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1 Introduction

Since their introduction in [LWO05], string-net lattice models [Konl4a, LLB21] have been
used as tractable examples of systems exhibiting (2+1)D topological order. A (241)D

string-net model is determined by the data of a unitary fusion category (UFC) X, and

exhibits Z(X)-topological order, in the sense that the modular tensor category Z(X) clas-

sifies the types of quasiparticle excitations and gives their fusion and braiding statistics

[KK12].



Systems exhibiting (2+1)D topological order can include domain walls between re-
gions in different topological phases. One source of topological domain walls is anyon
condensation, where topological order is described by the unitary modular tensor cate-
gory (UMTC) C on one side of the wall, while a bosonic condensable algebra A € C is
condensed on the other side [BS09, BSH09, Konl14b]. The condensed algebra now plays
the role of the vacuum, and anyons s from the region where A is not condensed can split
as domain wall excitations, which may either be confined to the domain wall or able to
pass into the condensed region, according to the structure of the fusion channels between
s and A. Wall excitations are then described by the fusion category C4 of A-modules
in C, while the UMTC Cfc of local A-modules describes anyons in the condensed phase
[Konl4b, DMNO13].

Anyon condensation also gives rise to phase transitions between topological phases,
which can be thought of as topological Wick rotations [KZ21] of the spatial domain walls.
In this article, we will describe a class of modified Levin-Wen models, due to Corey Jones,
in which a chosen condensable algebra A € Z(X) may be condensed by tuning a param-
eter, driving a system with Z(X') topological order through a phase transition to Z(X)$¢
topological order. In particular, a domain wall of the form described in [Konl4b] can be
created by choosing different values of the parameter on each side of the wall. Our models
closely track some existing constructions, such as that of [BSS11], where models for the
condensation of an Abelian plaquette excitation were constructed and analyzed, [HBFL16],
which describes a procedure for ungauging a symmetry that is equivalent to our model for
condensing an algebra of the form C%, or [ZHW¥22], which analyzes in great detail the
case of condensing an algebra in Z(Ising) to create a spatial boundary to Z/2-toric code.
Anyon condensation has also been studied in several cases from the perspective of tensor
networks [XS21, XGRS22]. However, our models will allow for an arbitrary choice of UFC
X and condensable algebra A € Z(X'), and the modifications to the Hamiltonian come
directly from the data of the condensable algebra. In particular, Z(X) and A may be
non-Abelian, and the fusion rules of X can have multiplicity.

The structure of this paper is as follows. In Section 2, we review Levin-Wen models in
detail, including a description of string operators, hopping operators, and how the type of
a topological excitation can be determined locally via representations of the tube algebra
[Tzu00, Miig03b]. In Section 3, we describe a class of models, parameterized by a unitary
fusion category X and a condensable algebra A € Z(X'), which permit the condensation of
A via tuning a parameter t. When t = 0, these models will reduce to the usual Levin-Wen
Hamiltonian associated to X, and when t = 1, the algebra A is condensed. We describe
a variant tube algebra of local operators and string operators in the condensed phase,
and adapt the analysis from Section 2 to show that anyons in the condensed phase are
described by the UMTC Z(X)'$¢, as argued in [Konl4b]. We also discuss the effect of the
phase transition on the space of ground states in Section 3.5. Finally, Section 4 contains
additional examples of the models described in § 3, including the non-Abelian example of
condensing the Lagrangian algebra in Z(Fib).

Note added Shortly before completing this work, we became aware of [BL23|, which
studies anyon condensation in the case of Abelian bosons.
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2 String-net models in (2+1)D

In this section, we investigate (241)D string-net models for topological order, which were
introduced in [LW05]. We follow the treatment of [KK12, Konl4a, LLB21, Zhal7, Hon09].
We begin by introducing the commuting projector local Hamiltonian of a string-net model
associated to the UFC X, in § 2.1. The goal of our analysis is to identify the space of states
containing an isolated topological excitation at a particular location as a representation of
the tube algebra Tube(X), extending the work of [HGW18]. We accomplish this goal in
§ 2.3. As setup, we introduce in § 2.2 notions of string operators and hopping operators for
anyons in Z(X') which are slightly more general than those that appear in [ HGW18, LLB21],
so that string operators can realize all elements of the Tube(X) representation. Aside from
providing details on well-known properties of string-net models, the exposition in this
section provides the blueprint for our analysis of the condensed phase in § 3.

2.1 Background: the Levin-Wen system

We begin by explicitly describing the string-net model associated to a unitary fusion cat-
egory X. Whenever possible, we suppress notation such as tensor products, associators,
and unitors.

As in [Konl4a], we use a regular hexagonal 2D lattice which we view as being oriented
left to right, although this choice of geometry is not necessary.

We assign a Hilbert space to each vertex of the lattice, where there are two different types
of vertices:

>U— = He= P Xy -2

Jj7y7ZEII‘I‘(X)

—U< — H, = @ X(x — yz)

z,y,2€lrr(X)



Spaces of morphisms, such as X' (z — yz), carry several different inner products. There are
two which we consider in this work. The first is the isometry inner product, determined by
the formula

(f,g9)idg =g o f Vf, g€ X(z— yz2) (2.1)

This gives a canonical identification of X'(yz — z) with the dual Hilbert space X' (z — yz).

The isometry inner product appears naturally when computing compositions of mor-
phisms in X. However, the isometry inner product is ill-behaved in the sense that the
isomorphisms @, , . X(z — yz) = D, , , X(yz — z) coming from pivotality of X" are not
unitary; this inner product is not rotationally invariant. Therefore, for the Hilbert spaces
‘H,, we choose a different inner product (:|-),, where the inner product on the summand
X(z — yz) is given by

dy
RS (22)

9lf)o =

In this paper, most inner products that are computed are actually the isometry inner
product (2.1), because they arise from the comparison of operators defined in terms of the
graphical calculus of X. The importance of using the rotationally invariant inner product
(2.2) for the lattice Hilbert spaces is that the plaquette term B, which we define below will
actually be self-adjoint.

Remark 2.1. We can see that the inner product (2.2) is rotationally invariant by relating
it to the pivotal trace. Since X is a unitary fusion category, X has a canonical unitary
spherical structure [LR97, Yam04, Pen20], giving a pivotal trace tr such that tr(id,) = d,.
Therefore, (g]f)y = \/ﬁtr(gv). Since d, = dz, the scalar \/d,dyd. is obviously

rotationally invariant; so is the value of tr.

We will sometimes depict a vector f € X (zy — z) C H, as a picture where v is labeled
by the morphism f, and the links incident to v are labeled by z, y, and z:

Z

Y

States on a finite chunk of the lattice where all links are assigned the same object in
Irr(X) by all incident vertices can therefore be interpreted as linear combinations of string
diagrams in X, read from left to right.

Sometimes, it will be more convenient to use other orientations of links, so we adopt
the convention that

r = T —= T
> <

For example, on a trivalent vertex corresponding to a hom space, we have

z>+ = X(zy — 2) §>+ = X(zy — 7).



The Hamiltonian has two terms: link and plaquette. The link term A, for a link /¢
connecting vertices u and v projects onto the subspace of H, ® H, where the labels assigned
to the link ¢ match. Thus, A, terms commute with one another, and the ground states
of =37, Ay can be locally interpreted as linear combinations of string diagrams in X on
the 1-skeleton of our lattice. Note, however, that two string diagrams which give the same
morphism in X may be distinct as ground states of — ), Ay.

Following [Konl4al, for s € Irr(C), we define an operator B, which glues a closed
s-loop into the plaquette p.

a, a a a
3 4, G2 3 g, 02
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N a1 — ag ai ( 2.3)
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The operator B, is only defined on the ground states of the Ay terms for links ¢ of p; if
A¢|¢) # |¢) for one of those links, we define By|¢) = 0. We interpret (2.3) as an operator
on our Hilbert space, as described in [LWO05, Appendix C], using the following relation.

=Y v . (2.4)

y€lrr(C) AN
a€ONB(zs—y)

Here, we adapt the notation from [HP17, Eq. (3)] and write a pair of nodes labelled by
e to denote summing over an isometry orthonormal basis of @yehr( x) X (xs — y) and its
adjoint; the sum is independent of the choice of basis. Applying equation (2.4) six times
allows us to rewrite B, as

(2.5)
Note that we switch orientations in the first and third arrows for ease of applying equation
(2.4). The pairs of colored vertices refer to summing over an orthonormal basis and dual
basis, as in (2.4), while labels fi...s for the six vertices have been omitted to avoid clutter.
The second arrow requires the use of the associator/F-matrices to re-associate in order to
apply (2.4). Explicitly,

T

b c b




Thus, in the final diagram of (2.5), each vertex of p is now labelled by the composition
of several morphisms, yielding a new morphism in H,. For example, in terms of the sum
where e = ¢, e = 1), the lower right vertex is now labelled by an element of X (d5 — dgag):

S
de
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The plaquette term B, is then given by

1
By =+ > d.B;,
s€lrr(X)

where D = " d% is the global dimension [Miig03a, Defn. 2.5] of X. One uses the asso-
ciativity of X' to check that B, is an idempotent [Zhal7, §5]. The computation that B,
is self-adjoint is somewhat involved, but appears in [Hon09, Theorem 5.0.1]. The inner
product (-|-), of (2.2) is chosen so that the notion of Hermitian operator used in the proof
in [Hon09] matches the notion in our Hilbert space.

There are several interpretations for B,. One is that after applying B,, strings can
now be deformed across the plaquette p [LW05, Appendix C]. Another is that the operator
B, is the orthogonal projector onto the trivial representation of the algebra Tube(X), as
described in Section 2.2. Still another is that B;,, amounts to contracting p to a vertex, and
then restoring it [HSW12]. Categorically, this corresponds to applying the map E'E (up
to a factor of the global dimension D), where F is the map which uses the composition of
X to replace a string diagram labelling p with a single morphism in X' [Konl4a]. This last
interpretation thus provides an alternative definition of B, which is manifestly self-adjoint.

Finally, the overall Hamiltonian on the lattice Hilbert space ®,H,, is given by

H=-) A,-> B, (2.6)

2.2 Topological excitations from string operators

Topological excitations in a Levin-Wen model based on the UFC X are classified by simple
objects in Z(X'), the Drinfeld center of C [KK12]. One way of deriving Z(X) from X is
by means of the tube algebra Tube(X'), a finite dimensional C* algebra whose category of
representations is equivalent to Z(X') [Miig03b, Izu00]. An action of the tube algebra as
local operators at the site of topological excitation is described in [HGW18], providing a
natural and local way to identify topological excitations with objects in Z(X). Topological
excitations are created by string operators, families of operators determined by an object
c € Irr(Z(X)) and a path p through the lattice which create excitations of types ¢ and ¢
at the ends of p. The string operator preserves the ground state in the middle of p, and if
p and ¢ are homotopic paths with the same endpoints, then string operators along p and ¢
agree as long as the part of lattice through which the homotopy must pass is in the ground
state [LWO05, Appendix C].



Figure 1. A path for a string operator on the hexagonal lattice.

In [HGW18], as in many sources, the authors provide a unique string operator for
every object in Irr(Z (X)), and consequently do not identify the particular representation
of Tube(X) at each site. In this section, we generalize their notion of string operator,
so that string operators can absorb elements of Tube(X) acting locally on each end. We
apply this more general notion of string operator in §2.3, to determine the exact local
representation of Tube(X'). In §3.4, we will apply and generalize the constructions of §2.3
to our model of anyon condensation in order to prove Theorem 3.11.

