check that Tr(p,) = p(v) for all v € V.

3. FREE LOOP ALGEBRAS AND COMPACT QUANTUM METRIC SPACES

3.1. Free loop algebras give compact quantum metric spaces. Let Hr , = f(f) Qo (V) V(D) p).
Here, ¢2(V (), 1) is the Hilbert space spanned by V, whose inner product is given by (v, w) = Gy p(v)?.
Note that paths in T give an orthogonal basis for Hr,p, and |le; ® - @ €nlpp,p = Vu(t(en)).

We introduce the following notation.

Notation 3.1. Let II denote the set of all paths in f, and 0 = €1 -+ - €, € II. Let |o| = n denote the length
of 0. We set:

o o
° op_ep 1p

K(J) =/ 61) l(ep).
_ 0 1(s(e1))
u(t o) \/u(t(evlb))

s zazm ) )




Once it is shown in Proposition 3.2 below that Y, € S(T, ), it will follow from faithfulness of the trace
that Y, is the unique element in S(T', ) whose right support is under DPi(o) (i.e., precomposing with Pi(o)
does nothing) and satisfies Y - Di(s) = o0 The element Y, is known as the Wick word of ayo. Observe
that YJ* = Yaop .

We now perform a change of basis from the X’s to Y’s. These Y’s will be useful later on as they are
eigenvectors of the number operator.

Proposition 3.2 (Change of basis). Suppose o is a path in r of length n.
(1) Yo € ST, )

(2) Yo = X5 + Q where Q is a linear combination of the X, with |o'| < n.
(3) Xy =Yy + P where P is a linear combination of the Yy with |o'| < n.

Proof. We will prove this by induction on |o|, the length of o. If |o| = 1, then o = ¢ for some € € E and it
is apparent that Y, = X..
Given, o with |o| > 1, write 0 = e for € € E, and write 7 = €'t/ for ¢ € E. We see that

XEYT = (QGE(E) + GEOPE(GOP)*) Z aTla;glé(Tl)g(TQOP)*

T=T1T2

= 3 el r)UTP) +bone Y anach, (r)(5)) + acmaz (eP) L)

— —
= Y, + Geon o Ve
By induction, this proves (1) and (2). (3) follows directly from (2). O
We now work with the following assumption:

Assumption 3.3. Our vertex-weighted graph (I, u) comes with a pointing vo € V' with p(vg) = 1 which
is minimal amongst vertex weights, i.e., u(vg) < p(v) for all v € V.

Definition 3.4. From the free graph algebra & = S(T', i), we define the free loop algebra at vy, denoted
So, as the cutdown at p,,, i.e., So = PuySPu,-

Remark 3.5. In [HP17, Harl7] the K-theory of S(I',u) was shown to be given by Ko(S(T',un)) =
ZA{[py]lv € V'}, the free abelian group generated by the equivalence classes of the projections p,, and
K (ST, 1)) =2 {0}. Under the mild assumption (1) from the introduction, S(T", i) is simple, so So(T", p) is
Morita equivalent to S(T', i), and Sp(T', p) has unique trace. It follows that if (I', u, v) and (I, i/, v}) are
two pointed weighted graphs, and the additive groups generated by {u(v)|v € V} and {u(v')|v" € V'} do
not agree, then So(T', u) % So(I, 1').

Let Ho be the Gelfand-Naimark-Segal (GNS) Hilbert space of Sy under the finite trace trg = Tr|s,.
Let Iy denote the set of loops based at vg. Note that Iy is an orthonormal basis for Ho = L?(Sp, tro).
Furthermore, if o € Iy, then Y} is the unique element in Sy satisfying Y,vy = o (note that a, is necessarily
1 if o is a loop). This means that we have the following important fact:

Fact 3.6. The set {Y,|o € Iy} is an orthonormal basis for L?(Sp, tro).

