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1 Introduction

Since their introduction in [LW05], string-net lattice models [Kon14a, LLB21] have been

used as tractable examples of systems exhibiting (2+1)D topological order. A (2+1)D

string-net model is determined by the data of a unitary fusion category (UFC) X , and
exhibits Z(X )-topological order, in the sense that the modular tensor category Z(X ) clas-
sifies the types of quasiparticle excitations and gives their fusion and braiding statistics

[KK12].
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Systems exhibiting (2+1)D topological order can include domain walls between re-

gions in different topological phases. One source of topological domain walls is anyon

condensation, where topological order is described by the unitary modular tensor cate-

gory (UMTC) C on one side of the wall, while a bosonic condensable algebra A ∈ C is

condensed on the other side [BS09, BSH09, Kon14b]. The condensed algebra now plays

the role of the vacuum, and anyons s from the region where A is not condensed can split

as domain wall excitations, which may either be confined to the domain wall or able to

pass into the condensed region, according to the structure of the fusion channels between

s and A. Wall excitations are then described by the fusion category CA of A-modules

in C, while the UMTC ClocA of local A-modules describes anyons in the condensed phase

[Kon14b, DMNO13].

Anyon condensation also gives rise to phase transitions between topological phases,

which can be thought of as topological Wick rotations [KZ21] of the spatial domain walls.

In this article, we will describe a class of modified Levin-Wen models, due to Corey Jones,

in which a chosen condensable algebra A ∈ Z(X ) may be condensed by tuning a param-

eter, driving a system with Z(X ) topological order through a phase transition to Z(X )locA
topological order. In particular, a domain wall of the form described in [Kon14b] can be

created by choosing different values of the parameter on each side of the wall. Our models

closely track some existing constructions, such as that of [BSS11], where models for the

condensation of an Abelian plaquette excitation were constructed and analyzed, [HBFL16],

which describes a procedure for ungauging a symmetry that is equivalent to our model for

condensing an algebra of the form CG, or [ZHW+22], which analyzes in great detail the

case of condensing an algebra in Z(Ising) to create a spatial boundary to Z/2-toric code.

Anyon condensation has also been studied in several cases from the perspective of tensor

networks [XS21, XGRS22]. However, our models will allow for an arbitrary choice of UFC

X and condensable algebra A ∈ Z(X ), and the modifications to the Hamiltonian come

directly from the data of the condensable algebra. In particular, Z(X ) and A may be

non-Abelian, and the fusion rules of X can have multiplicity.

The structure of this paper is as follows. In Section 2, we review Levin-Wen models in

detail, including a description of string operators, hopping operators, and how the type of

a topological excitation can be determined locally via representations of the tube algebra

[Izu00, Müg03b]. In Section 3, we describe a class of models, parameterized by a unitary

fusion category X and a condensable algebra A ∈ Z(X ), which permit the condensation of

A via tuning a parameter t. When t = 0, these models will reduce to the usual Levin-Wen

Hamiltonian associated to X , and when t = 1, the algebra A is condensed. We describe

a variant tube algebra of local operators and string operators in the condensed phase,

and adapt the analysis from Section 2 to show that anyons in the condensed phase are

described by the UMTC Z(X )locA , as argued in [Kon14b]. We also discuss the effect of the

phase transition on the space of ground states in Section 3.5. Finally, Section 4 contains

additional examples of the models described in § 3, including the non-Abelian example of

condensing the Lagrangian algebra in Z(Fib).

Note added Shortly before completing this work, we became aware of [BL23], which

studies anyon condensation in the case of Abelian bosons.

– 2 –



Acknowledgements

This project began as an undergraduate research project for Jessica Christian in Summer

2020 led by Peter Huston and David Green. It then evolved into a chapter of Peter

Huston’s PhD thesis from 2022. The authors would like to thank Corey Jones for suggesting

this project and for many important ideas. The authors would also like to thank Dave

Aasen, Maissam Barkeshli, Jacob Bridgeman, Fiona Burnell, and Yuan-Ming Lu for helpful

comments and discussions. All the authors were all supported by NSF grant DMS 1654159.

David Green and David Penneys were additionally supported by NSF grant DMS 2154389.

2 String-net models in (2+1)D

In this section, we investigate (2+1)D string-net models for topological order, which were

introduced in [LW05]. We follow the treatment of [KK12, Kon14a, LLB21, Zha17, Hon09].

We begin by introducing the commuting projector local Hamiltonian of a string-net model

associated to the UFC X , in § 2.1. The goal of our analysis is to identify the space of states

containing an isolated topological excitation at a particular location as a representation of

the tube algebra Tube(X ), extending the work of [HGW18]. We accomplish this goal in

§ 2.3. As setup, we introduce in § 2.2 notions of string operators and hopping operators for

anyons in Z(X ) which are slightly more general than those that appear in [HGW18, LLB21],

so that string operators can realize all elements of the Tube(X ) representation. Aside from
providing details on well-known properties of string-net models, the exposition in this

section provides the blueprint for our analysis of the condensed phase in § 3.

2.1 Background: the Levin-Wen system

We begin by explicitly describing the string-net model associated to a unitary fusion cat-

egory X . Whenever possible, we suppress notation such as tensor products, associators,

and unitors.

As in [Kon14a], we use a regular hexagonal 2D lattice which we view as being oriented

left to right, although this choice of geometry is not necessary.

We assign a Hilbert space to each vertex of the lattice, where there are two different types

of vertices:

v
←→ Hv :=

⨁︂
x,y,z∈Irr(X )

X (xy → z)

v
←→ Hv :=

⨁︂
x,y,z∈Irr(X )

X (x→ yz)
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Spaces of morphisms, such as X (x→ yz), carry several different inner products. There are

two which we consider in this work. The first is the isometry inner product, determined by

the formula

⟨f, g⟩ ida := g† ◦ f ∀f, g ∈ X (x→ yz) (2.1)

This gives a canonical identification of X (yz → x) with the dual Hilbert space X (x→ yz).

The isometry inner product appears naturally when computing compositions of mor-

phisms in X . However, the isometry inner product is ill-behaved in the sense that the

isomorphisms
⨁︁

x,y,z X (x→ yz)→
⨁︁

x,y,z X (yz → x) coming from pivotality of X are not

unitary; this inner product is not rotationally invariant. Therefore, for the Hilbert spaces

Hv, we choose a different inner product ⟨·|·⟩v, where the inner product on the summand

X (x→ yz) is given by

⟨g|f⟩v =

√︄
dx
dydz

⟨g|f⟩. (2.2)

In this paper, most inner products that are computed are actually the isometry inner

product (2.1), because they arise from the comparison of operators defined in terms of the

graphical calculus of X . The importance of using the rotationally invariant inner product

(2.2) for the lattice Hilbert spaces is that the plaquette term Bp which we define below will

actually be self-adjoint.

Remark 2.1. We can see that the inner product (2.2) is rotationally invariant by relating

it to the pivotal trace. Since X is a unitary fusion category, X has a canonical unitary

spherical structure [LR97, Yam04, Pen20], giving a pivotal trace tr such that tr(idx) = dx.

Therefore, ⟨g|f⟩v = 1√
dxdydz

tr(g†f). Since dx = dx, the scalar
√︁
dxdydz is obviously

rotationally invariant; so is the value of tr.

We will sometimes depict a vector f ∈ X (xy → z) ⊆ Hv as a picture where v is labeled

by the morphism f , and the links incident to v are labeled by x, y, and z:

f z

x

y

States on a finite chunk of the lattice where all links are assigned the same object in

Irr(X ) by all incident vertices can therefore be interpreted as linear combinations of string

diagrams in X , read from left to right.

Sometimes, it will be more convenient to use other orientations of links, so we adopt

the convention that
x = x = x

For example, on a trivalent vertex corresponding to a hom space, we have

x

y

z
= X (xy → z)

x

y

z
= X (xy → z).
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The Hamiltonian has two terms: link and plaquette. The link term Aℓ for a link ℓ

connecting vertices u and v projects onto the subspace of Hu⊗Hv where the labels assigned
to the link ℓ match. Thus, Aℓ terms commute with one another, and the ground states

of −
∑︁

ℓAℓ can be locally interpreted as linear combinations of string diagrams in X on

the 1-skeleton of our lattice. Note, however, that two string diagrams which give the same

morphism in X may be distinct as ground states of −
∑︁

ℓAℓ.

Following [Kon14a], for s ∈ Irr(C), we define an operator Bs
p which glues a closed

s-loop into the plaquette p.

a1

a2a3

a4

a5 a6

c1

c2
c3

c4
c5

c6
↦→ a1

a2a3

a4

a5 a6

c1

c2
c3

c4
c5

c6

s (2.3)

The operator Bs
p is only defined on the ground states of the Aℓ terms for links ℓ of p; if

Aℓ|ϕ⟩ ̸= |ϕ⟩ for one of those links, we define Bs
p|ϕ⟩ = 0. We interpret (2.3) as an operator

on our Hilbert space, as described in [LW05, Appendix C], using the following relation.

idxs =
x s

y

x s

:=
∑︂

y∈Irr(C)
α∈ONB(xs→y)

x s

y

x s

α

α†

. (2.4)

Here, we adapt the notation from [HP17, Eq. (3)] and write a pair of nodes labelled by

to denote summing over an isometry orthonormal basis of
⨁︁

y∈Irr(X )X (xs → y) and its

adjoint; the sum is independent of the choice of basis. Applying equation (2.4) six times

allows us to rewrite Bs
p as

a1

a2a3

a4

a5 a6

c1

c2
c3

c4
c5

c6

s ↦→ a1

a2a3

a4

a5 a6

c1

c2
c3

c4
c5

c6

s ↦→ a1

a2a3

a4

a5 a6

s

ss

s

s s

c1

d1

c1
c2d2c2

c3
d3
c3

c4
d4
c4

c5 d5 c5
c6
d6

c6
↦→ a1

a2a3

a4

a5 a6

s

ss

s

s s

c1

d1

c1
c2d2c2

c3
d3
c3

c4
d4
c4

c5 d5 c5
c6
d6

c6

(2.5)

Note that we switch orientations in the first and third arrows for ease of applying equation

(2.4). The pairs of colored vertices refer to summing over an orthonormal basis and dual

basis, as in (2.4), while labels f1···6 for the six vertices have been omitted to avoid clutter.

The second arrow requires the use of the associator/F -matrices to re-associate in order to

apply (2.4). Explicitly,

ids⊗f =
x x

a

b
c f =

d
s

c
a

b

se

f
α α−1

bb

a

c

s
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Thus, in the final diagram of (2.5), each vertex of p is now labelled by the composition

of several morphisms, yielding a new morphism in Hv. For example, in terms of the sum

where = ϕ, = ψ, the lower right vertex is now labelled by an element of X (d5 → d6a6):

d5 c6

a6

d6

f
αϕ† ψ

a6

c6
c5

s

The plaquette term Bp is then given by

Bp =
1

D

∑︂
s∈Irr(X )

dsB
s
p,

where D =
∑︁

s d
2
S is the global dimension [Müg03a, Defn. 2.5] of X . One uses the asso-

ciativity of X to check that Bp is an idempotent [Zha17, §5]. The computation that Bp
is self-adjoint is somewhat involved, but appears in [Hon09, Theorem 5.0.1]. The inner

product ⟨·|·⟩v of (2.2) is chosen so that the notion of Hermitian operator used in the proof

in [Hon09] matches the notion in our Hilbert space.

There are several interpretations for Bp. One is that after applying Bp, strings can

now be deformed across the plaquette p [LW05, Appendix C]. Another is that the operator

Bp is the orthogonal projector onto the trivial representation of the algebra Tube(X ), as
described in Section 2.2. Still another is that Bp amounts to contracting p to a vertex, and

then restoring it [HSW12]. Categorically, this corresponds to applying the map E†E (up

to a factor of the global dimension D), where E is the map which uses the composition of

X to replace a string diagram labelling p with a single morphism in X [Kon14a]. This last

interpretation thus provides an alternative definition of Bp which is manifestly self-adjoint.

Finally, the overall Hamiltonian on the lattice Hilbert space ⊗vHv is given by

H = −
∑︂
v

Av −
∑︂
p

Bp (2.6)

2.2 Topological excitations from string operators

Topological excitations in a Levin-Wen model based on the UFC X are classified by simple

objects in Z(X ), the Drinfeld center of C [KK12]. One way of deriving Z(X ) from X is

by means of the tube algebra Tube(X ), a finite dimensional C∗ algebra whose category of

representations is equivalent to Z(X ) [Müg03b, Izu00]. An action of the tube algebra as

local operators at the site of topological excitation is described in [HGW18], providing a

natural and local way to identify topological excitations with objects in Z(X ). Topological
excitations are created by string operators, families of operators determined by an object

c ∈ Irr(Z(X )) and a path p through the lattice which create excitations of types c and c

at the ends of p. The string operator preserves the ground state in the middle of p, and if

p and q are homotopic paths with the same endpoints, then string operators along p and q

agree as long as the part of lattice through which the homotopy must pass is in the ground

state [LW05, Appendix C].
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Figure 1. A path for a string operator on the hexagonal lattice.

In [HGW18], as in many sources, the authors provide a unique string operator for

every object in Irr(Z(X )), and consequently do not identify the particular representation

of Tube(X ) at each site. In this section, we generalize their notion of string operator,

so that string operators can absorb elements of Tube(X ) acting locally on each end. We

apply this more general notion of string operator in §2.3, to determine the exact local

representation of Tube(X ). In §3.4, we will apply and generalize the constructions of §2.3
to our model of anyon condensation in order to prove Theorem 3.11.

An object in Z(C) is an object X ∈ C, together with a half-braiding, i.e., a unitary

natural isomorphism ρ : X ⊗ − ⇒ − ⊗ X which satisfies certain coherences. Given the

data s = (X, ρ) ∈ Z(X ), we can define a class of string operators σsp(ϕ, ψ), parameterized

by a choice of oriented path p between two potential location of excitations and vectors

ϕ, ψ ∈ ⊕y∈Irr(X )X (X → y).

We begin by discussing the potential choices of the path p. The location of an excitation

is determined by which terms of the Hamiltonian the excitation violates. In the case of

our hexagonal model, the location of an excitation is therefore a pair (q, ℓ), where q is a

plaquette and ℓ is an edge of q. Therefore, the string determined by the path p must begin

and end at points inside a plaquette, near a specific boundary edge, and must also avoid

the center of each plaquette, as well as the vertices of the lattice. Thus, p consists of a list

of pairs (qi, ℓi), where each ℓi is an edge of qi, either qi+1 = qi or ℓi+1 = ℓi, and if ℓi+1 ̸= ℓi,

then the two edges share a common vertex. An example of such a p appears in Figure 1;

compare [LW05, Fig. 19].

The string operator σsp(ϕ, ψ) is not defined on the entire Hilbert space of our lattice

model, but only on the subspace where

(S1) every lattice link along p, except perhaps the links at the endpoints of p, is unexcited,

and

(S2) at the vertices of the initial and final links of p which do not lie along p, the initial

and final links are labelled by 1.