An object in Z(C) is an object X € C, together with a half-braiding, i.e., a unitary
natural isomorphism p : X ® — = — ® X which satisfies certain coherences. Given the
data s = (X, p) € Z(X), we can define a class of string operators o, (¢, ), parameterized
by a choice of oriented path p between two potential location of excitations and vectors
o, € 691/61“(.)()'%‘()( - y)

We begin by discussing the potential choices of the path p. The location of an excitation
is determined by which terms of the Hamiltonian the excitation violates. In the case of
our hexagonal model, the location of an excitation is therefore a pair (g,¢), where ¢ is a
plaquette and £ is an edge of ¢q. Therefore, the string determined by the path p must begin
and end at points inside a plaquette, near a specific boundary edge, and must also avoid
the center of each plaquette, as well as the vertices of the lattice. Thus, p consists of a list
of pairs (¢;, ¢;), where each ¢; is an edge of ¢;, either g;y1 = g; or {;41 = £;, and if {;11 # ¢;,
then the two edges share a common vertex. An example of such a p appears in Figure 1;
compare [LWO05, Fig. 19].

The string operator o, (¢, ) is not defined on the entire Hilbert space of our lattice
model, but only on the subspace where

(S1) every lattice link along p, except perhaps the links at the endpoints of p, is unexcited,
and

(S2) at the vertices of the initial and final links of p which do not lie along p, the initial
and final links are labelled by 1.

Condition (S1) means that string operators cannot pass through the locations of excitations
of Ay terms, although they may begin or end on such links. Consequently, in the middle of
a string operator, we may use the graphical calculus and (2.4) to implement tensoring with
s and braiding over s as linear combinations of operators on the individual vertex Hilbert



spaces, as we did when defining B;. Consequently, when defining a string operator, we
may take advantage of the graphical calculus away from the endpoints, using (2.4) and
the half-braiding of s to rewrite the string operator as linear combinations of products of
operators on the individual vertex Hilbert spaces, as we previously did for B,.

Because the plaquette term permits deforming strings in C across plaquettes, if p and
q are homotopic paths with the same endpoints, then o and oy agree on ground states of
our Hamiltonian [LWO05, Appendix C]. More generally, if |n) is a state containing localized
excitations, then o,(¢,)|n) and o (¢,v)|n) differ by an application of certain terms of the
half-braidings, depending on which excitations are crossed during a homotopy from p to ¢; if
the homotopy never passes through the location of an excitation, o, (¢, v¥)n) = 07(¢,v¥)n).
The excitations created by these string operators are therefore topological, in the sense that
the effect of moving excitations via string operators depends only on the topology of the
movement, and not the exact path taken.

Condition (S2) means that on states where a string operator o,(¢,1) is nonzero, at
the endpoints of p, we can view the two hexagonal plaquettes containing the final edge
£ of p as a single decagonal plaquette. Applying UZ(gb, 1) then turns ¢ into an additional
edge interior to the decagonal plaquette which supports the excitation, similar to the edges
added to plaquettes in the extended Levin-Wen model of [HGW18]. If w is the final vertex
along p, then basis states where U;<¢, 1) is nonzero are those in the image of the projection

7Tl}7w§/Hw% @ X(ab—c) — @ X(al — ¢)

a,b,c€Irr(X) a,celrr(X)

onto the space of states where the morphism labeling w assigns the simple 1 to the edge
. (See also Definition 2.8.) However, as a convention, we define a}, =
a product W}ww}n’v to enforce condition (S2). This choice will later be justified by Lemma

2.9.

id, rather than as

At the initial vertex of p, we define o,(¢, 1) by tensoring with s along the link ¢ where
p begins, and composing with the morphism ¢'. At the final vertex of p, we tensor with s,
and then compose with the morphism 1. An example computation of a string operator in
terms of operators local to each vertex appears in Figure 2. If we let p denote the path p
with the orientation reversed, then by construction, our string operators satisfy

o3(6.16) = 73 (8.9) (27)

Remark 2.2. Condition (S2) may appear unnatural, especially since, without redefining

011) by special case, string operators 011)

ground states of our model. This is not as bad as it seems, because Lemma 2.9 will show that

corresponding to the vacuum would actually excite

in situations where the removed edge ¢ of the plaquette ¢ where a string operator terminates
does not host an excitation, applying B,., where r is the plaquette which borders ¢ along ¢,
will undo the effects of Fl}yw and restore the ground state. Aside from states obtained from
string operators ¢!, this can occur when two string operators have created anti-particles
at the same location, leaving the vacuum as one of the fusion channels. The benefit of
imposing condition (S2) is that we can apply the results of [HGW18].



U1 v2

1 1
1,01 T a5 2 :

z2,23,w2,w3Elrr(X)
Pp2EONB(s—22)
$3€ONB(s—23)

Figure 2. A string operator is resolved into local operators on individual vertex Hilbert spaces.
The morphism f; labels the vertex v;, and the object x; labels the link ¢;. The effect of applying
Wéwl is to ensure x; = 1, and the effect of applying ﬂ}%% is to ensure x4 = 1. We represent the
object 1 on the right hand side by dotted edges. The entire edge is dotted, rather than just the
part parallel to the string, because a string operator ending at ¢ is only defined on the ground state
of Ag.

This approach is not the only option, though. One could instead extend string op-
erators to the whole ground space of A; terms, moving the applications of 7; and B, to
definitions of hopping operators and tube-algebra representations. Alternatively, one could
view string operators as actually changing the lattice. The results of [HSW12], Lemma
2.9, and indeed, the original conceptual description of the string-net in [LWO05], support
the point of view that the particular choice of lattice is not important, as does the fact
that the topological field theory describing the low-energy behavior of the string-net model
is topological, i.e., depending only the choice of manifold. We are so strict about working
in a single consistent Hilbert space only because the results Proposition 2.12 and Theorem
3.11 are part of the work of checking that our lattice model for anyon condensation realizes
the expected topological phases.



Remark 2.3. Many articles, such as [HGW18, LLB21], only consider o, (¥, 1) where 1
is the sum over an orthonormal basis. One advantage of our approach is that in §2.3
below, we will recover the entire Tube(X') representation from a choice of X € Irr(Z (X)),
rather than simply computing which minimal central projection preserves a certain state.
This will demonstrate that any excited state containing finitely many excitations which are

separated from one another can be achieved via linear combinations of string operators.

Example 2.4. Here we explain how to interpret the diagram of Figure 2 to explicitly obtain
the string operator o% (1),1’). The overall string operator is a sum over all possible choices
of fusion channels on each link of a tensor product of local operators on the individual
vertex Hilbert spaces. For example, in Figure 2, the operator

acts on the vertex Hilbert space H,,; such an operator is part of the data of the unitary
fusion category X and the half-braiding on s € Irr(Z(X)). We first explain how such
local operators assemble to give the string operator o%(1),1)’), and then give an example
computation of a single local operator.

We begin by fixing a basis B(s) of ®@ e (x)X (s — x) for every anyon type s € Irr(&X),
as well as a basis T'(y,2) : ®zem ()X (yz — ) for every y, z € Irr(&'), which respect the
direct sum and are orthonormal with respect to the isometry inner product (2.1). We
denote the links of the path p by #1,/¢2,...¢r, and denote the vertex before ¢; by v;, so
that the vertices of p are v, v3,...vr. Thus, the string operator o (1, ’) is defined on the
image of Trl}wgwl}L’UL.

Resolving a string operator o, requires summing over all choices of how to fuse the
anyon s into the L — 2 internal links of p, and each choice of fusion channel affects the local
operator at two vertices. Therefore, before we can write down a tensor product of local
operators at individual vertices, we must first choose such a fusion channel for each link.
For this purpose, we first sum over a choice of 5 = (¢1 = Y, b2,... 11,01, = ') where
each ¢; : s — z; € B(s); these choices appear in Figure 2 as the black circles between
orange and red strings. We then sum over a choice of ¥ = (1 = 1,29,...21_1,21 = 1) of
the simple objects labelg each lattice link along p. Finally, given 5 and 7, we sum over a
choice of 77 = (n1,n2,...1,), where each n; € T'(2;,x;) or T(z;, z;), depending on whether
p is on the left or right side of ¢; while crossing the line between vertices v;_1 and v;. The
operators 7; appear in Figure 2 as colored circles. We denote the local operator acting
at the vertex v; for a given choice of ¢, #, and 7j by opli][(¢i-1,mi-1), (¢i,mi)]. Note that
opli][(¢i—1,mi-1), (¢i,m:)] is defined only on the image of W?i_l i

T
i—1,V5 i,U5
Combining these ingredients, our final expression for the string operator is

L
os (@, ) =" > R oslill(bi1,mi-1), (bim)] (2.8)
575 7 1=2

~10 -



We will now compute a single local term op[i][(#i—1,7i-1), (¢:,7:)], where X = Fib,
s = (X 7) € FibXFib = Z(Fib), and the path p is the one depicted in Figure 2. (See
Appendix § 4.4 for more details on the fusion category Fib and its center.) In this case, all
the bases B(s) and T'(x, z) are determined (up to unitary scalar) merely by the string labels,
since Fib is multiplicity-free; for the same reason, the individual factors oli][- - -] are 1 x 1
or 2 x 2 diagonal matrices, with one row/column for each simple in Irr(Fib) = {1, 7} which
is an admissible label for the link incident to v; not parallel to p, given the labels x; 1 and
x; of the other two links. In other words, the rows and columns are indexed by the simple
objects y; in Figure 2. We choose i = 3, x2 = x3 = 7, ¢2 = ¢3 to be the channel TX7T — 7,
and the channel 19 = n3 : 77 — 7. With these choices, both 1 and 7 are admissible labels
for y3, giving a 2 x 2 diagonal matrix expression of op[i][(¢i—1,7i-1), (&, 7i)]-

The nonzero entry corresponding to y3 = 1 is the value of the diagram:

where all black strings are 7, and the red is the object U(7 X 7) 2 1@ 7. The above closed
diagram can be evaluated using the structure constants for Fib (including the associator
and matrix of the braiding, see Section 4.4) to be —p~2, where ¢ is the golden ratio.
Similarly, the diagram

computes the value of the matrix entry when y3 = 7, and evaluates to ¢ 3.

Thus, in the basis where the first row and column correspond to y3 = 7 and the second

row and column correspond to y3 = 1, we have
-3
o, 131[(¢2,m2), (¢3,m3)] = [@0 _2_2] :

Remark 2.5. In defining the operator o,(¢,7), we do not make use of the fact that
s € Z(X) is a simple object. However, there are some reasons to do so. First, if s is simple
and p crosses any links of the lattice, then Uﬁ((i), 1) is always nonzero. This can be shown
using the tube algebra techniques introduced in § 2.3 below. If U;(¢, 1) = 0, then by an
application of Proposition 2.12, ¢ and 3 would lie in orthogonal summands of the tube
algebra representation ps introduced in (2.11), showing that s is decomposable in Z(X).

Also, if some isotypic component in Z(&X') of s is not simple, e.g. s = ¢t @ t where
t € Irr(Z(X)), then different choices of (¢, 1) will produce the same string operator. For

- 11 -



this reason, the hopping operators defined below in §2.2.2 do not make sense for such s,
and we only define them for simple objects in Z(X).