We define an unbounded operator N in Hy by the closure of the operator satisfying N(o) = no
whenever o is a loop of length n. Let A be the unital x-algebra generated by the elements Y, which by
Proposition 3.2, is also generated by the elements X,. Notice that under the identification of Hy with
L?(Sy, trg), we may realize N : A — A as an unbounded operator satisfying N(Y,) = nY, whenever o
is a loop of length n. Observe that due to cutting down S by p,,, it follows that the null space of N is
precisely scalar multiples of pg, the identity in Sy. Set A, := span{Y, ||o| < n}, which is *-closed and
finite dimensional. Furthermore, it is straightforward to see that A, - A, C An1m, giving a s-filtration of

A by finite dimensional subspaces. We are now in position to use the Ozawa-Rieffel framework as in §2.2.
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As above, we set W, := span{Y,||o| =n} = A, © A,_1, and we define P, to be the orthogonal
projection from Hg onto W,,.

Lemma 3.7. If v € Wy, then ||PpaP,| < |z|2.

Proof. Write x =}, b Y. Note that |13 = 2 lol=k |bs|2. We need to show that if £ € P,Ho then we
have

[1Pmagla < [l]l2]1€]l7

Write § = >, _, ¢z7. The term PxF, is zero unless |m —n| < k < m + n. Choose j such that
(k—j)+ (n—7) =m, and write

T = Z bpir Ypim and &= Z Cpory P2T2.

lp1l=k—j lp2|=j
[71|=j IT1[=n—j
This means that
2 2
Ppxt = Z by i L(p1) (") | - Z CporaP2T2 = Z a5bpoCorpT.
lo1|=k—j lpal=3 lp|=k—j
IT1]=3 [T1]=n—j lo|=3
[T|=n—j
From this, we see that
2
2 2
| Pz = Z Z UybpoCor
lp|=k—j |lo|=3j
|7[=n—j
2
2
< 5 (X e
lp|=k—=j \lol=j
IT|=n—j
2
< D> | 2o beocord
lp|=k—j \lo|=j
|7|=n—j
2 2
< Z Z 1bpo | Z |Cor|
lp|=k—3 | \lo1l=J lo2]|=j
IT|=n—j
S ISR B PR
lo’|=k lo!|=n
2 2
= [|zllz - [[€]]3
as desired. ]

Lemma 3.7 immediately implies Theorem A.

Proof of Theorem A. Recall that L is defined by L(z) = ||[V, ]|, then Lemma 3.7 allows us to use the

Ozawa-Rieffel criterion in Theorem 2.14 ([OR05, Theorem 1.2]) for C' = 1 to conclude that (Sp, A, L) is a

compact quantum metric space. (]
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3.2. Convergence for weighted pointed graphs. We now discuss a type of convergence for vertex-
weighted pointed graphs, which is a weighted analog of Benjamini-Schramm convergence [BS01]. As in
the previous sections, the graphs we consider are countable, connected, locally finite, undirected, vertex-
weighted, and pointed, where the base-point has minimal weight 1. The following notation will be handy.

Notation 3.8. Suppose I' = (V, E,v) is such a graph and R € N. We denote by I'(R) the truncation of T
to the closed ball of radius R of I" based at v.

Definition 3.9. Suppose we have a sequence of such graphs (I';, = (Vj,, Ep, vy), pin), and another graph
(T'=(V,E,v),u). We say that I';, converges locally to I' if for all R € N, there is an Np > 0 such that for
every n > Ng,

e there is a pointed graph isomorphism % : T',,(R) — I'(R), and

e these graph isomorphisms satisfy for all n > max{Ng, N1}, gof+1|pn( R = R,
Moreover, we say I', — I locally uniformly if T';, — I" locally and the isomorphisms ¢ satisfy

e for every vertex w € T' with dist(v, w) < R, limy,_se0 i [(0F) 71 (w)] = p(w).