Condition (S1) means that string operators cannot pass through the locations of excitations

of Aℓ terms, although they may begin or end on such links. Consequently, in the middle of

a string operator, we may use the graphical calculus and (2.4) to implement tensoring with

s and braiding over s as linear combinations of operators on the individual vertex Hilbert
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spaces, as we did when defining Bs
p. Consequently, when defining a string operator, we

may take advantage of the graphical calculus away from the endpoints, using (2.4) and

the half-braiding of s to rewrite the string operator as linear combinations of products of

operators on the individual vertex Hilbert spaces, as we previously did for Bs
p.

Because the plaquette term permits deforming strings in C across plaquettes, if p and

q are homotopic paths with the same endpoints, then σsp and σsq agree on ground states of

our Hamiltonian [LW05, Appendix C]. More generally, if |η⟩ is a state containing localized

excitations, then σsp(ϕ, ψ)|η⟩ and σsq(ϕ, ψ)|η⟩ differ by an application of certain terms of the

half-braidings, depending on which excitations are crossed during a homotopy from p to q; if

the homotopy never passes through the location of an excitation, σsp(ϕ, ψ)|η⟩ = σsq(ϕ, ψ)|η⟩.
The excitations created by these string operators are therefore topological, in the sense that

the effect of moving excitations via string operators depends only on the topology of the

movement, and not the exact path taken.

Condition (S2) means that on states where a string operator σsp(ϕ, ψ) is nonzero, at

the endpoints of p, we can view the two hexagonal plaquettes containing the final edge

ℓ of p as a single decagonal plaquette. Applying σsp(ϕ, ψ) then turns ℓ into an additional

edge interior to the decagonal plaquette which supports the excitation, similar to the edges

added to plaquettes in the extended Levin-Wen model of [HGW18]. If w is the final vertex

along p, then basis states where σsp(ϕ, ψ) is nonzero are those in the image of the projection

π1ℓ,w : Hw ∼=
⨁︂

a,b,c∈Irr(X )

X (ab→ c)→
⨁︂

a,c∈Irr(X )

X (a1→ c)

onto the space of states where the morphism labeling w assigns the simple 1 to the edge

ℓ. (See also Definition 2.8.) However, as a convention, we define σ1p = id, rather than as

a product π1ℓ,wπ
1
m,v to enforce condition (S2). This choice will later be justified by Lemma

2.9.

At the initial vertex of p, we define σsp(ϕ, ψ) by tensoring with s along the link ℓ where

p begins, and composing with the morphism ϕ†. At the final vertex of p, we tensor with s,

and then compose with the morphism ψ. An example computation of a string operator in

terms of operators local to each vertex appears in Figure 2. If we let p denote the path p

with the orientation reversed, then by construction, our string operators satisfy

σsp(ϕ, ψ) = σsp
(︁
ψ, ϕ

)︁
. (2.7)

Remark 2.2. Condition (S2) may appear unnatural, especially since, without redefining

σ1p by special case, string operators σ1p corresponding to the vacuum would actually excite

ground states of our model. This is not as bad as it seems, because Lemma 2.9 will show that

in situations where the removed edge ℓ of the plaquette q where a string operator terminates

does not host an excitation, applying Br, where r is the plaquette which borders q along ℓ,

will undo the effects of π1ℓ,w and restore the ground state. Aside from states obtained from

string operators σ1, this can occur when two string operators have created anti-particles

at the same location, leaving the vacuum as one of the fusion channels. The benefit of

imposing condition (S2) is that we can apply the results of [HGW18].
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p

v1
ℓ1

v2

v3

v4

ℓ4
v5

:=

x1
x2

x3

x4

f1 f2

f3

f4

f5

σs
p(ψ

′,ψ)
↦−→

π1ℓ1,v1π
1
ℓ4,v5

∑︂
z2,z3,w2,w3∈Irr(X )
ϕ2∈ONB(s→z2)
ϕ3∈ONB(s→z3)

z1

z2

z2

z3

z3

z4

ϕ2

ϕ†2

ϕ3

ϕ†3

ψ′†

ψ

f1 f2

f3

f4

f5

x2

w2

x2

x3

w3

x3

y3

y2

y4

Figure 2. A string operator is resolved into local operators on individual vertex Hilbert spaces.

The morphism fi labels the vertex vi, and the object xi labels the link ℓi. The effect of applying

π1
ℓ1,v1

is to ensure x1 = 1, and the effect of applying π1
ℓ4,v5

is to ensure x4 = 1. We represent the

object 1 on the right hand side by dotted edges. The entire edge is dotted, rather than just the

part parallel to the string, because a string operator ending at ℓ is only defined on the ground state

of Aℓ.

This approach is not the only option, though. One could instead extend string op-

erators to the whole ground space of Aℓ terms, moving the applications of π1 and Bp to

definitions of hopping operators and tube-algebra representations. Alternatively, one could

view string operators as actually changing the lattice. The results of [HSW12], Lemma

2.9, and indeed, the original conceptual description of the string-net in [LW05], support

the point of view that the particular choice of lattice is not important, as does the fact

that the topological field theory describing the low-energy behavior of the string-net model

is topological, i.e., depending only the choice of manifold. We are so strict about working

in a single consistent Hilbert space only because the results Proposition 2.12 and Theorem

3.11 are part of the work of checking that our lattice model for anyon condensation realizes

the expected topological phases.
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Remark 2.3. Many articles, such as [HGW18, LLB21], only consider σsp(ψ,ψ) where ψ

is the sum over an orthonormal basis. One advantage of our approach is that in §2.3
below, we will recover the entire Tube(X ) representation from a choice of X ∈ Irr(Z(X )),
rather than simply computing which minimal central projection preserves a certain state.

This will demonstrate that any excited state containing finitely many excitations which are

separated from one another can be achieved via linear combinations of string operators.

Example 2.4. Here we explain how to interpret the diagram of Figure 2 to explicitly obtain

the string operator σps(ψ,ψ′). The overall string operator is a sum over all possible choices

of fusion channels on each link of a tensor product of local operators on the individual

vertex Hilbert spaces. For example, in Figure 2, the operator

f3 ↦→
y3

z2

z3

ϕ†2

ϕ3

f3

w2

x2

x3

w3

acts on the vertex Hilbert space Hv3 ; such an operator is part of the data of the unitary

fusion category X and the half-braiding on s ∈ Irr(Z(X )). We first explain how such

local operators assemble to give the string operator σps(ψ,ψ′), and then give an example

computation of a single local operator.

We begin by fixing a basis B(s) of ⊕x∈Irr(X )X (s→ x) for every anyon type s ∈ Irr(X ),
as well as a basis T (y, z) : ⊕x∈Irr(X )X (yz → x) for every y, z ∈ Irr(X ), which respect the

direct sum and are orthonormal with respect to the isometry inner product (2.1). We

denote the links of the path p by ℓ1, ℓ2, . . . ℓL, and denote the vertex before ℓi by vi, so

that the vertices of p are v2, v3, . . . vL. Thus, the string operator σsp(ψ,ψ
′) is defined on the

image of π1ℓ1,v2π
1
ℓL,vL

.

Resolving a string operator σsp requires summing over all choices of how to fuse the

anyon s into the L−2 internal links of p, and each choice of fusion channel affects the local

operator at two vertices. Therefore, before we can write down a tensor product of local

operators at individual vertices, we must first choose such a fusion channel for each link.

For this purpose, we first sum over a choice of ϕ⃗ = (ϕ1 = ψ, ϕ2, . . . ϕL−1, ϕL = ψ′) where

each ϕi : s → zi ∈ B(s); these choices appear in Figure 2 as the black circles between

orange and red strings. We then sum over a choice of x⃗ = (x1 = 1, x2, . . . xL−1, xL = 1) of

the simple objects labelg each lattice link along p. Finally, given ϕ⃗ and x⃗, we sum over a

choice of η⃗ = (η1, η2, . . . ηn), where each ηi ∈ T (zi, xi) or T (xi, zi), depending on whether

p is on the left or right side of ℓi while crossing the line between vertices vi−1 and vi. The

operators ηi appear in Figure 2 as colored circles. We denote the local operator acting

at the vertex vi for a given choice of ϕ⃗, x⃗, and η⃗ by σsp[i][(ϕi−1, ηi−1), (ϕi, ηi)]. Note that

σsp[i][(ϕi−1, ηi−1), (ϕi, ηi)] is defined only on the image of π
xi−1

ℓi−1,vi
πxiℓi,vi .

Combining these ingredients, our final expression for the string operator is

σsp(ψ,ψ
′) =

∑︂
ϕ⃗,x⃗

∑︂
η⃗

L⨂︂
i=2

σsp[i][(ϕi−1, ηi−1), (ϕi, ηi)] (2.8)
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We will now compute a single local term σsp[i][(ϕi−1, ηi−1), (ϕi, ηi)], where X = Fib,

s = (τ ⊠ τ̄) ∈ Fib⊠Fib ∼= Z(Fib), and the path p is the one depicted in Figure 2. (See

Appendix § 4.4 for more details on the fusion category Fib and its center.) In this case, all

the bases B(s) and T (x, z) are determined (up to unitary scalar) merely by the string labels,

since Fib is multiplicity-free; for the same reason, the individual factors σsp[i][· · · ] are 1× 1

or 2×2 diagonal matrices, with one row/column for each simple in Irr(Fib) = {1, τ} which
is an admissible label for the link incident to vi not parallel to p, given the labels xi−1 and

xi of the other two links. In other words, the rows and columns are indexed by the simple

objects yi in Figure 2. We choose i = 3, x2 = x3 = τ , ϕ2 = ϕ3 to be the channel τ ⊠ τ → τ ,

and the channel η2 = η3 : ττ → τ . With these choices, both 1 and τ are admissible labels

for y3, giving a 2× 2 diagonal matrix expression of σsp[i][(ϕi−1, ηi−1), (ϕi, ηi)].

The nonzero entry corresponding to y3 = 1 is the value of the diagram:

where all black strings are τ , and the red is the object U(τ ⊠ τ̄) ∼= 1⊕ τ . The above closed

diagram can be evaluated using the structure constants for Fib (including the associator

and matrix of the braiding, see Section 4.4) to be −φ−2, where φ is the golden ratio.

Similarly, the diagram

computes the value of the matrix entry when y3 = τ , and evaluates to φ−3.

Thus, in the basis where the first row and column correspond to y3 = τ and the second

row and column correspond to y3 = 1, we have

σττp [3][(ϕ2, η2), (ϕ3, η3)] =

[︄
φ−3 0

0 −φ−2

]︄
.

Remark 2.5. In defining the operator σsp(ϕ, ψ), we do not make use of the fact that

s ∈ Z(X ) is a simple object. However, there are some reasons to do so. First, if s is simple

and p crosses any links of the lattice, then σsp(ϕ, ψ) is always nonzero. This can be shown

using the tube algebra techniques introduced in § 2.3 below. If σsp(ϕ, ψ) = 0, then by an

application of Proposition 2.12, ϕ and ψ would lie in orthogonal summands of the tube

algebra representation ρs introduced in (2.11), showing that s is decomposable in Z(X ).
Also, if some isotypic component in Z(X ) of s is not simple, e.g. s ∼= t ⊕ t where

t ∈ Irr(Z(X )), then different choices of (ϕ, ψ) will produce the same string operator. For
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this reason, the hopping operators defined below in §2.2.2 do not make sense for such s,

and we only define them for simple objects in Z(X ).

2.2.1 String operators on excited states

As defined above, the string operators σsp(ϕ, ψ) only make sense on states which are locally

the ground state near p. We can also define string operators on states where the one

or both endpoints of p host an anyon. Our construction will make use of the local tube

algebra action described in §2.3 below, but the use of the tube algebra action reduces to

the proofs of Corollary 2.13, which the reader may presently treat as a black box. The

statement of Corollary 2.13 is technical, but the upshot is that there are local operators

which can detect and change the choice of ψ in σp(ψ
′, ψ). Indeed, since anyon types are by

definition superselection sectors under the action of such local operators [Kit06], Corollary

2.13 must hold so long as we have correctly identified the UMTC Z(X ) and string operators

σs associated to each s ∈ Irr(Z(X )). One should therefore view the Corollary as justifying

the definition of σs.

Corollary (2.13). For any link ℓ, vertex v of ℓ, anyon s ∈ Irr(Z(X ), and morphisms

ϕ, ψ ∈
⨁︁

xX (s→ x), there is a local operator T sℓ,v(ϕ, ψ) such that, if |ω⟩ = Aℓ|ω⟩ = Br|ω⟩
for plaquettes r containing ℓ, then

T sℓ,v(ϕ, ψ)σ
s
p(η

′, η)|ω⟩ = ⟨ϕ|η⟩σsp(η′, ψ)|ω⟩,

and if t ̸= s,

T sℓ,v(ϕ, ψ)σ
t
p(η

′, η)|ω⟩ = 0.

Based on our construction of string operators, the location of an excitation in a state

|ϕ⟩ actually consists of three pieces of information: a link ℓ, a plaquette r containing ℓ,

and a vertex v of ℓ such that π1ℓ,v|ϕ⟩ = |ϕ⟩. Suppose that p is the potential path of a string

operator, as in Figure 1, with endpoints (ℓ0, r0, v0) and (ℓ1, r1, v1). Suppose that |ϕ⟩ is a

state containing excitations of types t0 and t1 at the endpoints of p, so that π1ℓ0,v0 |ϕ⟩ and
π1ℓ1,v1 |ϕ⟩ are nonzero, and no other excitations near p. Given morphisms ψ0 ∈ X (t0s→ x)

and ψ1 ∈ X (t1s→ y), where x, y ∈ Irr(X ), we can define a string operator

σsp[t0, t1](ψ0, ψ1)

which creates excitations of types s and s at the two endpoints. In the middle of p, the

definition is the same as for σsp, and is once again independent of the choices of ti and ψi; at

the endpoints of p, we use the chosen ti and ψi to end the string on the lattice. Explicitly,

we define

σsp[t0, t1](ψ0, ψ1) =
∑︂

x,y∈Irr(X )
η0∈ONB(t0,x)
η1∈ONB(t1,y)

Ssp[η0, η1](ψ0, ψ1)T
t0
ℓ0,v0

(η0, η0)T
t1
ℓ1,v1

(η1, η1),

where the T operators are the local operators from Corollary 2.13, and an explicit descrip-

tion of S appears in Figure 3.
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x1
x2

x3

x4

f1 f2

f3

f4

f5

Ss
p[η0,η1](ψ0,ψ1)↦−→ π1ℓ1,v1π

1
ℓ5,v4

∑︂
z2,z3,w2,w3∈Irr(X )
ϕ2∈ONB(s→z2)
ϕ3∈ONB(s→z3)

z2

z2

z3

z3

ϕ2

ϕ†2

ϕ3

ϕ†3

ψ†
0

ψ1

η0

η†1

f1 f2

f3

f4

f5

x1

x2

w2

x2

x3

w3

x3

y3

y2

y4

Figure 3. A string operator defined on excited states is resolved into local operators on individual

vertex Hilbert spaces, as in Figure 2.