2.2.1 String operators on excited states

As defined above, the string operators J;(gb, 1) only make sense on states which are locally
the ground state near p. We can also define string operators on states where the one
or both endpoints of p host an anyon. Our construction will make use of the local tube
algebra action described in §2.3 below, but the use of the tube algebra action reduces to
the proofs of Corollary 2.13, which the reader may presently treat as a black box. The
statement of Corollary 2.13 is technical, but the upshot is that there are local operators
which can detect and change the choice of ¢ in 0,,(¢’, ). Indeed, since anyon types are by
definition superselection sectors under the action of such local operators [Kit06], Corollary
2.13 must hold so long as we have correctly identified the UMTC Z(X') and string operators
o associated to each s € Irr(Z(X')). One should therefore view the Corollary as justifying
the definition of o°.

Corollary (2.13). For any link £, vertex v of £, anyon s € Irr(Z(X), and morphisms
o, € @, X(s = x), there is a local operator T} (¢,v) such that, if |w) = Aglw) = By|w)
for plaquettes r containing £, then

77 (¢, ¥)op (', m)lw) = (Slmoy (1, ) |w).

and if t # s,
T} (¢, 9)ap(n', m)w) = 0.

Based on our construction of string operators, the location of an excitation in a state
|¢) actually consists of three pieces of information: a link ¢, a plaquette r containing ¢,
and a vertex v of £ such that TF%,U|¢> = |¢). Suppose that p is the potential path of a string
operator, as in Figure 1, with endpoints ({y,79,v9) and (¢1,71,v1). Suppose that |¢) is a
state containing excitations of types tg and t; at the endpoints of p, so that 71%07”0|¢> and
W%Wl |¢) are nonzero, and no other excitations near p. Given morphisms ¢y € X (tgps — x)
and 1 € X(t1s — y), where z,y € Irr(X'), we can define a string operator

o, [to, t1] (o, Y1)

which creates excitations of types § and s at the two endpoints. In the middle of p, the

definition is the same as for ¢, and is once again independent of the choices of t; and 1);; at

p?
the endpoints of p, we use the chosen ¢; and ; to end the string on the lattice. Explicitly,

we define

aplto, 1) (o, o) = Y Splno,m)(vo, v (0, m0)TyL , (mym),

z,y€lrr(X)
7o EONB(to ,{E)
m €ONB(t1,y)

where the T operators are the local operators from Corollary 2.13, and an explicit descrip-
tion of S appears in Figure 3.
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Splnoml(vo,1) 4 1
Ty 01 ™05 04 Z
z2,23,w2,w3Elrr(X)
¢2€ONB(s—22)
¢3€ONB(s—23)

Figure 3. A string operator defined on excited states is resolved into local operators on individual
vertex Hilbert spaces, as in Figure 2.

When ty = t; = 1, we recover the string operators of the previous section. Since the
local operators T also generate projections onto states with a particular type of anyon at
each endpoint of p, namely

Yoo TE,(6.0),

¢€ONB(s,x)
we can also define string operators for anyons of type s which are applicable regardless of
the type of anyon at each endpoint. A general string operator of type s is thus of the form
Z O';[t(), tl](wtm 1%1)
to,t1
Now that we have defined string operators on excited states, our string operators can
fuse, according to the fusion of anyons in Z(X'). That is, if r, s,t € Irr(Z(X)), x; € Irr(X),
Y :rs —t, and |Q) is a ground state, then

apls, s](o 0 v, &1 0 ¥)ay (110, m)|Q) = 07,(&0, 1)) (2.9)

The strings fuse in the middle by associativity of the tensor product on Z(X), analogous
to the proof that B, is an idempotent, and it is straightforward to check the equalities at
the endpoints of p.

2.2.2 Hopping operators

Related to the string operators which create topological excitations are hopping operators
[HGW18, §V.E], which move an existing topological excitation from one location to another.
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In this section, for each s € Irr(Z(X')) and each path ¢, we will define a hopping operator
hg which sends states with an excitation of type s at the initial location of ¢ to those with
an excitation of type s at the terminal location. In other words, if |w) is a ground state,
then hiol (¢, 1)|w) = 0 unless s = ¢ and the terminal link of p is the initial link of ¢ (or

= and p and g have the same terminal link, or either s or ¢ is 1), and p and ¢ approach
that link from the same vertex. Moreover, our hopping operators will satisfy the relation

hgop (W', ) = og., (V') (2.10)

where ¢ - p is the concatenation of the paths ¢ and p.

Hopping operators can be built up from the general string operators discussed in the
previous section. In order to do so, we make the following observation, which is an explicit
description of the “contraction of charges” of [HGW18] in our setting.

Lemma 2.6. Suppose p and q are two paths, such that p ends where q begins, adjacent to
the plaquette r. Then

Z BTUZ[LE](w? eV)UZ(d)v 77) = O-Q'P(wv 77)7
¢eB

where B is an orthonormal basis of @, X(s — ) and ev : s — 1 is part of the duality
data of X.

Proof. Let £ : v — w be the link where p ends and ¢ begins. Abbreviate w} = W%ﬂ}ﬂ!}’w

From the definition of o and equation (2.7), we can compute that

ﬂfaqp ?,Z}, =Ty Z 1 S %e") ;(¢777)

9eB
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Explicitly,

oq(¢,m)|w) =

oy [1,3](¥, ev)ag(d,m)|w) =

Y oplLsl(W, ev)og (b, m)|w) =

9B

Since oy, does not create an excitation at ¢, we need only apply Lemma 2.9.

With these ingredients in hand, we define

B Z [s, 1] (coev ,n)TM( ,0).

¢nEB
Observe that

1 Br St lcoev! )Tz, (1. 00050 0)
én

1
= 7 2_0lv) Brog(eoev’ may (v, 6),
o

hgop (W', ) =



and applying Lemma 2.6,
)= g o140

ho( Zaqp (0l )
o) = oy,

verifying Equation (2.10). Thus, hj also transports the local information ¢ at the end of
the string. This observation is formalized as Corollary 2.14.

2.3 Tube algebra representations from excitations

We will now describe the correspondence between localized excitations in the Levin-Wen
model and representations of the tube algebra Tube(X') (defined below), by implementing
Tube(X) as an algebra of local operators at the location of an excitation in the lattice
model. As shown in [Izu00, Miig03b], representations of Tube(X)correspond to objects in
Z(X), so this gives a direct means of assigning an object in Z(X) to an localized excitation.
The correspondence between localized excitations and Z(X') is well known, and the type
of an excitation can also be determined by other means, such as braiding experiments
[NSST08, § III.C]. The use of tube algebras to classify excitations in various models of
topological phases has been described in [BMW™17, LW14, LVHV20, XLLC21, ALW19,
BD19]. However, we are interested in giving a concrete description of a local tube algebra
action and the relationship to string operators in the case of Levin-Wen models, because
in Section 3.4, we will repeat the process with an appropriate variant of the tube algebra
in order to prove Theorem 3.11.

Definition 2.7 ([Izu00, §3],[GJ16, Def 3.3]). Let X be a unitary fusion category. The
tube algebra Tube(X) of X has the underlying Hilbert space @, , .cr(x) X (zc = cy). If
¢ :xc— cy and Y : zd — dw, the product ¥ - ¢ is defined to be the linear extension of

= 0y— Z

ferr(X) d

where e runs over an orthonormal basis of X (f — dc). We define a #-structure on
Tube(X) by
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One interpretation of the structure of the tube algebra is that elements of the tube
algebra are morphisms on tubes:

The multiplication of the tube algebra is then accomplished by stacking tubes and
applying identity (2.4) to the strings running around the circumference of the tube, while
1 reflects a tube vertically.

The algebraic correspondence between irreducible representations of the tube algebra
and simple objects of Z(X') is worked out in [Izu00, §4]. There is a natural mathemat-
ical way to define a f-representation py of Tube(X) from an object H € Z(X). The
Hilbert space for the representation will be @, cpy(x) X (H — x). For m : H — x and
¢ € X(cy — zc), the action is given by

Vm e X(H — z). (2.11)

This action is the one that appears in [Izu00, Lemma 4.7.iii]. Since im(pg(id;)) = X (H — ),
the object H can be recovered from pp. Since ¢ € X'(cy — zc) is a sum of morphisms of
the form f o g, where f € X(cy — w) and g € X'(w — zc), the representation py contains
all the data needed to recover the half-braiding on H. One computes the half-braiding by
the following equation.

(2.12)

In fact, pe can be extended to a contravariant monoidal equivalence Z(&X') — Rep(Tube(X)).
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Suppose that, in the state |¢), an excitation is located in a plaquette p near a link ¢,
as in

Here, the red string depicts a string operator which could be applied to the ground state to
obtain |¢). Further suppose! that the Hamiltonian terms for other links of p and plaquettes
adjacent to p other than g are not excited in |¢), meaning that |¢) contains an isolated
excitation at (p,¢). (This excitation could be trivial, i.e. the vacuum; the key word here is
“isolated.”)

There is not a straightforward action of Tube(X') on the space of states with isolated
excitations at (p, £), but we can construct an action on the image of W%,w, where w is either
vertex of £. As described in §2.2, the effect of applying 7Tt}7w is to replace the plaquettes p and
q adjacent to ¢ with a decagonal plaquette p V ¢, with an link leading inside the plaquette
where an excitation may be supported. The action of Tube(X) on excitations inside pV ¢ is
now as described in [HGW18, §V.A]: when acting by an element of X' (z¢ — cy) C Tube(X),
the action is given by

(2.13)

where the vertex between the red and blue strands represents the morphism ¢. The constant
factor is required to make the Tube(X) representation a f-representation. Because the
excitations Z(X) form a UMTC, and because an UMTC has a unique unitary structure
[Reu23], we do not need this fact here, and therefore leave the verification to a forthcoming
article.

As we did when defining B,,, we use Equation (2.4) to rewrite the above diagram as a
sum of diagrams where all strings other than lattice links are local to a particular vertex,
and then compute the effect on each vertex using the data of X and Z(X). One verifies
that the action of Tube(X) is associative, essentially for the same reason that the plaquette
operator B, is an idempotent; the action is manifestly unital.

Evidently, we have defined a representation of Tube(X') on W%’w'H; we will now explain
why this representation is faithful, and behaves as expected on excited states obtained via
the application of string operators. First, we establish a technical lemma about states in
Levin-Wen models. Essentially, this lemma shows that if a state |¢) does not contain an
excitation along an edge ¢, then applying 71} and removing ¢ is invertible on the space
of states which agree with a ground state near ¢; cf. [HSW12], where it is shown that
mutations of trivalent lattices are unitary on ground states.