In other words, (I'y, pn) — (I, 1) locally uniformly if for all R > 0, the R-ball eventually stabilizes,

and the weights converge uniformly on the R-ball.
Examples 3.10. We give several examples of local uniform graph convergence.
(1) (Subgraphs converging to a limit graph) Consider the Coxeter-Dynkin diagrams A,, with their unique

normalized Frobenius-Perron weighting, where the base-point is at the left:

[.1] [.2] [3.] G where [n] = il and =ex (2m' >
* q—q7! TP e )

It is easy to see that the A, converge to the Coxeter-Dynkin diagram A, with its Frobenius-Perron
weighting

*

Just observe that as § — 0, we have ¢ = €’ — 1, so [n] — n.
(2) (Weightings converging on the same graph) We fix the graph A, but we consider the continuous
family of Frobenius-Perron weightings given by

1 2 3 ot
(1] 2] [3] where [n]:%
* q_q

It is easily verified that any convergent sequence g, — qo gives a convergent sequence of graphs.

and qg>1.

(3) (Existence of only local isomorphisms) Consider the the affine Coxeter-Dynkin diagrams DY with
their unique normalized Frobenius-Perron weighting;:

It is easily verified that these graphs converge to the affine Coxeter-Dynkin diagram D, with its

Frobenius-Perron weighting
1
2 2 o ..
1
*
9



Remark 3.11. Examples (1) and (2) above are part of a wider family of examples coming from subfactor
theory. For every simple complex Lie algebra g and an appropriate root of unity ¢, we obtain the fusion
category Rep(U,(g)), the semisimplification of the category of tilting modules for the quantum group U, (g).
The isomorphism classes of simple objects are in bijection with a truncation of the positive Weyl chamber,
and the fusion rules are described by the quantum Steinberg tensor product rule, a.k.a. the quantum Racah
formula [AP95, Saw06]. One way to obtain an unoriented graph is to take the alternating part of the fusion
graph for the standard generator of Rep(U,(g)), which is the principal graph of a subfactor [Wen88, Wen90].
As k — oo, we obtain a sequence of pointed bipartite weighted graphs which converge locally uniformly
to the alternating part of the entire Weyl chamber. For an explicit example, we list several graphs in the
sequence for suz, where the shaded nodes and edges correspond to the bipartite alternating part, and the
unshaded nodes and dotted lines correspond to the rest of the truncated Weyl chamber.

The generating object, which corresponds to the vertex distance 1 from %, always has quantum dimension
[3], and the quantum dimensions of the other vertices can be computed from this data using the adjacency
matrix of the graph. See also [Ais97] for computing quantum dimensions.

3.3. Adjusting the Lip-norm. Nuclearity is often used to establish quantum Gromov-Hausdorff con-
vergence of infinite-dimensional quantum metric spaces (see [Rie04a, KL09, Lat17, Agul9, JRZ18, KK21]
where nuclearity is either implicitly or explicitly used to provide finite-dimensional approximations). Since
So is exact but non-nuclear, we do not have contractive completely positive maps for finite dimensional
approximations. Instead, we pass from the Lip-norm L := ||[-, N]|| to a new Lip-norm £ on Sy defined
from the finite dimensional spaces A, © A,_1 from our filtration (A,) of A C Sy. The spaces A, © A,—1
of homogeneous loops provide an appropriate finite dimensional approximation.

As done before and in the following definition for ease of notation, we suppress the vertex-weighted
pointed graph (I', ) from So(T', 1), A(T", 1), and so on.

Definition 3.12. Let W,, := span{Y,||o| = n} i.e., the span of the Wick words of length n in Sy, and
observe A, = spanJj_, W. Set B, := {z € W,,|L(z) < 1}, and define

o0 o0 n n
C' := conv U By, C := conv U By, and C, := conv U B, = conv U B,

k=0 k=1 k=1 k=1
where the above closures are in operator norm. We then define £ on Sy to be the Minkowski functional
associated to C’, i.e.

L(z) :=inf {r > 0|r_1:1: ecC'}. (2)
Observe that £(x) = co whenever 7~z ¢ C’ for all r > 0. Clearly L is finite on A.
Remarks 3.13.
(1) Since £ is the Minkowski functional associated to C’, and C’ is norm-closed, then C' = {z € Sy|L(x) < 1}.
(2) By lower semi-continuity of L, we have that
{x € S|lL(z) <1} =C" C{x e Sy|L(x) < 1};

equivalently, L < £. Thus, as L is a Lip-norm, it follows from Proposition 2.7 ([OR05, Prop. 1.3]) that
L is a Lip-norm.
10



(3) Observe that if x € W,,, then L(z) = L(x). Indeed, by lower-semicontinuity of L, we see that L <1
on C. Soif L(x) =1, then ax ¢ C for all & > 1, and thus L(z) = 1.