When t0 = t1 = 1, we recover the string operators of the previous section. Since the

local operators T also generate projections onto states with a particular type of anyon at

each endpoint of p, namely ∑︂
ϕ∈ONB(s,x)

T sℓ,v(ϕ, ϕ),

we can also define string operators for anyons of type s which are applicable regardless of

the type of anyon at each endpoint. A general string operator of type s is thus of the form∑︂
t0,t1

σsp[t0, t1](ψt0 , ψ
′
t1).

Now that we have defined string operators on excited states, our string operators can

fuse, according to the fusion of anyons in Z(X ). That is, if r, s, t ∈ Irr(Z(X )), xi ∈ Irr(X ),
ψ : rs→ t, and |Ω⟩ is a ground state, then

σrp[s, s](ξ0 ◦ ψ, ξ1 ◦ ψ)σsp(η0, η1)|Ω⟩ = σtp(ξ0, ξ1)|Ω⟩ (2.9)

The strings fuse in the middle by associativity of the tensor product on Z(X ), analogous
to the proof that Bp is an idempotent, and it is straightforward to check the equalities at

the endpoints of p.

2.2.2 Hopping operators

Related to the string operators which create topological excitations are hopping operators

[HGW18, §V.E], which move an existing topological excitation from one location to another.
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In this section, for each s ∈ Irr(Z(X )) and each path q, we will define a hopping operator

hsq which sends states with an excitation of type s at the initial location of q to those with

an excitation of type s at the terminal location. In other words, if |ω⟩ is a ground state,

then hsqσ
t
p(ψ

′, ψ)|ω⟩ = 0 unless s ∼= t and the terminal link of p is the initial link of q (or

s ∼= t and p and q have the same terminal link, or either s or t is 1), and p and q approach

that link from the same vertex. Moreover, our hopping operators will satisfy the relation

hsqσ
s
p(ψ

′, ψ) = σsq·p(ψ
′, ψ) (2.10)

where q · p is the concatenation of the paths q and p.

Hopping operators can be built up from the general string operators discussed in the

previous section. In order to do so, we make the following observation, which is an explicit

description of the “contraction of charges” of [HGW18] in our setting.

Lemma 2.6. Suppose p and q are two paths, such that p ends where q begins, adjacent to

the plaquette r. Then ∑︂
ϕ∈B

Brσ
s
p[1, s](ψ, ev)σ

s
q(ϕ, η) = σq·p(ψ, η),

where B is an orthonormal basis of
⨁︁

xX (s → x) and ev : ss → 1 is part of the duality

data of X .

Proof. Let ℓ : v → w be the link where p ends and q begins. Abbreviate π1ℓ := π1ℓ,vπ
1
ℓ,w.

From the definition of σ and equation (2.7), we can compute that

π1ℓσ
s
q·p(ψ, η) = π1ℓ

∑︂
ϕ∈B

σsp[1, s](ψ, ev)σ
s
q(ϕ, η).
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Explicitly,

σsq(ϕ, η)|ω⟩ =

s

x
ϕ†

ℓ
r

π1ℓσ
s
p[1, s](ψ, ev)σ

s
q(ϕ, η)|ω⟩ =

s

ϕ†
ϕ

s

ℓ
r

π1ℓ
∑︂
ϕ∈B

σsp[1, s](ψ, ev)σ
s
q(ϕ, η)|ω⟩ =

s
s

ℓ
r

Since σsq·p does not create an excitation at ℓ, we need only apply Lemma 2.9.

With these ingredients in hand, we define

hsq =
1

|B|
Br

∑︂
ϕ,η∈B

σsq [s, 1](coev
†, η)T sℓ,v(η, ϕ).

Observe that

hsqσ
s
p(ψ

′, ψ) =
1

|B|
Br
∑︂
ϕ,η

σsq [s, 1](coev
†, η)T sℓ,v(η, ϕ)σ

s
p(ψ

′, ψ)

=
1

|B|
∑︂
ϕ,η

⟨η|ψ⟩Brσsq(coev†, η)σsp(ψ′, ϕ),
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and applying Lemma 2.6,

hsqσ
s
p(ψ

′, ψ) =
1

|B|
∑︂
ϕ,η

⟨η|ψ⟩σsq·p(ψ′, η)

hsqσ
s
p(ψ

′, ψ) =
∑︂
η

σsq·p
(︁
ψ′, ⟨η|ψ⟩η

)︁
hsqσ

s
p(ψ

′, ψ) = σsq·p(ψ
′, ψ),

verifying Equation (2.10). Thus, hsq also transports the local information ψ at the end of

the string. This observation is formalized as Corollary 2.14.

2.3 Tube algebra representations from excitations

We will now describe the correspondence between localized excitations in the Levin-Wen

model and representations of the tube algebra Tube(X ) (defined below), by implementing

Tube(X ) as an algebra of local operators at the location of an excitation in the lattice

model. As shown in [Izu00, Müg03b], representations of Tube(X )correspond to objects in

Z(X ), so this gives a direct means of assigning an object in Z(X ) to an localized excitation.

The correspondence between localized excitations and Z(X ) is well known, and the type

of an excitation can also be determined by other means, such as braiding experiments

[NSS+08, § III.C]. The use of tube algebras to classify excitations in various models of

topological phases has been described in [BMW+17, LW14, LVHV20, XLLC21, ALW19,

BD19]. However, we are interested in giving a concrete description of a local tube algebra

action and the relationship to string operators in the case of Levin-Wen models, because

in Section 3.4, we will repeat the process with an appropriate variant of the tube algebra

in order to prove Theorem 3.11.

Definition 2.7 ([Izu00, §3],[GJ16, Def 3.3]). Let X be a unitary fusion category. The

tube algebra Tube(X ) of X has the underlying Hilbert space
⨁︁

x,y,c∈Irr(X )X (xc → cy). If

ϕ : xc→ cy and ψ : zd→ dw, the product ψ · ϕ is defined to be the linear extension of

zd

dw

ψ ·
xc

cy

ϕ := δy=z
∑︂

f∈Irr(X )

y

ψ

ϕ

f

f

d

c

c

d

w

x

,

where runs over an orthonormal basis of
⨁︁

f X (f → dc). We define a ∗-structure on

Tube(X ) by ⎛⎝
xc

cy

ϕ

⎞⎠∗

:=
y

c

c

x

ϕ† .
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One interpretation of the structure of the tube algebra is that elements of the tube

algebra are morphisms on tubes:

x

y

ϕ c
.

The multiplication of the tube algebra is then accomplished by stacking tubes and

applying identity (2.4) to the strings running around the circumference of the tube, while

† reflects a tube vertically.

The algebraic correspondence between irreducible representations of the tube algebra

and simple objects of Z(X ) is worked out in [Izu00, §4]. There is a natural mathemat-

ical way to define a †-representation ρH of Tube(X ) from an object H ∈ Z(X ). The

Hilbert space for the representation will be
⨁︁

x∈Irr(X )X (H → x). For m : H → x and

ϕ ∈ X (cy → zc), the action is given by

ρH(ϕ)m = δx,y ·

H

x

z

c

c
c

ϕ

m
∀m ∈ X (H → x). (2.11)

This action is the one that appears in [Izu00, Lemma 4.7.iii]. Since im(ρH(idx)) = X (H → x),

the object H can be recovered from ρH . Since ϕ ∈ X (cy → zc) is a sum of morphisms of

the form f ◦ g, where f ∈ X (cy → w) and g ∈ X (w → zc), the representation ρH contains

all the data needed to recover the half-braiding on H. One computes the half-braiding by

the following equation.

w

w

y

z

c

H

g

n†

m

f

:= ⟨n|(g ◦ f)▷m⟩ idw . (2.12)

In fact, ρ• can be extended to a contravariant monoidal equivalence Z(X )→ Rep(Tube(X )).
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Suppose that, in the state |ϕ⟩, an excitation is located in a plaquette p near a link ℓ,

as in

|ϕ⟩ =
p

ℓ
q

v

w

.

Here, the red string depicts a string operator which could be applied to the ground state to

obtain |ϕ⟩. Further suppose1 that the Hamiltonian terms for other links of p and plaquettes

adjacent to p other than q are not excited in |ϕ⟩, meaning that |ϕ⟩ contains an isolated

excitation at (p, ℓ). (This excitation could be trivial, i.e. the vacuum; the key word here is

“isolated.”)

There is not a straightforward action of Tube(X ) on the space of states with isolated

excitations at (p, ℓ), but we can construct an action on the image of π1ℓ,w, where w is either

vertex of ℓ. As described in §2.2, the effect of applying π1ℓ,w is to replace the plaquettes p and

q adjacent to ℓ with a decagonal plaquette p ∨ q, with an link leading inside the plaquette

where an excitation may be supported. The action of Tube(X ) on excitations inside p∨q is
now as described in [HGW18, §V.A]: when acting by an element of X (xc→ cy) ⊆ Tube(X ),
the action is given by

r
k

p

q

ϕ▷−↦−→ d
1/2
y

d
1/2
x r

k

p

q
(2.13)

where the vertex between the red and blue strands represents the morphism ϕ. The constant

factor is required to make the Tube(X ) representation a †-representation. Because the

excitations Z(X ) form a UMTC, and because an UMTC has a unique unitary structure

[Reu23], we do not need this fact here, and therefore leave the verification to a forthcoming

article.

As we did when defining Bp, we use Equation (2.4) to rewrite the above diagram as a

sum of diagrams where all strings other than lattice links are local to a particular vertex,

and then compute the effect on each vertex using the data of X and Z(X ). One verifies

that the action of Tube(X ) is associative, essentially for the same reason that the plaquette

operator Bp is an idempotent; the action is manifestly unital.

Evidently, we have defined a representation of Tube(X ) on π1ℓ,wH; we will now explain

why this representation is faithful, and behaves as expected on excited states obtained via

the application of string operators. First, we establish a technical lemma about states in

Levin-Wen models. Essentially, this lemma shows that if a state |ϕ⟩ does not contain an

excitation along an edge ℓ, then applying π1ℓ and removing ℓ is invertible on the space

of states which agree with a ground state near ℓ; cf. [HSW12], where it is shown that

mutations of trivalent lattices are unitary on ground states.

1These assumptions are not necessary, but greatly simplify the details.
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Definition 2.8. For ℓ a link in our lattice from v to w and x ∈ Irr(X ), we define the

orthogonal projection πxℓ,w to project onto the subspace of H of states which assign X to

ℓ at w, i.e., at the tensorand Hw, we have

πxℓ,w : Hw ∼=
⨁︂

a,b,c∈Irr(X )

X (ab, c)→
⨁︂

a,c∈Irr(X )

X (ax, c).

On the ground state of Aℓ, we denote the operator πxℓ,w graphically by πxℓ,w =
x
.

Lemma 2.9. Suppose ℓ is a link between plaquettes p and q, and v is a vertex incident to

ℓ. If |ϕ⟩ is a state which is not excited at (q, ℓ) i.e. |ϕ⟩ = Aℓ|ϕ⟩ = Bq|ϕ⟩, then Bqπ1ℓ,v|ϕ⟩ =
1
D |ϕ⟩.

Proof. First, when Aℓ|ϕ⟩ = |ϕ⟩, each πxℓ,v|ϕ⟩ is independent of v. Observe in this case that

|ϕ⟩ =
∑︂

x∈Irr(X )

x |ϕ⟩ =⇒ π1ℓ,vBq|ϕ⟩ =
∑︂
x

1

D
x |ϕ⟩,

where the coefficient is 1
D rather than dx

D because the depicted bends in the x-string are

rotationally invariant trivalent vertices, rather than the ones which are normal with respect

to the isometry inner product that would appear on the right-hand side of (2.4). Since

Bq|ϕ⟩ = |ϕ⟩, it suffices to check that Bqπ
1
ℓ,vBq|ϕ⟩ = 1

DBq|ϕ⟩, which may be expressed

diagrammatically as

∑︂
x,y

dy
D2

|ϕ⟩ ?
=
∑︂
x,z

dz
D2

|ϕ⟩.

This equation holds, because the effect of applying Bp is to permit the deformation of

strings across the center of plaquettes; it first appeared in [LW05, Appendix C].

We point out some consequences of Lemma 2.9 which will be useful later. Sometimes,

we wish to write a state |ϕ⟩ as a sum of states which have a fixed label for a given edge,

as in |ϕ⟩ =
∑︁

x π
x
w,ℓ|ϕ⟩. It turns out that in the ground state, the summands πxw,ℓ can be

determined in a straightforward manner from π1w,ℓ|ϕ⟩.

Corollary 2.10. Suppose |ϕ⟩ is a state satisfying Bp|ϕ⟩ = |ϕ⟩, and ℓ is an edge of p. Then

πxw,ℓ|ϕ⟩ = dxB
x
pπ

1
w,ℓ|ϕ⟩.

Proof. By Lemma 2.9, we have πxw,ℓ|ϕ⟩ = πxw,ℓDBpπ
1
w,ℓ|ϕ⟩ = dxB

x
pπ

1
w,ℓ|ϕ⟩, as desired.

Corollary 2.10 was not obvious a priori when X ̸= 1, since several fusion channels

contribute to πxℓ,wBp|ϕ⟩.
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Lemma 2.9 also allows us to more precisely establish the sense in which applying π1ℓ,w
replaces the plaquettes p and q with a decagonal plaquette p ∨ q, analogous to the lattice

mutations studied in [HSW12]. One would expect to obtain a Levin-Wen model on the

lattice obtained by removing the link ℓ between p and q from the modified Hamiltonian

H\ℓ = −π1ℓ,w −
∑︂
m

Am −
∑︂

r/∈{p,q}

Br −Bp∨q (2.14)

where we still have Bp∨q =
1
D

∑︁
x∈Irr(X ) dxB

x
p∨q and where Bx

p∨q is defined (on the ground

state of π1ℓ,w and all Am terms, including m = ℓ) by modifying (2.3) to account for the

new plaquette shape. The new term πℓ,w evidently commutes with all Am terms and Br
for r /∈ {p, q}. That Bp∨q behaves as expected follows from the following result.

Corollary 2.11. Suppose p and q are adjacent plaquettes, ℓ is the link where p and q meet,

and w is either vertex of ℓ. On the space of states {|Ω⟩|Bp|Ω⟩ = Bq|Ω⟩ = |Ω⟩},

Dπ1ℓ,wBpBqπ
1
ℓ,w = Bp∨qπ

1
ℓ,w = π1ℓ,w.

Proof. To show Bp∨qπ
1
w,ℓ|Ω⟩ = Dπ1w,ℓBpBqπ

1
w,ℓ|Ω⟩, we expand the left hand side.

Dπ1w,ℓBpBqπ
1
w,ℓ|Ω⟩ =

1

D

∑︂
x,y∈Irr(X )

dxdyπ
1
w,ℓB

x
pB

y
qπ

1
w,ℓ|Ω⟩

=
1

D

∑︂
x∈Irr(X )

d2xπ
1
w,ℓB

x
pB

x
q π

1
w,ℓ|Ω⟩

=
1

D

∑︂
x∈Irr(X )

dxB
x
p∨qπ

1
w,ℓ|Ω⟩

= Bp∨qπ
1
w,ℓ|Ω⟩.