I These assumptions are not necessary, but greatly simplify the details.
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Definition 2.8. For /¢ a link in our lattice from v to w and x € Irr(&X’), we define the
orthogonal projection 77, to project onto the subspace of H of states which assign X to
{ at w, i.e., at the tensorand H,,, we have

Tt Hw = @ X(ab,c) — @ X(ax,c).

a,b,c€lrr(X) a,c€lrr(X)

On the ground state of Ay, we denote the operator 7y graphically by 7j =

Lemma 2.9. Suppose £ is a link between plaquettes p and q, and v is a vertex incident to

0. If |¢) is a state which is not excited at (q,£) i.e. |¢p) = Aglp) = By|¢), then Bqﬂ't}’v|¢> =
1
Blo)-

Proof. First, when Ag|¢) = |$), each 7}, |¢) is independent of v. Observe in this case that

=3 9 - @@W—Zé{:}w
elrr(X)

where the coefficient is % rather than %I because the depicted bends in the z-string are

rotationally invariant trivalent vertices, rather than the ones which are normal with respect
to the isometry inner product that would appear on the right-hand side of (2.4). Since
B,|¢) = |¢), it suffices to check that Bqﬂt}ﬂ)Bq|¢> = 4By|¢), which may be expressed
diagrammatically as

dy ? dz
C 5O = X5 )

7y ’Z
This equation holds, because the effect of applying B, is to permit the deformation of
strings across the center of plaquettes; it first appeared in [LW05, Appendix C]. O

We point out some consequences of Lemma 2.9 which will be useful later. Sometimes,
we wish to write a state |¢) as a sum of states which have a fixed label for a given edge,
asin |¢) = >, my 4|#). It turns out that in the ground state, the summands 7y , can be
determined in a straightforward manner from 7r111),e|¢>.

Corollary 2.10. Suppose |¢) is a state satisfying By|¢) = |p), and £ is an edge of p. Then
Tl @) = du By, 4l 0).
Proof. By Lemma 2.9, we have 7% ,|¢) = 7% ,DB,m. ,|¢) = deIfW}U )|@), as desired. O

Corollary 2.10 was not obvious a priori when X # 1, since several fusion channels
contribute to 77, Bp|o).
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Lemma 2.9 also allows us to more precisely establish the sense in which applying ﬂ'l}’w
replaces the plaquettes p and ¢ with a decagonal plaquette p V ¢, analogous to the lattice
mutations studied in [HSW12]. One would expect to obtain a Levin-Wen model on the
lattice obtained by removing the link ¢ between p and ¢ from the modified Hamiltonian

Hy=-m,—Y Am— Y Br— By, (2.14)
m r¢{p,q}

where we still have By, = % erm()() d. By, and where By, is defined (on the ground
state of TF%’w and all A, terms, including m = ¢) by modifying (2.3) to account for the
new plaquette shape. The new term m,, evidently commutes with all A,, terms and B,

for r ¢ {p,q}. That By, behaves as expected follows from the following result.

Corollary 2.11. Suppose p and q are adjacent plaquettes, € is the link where p and q meet,
and w is either vertex of £. On the space of states {|Q)|Bp|Q) = B,|Q2) = |Q)},

Dﬂl},prBqﬂ-l},w = quﬂl},w = Wl},w'
Proof. To show prqm}u’gm) = Dwingquwij 0|€2), we expand the left hand side.
1
Dl BByl ) = 5 S dudyml BB 1)

z,y€lrr(X)

1

- D Z diﬂ-tlu,ZBZBgﬂ-}v,f‘Q>

z€lrr(X)

1 T
= 5 Z dIBp\/qTrllv,Z‘Q>
z€lrr(X)

= p\/qﬂzlu,em>-

Above, the only way to get 1 after applying B and BY to W}w is when = = y, and the
scalar d, difference again arises from rotational invariance scaling of cups and caps. Now
by Lemma 2.9, Dr}  B,Byn}  |Q) =7}, BylQ) = 7}, |Q). O

On the other hand, by Lemma 2.9, all ground states of (2.14) are of the form le}’w 1),
where |2) is a ground state of the original Hamiltonian (2.6). Consequently, D, is a
unitary map between the spaces of ground states of the two Hamiltonians. We have now
shown (2.14) to be a frustration-free commuting projector Hamiltonian which contains
the terms Wéyw and Ay, so it indeed has the same space of ground states as the natural
Levin-Wen Hamiltonian defined on the lattice obtained by removing .

Using the previous results, we can now demonstrate the compatibility of our definition
of string operator with the tube algebra action (2.13).

Proposition 2.12. Suppose H € Z(X) and ¢ € X(H — x) where x € Irr(X). Let r be a
path ending at (p,l) and beginning far away, and suppose |$2) is locally a ground state near
the path r. Then the tube algebra action on a state excited at the endpoint of r generates
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a representation isomorphic to pp, where pp is the representation defined in Equation
(2.11). Explicitly, for f € X(zc — cy) C Tube(X) and ¢ € X(H — z), we have

Lot (0, pu (I, (215)

f ol (o, 9)|9) =
Proof. Note that introducing or removing the scalar {*/% is an automorphism of Tube(X),
so the presence of this scalar is immaterial to whether the two representations are isomor-
phic; the scalar only affects unitarity.

In general, computing f > |n) for f € Tube(X) involves gluing a strand into the
plaquette p V ¢, which means summing over many fusion channels and basis vectors in an
expression of some state |n). We will first exploit Lemma 2.9 to show that f > — actually
reduces to an operator local to the final vertex of the path r, such that f > ol (¢,)|Q) =

ol (¢,4")|Q) for some 1’. Then, we will compute algebraically that this ¢’ is just pg(f).

The situation of the Proposition can be depicted graphically by

We use the bricklayer lattice instead of the honeycomb lattice here for readability. We
also use the rotationally invariant version of the fusion relation (2.4) using an ONB with
respect to skein-module inner product rather than the isometry inner product:

Tz Y
Z Vi, |- = V dady -
z€lrr(X) 25 vy

Let f € X(by — zb) C Tube(X). In case x # y, we have f > o (4,4)|Q) = 0 =
H(gb, pr (£)1)|Q), by definition. Now suppose z = y. Since o (¢,1)|Q) = o2 (¢, ) t} |

(¢ sz)) p\/q774w|Q> we have

\/

fD Tl/ |Q Z dq |Q>

p— ‘ aEIrr(X)
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ol

} Vi,
\/7 a (G%;(X

otV

JJdy 1 5 Vdad.
)

de D a,c€Irr(X) \/7 . b
r H
5 d )
(EIrr(X) . ¢

_ Q/gaﬁw, o (V)1

So far, we have a well-defined representation of Tube(X’) on the Hilbert space

as claimed.

span {o (6,v)|)|v € pu},

and an obvious surjective representation homomorphism given by ¢ —+ o (¢,)|Q). There
are therefore two possibilities: either this representation is isomorphic to pg, or we simply
have the 0 representation. The last thing we must do is rule out the latter possibility.

If the representation we have just defined were 0 for all ¢ and €2, then all our string
operators would just be 0 on the space of ground states. Hence, it suffices to check that
there is at least one string operator o (¢,9) for each H € Irr(Z(X)). By Lemma 2.9,
string operators o} (z,w) are all nonzero on ground states. By Equation (2.9), we see that

ﬁ[l 1](1,1)c (¢, w) = 0}(1,1), which has a nonzero action on the space of ground states.
Hence, the factor o (¢, 1) was itself nonzero on ground states, completing the proof.

One might worry that our construction of generalized string operators such as o1, 1](1,1)
relies on Corollary 2.13, making this reasoning circular. However, Corollary 2.13 does not
rely on the fact that the representation {0'7{{ (¢, @Z))|Q)‘1/J € pp } is nonzero, but only on the
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fact that it is a transitive representation of Tube(X), which we have already proven, so
there is no issue. O

Because Tube(X) is a finite dimensional C*-algebra, it is nothing more than a multima-
trix algebra, i.e. @, My, (C), with one summand for each irreducible representation. We
know that the irreducible representations of Tube(X) are just ps for s € Irr(Z(X)). Actu-
ally computing an isomorphism ® : Tube(X) — @, End(ps), where End(ps) = Mgim(,,)(C)
means endomorphisms as a Hilbert space, is another matter. The existence of such a ®
has several consequences: for one thing, it implies that all our string operators a;(¢, ) are
distinct. However, one must explicitly compute ® in order to obtain operators TZU(¢=¢)
used to define hopping operators and string operators on excited states, as we see in the
following corollary.

Corollary 2.13. For any link ¢, vertex v of ¢, anyon s € Irr(Z (X)), and morphisms
o,¢ € D, X(s = x), there is a local operator Tj (¢,v) such that, if |w) = Afw) = By|w)
for plaquettes r containing £, then

T; (6, )y (', m)lw) = (éIn)ap(n', ) |w),

and if t # s,
T3¢, (6, ), (', m)|w) = 0.

Proof. Since ¢ and 1) are vectors in ps, we simply set T (¢,¢) = @71(|1)(¢|) > —. The
desired result is now just a case of Proposition 2.12. O

Corollary 2.14. The hopping operators hy are intertwiners for local Tube(X)-actions on
spaces of excitations at the endpoints of q.

Proof. This follows immediately from Equation (2.10) and Proposition 2.12. O

Proposition 2.12 makes explicit the correspondence between quasiparticle excitations
and simple objects of Z(X') which is described in [HGW18, Section V.A]. In the language
of that article, when applying o, (¢, ) for different choices of 1, we obtain different dyons
belonging to the same dyon species s. The possible excitations of type s form an irreducible
representation of the Tube(X'), acting locally at the endpoint of p, so we can explicitly
construct local operators that permute the dyons of a given species. Moreover, the more
general notion of string operator we have given here allows us to locally realize all dyons
in a given dyon species via string operators.

3 Lattice model for anyon condensation

We will now describe a class of string-net lattice model due to Corey Jones, parameterized
by the choice of a unitary fusion category & and a condensable algebra A € Z(X'), which
supports a phase transition between Z(X') and Z(X)%$¢ topological order. While [BS09]
discusses condensable algebras in the context of phase transitions, other works on anyons
condensation, such as [Konl4b, KK12], have focused on describing a spatial boundary
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between regions where A is and is not condensed. In our construction, one can recover
such a spatial boundary by performing the phase transition in only part of the lattice.

In § 3.1, we review the mathematics of condensable algebras, which are the data
necessary to perform anyon condensation, as described in [BS09, Konl4b]. In § 3.2, we
present a string-net model where condensation of A can be performed by tuning a parameter
t from 0 to 1. In § 3.3, we see that when ¢t = 0, our model reduces to the one introduced in
§ 2.1, and hence has Z(X) topological order. In § 3.4, we see that when ¢ = 1, our model
has Z(X )fc topological order. To show this, we investigate how string operators from the
model of § 2.1 are modified to give string operators in the new model, and give an algebra
Tube A(X), analogous to Tube(X), of local operators acting on states containing an isolated
excitation. We generalize the arguments of the previous section to show that Tube A(X)
classifies localized excitations when ¢ = 1, some of which are not topologically mobile. The
excitations which are topological are representations of a quotient Tube 4 (X') of Tube A(X),

~ loc

which we prove is Morita equivalent to Tube(X4). Since Z(X4) = Z(X)3°, this verifies

loc

that topological excitations in our model at ¢t = 1 are indeed described by Z(X)}

3.1 Background: condensable algebras

We begin by recalling the definition of a condensable algebra in a UMTC C. We then give
some basic facts about condensable algebras, which we will later use.

Definition 3.1. An algebra in C is an object A equipped with a unit morphism u : 1 — A,
depicted by a univalent vertex, and a multiplication morphism m : AA — A, depicted by
a trivalent vertex, with the following properties:

o (unitality) {{ = ‘ = }\
e (associativity) m = (J>\

A condensable algebra is also commutative, meaning m o 4 4 = m where 3 is the
braiding in C, and unitarily separable, meaning that m' splits m as an A — A bimodule

N-LAA o

Here, the vertical reflection of m denotes m!. Finally, a condensable algebra A is connected,

map:

meaning that X(1 — A) is 1-dimensional.
We call the projection m'm € End(AA) the condensation morphism; by Condition
(3.1), the condensation morphism is a projection with image isomorphic to A.