Lemma 3.14. For every e > 0, there is a K € N such that x € A© Ak and L(x) < 1 implies ||z|| < 2¢/3.
Moreover, for alln >m > K, dist'}j}”(cm,(fn) < 4e/3 for all vertez-weighted pointed graphs (T, u).

Proof. By [OR05, §3], given a € A with L(a) <1 and € > 0, there are K > M > 0 depending only on the
constant C' in Theorem 2.14 ([OR05, Theorem 1.2]) so that

o if o(M) = 2 m—n|>m PmalPn and ™ =a —a™) then [[a™)| < /3
o if g =) ;i ar and ax = a — ak (which are both in A(2)), (@)™ < /3.
Thus for x € A © Ak, we have

2]l = @)™ + @x)™ + 2| = [[(2x)Y + 2| < 2¢/3.

It was shown in Lemma 3.7 that C' = 1 regardless of the graph I' and the vertex-weighting u (as long as
the base point vy has minimal weighting). Therefore, it follows that if z € A © A and L(z) < 1, then
L(z) <1 and hence ||z| < 2¢/3.

Now by definition, C,, C C,. Observe that when V is a vector space and S C T C V, then every
element in conv(T') is a convex combination of an element in conv(S) and an element in conv(T \ 5).
Hence if & € Cy, we have z = Ay + (1 — \)z where y € C, and z € conv {J;_,, . | Bx. Since z € A© Ax and

L(z) <1, ||z]| < 2¢/3 by the preceding paragraph. We conclude that dist|[|{'H(Cm, Cn) < 4¢/3 as desired. O

Remark 3.15. Lemma 3.14 is precisely why we introduced £. Indeed, one of our goals in this paper is
to provide natural finite-dimensional approximations of these free graph algebras, which are non-nuclear.
This is accomplished in Corollary 3.16 using £. We are not sure we can accomplish this using L since the
estimates we obtained were not contractive with respect to L, which did not allow for the approximations
we made in Lemma 3.14.

Corollary 3.16. For everye > 0, thereis a K € N such that disty((So(T', n), AT, i), £), (Ax(T, 1), L] 4,,)) <
e for all k > K and for all vertez-weighted pointed graphs (T, p).

Proof. Immediate from Lemmas 2.10 and 3.14. O

Theorem 3.17. Let (I'y, pun) be a sequence of vertex-weighted pointed graphs converging locally uniformly
to (T, ), each of which have base point vy (here, we suppress the isomorphism data o). Let L,, be the Lip-
norm constructed on So(T'y, pn) as in (2) above. Then (So(Tn, pin), A(Tn, pin), L) converges in quantum
Gromov-Hausdorff distance to (So(T, ), AT, ), £).

Proof. We follow the strategy for convergence introduced by Rieffel in [Rie04a]:

(1) First, uniformly approximate (So(I'y, ttn), A(T'n, ptn), L£y,) for all n € N and (So(T', i), A(T, p), £) by
finite-dimensional compact quantum metric spaces.

(2) Second, establish convergence of the finite-dimensional compact quantum metric spaces using
[Rie04a, Theorem 11.2].

(3) Finally, the argument will be complete by the triangle inequality.

Let € > 0. By Corollary 3.16, there exists K € N such that
disty((So(Tns pin)s AL, pin), £n)s (A (T, pin), Lnlag)) <

for all n € N and dist,((So(T', ), A(T, 1), £), (A (T, 1), Llag)) < 5.