Above, the only way to get 1 after applying Bx
p and By

q to π1ℓ,w is when x = y, and the

scalar dx difference again arises from rotational invariance scaling of cups and caps. Now

by Lemma 2.9, Dπ1ℓ,wBpBqπ
1
ℓ,w|Ω⟩ = π1ℓ,wBp|Ω⟩ = π1ℓ,w|Ω⟩.

On the other hand, by Lemma 2.9, all ground states of (2.14) are of the form Dπ1ℓ,w|Ω⟩,
where |Ω⟩ is a ground state of the original Hamiltonian (2.6). Consequently, Dπ1ℓ,w is a

unitary map between the spaces of ground states of the two Hamiltonians. We have now

shown (2.14) to be a frustration-free commuting projector Hamiltonian which contains

the terms π1ℓ,w and Aℓ, so it indeed has the same space of ground states as the natural

Levin-Wen Hamiltonian defined on the lattice obtained by removing ℓ.

Using the previous results, we can now demonstrate the compatibility of our definition

of string operator with the tube algebra action (2.13).

Proposition 2.12. Suppose H ∈ Z(X ) and ψ ∈ X (H → x) where x ∈ Irr(X ). Let r be a

path ending at (p, ℓ) and beginning far away, and suppose |Ω⟩ is locally a ground state near

the path r. Then the tube algebra action on a state excited at the endpoint of r generates
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a representation isomorphic to ρH , where ρH is the representation defined in Equation

(2.11). Explicitly, for f ∈ X (xc→ cy) ⊆ Tube(X ) and ψ ∈ X (H → x), we have

f ▷ σHr (ϕ, ψ)|Ω⟩ = 4

√︄
dy
dx
σHr (ϕ, ρH(f)ψ)|Ω⟩. (2.15)

Proof. Note that introducing or removing the scalar 4

√︂
dy
dx

is an automorphism of Tube(X ),
so the presence of this scalar is immaterial to whether the two representations are isomor-

phic; the scalar only affects unitarity.

In general, computing f ▷ |η⟩ for f ∈ Tube(X ) involves gluing a strand into the

plaquette p ∨ q, which means summing over many fusion channels and basis vectors in an

expression of some state |η⟩. We will first exploit Lemma 2.9 to show that f ▷− actually

reduces to an operator local to the final vertex of the path r, such that f ▷ σHr (ϕ, ψ)|Ω⟩ =
σHr (ϕ, ψ′)|Ω⟩ for some ψ′. Then, we will compute algebraically that this ψ′ is just ρH(f)ψ.

The situation of the Proposition can be depicted graphically by

σHr (ϕ, ψ)|Ω⟩ = x
ψH

r
k

p

q
|Ω⟩ =

H

x
ψ |Ω⟩

We use the bricklayer lattice instead of the honeycomb lattice here for readability. We

also use the rotationally invariant version of the fusion relation (2.4) using an ONB with

respect to skein-module inner product rather than the isometry inner product:

∑︂
z∈Irr(X )

√︁
dz

x y

x y

z =
√︁
dxdy ·

x y

Let f ∈ X (by → zb) ⊆ Tube(X ). In case x ̸= y, we have f ▷ σHr (ϕ, ψ)|Ω⟩ = 0 =

σHr (ϕ, ρH(f)ψ)|Ω⟩, by definition. Now suppose x = y. Since σHr (ϕ, ψ)|Ω⟩ = σHr (ϕ, ψ)π1ℓ,w|Ω⟩ =
σHr (ϕ, ψ)Bp∨qπ

1
ℓ,w|Ω⟩, we have

f ▷

H

x
ψ |Ω⟩ = 4

√︄
dy
dx

1

D

∑︂
a∈Irr(X )

da

H

x

z
f

ψa
b

|Ω⟩
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= 4

√︄
dy
dx

1

D

∑︂
a,c∈Irr(X )

√
dadc√
db

H

x

z
f

ψa
b

c

= 4

√︄
dy
dx

1

D

∑︂
a,c∈Irr(X )

√
dadc√
db

H

x

z
f

ψabc

|Ω⟩

= 4

√︄
dy
dx

1

D

∑︂
c∈Irr(X )

dc

H

x

z

ψ

f

bc

|Ω⟩

= 4

√︄
dy
dx
σHr (ϕ, ρH(f)ψ)|Ω⟩

as claimed.

So far, we have a well-defined representation of Tube(X ) on the Hilbert space

span
{︁
σHr (ϕ, ψ)|Ω⟩

⃓⃓
ψ ∈ ρH

}︁
,

and an obvious surjective representation homomorphism given by ψ ↦→ σHr (ϕ, ψ)|Ω⟩. There
are therefore two possibilities: either this representation is isomorphic to ρH , or we simply

have the 0 representation. The last thing we must do is rule out the latter possibility.

If the representation we have just defined were 0 for all ϕ and Ω, then all our string

operators would just be 0 on the space of ground states. Hence, it suffices to check that

there is at least one string operator σHR (ϕ, ψ) for each H ∈ Irr(Z(X )). By Lemma 2.9,

string operators σ1r (z, w) are all nonzero on ground states. By Equation (2.9), we see that

σHr [1, 1](1, 1)σHr (ϕ, ψ) = σ1r (1, 1), which has a nonzero action on the space of ground states.

Hence, the factor σHr (ϕ, ψ) was itself nonzero on ground states, completing the proof.

One might worry that our construction of generalized string operators such as σHr [1, 1](1, 1)

relies on Corollary 2.13, making this reasoning circular. However, Corollary 2.13 does not

rely on the fact that the representation
{︁
σHr (ϕ, ψ)|Ω⟩

⃓⃓
ψ ∈ ρH

}︁
is nonzero, but only on the
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fact that it is a transitive representation of Tube(X ), which we have already proven, so

there is no issue.

Because Tube(X ) is a finite dimensional C∗-algebra, it is nothing more than a multima-

trix algebra, i.e.
⨁︁

kMnk
(C), with one summand for each irreducible representation. We

know that the irreducible representations of Tube(X ) are just ρs for s ∈ Irr(Z(X )). Actu-
ally computing an isomorphism Φ : Tube(X )→

⨁︁
s End(ρs), where End(ρs)

∼=Mdim(ρs)(C)
means endomorphisms as a Hilbert space, is another matter. The existence of such a Φ

has several consequences: for one thing, it implies that all our string operators σsp(ϕ, ψ) are

distinct. However, one must explicitly compute Φ in order to obtain operators T sℓ,v(ϕ, ψ)

used to define hopping operators and string operators on excited states, as we see in the

following corollary.

Corollary 2.13. For any link ℓ, vertex v of ℓ, anyon s ∈ Irr(Z(X )), and morphisms

ϕ, ψ ∈
⨁︁

xX (s→ x), there is a local operator T sℓ,v(ϕ, ψ) such that, if |ω⟩ = Aℓ|ω⟩ = Br|ω⟩
for plaquettes r containing ℓ, then

T sℓ,v(ϕ, ψ)σ
s
p(η

′, η)|ω⟩ = ⟨ϕ|η⟩σsp(η′, ψ)|ω⟩,

and if t ̸= s,

T sℓ,v(ϕ, ψ)σ
t
p(η

′, η)|ω⟩ = 0.

Proof. Since ϕ and ψ are vectors in ρs, we simply set T sℓ,v(ϕ, ψ) = Φ−1(|ψ⟩⟨ϕ|) ▷ −. The

desired result is now just a case of Proposition 2.12.

Corollary 2.14. The hopping operators hsq are intertwiners for local Tube(X )-actions on

spaces of excitations at the endpoints of q.

Proof. This follows immediately from Equation (2.10) and Proposition 2.12.

Proposition 2.12 makes explicit the correspondence between quasiparticle excitations

and simple objects of Z(X ) which is described in [HGW18, Section V.A]. In the language

of that article, when applying σsp(ϕ, ψ) for different choices of ψ, we obtain different dyons

belonging to the same dyon species s. The possible excitations of type s form an irreducible

representation of the Tube(X ), acting locally at the endpoint of p, so we can explicitly

construct local operators that permute the dyons of a given species. Moreover, the more

general notion of string operator we have given here allows us to locally realize all dyons

in a given dyon species via string operators.

3 Lattice model for anyon condensation

We will now describe a class of string-net lattice model due to Corey Jones, parameterized

by the choice of a unitary fusion category X and a condensable algebra A ∈ Z(X ), which
supports a phase transition between Z(X ) and Z(X )locA topological order. While [BS09]

discusses condensable algebras in the context of phase transitions, other works on anyons

condensation, such as [Kon14b, KK12], have focused on describing a spatial boundary
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between regions where A is and is not condensed. In our construction, one can recover

such a spatial boundary by performing the phase transition in only part of the lattice.

In § 3.1, we review the mathematics of condensable algebras, which are the data

necessary to perform anyon condensation, as described in [BS09, Kon14b]. In § 3.2, we

present a string-net model where condensation of A can be performed by tuning a parameter

t from 0 to 1. In § 3.3, we see that when t = 0, our model reduces to the one introduced in

§ 2.1, and hence has Z(X ) topological order. In § 3.4, we see that when t = 1, our model

has Z(X )locA topological order. To show this, we investigate how string operators from the

model of § 2.1 are modified to give string operators in the new model, and give an algebra
˜︁TubeA(X ), analogous to Tube(X ), of local operators acting on states containing an isolated

excitation. We generalize the arguments of the previous section to show that ˜︁TubeA(X )
classifies localized excitations when t = 1, some of which are not topologically mobile. The

excitations which are topological are representations of a quotient TubeA(X ) of ˜︁TubeA(X ),
which we prove is Morita equivalent to Tube(XA). Since Z(XA) ∼= Z(X )locA , this verifies

that topological excitations in our model at t = 1 are indeed described by Z(X )locA .

3.1 Background: condensable algebras

We begin by recalling the definition of a condensable algebra in a UMTC C. We then give

some basic facts about condensable algebras, which we will later use.

Definition 3.1. An algebra in C is an object A equipped with a unit morphism u : 1→ A,

depicted by a univalent vertex, and a multiplication morphism m : AA → A, depicted by

a trivalent vertex, with the following properties:

• (unitality) = =

• (associativity) =

A condensable algebra is also commutative, meaning m ◦ βA,A = m where β is the

braiding in C, and unitarily separable, meaning that m† splits m as an A − A bimodule

map:

= = = (3.1)

Here, the vertical reflection ofm denotesm†. Finally, a condensable algebra A is connected,

meaning that X (1→ A) is 1-dimensional.

We call the projection m†m ∈ End(AA) the condensation morphism; by Condition

(3.1), the condensation morphism is a projection with image isomorphic to A.

We will use the condensation morphism to define the term of our Hamiltonian which

implements anyon condensation; see (3.5). By composing condensation morphisms for dif-

ferent pairs of copies of A, we can also obtain projections in End(A⊗n) for n > 2, as in

Figure 4. Intuitively, when a condensable algebra is condensed, copies of that algebra satu-

rate the system, and any two nearby copies are entangled via the condensation morphism,

so these projections in End(A⊗n) will be of interest to us. As seen in the figure, since
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A A A A A A A A A A

A

A

Figure 4. Condensation morphisms between 3 nearby copies of A, with time depicted in the

vertical direction. Blue segments depict paths on the underlying lattice. Notice that one morphism

involves braiding, depending on perspective.

the copies of A fill a 2-dimensional region, we must also consider conjugating condensation

morphisms by the braiding.

The following lemmas show that the order in which several condensation morphisms are

composed and the choices of over- or under-braiding do not affect the resulting projection in

End(A⊗n). In particular, condensation morphisms generate a unique projection End(A⊗n)

in which all n copies of A interact.

Lemma 3.2. Suppose A is a condensable algebra in C with multiplicationm. Then (m†m)⊗
1 and 1⊗ (m†m) commute.

Proof. First, observe that the separator is coassociative by applying † to the associativity

axiom. We then have

(1⊗ (m†m)) ◦ ((m†m)⊗ 1) = = = = = ((m†m)⊗ 1) ◦ (1⊗ (m†m)),

completing the proof.

This lemma immediately implies the following corollary together with commutativity

of A and unitary separability.

Corollary 3.3. There is a unique morphism A⊗n → A⊗m generated by condensation

morphisms and braidings for which all n+m inputs and outputs are connected.

In particular, for any n, an endomorphism of A⊗n generated by condensation mor-

phisms between adjacent A-strands and conjugation by braiding depends only on which

strands are connected.

Given a condensable algebra A ∈ Z(X ), anyons in the condensed phase are described

by objects in Irr(Z(X )locA ) [Kon14b, BS09]. This UMTC is also the center of a fusion

category, namely the category XA of right A-modules in X [DMNO13, Thm. 3.20], a fact

we will frequently use below.

Definition 3.4. If X is a fusion category and A ∈ Z(X ) is a condensable algebra, the fusion
category of right A-modules in X [Ost03][Kon14b, § A.3] has as objects pairs (M,m), where

M ∈ X and m : MA → M is an action morphism. We often denote such a pair by MA,

where the subscript denotes the existence of the A action.
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Similar to the multiplication of A, we denote the action morphism diagrammatically

by a trivalent vertex, as follows.

m =

M A

Here, red strands denote the algebra A. The action must satisfy the following associativity,

unitality, and separability conditions (associative and separable actually implies unital)

[CHPJP22, §3.2].

M

=

M M

=

M

=

M

.

The tensor product M ⊗ANA of A-modules MA and NA is a subobject of MN , defined to

be the image of the projection

pM,N := ∈ EndC(MN),

in X (MN →MN). Thus, the tensor unit of XA is AA, where the A-module action on AA
is defined to be the multiplication of A, and the associator and unitors of XA come from

those of X .

Definition 3.5. An A-module M ∈ Z(X) is said to be local if

M A

=

AM

(3.2)

The full subcategory of Z(X )A consisting of the local modules is denoted Z(X )locA .

Remark 3.6. The separability condition for A-modules ensures that XA is again unitary

[CHPJP22, §3.2]. Recall that XA can also be defined as the idempotent completion of the

category of free right A-modules of the form x ⊗ A for x ∈ X where A acts on the right

using the multiplication on A. Every free module is unitarily separable since A is, and so

the category of free right A-modules is a C∗-category with finite dimensional hom spaces.

This means the unitary idempotent completion is equivalent to the ordinary idempotent

completion.

Similarly, one can define the fusion category AX of left A-modules in X , and the

UMTC Z(AX ) ∼= loc
A Z(X ). However, there are canonical equivalences of UFCs AX ∼= XA

and BFCs loc
A Z(X ) ∼= Z(X )locA . Therefore, in the following, we will speak only of XA and

Z(X )locA ∼= Z(XA), even when A acts on the left.
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3.2 General lattice model

The essential idea behind this lattice model is to modify the original string-net models of

[LW05, LLB21] to support a copy of the condensable algebra A inside each plaquette, by

adding appropriate local Hilbert spaces and modifying the Hamiltonian to account for the

excitation, similar to the extended Levin-Wen models of [HGW18]. The commuting pro-

jector Hamiltonian is then augmented with additional families of terms C and D depending

on whether Z(X ) or Z(X )locA topological order is desired. Now that we have models of the

condensed and uncondensed phases living in the same Hilbert space, one can smoothly

pass from one Hamiltonian to the other through convex combinations.