We will use the condensation morphism to define the term of our Hamiltonian which
implements anyon condensation; see (3.5). By composing condensation morphisms for dif-
ferent pairs of copies of A, we can also obtain projections in End(A®") for n > 2, as in
Figure 4. Intuitively, when a condensable algebra is condensed, copies of that algebra satu-
rate the system, and any two nearby copies are entangled via the condensation morphism,
so these projections in End(A®™) will be of interest to us. As seen in the figure, since
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R I S P AN

Figure 4. Condensation morphisms between 3 nearby copies of A, with time depicted in the
vertical direction. Blue segments depict paths on the underlying lattice. Notice that one morphism
involves braiding, depending on perspective.

the copies of A fill a 2-dimensional region, we must also consider conjugating condensation
morphisms by the braiding.

The following lemmas show that the order in which several condensation morphisms are
composed and the choices of over- or under-braiding do not affect the resulting projection in
End(A®™). In particular, condensation morphisms generate a unique projection End(A®™)
in which all n copies of A interact.

Lemma 3.2. Suppose A is a condensable algebra in C with multiplication m. Then (mfm)®
1 and 1 ® (mtm) commute.

Proof. First, observe that the separator is coassociative by applying 1 to the associativity
axiom. We then have

(1® (m'm))o((m'm)®1) = % = X = \%\: w = ((m'm)®1)o(1® (m'm)),

completing the proof. ]

This lemma immediately implies the following corollary together with commutativity
of A and unitary separability.

Corollary 3.3. There is a unique morphism A®™ — A®™ generated by condensation
morphisms and braidings for which all n +m inputs and outputs are connected.

In particular, for any n, an endomorphism of A®™ generated by condensation mor-
phisms between adjacent A-strands and conjugation by braiding depends only on which

strands are connected.

Given a condensable algebra A € Z(X'), anyons in the condensed phase are described
by objects in Irr(Z(X)'$¢) [Konldb, BS09]. This UMTC is also the center of a fusion
category, namely the category X4 of right A-modules in X [DMNO13, Thm. 3.20], a fact
we will frequently use below.

Definition 3.4. If X is a fusion category and A € Z(X) is a condensable algebra, the fusion
category of right A-modules in X [Ost03][Konl4b, § A.3] has as objects pairs (M, m), where
M e X and m: MA — M is an action morphism. We often denote such a pair by My,
where the subscript denotes the existence of the A action.
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Similar to the multiplication of A, we denote the action morphism diagrammatically

n=

M A

by a trivalent vertex, as follows.

Here, red strands denote the algebra A. The action must satisfy the following associativity,
unitality, and separability conditions (associative and separable actually implies unital)

[CHPJP22, §3.2).

M M M

The tensor product M ®4 N4 of A-modules M4 and N4 is a subobject of M N, defined to
be the image of the projection

PM,N = %[/) € Endc(MN),

in XY(MN — MN). Thus, the tensor unit of X4 is A4, where the A-module action on Ay
is defined to be the multiplication of A, and the associator and unitors of X4 come from
those of X.

Definition 3.5. An A-module M € Z(X) is said to be local if

= P (3.2)

N

M A M A

The full subcategory of Z(X) 4 consisting of the local modules is denoted Z(X)'g¢.

Remark 3.6. The separability condition for A-modules ensures that X4 is again unitary
[CHPJP22, §3.2]. Recall that X4 can also be defined as the idempotent completion of the
category of free right A-modules of the form x ® A for x € X where A acts on the right
using the multiplication on A. Every free module is unitarily separable since A is, and so
the category of free right A-modules is a C*-category with finite dimensional hom spaces.
This means the unitary idempotent completion is equivalent to the ordinary idempotent
completion.

Similarly, one can define the fusion category aX of left A-modules in X, and the
UMTC Z(4X) = 9°Z(X). However, there are canonical equivalences of UFCs 4 X = X4
and BFCs 1¢Z(X) = Z(X)%. Therefore, in the following, we will speak only of X4 and
Z(X)9¢ = Z(X4), even when A acts on the left.
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3.2 General lattice model

The essential idea behind this lattice model is to modify the original string-net models of
[LWO05, LLB21] to support a copy of the condensable algebra A inside each plaquette, by
adding appropriate local Hilbert spaces and modifying the Hamiltonian to account for the
excitation, similar to the extended Levin-Wen models of [HGW18]. The commuting pro-
jector Hamiltonian is then augmented with additional families of terms C' and D depending
on whether Z(X) or Z(X)$¢ topological order is desired. Now that we have models of the
condensed and uncondensed phases living in the same Hilbert space, one can smoothly
pass from one Hamiltonian to the other through convex combinations.

Rather than give a construction for arbitrary lattice geometries, we will work out the
details explicitly for a regular hexagonal lattice, and then describe how our construction
must be adapted for other cases. We realize the additional Hilbert space on each plaquette
by adding an additional vertex and edge, as shown.

The usual vertices of the plaquette are assigned the usual hom spaces of the Levin-Wen
model, and the new trivalent vertices correspond to the Hilbert space

>{ — Hy = @ X(UA)zx —y),

. @,y €lrr(X)

where U : Z(X) — X is the forgetful functor, and the inner product (-|-), on the orthogonal
summand X (U(A)z — y) of H, is given by

(9] f)vid, = \/%fﬁﬂ (3.3)

This construction resembles the extended Levin-Wen models of [HGW18], but it is slightly
different, because A may contain more than one copy of a given simple object x € Irr(X).
As with (2.2), the choice of normalization in (3.3) is necessary so that the forthcoming
plaquette operator B, will be self-adjoint.

One should think of the red edges as leading to an A-defect at the center of each
plaquette, i.e. a puncture in the surface labelled by the object A € Z(X), as described
in [HGW18, Kirll]. While before, we interpreted states of the lattice model as living
in the diagrammatic calculus of X, the red edges should be thought of as living in the
diagrammatic calculus of Z(&X'), descending into the page (c.f. Figure 4). This interpretation
will determine how we extend the existing terms of the Hamiltonian to our new Hilbert
space, as well as how we define the additional terms necessary to select either Z(X') or
Z(X)k%¢ topological order.
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The Hamiltonian for our model will consist of the original A, and B, terms, modified
to account for the new red links, as well as two new terms needed to implement anyon
condensation. The required modifications of the A, and B, terms to account for the red
links are fairly minor. The Ay terms associated to each black link ¢ are defined as before,
and no new A-term is associated to red links. Recall that the A-term ensure the morphisms
labelling the two vertices at either end of a link are composable, so that ground states for
all A-terms can be locally interpreted as living in the diagrammatic calculus of X'. Since
the red edge is only incident to a single vertex, no additional constraint is needed.

The B, term is defined as previously: it is 0 outside of the ground state of nearby
Ay terms, and on their ground states, B, = D—lx Zmelrr( x) dyBy. However, the operators
B, which insert a loop labelled by x into the plaquette must now take into account the

half-braiding on A. That is,
5= )

We omit the proof of the following lemma which is a straightforward adaptation of
[Hon09, Thm. 5.0.1].

Lemma 3.7. Given two simple tensors of orthonormal basis elements

Tg 5
c1 \&6
E=m 4 and ¢ =
Ao
x9 T3

whose internal edge labels are consistent, we have

s 1
; T D/ dpy iy Ay Aoy Ay g

<§|Bp§/> = Hdci:c;.

)

Thus the operator B, is a self-adjoint projector on the ground state space of =, Ay.

Now we turn to the additional Hamiltonian terms, which pick out either desired topo-
logical order. To obtain Z(X') topological order, we introduce the term C; for each red

edge (. If v is the vertex incident to ¢, then CY is local to H,, and projects on the subspace

—1 .
generated by morphisms of the form x Aoy qy v8s, Az, where u : 1 — A is the unit of

A.
We observe that C; commutes with the A, and B, terms. First, all pure tensors of
morphisms are eigenstates for both A, and C; operators, so they are diagonalized with
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respect to the same bases, and hence commute. Second, for any ¢ € Irr(Z(X)) and any
morphism f : ¢ — A, the B, term preserves states where the morphism labeling the vertex
incident to the red edge ¢ factors through f. This is because morphisms in Z(X') are, by
definition, those that pass under crossings obtained from the half-braiding, including the
crossing appearing in the definition (3.4) of By. In particular, we can take f = u, the unit
of A, and observe that since 15(x) = 1y has a simple underlying object, this means that
B, preserves the eigenspaces of Cy. Finally, distinct Cy terms are all disjointly supported,
and hence commute. Thus, the Hamiltonian

H:—%:Ag—ZBp—Z/:O/
p 4

is a local commuting projector Hamiltonian.
To obtain Z(X )L?C topological order, we instead add the following term D, , for every
pair of adjacent plaquettes p and q.

Here, the blue and orange vertices run over bases and dual bases of €D ¢y (z(x)) X (¢ = A);
hence, (3.5) can be resolved into local operators at each vertex in the same manner as string
operators, given the additional data necessary to resolve the condensation morphism. The
second diagrammatic term in the definition is an appropriate interpretation of the first one
by a variant of (2.4).

The D, , terms commute with A, and B, terms by construction, i.e. for the same
reasons that string operators commute with A, and B, terms whenever ¢ and p are far
from the endpoints of the string. Finally, terms D, , and D, ; commute, by Lemma 3.2.

H= —ZAU—ZBP—ZDp,q
v p p,q

is a local commuting projector Hamiltonian.

Thus, the Hamiltonian

The overall Hamiltonian for our lattice model which supports a phase transition is
then given by

Ht:—ZA,,—ZBp—K((1—t)20v+tZDp,q> (3.6)

where K > 1. In sections § 3.3 and § 3.4 below, we will see that this Hamiltonian realizes
Z(X) topological order at ¢t = 0 and Z(X)'{° topological order at ¢ = 1. The intended
effect of choosing a large value for the constant K is that at ¢ = 0 and ¢t = 1, the low-
energy physics of the lattice model consists only of ground states for the Cy and D), ; terms
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respectively. Therefore, in our analyses, we only consider such states. In other words, one
could analyze the models at ¢ = 0 and ¢ = 1 by projecting onto the space of ground states
for each Cy and D, 4, at which point the Hamiltonian would consist of only A, and B,
terms.

3.3 Topological order when t =0

In this section, we will argue that when ¢ = 0, the Hamiltonian (3.6) gives rise to Z(X)-
topological order.

Since A is unital and the half-braiding on 17y, is trivial, projecting onto the ground
state of Cy terms is equivalent to removing the red edges and the corresponding A-punctures
from the lattice, leaving behind the original string-net model associated to X. In the
hexagonal model discussed above, if v is the vertex incident to ¢, the image of Cy in H,
is isomorphic to B, pery(x) X(a@ — ). Thus, the Hamiltonian on the ground state of
Cy terms describes the Levin-Wen model on a heptagonal lattice, obtained by adding the
additional vertex v to each plaquette of the regular hexagonal lattice. One can remove this
vertex and return to the original hexagonal model in a straightforward manner.

3.4 Topological order when ¢t =1

loc

In this section, we will show that the topological order when t = 1 is described by Z(X)%°.
To do so, we will again introduce an algebra of local observables which acts on low-energy
topological excitations of our lattice model, which we will call Tube A(X). This algebra will
be generated by Tube(X'), which acts as before, as well as a new algebra Absorb(A), which
consists of operators which fuse the localized excitation with an excitation pulled from the
condensate A.