Next, Ag(T'y,un) for all n € N and Ag(T', ) are finite dimensional. To prove quantum Gromov-
Hausdorff convergence of (Ax (', ttn), Lnlag )nen to (Ax (T, 1), L]a,), we use [Rie04a, Theorem 11.2],
which requires finite-dimensional spaces and a continuous field of norms and Lip-norms. For sufficiently
large n, all of the I',(K) coincide (again, we suppress the isomorphism data ¢X). It follows that for these

11
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values of n, the vector spaces Ag (I'y,, 1) are canonically isomorphic to the complex linear span of all loops
in I' of length at most K based at vg. Setting

Vi := spang {ao +600p|a € C and o € Iy such that |o| < K},

Vi is canonically isomorphic to Ag (T, pt)sa and Ag (I, pin)sa for sufficiently large n.
Fix a loop o of I based at vg, and let Y, (n) be the Wick word for o in So(I'y, pin):

Vo) = 3 ap(n)az (n)e(p)e(r?)".
o=pT

Since pn, — p as n — oo, it follows that a,(n) — a, for any path p in I'. For { € Vg, we write Y for
the corresponding linear combination of Wick words in So(I', 11), and we write Ye(n) for the corresponding
linear combination of Wick words in So(I'n, j1,,) for sufficiently large n. Setting [|€||n = [|Ye(n) |l sy (r,0,0m)
and [[€]| == [|Yellsy(r ) we have |||l — [|€]| as n — co. Moreover, for each k between 1 and K, note that
for any & € Vi which is a linear combination of loops of length exactly k, £,(Y¢(n)) converges to L(Ye).
This is due to the fact that on the space Wy, L and L coincide. Thus by [Rie04a, Theorem 11.2], we have
that

Tim_ disty (s (T jin). Lal ). (Ax (D, 1), £l ) = 0.
Hence, there exists N € N such that disty((Ax(I'n, tn), Lnlag ), (Ax (T, 1), Llag)) < § for all n > N.
Therefore, if n > N, then
distq((So(Tn, pn)s A(Tns pin ), L), (So(T, 1), AT, 1), £))
< disty((So(T'n, tn)s AT, pn)s L)y (Ak (T pin)s Ll 4 )
+ disty ((Ax (Tn, pin), Lol ag ) (A (T, 1), £]ag))
+ disty ((Ax (T, 1), L] ag ), (So(T, 1), AT, 1), £))

< 5 -+ disty(Axe (T ), Lal ) (Axe (D ), L)) + 5
S S €
< g + § + g =€
as desired. g

4. APPLICATION TO SUBFACTOR THEORY

We refer the reader to [Jon12] for the definition of a subfactor planar algebra and its principal graphs
and to [BHP12] for the definition of a factor planar algebra and its principal graph.

4.1. The Guionnet-Jones-Shlyakhtenko C*-algebras. Let P, be a (sub)factor planar algebra. We
now give the construction from [HP17, HP14] of the Guionnet-Jones-Shlyakhtenko (GJS) C*-algebras
based on the constructions [GJS10, JSW10, GJS11]. A similar construction starting from a unitary tensor
category and chosed symmetrically self-dual generator was given in [HHP20].

First, we form the graded algebra Grg = @,,~, Pn with the Bacher-Walker product?

min{m,n} j

[E*y: Z meJ Y fOI‘ xEPm,yGPn7

P

tr(z) = Om—ox for x € P

and trace given by

(Since Py = C, the above expression gives us a number.) We note that under the GNS inner product
(x,y) = tro(y* x x), the spaces P,, are orthogonal for distinct n.

IThis product was discovered by Bacher and Walker independently; see [BW16] and [JSW10].
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Observe that since each P, is *-closed and finite dimensional, the subspaces A, = @) _, Pnr give Grg
the structure of a x-filtration by finite dimensional subspaces. Moreover, since P, is connected, Py = Clgy,,-
Finally, by [GJS10, JSW10], the action of Grg on (Gro, trg) is bounded in || - ||2. Hence Assumptions 2.11
hold, and we are in the position to use the Ozawa-Rieffel criterion from Theorem 2.14 ([OR05, Theorem
1.2)).

Definition 4.1. The C*-algebra Ag = GirOH'” acting on L?(Gry, trg) is called the GJS C*-algebra of P,.