Rather than give a construction for arbitrary lattice geometries, we will work out the

details explicitly for a regular hexagonal lattice, and then describe how our construction

must be adapted for other cases. We realize the additional Hilbert space on each plaquette

by adding an additional vertex and edge, as shown.

The usual vertices of the plaquette are assigned the usual hom spaces of the Levin-Wen

model, and the new trivalent vertices correspond to the Hilbert space

v

A

x

y

←→ Hv :=
⨁︂

x,y∈Irr(X )

X (U(A)x→ y),

where U : Z(X )→ X is the forgetful functor, and the inner product ⟨·|·⟩v on the orthogonal

summand X (U(A)x→ y) of Hv is given by

⟨g|f⟩v idy =

√︄
dy
dx
fg† (3.3)

This construction resembles the extended Levin-Wen models of [HGW18], but it is slightly

different, because A may contain more than one copy of a given simple object x ∈ Irr(X ).
As with (2.2), the choice of normalization in (3.3) is necessary so that the forthcoming

plaquette operator Bp will be self-adjoint.

One should think of the red edges as leading to an A-defect at the center of each

plaquette, i.e. a puncture in the surface labelled by the object A ∈ Z(X ), as described

in [HGW18, Kir11]. While before, we interpreted states of the lattice model as living

in the diagrammatic calculus of X , the red edges should be thought of as living in the

diagrammatic calculus of Z(X ), descending into the page (c.f. Figure 4). This interpretation
will determine how we extend the existing terms of the Hamiltonian to our new Hilbert

space, as well as how we define the additional terms necessary to select either Z(X ) or

Z(X )locA topological order.
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The Hamiltonian for our model will consist of the original Av and Bp terms, modified

to account for the new red links, as well as two new terms needed to implement anyon

condensation. The required modifications of the Av and Bp terms to account for the red

links are fairly minor. The Aℓ terms associated to each black link ℓ are defined as before,

and no new A-term is associated to red links. Recall that the A-term ensure the morphisms

labelling the two vertices at either end of a link are composable, so that ground states for

all A-terms can be locally interpreted as living in the diagrammatic calculus of X . Since

the red edge is only incident to a single vertex, no additional constraint is needed.

The Bp term is defined as previously: it is 0 outside of the ground state of nearby

Aℓ terms, and on their ground states, Bp = 1
DX

∑︁
x∈Irr(X ) dxB

x
p . However, the operators

Bx
p which insert a loop labelled by x into the plaquette must now take into account the

half-braiding on A. That is,

Bx
p = x (3.4)

We omit the proof of the following lemma which is a straightforward adaptation of

[Hon09, Thm. 5.0.1].

Lemma 3.7. Given two simple tensors of orthonormal basis elements

ξ = x1 ξ1

x2

ξ2

x3

ξ3

c2
γ2

c1

γ1
x4ξ4

x5

ξ5

x6
ξ6

and ξ′ = x′1 ξ′1

x′2

ξ′2

x′3

ξ′3

c′2
γ′2

c′1

γ′1
x′4ξ′4

x′5

ξ′5

x′6
ξ′6

whose internal edge labels are consistent, we have

⟨ξ|Bpξ′⟩ =
∏︂
i

δci=c′i

∏︂
j

δxj=x′j
1

DX
√︁
dx1dx2dx3dx4dx5dx6

c1

c2

ξ†4

ξ†3 ξ†2
γ†2

γ†1

ξ†1

ξ†6
ξ†5

x1 ξ′1

x2

ξ′2

x3

ξ′3
γ′2

γ′1

x4

ξ′4

x5

ξ′5

x6

ξ′6

.

Thus the operator Bp is a self-adjoint projector on the ground state space of −
∑︁

ℓAℓ.

Now we turn to the additional Hamiltonian terms, which pick out either desired topo-

logical order. To obtain Z(X ) topological order, we introduce the term Cℓ for each red

edge ℓ. If v is the vertex incident to ℓ, then Cℓ is local to Hv, and projects on the subspace

generated by morphisms of the form x
λ−1
x−−→ 1x

u⊗idx−−−−→ Ax, where u : 1 → A is the unit of

A.

We observe that Cℓ commutes with the Av and Bp terms. First, all pure tensors of

morphisms are eigenstates for both Av and Cℓ operators, so they are diagonalized with
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respect to the same bases, and hence commute. Second, for any c ∈ Irr(Z(X )) and any

morphism f : c→ A, the Bp term preserves states where the morphism labeling the vertex

incident to the red edge ℓ factors through f . This is because morphisms in Z(X ) are, by
definition, those that pass under crossings obtained from the half-braiding, including the

crossing appearing in the definition (3.4) of Bx
p . In particular, we can take f = u, the unit

of A, and observe that since 1Z(X )
∼= 1X has a simple underlying object, this means that

Bp preserves the eigenspaces of Cℓ. Finally, distinct Cℓ terms are all disjointly supported,

and hence commute. Thus, the Hamiltonian

H = −
∑︂
ℓ

Aℓ −
∑︂
p

Bp −
∑︂
ℓ

Cℓ

is a local commuting projector Hamiltonian.

To obtain Z(X )locA topological order, we instead add the following term Dp,q for every

pair of adjacent plaquettes p and q.

Dp,q =
p

q

:=
∑︂
H,K

∑︂
i,j p

q

. (3.5)

Here, the blue and orange vertices run over bases and dual bases of
⨁︁

c∈Irr(Z(X ))X (c→ A);

hence, (3.5) can be resolved into local operators at each vertex in the same manner as string

operators, given the additional data necessary to resolve the condensation morphism. The

second diagrammatic term in the definition is an appropriate interpretation of the first one

by a variant of (2.4).

The Dp,q terms commute with Aℓ and Bp terms by construction, i.e. for the same

reasons that string operators commute with Aℓ and Bp terms whenever ℓ and p are far

from the endpoints of the string. Finally, terms Dp,q and Dr,s commute, by Lemma 3.2.

Thus, the Hamiltonian

H = −
∑︂
v

Av −
∑︂
p

Bp −
∑︂
p,q

Dp,q

is a local commuting projector Hamiltonian.

The overall Hamiltonian for our lattice model which supports a phase transition is

then given by

Ht = −
∑︂
v

Av −
∑︂
p

Bp −K

(︄
(1− t)

∑︂
v

Cv + t
∑︂
p,q

Dp,q

)︄
(3.6)

where K ≫ 1. In sections § 3.3 and § 3.4 below, we will see that this Hamiltonian realizes

Z(X ) topological order at t = 0 and Z(X )locA topological order at t = 1. The intended

effect of choosing a large value for the constant K is that at t = 0 and t = 1, the low-

energy physics of the lattice model consists only of ground states for the Cℓ and Dp,q terms
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respectively. Therefore, in our analyses, we only consider such states. In other words, one

could analyze the models at t = 0 and t = 1 by projecting onto the space of ground states

for each Cℓ and Dp,q, at which point the Hamiltonian would consist of only Aℓ and Bp
terms.

3.3 Topological order when t = 0

In this section, we will argue that when t = 0, the Hamiltonian (3.6) gives rise to Z(X )-
topological order.

Since A is unital and the half-braiding on 1Z(X ) is trivial, projecting onto the ground

state of Cℓ terms is equivalent to removing the red edges and the corresponding A-punctures

from the lattice, leaving behind the original string-net model associated to X . In the

hexagonal model discussed above, if v is the vertex incident to ℓ, the image of Cℓ in Hv
is isomorphic to

⨁︁
a,b∈Irr(X )X (a → b). Thus, the Hamiltonian on the ground state of

Cℓ terms describes the Levin-Wen model on a heptagonal lattice, obtained by adding the

additional vertex v to each plaquette of the regular hexagonal lattice. One can remove this

vertex and return to the original hexagonal model in a straightforward manner.

3.4 Topological order when t = 1

In this section, we will show that the topological order when t = 1 is described by Z(X )locA .

To do so, we will again introduce an algebra of local observables which acts on low-energy

topological excitations of our lattice model, which we will call ˜︁TubeA(X ). This algebra will

be generated by Tube(X ), which acts as before, as well as a new algebra Absorb(A), which

consists of operators which fuse the localized excitation with an excitation pulled from the

condensate A.

We will then describe the fates of string operators from our original model at t = 1.

The definition of the operators operators σsp(ϕ, ψ) in the original Levin-Wen model given

in § 2.2 still makes sense, with slight modifications to account for when the string crosses

over a vertical red link, similar to how the definition of Bs
p was modified. However, there

are two complications. The first is that, at t = 1, there is more freedom in choosing the

local data ϕ and ψ at the endpoints of the string, since operators in Absorb(A) can be

applied to the excitation. The second is that not all types of localized excitations obtainable

from the operators σsp will be topological, i.e. anyons in the condensed phase, because σsp
operators associated to anyon types s which are not transparent to the condensate A will

not commute with the Dp,q terms of the Hamiltonian. Thus, at t = 1, the operators σsp
should be thought of as “defect operators,” which produce topological line defects along p,

terminated by point defects at the endpoints of p. Those defect operators which commute

with Dp,q terms will produce anyons at the end of trivial line defects, and thus become the

string operators for anyons in the condensed phase.

Finally, we will show that, similar to the story in the original Levin-Wen model, states

containing an isolated excitations at a fixed location form a representation of ˜︁TubeA(X ),
and that topological excitations are representations of a quotient algebra TubeA(X ), which
satisfy the additional relation (3.8). It is expected that excitations in the condensed phase

correspond to simple objects in Z(X )locA [Kon14b]. We will show that this is the case, by
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checking that TubeA(X ) has the same representation theory as (i.e., is Morita equivalent to)

Tube(XA), and recalling that Z(X )locA ∼= Z(XA) [DMNO13, Thm. 3.20]. Representations

of ˜︁TubeA(X ) will instead correspond to simple objects of Z(X )A. The details will be

analogous to those of §2.3.
We will not characterize the line defects and point defects created by defect operators

which do not correspond to anyons in the condensed phase. However, the interpretation of

simple objects of Z(X )A as point defects at the ends of nontrivial line defects in Z(X )locA
topological order is explored algebraically in [HBJP23, § IV.D].

3.4.1 Tube algebras of local operators when t = 1

We begin by defining the algebra ˜︁TubeA(X ) of local observables near a localized excitation

in the condensed phase, as well as the quotient TubeA(X ) of which topological representa-

tions are excitations.

Definition 3.8. The C* algebra ˜︁TubeA(X ) has the underlying vector space

˜︁TubeA(X ) =
⨁︂

x,y,c∈Irr(X )

(cx→ U(A)yc),

In the definition that follows we abuse notation and denote U(A) by A. The multiplication

on ˜︁TubeA(X ) is defined as

zd

dwA

ψ ·
xc

cyA

ϕ := δy=z
∑︂

f∈Irr(X )

y

ψ

ϕ

f

f

d

c

c

d

w

x

A

(3.7)

and the involution is given by⎛⎝
xc

cyA

ϕ

⎞⎠∗

:=
A

y

c

c

x

ϕ† .

The algebra TubeA(X ) is the quotient of ˜︁TubeA(X ) by the relation

z

d

dw

d

A

ψ

h

≈

A

zd

d

d

w

ψ

h
(3.8)

Is is straightforward to verify that this relation is ∗-closed.
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As promised, we now check that representations of TubeA(X ) correspond to simple

objects of Z(X )locA ∼= Z(XA), which is the UMTC which should describe topological exci-

tations at t = 1. Because we have a monoidal equivalence Rep(Tube(X )) ∼= Z(X ), there
is also a monoidal equivalence Rep(Tube(XA)) ∼= Z(XA). However, ˜︁TubeA(X ), rather

than Tube(XA), is the algebra which acts on local excitations of our model at t = 1. We

will therefore need the following lemma, which follows from straightforward application of

techniques from [GJ16].

Lemma 3.9. The algebras Tube(XA) and TubeA(X ) are Morita equivalent.

Proof. An algebra T1 which is Morita equivalent to Tube(XA) can be obtained by replacing

the underlying vector space with
⨁︁

x,y∈Irr(X ),AM∈Irr(XA)XA(AM⊗AAx→ AAy⊗AM), while

keeping the same diagrammatic multiplication from 3.8. That T1 is Morita equivalent to

Tube(XA) follows from [GJ16, Theorem 4.2].

As described at the end of [GJ16, §3], the annular algebra T1 can be obtained as the

quotient of a much larger algebra ˜︂T1. The underlying vectorspace of ˜︂T1 is⨁︂
x,y∈Irr(X ),AM∈XA

XA(AM ⊗A Ax→ AAy ⊗AM),

with the multiplication

XA(AN⊗AAy,AAz⊗AN)⊗XA(AM⊗AAx,AAy⊗AM)→ XA(AN⊗AM⊗AAx,AAz⊗AN⊗AM)

given by joining the AAy strings and tensoring the others. To obtain T1 from ˜︂T1, we

impose relation (3.9), which is reproduced from [GJ16, p.10], allowing morphisms to be

pulled around the back of the tube.

xA

yA

M
Nf g

=

xA

yA

N
M fg

(3.9)

Every AM ∈ XA is the direct sum of irreducible objects, so we may rewrite id
AM =∑︁

i π
†
i ◦ πi, where each πi is a projection onto a simple object. Pulling each πi around

the back via (3.9) lets us identify the elements of ˜︂T1 with those of T1, and recovers the

multiplication for T1.

Instead of going directly from ˜︂T1 to T1, we can also consider an in-between algebra T2,

which we will later identify with an algebra containing TubeA(X ). A subalgebra of ˜︂T1 is

˜︂T2 = ⨁︂
x,y∈Irr(X ),C∈X

XA(AAC ⊗A Ax→ AAy ⊗A AC).

A special case of (3.9) occurs when the morphism g is in the image of the free module

functor; imposing relation (3.9) for only such g on ˜︂T2 produces an algebra

T2 ∼=
⨁︂

x,y,c∈Irr(X )

XA(AAc⊗A Ax→ AAy ⊗A Ac),
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where the multiplication now involves using fusion channels in X to decompose the strands

wrapping around the tube. Fully imposing (3.9) on T2 gives all of T1 as a quotient, since

free modules span all of X under direct sum.

We can translate hom spaces between free modules in XA to hom spaces in X , because
the free module functor x ↦→ AAx is monoidal and adjoint to the forgetful functor:

XA(AAc⊗A Ax→ AAy ⊗A Ac) ∼= XA(AAcx→ AAyc) ∼= X (cx→ Ayc).

This gives an isomorphism of vector spaces from algebra T2 to ˜︁TubeA(X ):

A

A

c

y

A

A

x

c

f ↦−→

A

c

y

x

c

f and

A A

AAc

y

x

c

g ←− [

A

c

y

x

c

g

Carrying over the multiplication from T2 gives the algebra structure on ˜︁TubeA(X ) described
in Definition 3.8, and imposing (3.9) on both algebras gives the quotient T1 ∼= TubeA(X ).
Since Tube(XA) was Morita equivalent to T1, this shows that Tube(XA) is Morita equivalent

to TubeA(X ).