We will then describe the fates of string operators from our original model at ¢t = 1.
The definition of the operators operators ag(gb, 1) in the original Levin-Wen model given
in § 2.2 still makes sense, with slight modifications to account for when the string crosses
over a vertical red link, similar to how the definition of B, was modified. However, there
are two complications. The first is that, at ¢ = 1, there is more freedom in choosing the
local data ¢ and 1 at the endpoints of the string, since operators in Absorb(A) can be
applied to the excitation. The second is that not all types of localized excitations obtainable
from the operators o, will be topological, i.e. anyons in the condensed phase, because o),
operators associated to anyon types s which are not transparent to the condensate A will
not commute with the Dy, terms of the Hamiltonian. Thus, at ¢ = 1, the operators o,
should be thought of as “defect operators,” which produce topological line defects along p,
terminated by point defects at the endpoints of p. Those defect operators which commute
with Dy, , terms will produce anyons at the end of trivial line defects, and thus become the
string operators for anyons in the condensed phase.

Finally, we will show that, similar to the story in the original Levin-Wen model, states
containing an isolated excitations at a fixed location form a representation of Tube A(X),
and that topological excitations are representations of a quotient algebra Tube 4(&X’), which
satisfy the additional relation (3.8). It is expected that excitations in the condensed phase
correspond to simple objects in Z(X)$¢ [Kon14b]. We will show that this is the case, by
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checking that Tube4 (X') has the same representation theory as (i.e., is Morita equivalent to)
Tube(X4), and recalling that Z(X)'$¢ = Z(X4) [DMNO13, Thm. 3.20]. Representations
of ﬁ/beA(X ) will instead correspond to simple objects of Z(X)4. The details will be
analogous to those of §2.3.

We will not characterize the line defects and point defects created by defect operators
which do not correspond to anyons in the condensed phase. However, the interpretation of
simple objects of Z(X)a as point defects at the ends of nontrivial line defects in Z(X)g¢

topological order is explored algebraically in [HBJP23, § IV.D].

3.4.1 Tube algebras of local operators when ¢t = 1

We begin by defining the algebra Tube A(X) of local observables near a localized excitation
in the condensed phase, as well as the quotient Tube 4(X’) of which topological representa-
tions are excitations.

Definition 3.8. The C* algebra Tube A(X) has the underlying vector space

T/J/beA(X) = @ (cx — U(A)ye),
z,y,c€lrr(X)

In the definition that follows we abuse notation and denote U(A) by A. The multiplication
on Tube4(X) is defined as

A w
( (3.7)
d
and the involution is given by
The algebra Tube4(X) is the quotient of Tube (X) by the relation
(3.8)

Is is straightforward to verify that this relation is *-closed.
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As promised, we now check that representations of Tube,(X) correspond to simple
objects of Z(X)¥¢ = Z(Xy), which is the UMTC which should describe topological exci-
tations at ¢ = 1. Because we have a monoidal equivalence Rep(Tube(X')) = Z(X), there
is also a monoidal equivalence Rep(Tube(Xy4)) = Z(X4). However, 'fa/l)eA(X ), rather
than Tube(X4), is the algebra which acts on local excitations of our model at t = 1. We
will therefore need the following lemma, which follows from straightforward application of
techniques from [GJ16].

Lemma 3.9. The algebras Tube(X4) and Tubes(X') are Morita equivalent.

Proof. An algebra T which is Morita equivalent to Tube(X4) can be obtained by replacing
the underlying vector space with @r,yelrr(X),AMEIrr(XA) Xa(aM®@4Ax — 4 Ay®4 M), while
keeping the same diagrammatic multiplication from 3.8. That T} is Morita equivalent to
Tube(X4) follows from [GJ16, Theorem 4.2].

As described at the end of [GJ16, §3], the annular algebra 77 can be obtained as the
quotient of a much larger algebra ﬁ The underlying vectorspace of ﬁ is

&y Xa(aM @4 Az — 4 Ay @4 M),
z,y€lrr(X),aMeXy

with the multiplication
XA(AN®@aAY, 4Az0AN)RXN(AM @A AT, AAYyDAM) = XA(AN@AM@ AT, AAZAN@AM)

given by joining the 4Ay strings and tensoring the others. To obtain 77 from ﬁ, we
impose relation (3.9), which is reproduced from [GJ16, p.10], allowing morphisms to be
pulled around the back of the tube.

Every aM € Xy is the direct sum of irreducible objects, so we may rewrite id,y =
> 7T,j o m;, where each m; is a projection onto a simple object. Pulling each m; around
the back via (3.9) lets us identify the elements of ﬁ with those of 717, and recovers the
multiplication for T7.

Instead of going directly from Tvl to 17, we can also consider an in-between algebra 75,
which we will later identify with an algebra containing Tube(&X'). A subalgebra of Ty is

L= P  Xa(4AC®a Az — 44y 4 AC).
z,y€lrr(X),CeXx

A special case of (3.9) occurs when the morphism ¢ is in the image of the free module
functor; imposing relation (3.9) for only such g on T produces an algebra

T = @ XA(AAC®AAx—>AAy®AAC),
z,y,c€lrr(X)
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where the multiplication now involves using fusion channels in X’ to decompose the strands
wrapping around the tube. Fully imposing (3.9) on T3 gives all of T} as a quotient, since
free modules span all of X under direct sum.

We can translate hom spaces between free modules in X4 to hom spaces in X, because
the free module functor z — 4 Az is monoidal and adjoint to the forgetful functor:

Xa(aAc®4 Ax — g Ay ®4 Ac) = Xy(aAce — 4 Ayc) = X(cx — Ayce).

—

This gives an isomorphism of vector spaces from algebra T to Tube4(X):

AYy - c AY Ac

RN A i
(lfl)'—>( f ) and ( g )<—«
e L/ N\ L

c T

Carrying over the multiplication from T5 gives the algebra structure on Tube A(X) described
in Definition 3.8, and imposing (3.9) on both algebras gives the quotient 77 = Tubey4 (X).
Since Tube(X4) was Morita equivalent to 77, this shows that Tube(X4) is Morita equivalent
to Tubey (X). O

We make one more preliminary observation: that, as previously described, Tube A(X)
is generated by two subalgebras. One is Tube(&X'), which lives inside Tube(X) as a sub-

algebra, along the unit map 1 — A. The other (nonunital) subalgebra of Tube4(X) is

Absorb(A) = P X (1z — U(A)y1),
T,y

the subalgebra where no string runs around the circumference of the tube. Since elements
of Absorb(A) do not have a string running around the back of the tube, it is straightforward
to compute f - ¢ where f € Absorb(A) and ¢ € Tube(X'), and therefore to see that indeed,
Tube (X) = Absorb(A) Tube(X).

This decomposition of Tube A(X) allows us to more explicitly view the correspondences
Rep(mA(X)) >~ Z(X)a and Rep(Tubea (X)) = Z(X)%°. The intersection of Tube(X)
and Absorb(A) is the subalgebra C™(¥) = span{id, : = € Irr(X)}, and as described in
§23,if Hisa Tube A(X)-module, the action of CIr(X) determines the corresponding object

H € X up to isomorphism, via the Yoneda lemma:

X(z— H) =id, >H.

(¥)_module H by the same

Equivalently, an object H € X uniquely determines an CUT
formula. Just as the data of the action of Tube(&X') is equivalent to a half-braiding on H,

the data of the action of Absorb(X’) is equivalent to that of an A-module action AH — H,
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with the equivalence given by

tr(y > hogh) = (3.10)

forge X(H —y), he X(H — z), and ¥ € X(x — U(A)y) C Absorb(A).

Finally, one can check that, when H is given the half-braiding obtained from the
Tube(X') action by (2.12), the nontrivial relations between elements of Tube(X’) and ele-
ments of Absorb(A) which arise from the composition (3.7) are equivalent to the condition
that the action AH — H defined by (3.10) is a morphism in Z(&X'). Similarly, one checks
that the relation (3.8) which defines Tubey(X) as a quotient of Tube A(X) imposes the
locality condition (3.2).

Remark 3.10. In the ordinary Levin-Wen model, the plaquette operator B, implements
the action of the minimal idempotent p; € Tube(X) corresponding to 1 € Irr(Z (X)) =
Irr(Rep(Tube(&X))). Indeed, in the setting of § 2.3, we have Bjy, = p1 > - up to normaliza-
tion. In our modified Levin-Wen model, when ¢t = 1, there are no local Hamiltonian terms
penalizing specific labels on an individual red edge. Therefore, the plaquette operator B,
now corresponds to the free A-module on 1, which is just 14 = A viewed as an A-module,

the vacuum anyon of the condensed Z(X)'$° topological order.

3.4.2 String operators when ¢t =1

The string operators described in § 2.2 can be extended to the models of § 3.2 in a straight-
forward way. Namely, when a string crosses a vertical link inside a plaquette, we must
apply the half-braiding of the algebra A, as we did when defining B,. Thus, the string
operators J;(¢, 1) previously defined still make sense as operators which commute with A,
and B, terms as long as ¢ and ¢ are far from the endpoints of p.

However, in the condensed phase, the data needed to terminate a string operator is
different. Because each plaquette now contains a vertical link supporting a copy of the
condensate A, rather than pick elements ¢, € ®z€Irr( x) X (s — x), we define a string
operator o, (¢, ) where ¢, € @:BGIH(X) X(s — Azx). The z factor remains at the endpoint
of p, as before, while the A-factor is multiplied into a nearby vertical link. Of course, a
morphism v : s — Az, can be factorized as (14 ® eta) o a, where a : s — At for some
t € Irr(Z(X)) and n : t — x. Thus, the end of a string operator now takes the form

(3.11)

Sy

<
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where the black vertex is a morphism s — At, and the orange vertex is the morphism
n:t — x, as previously.

An important consequence is that the string operators o® should no longer be viewed
as a string operator for the anyon s € Irr(Z (X)), but instead as a string operator for the
free module sAy € Z(X)4. This is because, in the ground state of all D), terms, the
trivalent vertex a € Z(X')(s — At) is able to slide topologically along the string. Suppose
ol(¢,) is the following string operator.

Now suppose that f € Z(X)(s — At). We can modify ot (¢,) to obtain a different opera-
tor by applying f at various possible locations along p, and then multiplying the resulting
A string into the vertical link in the plaquette where f was applied. By construction of
our string operators, on local ground states, we can clearly slide f topologically along the
string within each plaquette. However, moving from one plaquette to another will change
which vertical link f interacts with. The key point is that on ground states of relevant D,, ,
terms, this makes no difference, essentially by Corollary 3.3. For example, observe that

v

/

Cor. 3.3
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= Dpgq w

/

Recall that Z(X)(s — At) =2 Z(X)a(sAs — tAa). Consequently, one example of
such a trivalent vertex is the projection onto a simple summand of sA4, i.e., onto a single
anyon in the condensed phase. In other words, to obtain a string operator for an anyon
My € Irr(Z(X)4), we pick a simple object s < M, which determines an inclusion M4 —
sA 4, and apply a linear combination of string operators ¢° which absorb the projection
ma, € Tubes(X) onto a summand of type M4 at the endpoint of the string. Different
choices of inclusion M4 — sA4 produce the same superselection sector because they are
related by A-module endomorphisms of sA 4, which can also slide along the string operator.
For the same reason, the projections in Z(X)(sA4 — sA4) onto each isotypic component
also slide topologically along the string operator. Thus, the operator o® can be written as
a direct sum of operators, one for each type of simple object in Z(X')4 which appears as a
summand of sA 4.