Let (I, ) be the principal graph of P, with its quantum dimension weighting, which satisfies the
Frobenius-Perron condition. Note that the distinguished vertex * has minimal weight 1, so Assumption
3.3 holds. We have the following lemma from [HP14] which connects the GJS C*-algebra to the free loop
algebras discussed in Section 3.1.

Lemma 4.2 ([HP14, Cor. 3.4]). The C*-algebra Ay is isomorphic to the free loop algebra So(T', ).

Remark 4.3. The examples of local uniform graph congergence in Examples 3.10 are all examples of
principal graphs of subfactors with weightings given by quantum dimension functions which satify the
Frobenius-Perron condition. We may thus interpret Theorem B as giving quantum Gromov-Hausdorff
convergence of the compact quantum metric spaces associated to GJS C*-algebras, with the adjusted
Lip-norms.

4.2. The number operator. As in §2.2, we have the number operator N =} -, nP, on Grg, where P,
is the projection with range B, = A, © A,_1 = P,,. We end our article with some further observations
about the properties of the number operator in our setup.

To begin, we give a supplementary diagrammatic proof that the number operator has bounded com-
mutator with Grg, although it follows directly from Lemma 2.13 (JOR05, Lemma 1.1]).

Lemma 4.4. The number operator N has bounded commutator with every x € Grg.

Proof. To show ||[V, ]| is bounded for an arbitrary z € Gry, it suffices to consider a fixed x € Pp,.
Suppose y € P,,, and we write g for it image in L?(Grg, trg). We need only treat the case m < n, since we
may ignore the behavior of [N, z]| on a finite dimensional subspace. We have

[N,z]j = N(z*y) —zx(Ny)

We now see we can write this sum at the end as

m

(m_2.)m—]ij ~
jz% J Yy

where the sum in parentheses is a finite sum of bounded operators in the P,-Toeplitz algebra To(P.) [HP17],
which is independent of y. We are finished. U

Proposition 4.5. The number operator N has compact resolvent and is #-summable, i.e., e~tN? s trace

class for all t > 0.

Proof. Since T is the principal graph of P,, dim(P,,) is the number of loops of length 2n on I" based at
*. Letting Ar be the adjacency matrix of ', we have that Ar acts on ¢2(V), and ||Ar|| < & by [Pop94,
13



§1.3.5]. Define e, € £2(V) by e.(v) = dy—«, and note that the number of loops based at * of length 2n is
(A%”e*, es). Hence, we see

dim(P,) = (A¥e.,e.) = [(Ares, en)] < | Ar]" < 82n.
Thus, on P, e N ? has trace bounded above by
di]rn(Pn)e_m2 < §2ne—tn®,
It is now clear by the root test that
52n
Z — < 00. O

tn2
n>0

We now use techniques from [CJS14] to show that the number operator arises as 9*0 where 0 is a
derivation fom Grg into a Hilbert space.

Definition 4.6. We define Ky = @i,jzo Pi 1, where P; ;1 = P;yjy1, but we think of elements as having
1 strings out the top, j strings out the bottom, and one string to the right:

We have an action of Gro® Grg” on K by bounded operators. Given z € P, and y € P, we think of
x ® y°P as the following diagram:

min{m,k} min{n,¢}

@oym = > >
i=0 j=0

It is easy to see that this action is bounded using the Fock space argument of [HP17]. This means that £
has the natural structure of a Grg — Grg bimodule. We use the notation x x £ xy = (z ® y°P) - .

Definition 4.7. We define a map 9 : Grg — K by the linear extension of

Lemma 4.8. The map 0 is a closable derivation in the Bacher- Walker product.
14



Proof. First, we show that 0 is a derivation. We need to show that d(z xy) = x x d(y) + O(z) x y. It is
straightforward to compute

0

m—j—i—1

min{m,n} min{m,n} n—i

m—1i n—1 .

min{m,n} m—j

The right hand side is easily seen to be equal to x « d(y) + 0(z) *y after switching the order of summation.
To show 0 is closable, it is easy to calculate that in the Bacher-Walker product,

Hence 0* is densely defined, and we are finished. O

The following corollary is now immediate.

Corollary 4.9. The number operator N is equal to 9*0.
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