We make one more preliminary observation: that, as previously described, ˜︁TubeA(X )
is generated by two subalgebras. One is Tube(X ), which lives inside ˜︁TubeA(X ) as a sub-

algebra, along the unit map 1→ A. The other (nonunital) subalgebra of ˜︂TubeA(X ) is

Absorb(A) =
⨁︂
x,y

X (1x→ U(A)y1),

the subalgebra where no string runs around the circumference of the tube. Since elements

of Absorb(A) do not have a string running around the back of the tube, it is straightforward

to compute f ·ϕ where f ∈ Absorb(A) and ϕ ∈ Tube(X ), and therefore to see that indeed,
˜︁TubeA(X ) ∼= Absorb(A) Tube(X ).

This decomposition of ˜︁TubeA(X ) allows us to more explicitly view the correspondences

Rep(˜︁TubeA(X )) ∼= Z(X )A and Rep(TubeA(X )) ∼= Z(X )locA . The intersection of Tube(X )
and Absorb(A) is the subalgebra CIrr(X ) = span{idx : x ∈ Irr(X )}, and as described in

§ 2.3, if H is a ˜︁TubeA(X )-module, the action of CIrr(X ) determines the corresponding object

H ∈ X up to isomorphism, via the Yoneda lemma:

X (x→ H) = idx▷H.

Equivalently, an object H ∈ X uniquely determines an CIrr(X )-module H by the same

formula. Just as the data of the action of Tube(X ) is equivalent to a half-braiding on H,

the data of the action of Absorb(X ) is equivalent to that of an A-module action AH → H,
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with the equivalence given by

tr(ψ ▷ h ◦ g†) =

ψ

g†

h

(3.10)

for g ∈ X (H → y), h ∈ X (H → x), and ψ ∈ X (x→ U(A)y) ⊆ Absorb(A).

Finally, one can check that, when H is given the half-braiding obtained from the

Tube(X ) action by (2.12), the nontrivial relations between elements of Tube(X ) and ele-

ments of Absorb(A) which arise from the composition (3.7) are equivalent to the condition

that the action AH → H defined by (3.10) is a morphism in Z(X ). Similarly, one checks

that the relation (3.8) which defines TubeA(X ) as a quotient of ˜︁TubeA(X ) imposes the

locality condition (3.2).

Remark 3.10. In the ordinary Levin-Wen model, the plaquette operator Bp implements

the action of the minimal idempotent p1 ∈ Tube(X ) corresponding to 1 ∈ Irr(Z(X )) ∼=
Irr(Rep(Tube(X ))). Indeed, in the setting of § 2.3, we have Bp∨q = p1 ▷ · up to normaliza-

tion. In our modified Levin-Wen model, when t = 1, there are no local Hamiltonian terms

penalizing specific labels on an individual red edge. Therefore, the plaquette operator Bp
now corresponds to the free A-module on 1, which is just 1A ∼= A viewed as an A-module,

the vacuum anyon of the condensed Z(X )locA topological order.

3.4.2 String operators when t = 1

The string operators described in § 2.2 can be extended to the models of § 3.2 in a straight-

forward way. Namely, when a string crosses a vertical link inside a plaquette, we must

apply the half-braiding of the algebra A, as we did when defining Bp. Thus, the string

operators σsp(ϕ, ψ) previously defined still make sense as operators which commute with Aℓ
and Bq terms as long as ℓ and q are far from the endpoints of p.

However, in the condensed phase, the data needed to terminate a string operator is

different. Because each plaquette now contains a vertical link supporting a copy of the

condensate A, rather than pick elements ϕ, ψ ∈
⨁︁

x∈Irr(X )X (s → x), we define a string

operator σsp(ϕ, ψ) where ϕ, ψ ∈
⨁︁

x∈Irr(X )X (s→ Ax). The x factor remains at the endpoint

of p, as before, while the A-factor is multiplied into a nearby vertical link. Of course, a

morphism ψ : s → Ax, can be factorized as (1A ⊗ eta) ◦ a, where a : s → At for some

t ∈ Irr(Z(X )) and η : t→ x. Thus, the end of a string operator now takes the form

r
k

p

q

(3.11)
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where the black vertex is a morphism s → At, and the orange vertex is the morphism

η : t→ x, as previously.

An important consequence is that the string operators σs should no longer be viewed

as a string operator for the anyon s ∈ Irr(Z(X )), but instead as a string operator for the

free module sAA ∈ Z(X )A. This is because, in the ground state of all Dp,q terms, the

trivalent vertex a ∈ Z(X )(s→ At) is able to slide topologically along the string. Suppose

σtr(ϕ, ψ) is the following string operator.

p

q

v

w

Now suppose that f ∈ Z(X )(s→ At). We can modify σtr(ϕ, ψ) to obtain a different opera-

tor by applying f at various possible locations along p, and then multiplying the resulting

A string into the vertical link in the plaquette where f was applied. By construction of

our string operators, on local ground states, we can clearly slide f topologically along the

string within each plaquette. However, moving from one plaquette to another will change

which vertical link f interacts with. The key point is that on ground states of relevant Dp,q

terms, this makes no difference, essentially by Corollary 3.3. For example, observe that

Dp,q
p

q

v

w =Dp,q
p

q

v

w

=
p

q

v

w

Cor. 3.3
=

p

q

v

w
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=
p

q

v

w

= Dp,q
p

q

v

w

Recall that Z(X )(s → At) ∼= Z(X )A(sAA → tAA). Consequently, one example of

such a trivalent vertex is the projection onto a simple summand of sAA, i.e., onto a single

anyon in the condensed phase. In other words, to obtain a string operator for an anyon

MA ∈ Irr(Z(X )A), we pick a simple object s ≤ M , which determines an inclusion MA →
sAA, and apply a linear combination of string operators σs which absorb the projection

πMA
∈ TubeA(X ) onto a summand of type MA at the endpoint of the string. Different

choices of inclusion MA → sAA produce the same superselection sector because they are

related by A-module endomorphisms of sAA, which can also slide along the string operator.

For the same reason, the projections in Z(X )(sAA → sAA) onto each isotypic component

also slide topologically along the string operator. Thus, the operator σs can be written as

a direct sum of operators, one for each type of simple object in Z(X )A which appears as a

summand of sAA.

When we condense the algebra A, we expect that objects which are not transparent

to A become confined. To see this, we will investigate when string operators σsr commute

with Dp,q terms. Suppose s ∈ Irr(Z(X )) is an anyon in the uncondensed phase, and let

|Ω⟩ be a local ground state near r and on the support of Dp,q. If r does not cross the path

from v to w chosen when defining Dp,q, then σ
s
p and Dp,q obviously commute. If the paths

do cross, then we have, for example,

Dp,qσ
s
r |Ω⟩ =

v

w
=

v

w
.
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Meanwhile,

σsrDp,q|Ω⟩ =

v

w

Thus, Dp,q commutes with σs(ϕ, ψ) up to the double braiding between A and s. On

the other hand, as we saw above, the string operator σs now corresponds to the object

sAA ∈ Z(X )A, so in general σs splits as a direct sum of string operators associated to the

summands of sAA. As we will see in Section 3.4.3 below, this means that Dp,q commutes

with string operators for precisely those excitations which are representations of TubeA(X ),
i.e. objects in Irr(Z(X )locA ). Thus, summands of string operators σs corresponding to

nonlocal summands of sAA pay an energy cost proportional to the length of the string,

and the excitations at the end of these strings are confined.

3.4.3 Tube algebra representations from excitations at t = 1

We will now explain how states containing an isolated low-energy (i.e. only the Aℓ and

Bp terms of the Hamiltonian are violated) excitation at t = 1 give representations of

TubeA(X ). As before, we begin by defining an abstract representation ρMA
of ˜︁TubeA(X )

for each MA ∈ Z(X )A. We will then define an action of ˜︁TubeA(X ) as local operators in

our lattice model, such that a variant of Proposition 2.12 holds.

Our definition of ρMA
is a small modification of the previous definition (2.11). First,

if H ∈ Irr(Z(X )), then we define a representation ρHAA
of ˜︁TubeA(X ) on the Hilbert space⨁︁

x∈Irr(X )X (H → U(A)x) by

ρH(ϕ)m = δx,y ·

H

x

zA

c

c
c

ϕ

m

∀m ∈ X (H → U(A)x). (3.12)

Just as we computed an equivalence between Rep(Tube(X )) and Z(X ), there is also an

equivalence Rep(˜︁TubeA(X ))) ∼= Z(X )A. One direction is provided by sAA → ρsAA
. As for

the other, suppose ρ is a representation of ˜︁TubeA(X ). Since Tube(X ) ⊆ Rep(˜︁TubeA(X )) as
a subalgebra, we can still recover an objectM ∈ Z(X ) from the Tube(X ) action, obtaining
the half-braiding by equation (2.12). We can define an action AM → M using the data
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ρ(Absorb(A)) by the following equation.

x

y

M

x

a

n†

m

:= ⟨n|a▷m⟩ idx .

This action morphism lives in X , but the compatibility between the action of the sub-

algebras Tube(X ) and Absorb(A) ensures that the action AM → M lives in Z(X ), i.e.
MA ∈ Z(X )A. In particular, the representation ρsAA

decomposes as a direct sum just as

sAA ∈ Z(X )A does. An arbitrary choice of inclusion MA → sAA therefore lets us define

ρMA
. Because of the equivalence of categories Rep(˜︁TubeA(X )) ∼= Z(X )A we have obtained,

this definition is independent off the choice of inclusion, up to unique isomorphism.

Because ˜︂TubeA(X ) = Absorb(A) Tube(X ), we can define the action of ˜︂TubeA(X ) on

each subalgebra and then check the relations defining TubeA(X ). As before, suppose that

|ϕ⟩ is a state with an isolated excitation at the plaquette p and link ℓ. Much as before, we

define the action of f ∈ Tube(X ) by

r
k

p

q

|Ω⟩ ϕ▷−↦−→

r
k

p

q

|Ω⟩,

where |Ω⟩ is a ground state. However, this definition can be significantly simplified. The

proofs and results of Section 2.3, and in particular Proposition 2.12, apply equally well

in our new lattice model, as long as we use the half-braiding on A whenever we cross the

vertical A-strand inside a plaquette. Therefore, we can apply Proposition 2.12 to rewrite

the action as

r
k

p

q

|Ω⟩ ϕ▷−↦−→

r
k

p

q

|Ω⟩

as in equation (2.15).

The action of g ∈ Absorb(A) is given by

r
k

p

q

|Ω⟩ g▷−↦−→

r
k

p

q

|Ω⟩
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Note that the action of g ∈ Absorb(A) commutes with all Aℓ and Bp terms away from

p∨q, as well as all Dp,q terms, including the case where v ∈ p and w ∈ q. Thus, Absorb(A)
is also an algebra of local operators acting on the space of localized excitations which do

not violate any Dp,q terms, i.e. low energy excitations.

These actions assemble to an action of ˜︂TubeA(X ) = Absorb(A) Tube(X ): if ψ ∈ Absorb(A)

and ϕ ∈ Tube(X ), then we define (ψϕ)▷ := (ψ▷) ◦ (ϕ▷). To check that this action is well-

defined, we also need to check that (ϕψ)▷ = (ϕ▷) ◦ (ψ▷). Suppose ϕ ∈ X (cy → zc) and

ψ ∈ X (x→ Ay). Then we have

ϕ · ψ =

ψ

ϕ

x

z

y

c

A c

Meanwhile,

r
k

p

q

|Ω⟩ =

r
k

p

q

|Ω⟩

because the morphisms being applied locally at the vertex are equal, showing that (ϕ▷) ◦ (ψ▷) =

(ϕψ)▷, as desired.

Now that we have an action of ˜︁TubeA(X ), we will check that this action satisfies

(3.8) on states which correspond to local A-modules. Suppose ϕ ∈ X (cx → Ayd) and

ψ ∈ X (d→ Ac). Condition (3.8) then becomes

r
k

p

q

=

r
k

p

q

(3.13)

where the black dots are ϕ and ψ. We can manipulate the morphism appearing on the
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right-hand side as follows.

s

x

A y

d

c

c

c

ϕ

m

ψ

=

s

x

A y

d

c

c

c

ϕ

m

ψ

=

s

x

A

y

d

d
c

ϕ

mψ

=

s

x

A y

d

d
c

ϕ

mψ

In case the excitation lives in a local summand of sAA, the double braid is equal to the

identity, and we have

s

x

A y

d

c

c

c

ϕ

m

ψ

=

s

x

A y

d

d
c

ϕ

mψ

=

s

x

A y

d

d
c

ϕ

mψ

The last equality leaves us with the morphism on the left-hand side of (3.13), and fol-

lows from the fact that the twist of a condensable algebra is always equal to the identity

[FFRS06, Prop. 2.25]. Thus, under the equivalence Rep(˜︁TubeA(X )) ∼= Z(X )A we de-

fined in and after equation (3.12), imposing relation (3.8) selects exactly those objects in

Z(X )locA ∼= Z(XA).
Taken together, the results we have accumulated in this section are sufficient to prove

the following result.

Theorem 3.11. When t = 1, the low-energy excitations of the lattice model of §3.2 are

classified by Z(X )locA .

3.5 Ground state degeneracy

Apart from characterizing anyons at times t = 0 and t = 1, one might also wish to

understand the phase transition in terms of the effect on the space of ground states of

the A and B terms. We restrict our attention to the case where X admits monoidal fiber

functor to Hilb, so that a condensable algebra A in Z(X ) becomes an actual C∗-algebra. We
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will also not give a full analysis of the phase transition, but instead sketch a relationship

to a more well-understood phase transition.

Since the space of ground states of a Levin-Wen model is locally (on an open disk) 1-

dimensional [HSW12, Kir11], the ground-states of the A and B terms of our Hamiltonian

are parameterized by the labels of vertical edges and the flux between nearby pairs of

vertical edges. Therefore, at low energy, our model of anyon condensation is equivalent to

another simpler lattice model, which generalizes the 2D-transverse field Ising model, which

we call the transverse field nearest-neighbor model associated to the algebra A.

The first step in defining our simplified lattice model is describing the lattice. Vertices

of our new lattice correspond to vertical edges in the model of anyon condensation, with

an edge between any pair two vertices which support a common D-term. Our models for

anyon condensation add one vertical edge extending above each plaquette, and Dp,q terms

for pairs of vertical edges above neighboring plaquettes, so we obtain the dual lattice of

the square or hexagonal lattices we began with. Therefore, from the honeycomb lattice

described in Section 3.2, we obtain a regular triangular lattice, and from the square lattice,

we obtain another square lattice.

To each vertex of the new model, we associate the same Hilbert space used in the old

model, which is isomorphic to A as an A-representation. To each edge, we associate the

term ˜︃Dp,q = m†m, where m is the multiplication of A, viewed as an operator on A. To

each vertex, we associate the term Cv = uu†, where u : 1 → A is the unit map of A,

viewed as an operator C → A. Finally, on a closed lattice, we add a single nonlocal term

F , projecting onto the states where
∏︁
v ϕv = 1A, where ϕv is the label of the vertex v. One

should think of this term as picking out the ground states of the condensed Z(X )locA theory

as a superselection sector.