When we condense the algebra A, we expect that objects which are not transparent
to A become confined. To see this, we will investigate when string operators o) commute
with D), terms. Suppose s € Irr(Z(&X)) is an anyon in the uncondensed phase, and let
€2) be a local ground state near r and on the support of D, ,. If r does not cross the path
from v to w chosen when defining D), 4, then o, and D), obviously commute. If the paths
do cross, then we have, for example,

Dy q0712) = w - w
v
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Meanwhile,

0, Dpq|€2) =

Thus, D), commutes with o°(¢,%) up to the double braiding between A and s. On
the other hand, as we saw above, the string operator ¢® now corresponds to the object
sAq € Z(X)4, so in general o splits as a direct sum of string operators associated to the
summands of sA4. As we will see in Section 3.4.3 below, this means that D, , commutes
with string operators for precisely those excitations which are representations of Tube 4(X),
i.e. objects in Irr(Z(X)§¢). Thus, summands of string operators o® corresponding to
nonlocal summands of sA4 pay an energy cost proportional to the length of the string,
and the excitations at the end of these strings are confined.

3.4.3 Tube algebra representations from excitations at ¢t =1

We will now explain how states containing an isolated low-energy (i.e. only the A, and
B, terms of the Hamiltonian are violated) excitation at ¢ = 1 give representations of
Tube4(X). As before, we begin by defining an abstract representation pas, of Tube A(X)
for each My € Z(X)a. We will then define an action of T[/‘;ﬂ_a/eA(X) as local operators in
our lattice model, such that a variant of Proposition 2.12 holds.

Our definition of pjs, is a small modification of the previous definition (2.11). First,
if H € Irr(Z (X)), then we define a representation pg 4, of mA(X) on the Hilbert space

eawélrr(.)() X(H - U(A).CL') by

Vm e X(H — U(A)z). (3.12)

Just as we computed an equivalence between Rep(Tube(X)) and Z(X), there is also an
equivalence Rep(rfal;eA(X))) = Z(X)4. One direction is provided by sAs — psa,. As for
the other, suppose p is a representation of mA(X). Since Tube(&X') C Rep(Tfala/eA(X)) as
a subalgebra, we can still recover an object M € Z(X') from the Tube(X') action, obtaining
the half-braiding by equation (2.12). We can define an action AM — M using the data
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p(Absorb(A)) by the following equation.

This action morphism lives in X, but the compatibility between the action of the sub-
algebras Tube(X') and Absorb(A) ensures that the action AM — M lives in Z(X), i.e.
Ma € Z(X)4. In particular, the representation psa, decomposes as a direct sum just as
sAq € Z(X)a does. An arbitrary choice of inclusion M4 — sA4 therefore lets us define
pu - Because of the equivalence of categories Rep(m A(X)) = Z(X)a we have obtained,
this definition is independent off the choice of inclusion, up to unique isomorphism.
Because Tube(X') = Absorb(A) Tube(X), we can define the action of Tube4(X') on

each subalgebra and then check the relations defining Tube4(X). As before, suppose that

|¢) is a state with an isolated excitation at the plaquette p and link ¢. Much as before, we
define the action of f € Tube(X') by

[N Q),

55
-

where |Q2) is a ground state. However, this definition can be significantly simplified. The
proofs and results of Section 2.3, and in particular Proposition 2.12, apply equally well
in our new lattice model, as long as we use the half-braiding on A whenever we cross the
vertical A-strand inside a plaquette. Therefore, we can apply Proposition 2.12 to rewrite
the action as

Q)

as in equation (2.15).
The action of g € Absorb(A) is given by

Q)

Iy
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Note that the action of g € Absorb(A) commutes with all A, and B, terms away from
pV g, as well as all D), ; terms, including the case where v € p and w € ¢g. Thus, Absorb(A)
is also an algebra of local operators acting on the space of localized excitations which do
not violate any D), , terms, i.e. low energy excitations.

These actions assemble to an action of Tube4(X) = Absorb(A) Tube(X): if ) € Absorb(A)
and ¢ € Tube(X'), then we define (¢¢)> := (¢0>) o (¢r>). To check that this action is well-
defined, we also need to check that (¢)> = (¢r>) o (). Suppose ¢ € X(cy — zc) and
Y € X(x — Ay). Then we have

Meanwhile,

By

because the morphisms being applied locally at the vertex are equal, showing that (¢r>) o (¢¥>) =
(¢p1p)r>, as desired.

Now that we have an action of 'I/‘u\b/eA(X ), we will check that this action satisfies
(3.8) on states which correspond to local A-modules. Suppose ¢ € X(cx — Ayd) and
Y € X(d — Ac). Condition (3.8) then becomes

= (3.13)

Ea

where the black dots are ¢ and 1. We can manipulate the morphism appearing on the
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right-hand side as follows.

In case the excitation lives in a local summand of sA4, the double braid is equal to the
identity, and we have

The last equality leaves us with the morphism on the left-hand side of (3.13), and fol-
lows from the fact that the twist of a condensable algebra is always equal to the identity
[FFRS06, Prop. 2.25]. Thus, under the equivalence Rep('ﬁ;b/eA(X)) >~ Z(X)a we de-
fined in and after equation (3.12), imposing relation (3.8) selects exactly those objects in
Z(X)'5 = Z(X).

Taken together, the results we have accumulated in this section are sufficient to prove
the following result.

Theorem 3.11. When t = 1, the low-energy excitations of the lattice model of §3.2 are
classified by Z(X)c.

3.5 Ground state degeneracy

Apart from characterizing anyons at times ¢ = 0 and ¢ = 1, one might also wish to
understand the phase transition in terms of the effect on the space of ground states of
the A and B terms. We restrict our attention to the case where X admits monoidal fiber
functor to Hilb, so that a condensable algebra A in Z(X) becomes an actual C*-algebra. We
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will also not give a full analysis of the phase transition, but instead sketch a relationship
to a more well-understood phase transition.

Since the space of ground states of a Levin-Wen model is locally (on an open disk) 1-
dimensional [HSW12, Kirll], the ground-states of the A and B terms of our Hamiltonian
are parameterized by the labels of vertical edges and the flux between nearby pairs of
vertical edges. Therefore, at low energy, our model of anyon condensation is equivalent to
another simpler lattice model, which generalizes the 2D-transverse field Ising model, which
we call the transverse field nearest-neighbor model associated to the algebra A.

The first step in defining our simplified lattice model is describing the lattice. Vertices
of our new lattice correspond to vertical edges in the model of anyon condensation, with
an edge between any pair two vertices which support a common D-term. Our models for
anyon condensation add one vertical edge extending above each plaquette, and D, , terms
for pairs of vertical edges above neighboring plaquettes, so we obtain the dual lattice of
the square or hexagonal lattices we began with. Therefore, from the honeycomb lattice
described in Section 3.2, we obtain a regular triangular lattice, and from the square lattice,
we obtain another square lattice.

To each vertex of the new model, we associate the same Hilbert space used in the old
model, which is isomorphic to A as an A-representation. To each edge, we associate the
term lf);,:] = m'm, where m is the multiplication of A, viewed as an operator on A. To
each vertex, we associate the term C, = wuf, where u : 1 — A is the unit map of A,
viewed as an operator C — A. Finally, on a closed lattice, we add a single nonlocal term
F, projecting onto the states where [, ¢, = 14, where ¢, is the label of the vertex v. One
should think of this term as picking out the ground states of the condensed Z(X )fc theory
as a superselection sector.

Notice that, in the case X = Hilb[Z/2] and A = C[Z/2], i.e. condensing 1 & e in toric
code, we recover the Ising model from the C and D terms, because the C, term is just Z,,
while 13;1 simplifies to X, X,,.

The general case is morally similar, but a full analysis would amount to deriving the
TQFT structure from the lattice model, as in [Kirll]. Such an argument is beyond the
scope of this work.

4 Examples

In this section, we give worked examples including Z/2-Toric Code, Z/n-Toric Code, dou-
bled semion, and doubled Fib. These examples can be substantially simplified as they are
multiplicity free, i.e., dim(X (zy — z)) € {0,1} for all z,y, z € Irr(X). In this setting, on a
trivalent lattice, we can push the degrees of freedom from the vertices onto the links, as in
the original Levin-Wen string-net model [LW05]. Above, we made frequent use of the fact
that the morphism labeling a vertex determines an object labeling each adjacent link; the
multiplicity free case is simply the situation where the labels on adjacent links determine
(up to scalar) the morphism labeling the vertex.
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To each ordinary link of our lattice, we assign the Hilbert space

Hy=C" M = P Clo).

c€lrr(X)

The Hamiltonian includes vertex terms and plaquette terms. If all edges at a vertex v are
oriented away from v, the vertex term A, penalizes states where the labels on trivalent
vertices are not admissible (the clockwise tensor product of the labels does not contain 1y).
If some edges at v are oriented towards v, we take the dual of the simple object labeling
those edges when defining A,.

The plaquette term B, for a plaquette p is

5 D daB
xGIrr X)

where By has the effect of inserting a counterclockwise loop labeled by x inside the pla-
quette. We use the conventions of [KKR10]. From the associator of X', we may calculate
an F-symbol, defined by

f 9 /

—~ = ) Fcfdg h, k] /l\
¢ d kelrr(X

The operator By is then given as follows on a hexagonal lattice, where the orientations are
always from left to right.

g5 94 g5 g4
ds fs
dg dy - > fe Ja
By| 9 g5 ) = Z T(x,d, f,g)| 9 93 (4.1)
d1 d3 f17“')f6 fl f3
g1 92 g, gl 12 4

T(x,d, ,9) = FISP [ fo, FEET 1, da) FISE o, 5 FLG o, da) FL2 s, da FAP T fo, ds).

x,d2 z,ds ds,T dg,x

This complicated definition of T comes from the need to reconcile the orientation of the
loop of type z inserted and the chosen orientation of our hexagonal lattice which was used
to define the vertex terms.

Remark 4.1. When X = Hilbgy(G, w) for a group G, for any choice of ay, ..., an,b1,..., b, € G,
dim(X(ay -+ am — by ---by)) € {0,1}. Conversely, this condition on simple objects if X" is
equivalent to X' being unitarily equivalent to some Hilbsgg(G,w). Indeed, under this condi-
tion, Irr(X') forms a group under tensor product, and the associator determines a 3-cocycle

w. In this situation, we may put degrees of freedom on the links of any lattice (not just

a trivalent lattice), in particular the square lattice as in Kitaev’s quantum double model
[Kit03].
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In this group case, we can adapt our general model to a rectangular lattice by adding
one vertical edge for our condensable algebra A emanating from each vertex out of the 2D
plane, as follows.

We can use the same Hilbert space C'*(Y) as before on black links, and use the Hilbert
space B, epr(x) (2, U(A)) on red links. This model will be applicable for the Z/2-Toric
Code, Z/n-Toric Code, and doubled semion models.

4.1 7Z/2 toric code

We begin by describing an anyon condensation in the simplest example of a Levin-Wen
model, the Z/2 toric code [Kit03]. We denote by X, Z the Pauli matrices

() ()

The system is defined on a square grid on a plane with an edge rising vertically from each
vertex.