Notice that, in the case X = Hilb[Z/2] and A = C[Z/2], i.e. condensing 1 ⊕ e in toric

code, we recover the Ising model from the C and D terms, because the Cv term is just Zv,

while ˜︃Dp,q simplifies to XvXw.

The general case is morally similar, but a full analysis would amount to deriving the

TQFT structure from the lattice model, as in [Kir11]. Such an argument is beyond the

scope of this work.

4 Examples

In this section, we give worked examples including Z/2-Toric Code, Z/n-Toric Code, dou-

bled semion, and doubled Fib. These examples can be substantially simplified as they are

multiplicity free, i.e., dim(X (xy → z)) ∈ {0, 1} for all x, y, z ∈ Irr(X ). In this setting, on a

trivalent lattice, we can push the degrees of freedom from the vertices onto the links, as in

the original Levin-Wen string-net model [LW05]. Above, we made frequent use of the fact

that the morphism labeling a vertex determines an object labeling each adjacent link; the

multiplicity free case is simply the situation where the labels on adjacent links determine

(up to scalar) the morphism labeling the vertex.
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To each ordinary link of our lattice, we assign the Hilbert space

Hℓ = CIrr(X ) =
⨁︂

c∈Irr(X )

C|c⟩.

The Hamiltonian includes vertex terms and plaquette terms. If all edges at a vertex v are

oriented away from v, the vertex term Av penalizes states where the labels on trivalent

vertices are not admissible (the clockwise tensor product of the labels does not contain 1X ).

If some edges at v are oriented towards v, we take the dual of the simple object labeling

those edges when defining Av.

The plaquette term Bp for a plaquette p is

1

D

∑︂
x∈Irr(X )

dxB
x
p ,

where Bx
p has the effect of inserting a counterclockwise loop labeled by x inside the pla-

quette. We use the conventions of [KKR10]. From the associator of X , we may calculate

an F -symbol, defined by

h

f

c d

g

=
∑︂

k∈Irr(X )

F f,gc,d [h, k] k
c d

f g

.

The operator Bx
p is then given as follows on a hexagonal lattice, where the orientations are

always from left to right.

Bx
p

⃓⃓⃓⃓
⃓

g1 g2

g3

g4g5

g6
d1

d2

d3

d4

d5
d6

⟩︄
=

∑︂
f1,...,f6

T (x, d⃗, f⃗ , g⃗)

⃓⃓⃓⃓
⃓

g1 g2

g3

g4g5

g6
f1

f2

f3

f4

f5
f6

⟩︄
(4.1)

where

T (x, d⃗, f⃗ , g⃗) = F f1,g6
x,d6

[f6, f1]F
f2,g1
x,d1

[f1, d2]F
f3,g2
x,d2

[f2, d3]F
f4,g3
x,d3

[f3, d4]F
f4,g4
d5,x

[f5, d4]F
f5,g5
d6,x

[f6, d5].

This complicated definition of T comes from the need to reconcile the orientation of the

loop of type x inserted and the chosen orientation of our hexagonal lattice which was used

to define the vertex terms.

Remark 4.1. When X = Hilbfd(G,ω) for a groupG, for any choice of a1, . . . , an, b1, . . . , bn ∈ G,
dim(X (a1 · · · am → b1 · · · bn)) ∈ {0, 1}. Conversely, this condition on simple objects if X is

equivalent to X being unitarily equivalent to some Hilbfd(G,ω). Indeed, under this condi-

tion, Irr(X ) forms a group under tensor product, and the associator determines a 3-cocycle

ω. In this situation, we may put degrees of freedom on the links of any lattice (not just

a trivalent lattice), in particular the square lattice as in Kitaev’s quantum double model

[Kit03].
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In this group case, we can adapt our general model to a rectangular lattice by adding

one vertical edge for our condensable algebra A emanating from each vertex out of the 2D

plane, as follows.

We can use the same Hilbert space CIrr(X ) as before on black links, and use the Hilbert

space
⨁︁

x∈Irr(X )(x, U(A)) on red links. This model will be applicable for the Z/2-Toric
Code, Z/n-Toric Code, and doubled semion models.

4.1 Z/2 toric code

We begin by describing an anyon condensation in the simplest example of a Levin-Wen

model, the Z/2 toric code [Kit03]. We denote by X,Z the Pauli matrices

X =

(︄
0 1

1 0

)︄
Z =

(︄
1 0

0 −1

)︄
.

The system is defined on a square grid on a plane with an edge rising vertically from each

vertex.

To each link ℓ of the lattice, we associate the Hilbert space Hℓ = C2. The spaces Hℓ on the

2D lattice are a direct sum C|0ℓ⟩ ⊕ C|1ℓ⟩. Here, we view the state |0ℓ⟩ as ‘off’, ‘vacuum’,

or 0 ∈ Z/2, and |1ℓ⟩ as ‘on’ or 1 ∈ Z/2.
Our preferred bases of the Hilbert spaces assigned to the vertical links depend on the

particle to be condensed, and will be given in the subsequent sections. In all cases, the full

Hilbert space is the tensor product H =
⨂︁

ℓHℓ.

4.1.1 Condensing e

We use e to denote the vertex excitations in toric code; in other words, we say that there

is an e-particle at a vertex v in a state ψ when Av|ψ⟩ = −1|ψ⟩.
The Hilbert spaces Hℓ which we assign to vertical links are a direct sum C|1ℓ⟩⊕C|eℓ⟩,

where |1ℓ⟩ represents the unit of D(Z/2) and |eℓ⟩ represents the e-particle from D(Z/2).
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We now describe the Hamiltonian for our lattice model. For each vertex v, we define

a vertex term Av by

Av :=

Z

v
Z Z

Z

Z

Here, −Av ensures that an even number of edges adjacent to v are in the ‘on’ position by

imposing an energy penalty for an odd number of edges in the ‘on’ position.

For each plaquette/face p, we define a plaquette term Bp by

Bp := X

X

X

X

p

Here, −Bp averages over states that are ‘off’ and ‘on’ by imposing an energy penalty. It

also ensures that a string to one side of the plaquette p can be isotoped over p to the other

side at no energy cost in the ground state.

For each vertex v, we also have a new term, called the unit term:

Cv :=
Z

v

Here, −Cv turns off the vertical edges by imposing an energy penalty on the state |eℓ⟩.
For each link ℓ on the 2D plane, we have a new term, the condensation term:

Dℓ :=
X

X

ℓ

X

or
X

X ℓ

X

.

Here, −Dℓ implements m∗m, where m is the multiplication of the étale algebra A = 1⊕ e,
which we mean to condense. Thus, the vertical links at each vertex and the horizontal

links between two vertices each support a two-dimensional Hilbert space, but for different

reasons: if ℓ is a horizontal link, the states |0ℓ⟩ and |1ℓ⟩ correspond to the elements 0 and

1 of Z/2, while if ℓ is vertical, the states |0ℓ⟩ and |1ℓ⟩ correspond to summands 1 and e of

A, respectively.

We define the Hamiltonian of the system for t ∈ [0, 1] to be

Ht := −V

(︄∑︂
v

Av +
∑︂
p

Bp

)︄
−K

(︄
(1− t)

∑︂
v

Cv + t
∑︂
ℓ

Dℓ

)︄
, (4.2)

where V > 0 is a constant and K ≫ V is a large constant. Observe that the terms Av, Bp
commute with one another, as well as with the Cv and Dℓ terms. However, the Cv and Dℓ

terms do not commute when v is a source or target of ℓ.
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When t = 0, the low energy physics of our model is equivalent to that of [Kit03]. The

fact that K is large forces us into the ground state of the Cv terms to analyze the low

energy physics of the model. In the ground state of the Cv terms, each vertical edge is in

the state |1⟩. Since Z|1⟩ = |1⟩, on ground states of Cv, the Av terms agrees with

Z Z

Z

Z

.

Hence, on the ground state of the Cv terms, our Hamiltonian agrees exactly with the

Hamiltonian for toric code given in [Kit03], up to exchanging Pauli X and Z.

When t = 1, we may locally create and destroy individual e-particles at any vertex by

applying the Pauli X operator to the vertical edge, which commutes with Av, Bp, and Dℓ

terms:
X

.

Hence, when t = 1, the e-particle is condensed.

Now suppose that we drop the assumption that K ≫ V , and instead send V → ∞
while K remains fixed. This pushes us into the ground state space of the usual Levin-Wen

commuting projector Hamiltonian on the 2D lattice, leaving only degrees of freedom on

the additional vertical edges. The Hamiltonian on this reduced Hilbert space is then

˜︁Ht := −K

(︄
(1− t)

∑︂
v

Cv + t
∑︂
ℓ

Dℓ

)︄
= −K

(︄
(1− t)

∑︂
v

Zv + t
∑︂
ℓ

Xs(ℓ)Xt(ℓ)

)︄
.

Here, s(ℓ), t(ℓ) denote the source and target of the edge ℓ. This Hamiltonian is just the 2D

transverse-field Ising model [Ons44], so tuning t from 0 to 1 drives the system through a

well-studied quantum phase transition [HMH20, SRD+21]. Of course, when K ≫ V and

K and V remain constant, the overall story is more complicated. However, this special

case motivates the analogy to the 2D transverse field Ising model made in § 3.5.

4.1.2 Condensing m

In order to condense m excitations, we slightly alter the previous model, adapting certain

terms in the Hamiltonian. We relabel our preferred basis for Hℓ when ℓ is vertical link,

replacing |eℓ⟩ with |mℓ⟩. The operators Cv remain unchanged, while Av, Bp, and Dℓ are
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adjusted as follows, with the changes highlighted in blue.

Av := v
Z Z

Z

Z

Bp := X

X

X

X

p Z

Dℓ := X

X
Z

ℓ or
X X

Z ℓ
.

Note that the operator Dℓ in this example becomes the Dℓ of the previous example,

if we pass to the dual lattice and apply a change of basis exchanging X and Z operators

to each link of the square grid. Since the vertical spaces Hℓ have a basis {|1ℓ⟩, |mℓ⟩}, and
passage to the dual lattice exchanges e- and m-particles, we apply the same operator to

the vertical links in both examples. Consequently, we obtain toric code at t = 0, m is

condensed at t = 1, and the phase transition maps onto a 2D transverse-field Ising model,

as in the previous example.

4.2 Z/n toric code

The next simplest example of a Levin-Wen model is the Z/n toric code. The matrices X

and Z are replaced by n× n Pauli matrices Xn and Zn. For example, when n = 3,

X3 =

⎛⎜⎝0 0 1

1 0 0

0 1 0

⎞⎟⎠ and Z3 =

⎛⎜⎝1 0 0

0 e
2πi
3 0

0 0 e
4πi
3

⎞⎟⎠ =

⎛⎜⎝ζ0 0 0

0 ζ 0

0 0 ζ2

⎞⎟⎠
where ζ = e

2πi
3 is a primitive cube root of unity.

The Hilbert space on each link is Hℓ = Cn. The spaces Hℓ on the 2D lattice are direct

sums C|0ℓ⟩ ⊕ C|1ℓ⟩ ⊕ · · · ⊕ |(n − 1)ℓ⟩ where |0ℓ⟩ is ‘off’ or ‘vacuum’, while the remaining

n− 1 states are distinct ‘on’ states in Z/n.
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4.2.1 Condensing ek

Now fix k | n. We will condense the algebra A = 1+ ek + · · · ek(n/k−1). The vertical spaces

Hℓ = Cn/k are therefore a direct sum C|1ℓ⟩⊕C|ekℓ ⟩⊕ · · ·⊕ |e
k(n/k−1)
ℓ ⟩ where |1ℓ⟩ represents

the unit of D(Z/n) and the states |ejkℓ ⟩ represent powers of the e
k-particle from D(Z/n).

We now modify the four types of operators Av, Bp, Cv, Dℓ from §4.1.1, and the Hamil-

tonian Ht has the same formula (4.2). We define the vertex term by

Av :=

Zn/k

v
Zn Zn

Zn

Zn

+

Z†
n/k

v
Z†
n Z†

n

Z†
n

Z†
n

Observe that given a simple tensor x in ⊗ℓ∼vHℓ in the standard basis, Av preserves x if

and only if the legs of x sum to 0 mod n. Thus, rather than ensure an even number of

links ℓ are in the state |1ℓ⟩ at a given vertex, −Av now ensures that the links surrounding

v sum to 0 mod n.

The plaquette term −Bp averages over all n possible states on each link rather than

only two; we define Bp explicitly by the following:

Bp := Xn

X†
n

Xn

X†
n

p + X†
n

Xn

X†
n

Xn

p

The unit term is given by

Cv :=
Zn/k

v

+
Z†
n/k

v

Here, −Cv turns off the vertical edges by imposing an energy penalty on every state except

|1ℓ⟩.
Finally, the condensation term is given by

Dℓ :=

Xn/k

(Xk
n)

†

ℓ

Xn/k

+

X†
n/k

Xk
n

ℓ

X†
n/k

or
Xn/k

(Xk
n)

† ℓ

Xn/k

+
X†

n/k

Xk
n ℓ

X†
n/k

.

Here, Dℓ condenses e
k by implementing the self-adjoint operator m∗m+mm∗, where m is

the algebra multiplication AA→ A.
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As in previous examples, when t = 0, we obtain a usual model [Pac12, §5.3] for Z/n
toric code. When t = 1, our system exhibits D(Z/k) topological order. By locally applying

the operator Xn/k (or X†
n/k, depending on parity) on a vertical edge, we may create an ek

particle at any vertex. Therefore, while the charge particles ej still exist, the value of j

is only well-defined modulo k. Similarly, applying the operator Zn (or Z†
n, depending on

parity) along an edge in the square grid still lets us excite two adjacent plaquettes, so the

flux particle m still exists. However, m anyons are now confined, since applying Zn on a

link ℓ only commutes with Dℓ up to a phase of ζ±k; m is no longer a topological excitation.

In fact, (Zjn)ℓ commutes with Dℓ if and only if n|jk, i.e. if j is a multiple of n/k. In

other words, the flux particles which are not confined are just powers of ˜︁m := mn/k. In

terms of fusion rules, e and ˜︁m are both bosons, and ek and ˜︁mk are the vacuum. Also,

Se˜︁m = ζ1·n/k is a primitive k-th root of unity. This shows that e and ˜︁m, which generate

the topologically mobile vertex and plaquette excitations at t = 1, generate the braided

tensor category D(Z/k).

4.2.2 Condensing mk

In §4.1.2, we made some basic changes in our model for condensing e in §4.1.1 for Z/2-toric
code. Using similar modifications to §4.2.1 above for condensing ek, one gets a model for

condensing mk for any k | n. We leave the details to the interested reader.

4.3 Doubled semion - condensing b

Our doubled semion model uses a modified hexagonal lattice. Similar to the terminology

of [LW05], given a hexagonal face/plaquette of our lattice, we call the six links bounding

the plaquette edges and the six links emanating outward from the vertices of the plaquette

legs:

We now add vertical links on the face of the plaquette, close to the corner of the rightmost

vertex of the plaquette. We draw this extra vertical link approximately parallel to the

north-east edge of the plaquette.

As in Z/2 toric code, we define the space Hℓ = C2 = C|0ℓ⟩ + C|1ℓ⟩ on each link in the

plane.

The “doubled semion” modular tensor category is the Drinfel’d center of the fusion

category Vec[Z/2,−1], the category of Z/2-graded vectorspaces where αg,g,g = −1, where
g ∈ Z/2 is the nontrivial group element. Excitations in the usual doubled semion model

come in three forms: the semions σ, σ and the boson b. The boson b is an excitation of the
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plaquette operator, which exists in a state ψ when Bp|ψ⟩ = −|ψ⟩, but ψ is in the ground

state of Av for each vertex v of p. The semions σ and σ are both excitations of vertex

terms, and correspond to the simple objects in Z(Vec[Z/2,−1]) with underlying object g

and half-braiding with g given by ±i.
In our model, the requisite operators Av, Bp, Cp′ and Dℓ are given by 2

Av := v

Z

Z

Z

Bp := W

WW

W

W W

X
X

X
X

X

X
Z

·P where W :=

[︄
1 0

0 i

]︄

Cp :=
Z

Dℓ := ℓ Z

X

X
,

ℓ

Z

X

X

, or ℓ Z

X

X

Av imposes a zero-sum around a given vertex, while Bp averages over a state and its

opposite up to a phase imposed by the number of outgoing legs which are in the state |1⟩.
The term Bp inserts a loop around the plaquette p, as in toric code, while applying a phase

to account for the nontrivial associator. Because inserting a loop only makes sense in the

context of diagrammatic calculus, we precompose with P, the projection into the ground

state of
∏︁
v Av. Thus, Bp only inserts a loop when no vertex of p contains an excitation;

otherwise, Bp is a scalar multiple of the identity. Since −P (and hence −Bp) favors a lack

of vertex excitations, and Av and Bp terms still commute, this does not affect the physics,

as asserted in [LW05].

As defined above, an excitation of type b occurs on a plaquette p when Bp has the

eigenvalue −1. Thus, when t = 1, we may locally apply the operator X to a vertical edge,

locally creating or destroying a b-excitation on any plaquette, just as when we condensed m

in Z/2 toric code in §4.1.2. Similarly, the action of Dℓ on a state containing a σ excitation

will produce the superposition σ ⊕ σ. String operators attempting to move a σ particle

more than a single link will anticommute with some Dℓ term, so the semions are now

confined, leaving no nontrivial topological excitations.

2In defining Bp, we extend the definition originally appearing in [LW05, Section VI A], rather than

implementing the general definition we give in § 2.1. This emphasizes the fact that the strategy for modifying

lattice models to accomplish anyon condensation described in Section 3 is based on features of the topological

order, and therefore robust to small changes in the details of the original model.
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4.4 Doubled Fibonacci

The unitary fusion category Fib has simple objects 1 and τ , and the fusion rule τ⊗τ ∼= 1⊕τ .
This makes Fib the smallest fusion category (in several senses) which is not pointed, i.e.

where the simple objects do not form a group. Fib can be constructed in several ways,

including as the semisimple quotient of the Temperly-Lieb category at index φ [KL94]. In

[BD12], the associator and braidings on categories with these fusion rules are determined

algebraically; see also [TTWL08], although they pick the opposite braiding. The fusion

category Fib consists of the following data.

• Simple objects (edge labels): {1, τ}.

• Quantum dimension d1 = 1, dτ = φ.

• Fusion rules 1⊗ 1 ∼= 1, 1⊗ τ ∼= τ ⊗ 1 ∼= τ , τ ⊗ τ ∼= 1⊕ τ .

• F -symbols:

F τ,ττ,τ [τ, τ ] = −φ−1

F τ,ττ,τ [1, 1] = φ−1

F τ,ττ,τ [τ, 1] = φ−1/2

F τ,ττ,τ [1, τ ] = φ−1/2

with all other F -symbols being 1. Here, φ = 1+
√
5

2 is the golden ratio, and −φ−1 =
1−

√
5

2 is the other root of x2 − x− 1.

The fusion category Fib can be made into a UMTC with two different braidings, which

are reverse to one another; we arbitrarily denote one by Fib, so that the other is Fib, where ·
refers to the fact that the braiding is reversed. The UMTC Fib has the following additional

data.

• Braiding and R-symbols: The braiding between τ and τ is given by

βτ,τ = q3 + q6φ−1 ,

where q = e2πi/10 is a primitive 10th-root of unity such that φ = q+q−1. Equivalently,

we list the R-symbols

c

a b

= Rabc

c

a b

. For Fib, Rτ,ττ = q3, Rτ,τ1 = q6, and all other

R-symbols are 1.

• S-matrix: S = 1√
1+φ2

(︄
1 φ

φ −1

)︄

• T -matrix: T =

(︄
1 0

0 q4

)︄
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To obtain the UMTC Fib, we replace q with q−1, to obtain the following.

• R-symbols: Rτ,ττ = q7, Rτ,τ1 = q4, all other R symbols are 1.

• S-matrix: identical to Fib.

• T -matrix: T =

(︄
1 0

0 q6

)︄
.

By [Müg03c, Rem. 4.3], we have a braided tensor equivalence Z(Fib) ∼= Fib⊠Fib,

allowing us to derive the data of Z(Fib) from that of Fib and Fib. Explicitly, the UMTC

Z(Fib) has the following data.

• Simple objects (anyon types): {1 ⊠ 1, τ ⊠ 1, 1 ⊠ τ, τ ⊠ τ}. For brevity, we rename

the anyons as follows: 1 := 1 ⊠ 1, τ := τ ⊠ 1, τ := 1 ⊠ τ , b := τ ⊠ τ . Here, τ

does not denote the dual of τ but rather the fact that τ ∈ Fib ⊆ Z(Fib) carries the

inverse half-braiding. We choose the name b for τ ⊠ τ because, as we will see, b is a

non-Abelian boson.

• Fusion rules:
⊗ 1 τ τ b

1 1 τ τ b

τ τ 1⊕ τ b τ ⊕ b
τ τ b 1⊕ τ τ ⊕ b
b b τ ⊕ b τ ⊕ b 1⊕ τ ⊕ τ ⊕ b

• The F -symbols, R-symbols, S-matrix and T -matrix can be obtained by tensoring the

matrices for Fib and Fib. In particular, we can see that b is a boson. First, b has

trivial twist θb = 1, because

θb = θτθτβτ,τβτ ,τ = (q4 · q6) idττ = idb ,

since the τ and τ particles are transparent to one another. We can also compute the

R-symbols Rb,bb = Rτ,ττ Rτ ,ττ = 1 and Rb,b1 = Rτ,τ1 Rτ ,τ1 = 1. Note that b is not bosonic

in all fusion channels: Rb,bτ = Rτ,ττ Rτ ,τ1 = q3, and Rb,bτ = Rτ,τ1 Rτ ,ττ = q7.

The double Z(Fib) contains a single nontrivial connected étale algebra A = 1 ⊕ b,

which is the canonical Lagrangian algebra [DNO13, §3.2] A = 1⊕ τ ⊠ τ in Fib⊠Fib. Since

A is Lagrangian, Z(Fib)locA
∼= Vec, and the condensed phase has trivial topological order.

However, this A is a minimal example where the underlying object of A is not just the

direct sum of invertible objects.

Since all fusion spaces in Fib are 1-dimensional, i.e. Fib is multiplicity free, we can

implement the condensation of A on the hexagonal lattice, with spins associated to each

link. (One could instead associate a spin to each vertex, but this would lead to higher

dimensional local Hilbert spaces, which would make the Hamiltonian more complicated to

write down). Each ordinary link receives a 2-dimensional Hilbert space, with basis vectors

|1⟩ and |τ⟩ labeled by the simple objects of Fib, while the vertical red link receives a
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3-dimensional Hilbert space, with basis vectors |1⟩, |ι⟩, and |θ⟩, where ι and θ are basis

vectors for the 1-dimensional spaces Fib(1→ F (τ⊠τ)) and Fib(τ → F (τ⊠τ)) respectively.
The original Levin-Wen Hamiltonian (without the added vertical links) associated to

Fib is described in [LW05, § VI.B], and our Hamiltonian will be a modification. The Av
term projects onto the subspace where 0, 2, or 3 of the links which meet at v are labelled

by |τ⟩ or |θ⟩. For a vertical link ℓ, Cℓ projects onto the subspace spanned by |1⟩.
The Bp and Dp,q terms are more complicated. As in [LW05], we will not write out

the Bp term explicitly, because, as is generally the case for objects in a fusion category

with dimension greater than 1, Bτ
p does not factor as a tensor product of operators local

to a smaller region, meaning that the final description is not more concise or enlightening

than (4.1). For the same reasons, we will not write out the entire Dp,q term. However, we

have given definitions of Bp and Dp,q as linear combinations of tensor products of operators

local at each vertex, and we will explicitly compute those local operators which involve the

half-braiding, multiplication, and separator of A.

First, we begin with the Bτ
p term, which involves the half-braiding of A when the

inserted τ -loop crosses under the vertical link of p. When resolving the Bτ
p term (3.4) as

in (2.5), we end up with local operators of the following form at the vertex v incident to

the vertical link.

τ v

The action of this operator on the local Hilbert space Hv = C(x→ Ay) is given by

f ↦→
τ

f

τ

α τα−1

If the vertical link is labelled by |1⟩, i.e. on states in the image of Cℓ, these operators

trivialize to δ = . The subspace where the on the vertical link is in span{|ι⟩, |θ⟩}, corre-
sponding to the summand b ⊆ A, is also preserved. For each choice of and , we thus get

a matrix M [ , ] ∈ C(A,A) ∼=M2(C).
We can compute the half-braiding of b under τ using the hexagon equation. In the

same basis as the associator/F -symbols, the half-braiding eτ : τb→ bτ is given by

eττ =

(︄
−φ−2 q−3/2

√︁
1− φ−4

q3/2
√︁

1− φ−4 φ−2

)︄
, e1τ = (1)

where q1/2 = e2πi/20.

There are 3 possible choices for each of the vertices and : γτ,ττ = : τ → ττ ,

γτ,1τ = : τ → τ1, and γτ,τ1 = φ−1/2 : 1 → ττ . Thus, there are 9 matrices to
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compute. We list each in the basis {|θ⟩, |ι⟩}.

M
[︂

,
]︂
=

(︄
2φ−3 q7/2

√︁
7φ−1 − 4

q−7/2
√︁

7φ−1 − 4 φ−2

)︄

M
[︂

, ϕ−1/2
]︂
=

(︄√︁
5φ5 q−3/2

√︁
φ−2 + φ−4

0 0

)︄

M
[︂

,
]︂
=

(︄
−φ−2 0

q3/2
√︁
1− φ−4 0

)︄

M
[︂

,
]︂
=

(︄ √︁
5φ−5 0

q3/2
√︁
φ−2 + φ−4 0

)︄

M
[︂
ϕ−1/2 ,

]︂
=

(︄
−φ−2 0

0 0

)︄

M
[︂

, ϕ−1/2
]︂
=

(︄
φ−4 0

0 0

)︄

M
[︂

,
]︂
=

(︄
0 q−3/2

√︁
1− φ−4

0 φ−2

)︄

M
[︂
ϕ−1/2 , ϕ−1/2

]︂
=

(︄
0 0

q3/2
√︁
1− φ−4 φ−2

)︄

M
[︂
ϕ−1/2 ,

]︂
=

(︄
1 0

0 0

)︄

Each 0 in these matrices appears because of the requirement that Bτ
p = (Bτ

p )
† = 0 on states

which excite Av.

The other difficulty is in resolving the Dp,q term. Most of the term is analogous to

string operators, and can be written as local operators in a similar way, as shown in (3.5).

The novel ingredient is the condensation morphism

= m†m : AA→ AA,

viewed as a morphism in X . In other words, we want the corresponding matrices µτ ∈
End(X (τ → AA)) ∼=M5(C) and µ1 ∈ End(X (1→ AA)) ∼=M5(C).

To give a basis for X (τ → AA), we consider that any morphism τ → AA factors as

(f⊗g)◦γ, where γ : τ → xy is a fusion channel, xy ∈ Irr(X ) are edge labels, and f : x→ A

and g : y → A. Since there is at most one fusion channel τ → xy, it suffices to pick f and g

in the basis {|1⟩, |ι⟩, |θ⟩} of X (1→ A)⊕X (τ → A) previously chosen. This gives the basis

{|θθ⟩, |θι⟩, |ιθ⟩, |θ1⟩, |1θ⟩} ⊆ X (τ → AA).

In the same way, we obtain a basis

{|θθ⟩, |ιι⟩, |ι1⟩, |1ι⟩, |11⟩} ⊆ X (1→ AA).
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In the above bases, the matrices are as follows.

µτ =
1

3

⎛⎜⎜⎜⎜⎜⎝
φ−4+φ−2 q−3/2

√
φ−5+φ−7 q−3/2

√
φ−5+φ−7 q7/2

√
φ−2+φ−4 q7/2

√
φ−2+φ−4

q3/2
√
φ−5+φ−7 φ−3 φ−3 −φ−3/2 −φ−3/2

q3/2
√
φ−5+φ−7 φ−3 φ−3 −φ−3/2 −φ−3/2

q−7/2
√
φ−2+φ−4 −φ−3/2 −φ−3/2 1 1

q−7/2
√
φ−2+φ−4 −φ−3/2 −φ−3/2 1 1

⎞⎟⎟⎟⎟⎟⎠

µ1 =
1

6

⎛⎜⎜⎜⎜⎜⎝
φ2 q2φ−3/2 q22φ−1 q22φ−1 q23φ−1/2

q−2φ−3/2 3− φ−1 −2φ−1/2 −2φ−1/2 3φ−1

q−22φ−1 −2φ−1/2 2 2 0

q−22φ−1 −2φ−1/2 2 2 0

q−23φ−1/2 3φ−1 0 0 3

⎞⎟⎟⎟⎟⎟⎠
We now consider the fates of anyons in the condensed phase, i.e. at t = 1. We begin

by computing the category Z(Fib)A, making use of the free-forgetful adjunction. Because

A ∼= 1 ⊕ b, we have τA ∼= τ ⊕ τ ⊕ b ∼= τA. Therefore, the free modules τAA and τAA are

simple and isomorphic. Finally, bAA ∼= b ⊕ 1 ⊕ τ ⊕ τ ⊕ b, so bAA ∼= AA ⊕ τAA. Thus,

Irr(Z(Fib)A) contains two simple objects: the vacuum AA, and a single species of excitation

τAA.

The module τAA is not local, and hence does not correspond to a topological excitation

at t = 1. By the R-symbols Rb,τb = Rτ,bb = q3 and Rb,ττ = Rτ,bτ = q6, we can see that the

double-braiding between b and τ is given by

bτ
= q6

τ b

b
+ q2

τ b

τ

where the trivalent vertices on the right-hand side are chosen so that

idτb =
τ b

b
+

τ b

τ

Thus, the defect operators στr will not commute with Dp,q terms which cross r, and hence

create an excitation which is not topologically mobile.
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