To each link ¢ of the lattice, we associate the Hilbert space H, = C?. The spaces H, on the
2D lattice are a direct sum C|0y) & C|1,). Here, we view the state |0y) as ‘off’, ‘vacuum’,
or 0 € Z/2, and |1;) as ‘on’ or 1 € Z/2.

Our preferred bases of the Hilbert spaces assigned to the vertical links depend on the
particle to be condensed, and will be given in the subsequent sections. In all cases, the full
Hilbert space is the tensor product H = @), H.

4.1.1 Condensing ¢

We use e to denote the vertex excitations in toric code; in other words, we say that there
is an e-particle at a vertex v in a state ¥ when A,[) = —1|y).

The Hilbert spaces H, which we assign to vertical links are a direct sum C|1,) ® Cley),
where |1,) represents the unit of D(Z/2) and |es) represents the e-particle from D(Z/2).
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We now describe the Hamiltonian for our lattice model. For each vertex v, we define
a vertex term A, by

Here, — A, ensures that an even number of edges adjacent to v are in the ‘on’ position by
imposing an energy penalty for an odd number of edges in the ‘on’ position.
For each plaquette/face p, we define a plaquette term B, by

X

B, = x| r X

X

Here, —B,, averages over states that are ‘off” and ‘on’ by imposing an energy penalty. It
also ensures that a string to one side of the plaquette p can be isotoped over p to the other
side at no energy cost in the ground state.

For each vertex v, we also have a new term, called the unit term:

z
Cy:i= N\

Here, —C), turns off the vertical edges by imposing an energy penalty on the state |ey).
For each link ¢ on the 2D plane, we have a new term, the condensation term:

X

Here, — D, implements m*m, where m is the multiplication of the étale algebra A = 1 Pe,
which we mean to condense. Thus, the vertical links at each vertex and the horizontal
links between two vertices each support a two-dimensional Hilbert space, but for different
reasons: if £ is a horizontal link, the states |0y) and |1,) correspond to the elements 0 and
1 of Z/2, while if ¢ is vertical, the states |0;) and |1;) correspond to summands 1 and e of
A, respectively.

We define the Hamiltonian of the system for ¢ € [0,1] to be

Ht::—V<ZAU+ZBp)—K((l—t)ZCv—l—tZDg>, (4.2)
v p v l

where V' > 0 is a constant and K > V' is a large constant. Observe that the terms A,, B,
commute with one another, as well as with the C, and D, terms. However, the C, and D,
terms do not commute when v is a source or target of .
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When t = 0, the low energy physics of our model is equivalent to that of [Kit03]. The
fact that K is large forces us into the ground state of the C, terms to analyze the low
energy physics of the model. In the ground state of the C, terms, each vertical edge is in
the state |1). Since Z|1) = |1), on ground states of C,, the A, terms agrees with

Hence, on the ground state of the C) terms, our Hamiltonian agrees exactly with the
Hamiltonian for toric code given in [Kit03], up to exchanging Pauli X and Z.

When t = 1, we may locally create and destroy individual e-particles at any vertex by
applying the Pauli X operator to the vertical edge, which commutes with A,, B, and Dy

terms:
X

AN

Hence, when ¢t = 1, the e-particle is condensed.

Now suppose that we drop the assumption that K > V', and instead send V — o0
while K remains fixed. This pushes us into the ground state space of the usual Levin-Wen
commuting projector Hamiltonian on the 2D lattice, leaving only degrees of freedom on
the additional vertical edges. The Hamiltonian on this reduced Hilbert space is then

H, = -K ((1 1)) Cu+ tZDg> =K ((1 )Y Zy+ tZXS(g)Xt(g)> :
v V4 v /

Here, s(¥¢),t(¢) denote the source and target of the edge ¢. This Hamiltonian is just the 2D
transverse-field Ising model [Ons44], so tuning ¢ from 0 to 1 drives the system through a
well-studied quantum phase transition [HMH20, SRD*21]. Of course, when K > V and
K and V remain constant, the overall story is more complicated. However, this special
case motivates the analogy to the 2D transverse field Ising model made in § 3.5.

4.1.2 Condensing m

In order to condense m excitations, we slightly alter the previous model, adapting certain
terms in the Hamiltonian. We relabel our preferred basis for H, when £ is vertical link,
replacing |e;) with |my). The operators C, remain unchanged, while A,, By, and Dy are
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adjusted as follows, with the changes highlighted in blue.

— Z |
Dg = ¢ X\ or x J ¥ N

Note that the operator Dy in this example becomes the D, of the previous example,
if we pass to the dual lattice and apply a change of basis exchanging X and Z operators
to each link of the square grid. Since the vertical spaces H; have a basis {|1¢), |my)}, and
passage to the dual lattice exchanges e- and m-particles, we apply the same operator to
the vertical links in both examples. Consequently, we obtain toric code at t = 0, m is
condensed at ¢t = 1, and the phase transition maps onto a 2D transverse-field Ising model,
as in the previous example.

4.2 Z/n toric code

The next simplest example of a Levin-Wen model is the Z/n toric code. The matrices X
and Z are replaced by n x n Pauli matrices X,, and Z,,. For example, when n = 3,

001 10 0 00
Xs=[100 and  Zz=[0e3 0 |=[0¢oO
010 00 €% 00¢?

where ¢ = e is a primitive cube root of unity.

The Hilbert space on each link is Hy = C". The spaces Hy on the 2D lattice are direct
sums C|0y) & C|1y) & -+ & |(n — 1)g) where |0p) is ‘off” or ‘vacuum’, while the remaining
n — 1 states are distinct ‘on’ states in Z/n.
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4.2.1 Condensing e*

Now fix k | n. We will condense the algebra A = 1 4 €F + - .. #("/k=1)  The vertical spaces

Hy = CV* are therefore a direct sum C|1,) @ Clef) @@ \elz(n/k_l)> where |1;) represents

the unit of D(Z/n) and the states \e§k> represent powers of the ef-particle from D(Z/n).
We now modify the four types of operators A,, B, Cy, Dy from §4.1.1, and the Hamil-

tonian H; has the same formula (4.2). We define the vertex term by

Observe that given a simple tensor x in ®,H, in the standard basis, A, preserves x if
and only if the legs of z sum to 0 mod n. Thus, rather than ensure an even number of
links ¢ are in the state |14) at a given vertex, — A, now ensures that the links surrounding

v sum to 0 mod n.
The plaquette term — B, averages over all n possible states on each link rather than
only two; we define B, explicitly by the following:

X5 X

By:= Xo| P |Xo + x| P |[x]

X Xn
The unit term is given by
Z Al

Coi= N+

Here, —C, turns off the vertical edges by imposing an energy penalty on every state except

).
Finally, the condensation term is given by

n/k
xRy & XMWt e Xk e
Dg = \ ( n) : + \ Xn : or X( ) + : n

Here, D, condenses e* by implementing the self-adjoint operator m*m + mm*, where m is
the algebra multiplication AA — A.
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As in previous examples, when ¢t = 0, we obtain a usual model [Pacl2, §5.3] for Z/n
toric code. When t = 1, our system exhibits D(Z/k) topological order. By locally applying
the operator X,/ (or X;E Ik depending on parity) on a vertical edge, we may create an e*
particle at any vertex. Therefore, while the charge particles e’ still exist, the value of j
is only well-defined modulo k. Similarly, applying the operator Z,, (or ZJ;, depending on
parity) along an edge in the square grid still lets us excite two adjacent plaquettes, so the
flux particle m still exists. However, m anyons are now confined, since applying Z, on a
link ¢ only commutes with Dy up to a phase of ¢(**: m is no longer a topological excitation.
In fact, (Z}); commutes with D, if and only if n|jk, i.e. if j is a multiple of n/k. In
other words, the flux particles which are not confined are just powers of m := m™*. In
terms of fusion rules, e and m are both bosons, and e* and m* are the vacuum. Also,
S,z = 'k is a primitive k-th root of unity. This shows that e and m, which generate
the topologically mobile vertex and plaquette excitations at ¢ = 1, generate the braided
tensor category D(Z/k).

4.2.2 Condensing m”

In §4.1.2, we made some basic changes in our model for condensing e in §4.1.1 for Z/2-toric
code. Using similar modifications to §4.2.1 above for condensing e*, one gets a model for
condensing mF¥ for any k | n. We leave the details to the interested reader.

4.3 Doubled semion - condensing b

Our doubled semion model uses a modified hexagonal lattice. Similar to the terminology
of [LWO05], given a hexagonal face/plaquette of our lattice, we call the six links bounding
the plaquette edges and the six links emanating outward from the vertices of the plaquette
legs:

We now add vertical links on the face of the plaquette, close to the corner of the rightmost
vertex of the plaquette. We draw this extra vertical link approximately parallel to the
north-east edge of the plaquette.

As in Z/2 toric code, we define the space H, = C* = C|0;) + C|1;) on each link in the
plane.

The “doubled semion” modular tensor category is the Drinfel’d center of the fusion
category Vec[Z/2,—1], the category of Z/2-graded vectorspaces where ag 4, = —1, where
g € Z/2 is the nontrivial group element. Excitations in the usual doubled semion model
come in three forms: the semions ¢, and the boson b. The boson b is an excitation of the

48 —



plaquette operator, which exists in a state ¢ when B, |¢)) = —[¢), but % is in the ground
state of A, for each vertex v of p. The semions o and & are both excitations of vertex
terms, and correspond to the simple objects in Z(Vec[Z/2, —1]) with underlying object g
and half-braiding with g given by 4.

In our model, the requisite operators A,, By, C,y and D, are given by 2

A, = | %*Z

10
B, = where W := [ ]
01
Cp = ° Z\.}
. e R
X A : -
Dy .= AN , et , or Yz o
BRI N

oxN

A, imposes a zero-sum around a given vertex, while B, averages over a state and its
opposite up to a phase imposed by the number of outgoing legs which are in the state |1).
The term B, inserts a loop around the plaquette p, as in toric code, while applying a phase
to account for the nontrivial associator. Because inserting a loop only makes sense in the
context of diagrammatic calculus, we precompose with P, the projection into the ground
state of [], A,. Thus, B, only inserts a loop when no vertex of p contains an excitation;
otherwise, B), is a scalar multiple of the identity. Since —P (and hence —B)) favors a lack
of vertex excitations, and A, and B, terms still commute, this does not affect the physics,
as asserted in [LWO05].

As defined above, an excitation of type b occurs on a plaquette p when B, has the
eigenvalue —1. Thus, when ¢t = 1, we may locally apply the operator X to a vertical edge,
locally creating or destroying a b-excitation on any plaquette, just as when we condensed m
in Z/2 toric code in §4.1.2. Similarly, the action of Dy on a state containing a o excitation
will produce the superposition o @& 7. String operators attempting to move a o particle
more than a single link will anticommute with some D, term, so the semions are now
confined, leaving no nontrivial topological excitations.

In defining B,, we extend the definition originally appearing in [LWO05, Section VI A], rather than
implementing the general definition we give in § 2.1. This emphasizes the fact that the strategy for modifying
lattice models to accomplish anyon condensation described in Section 3 is based on features of the topological
order, and therefore robust to small changes in the details of the original model.
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4.4 Doubled Fibonacci

The unitary fusion category Fib has simple objects 1 and 7, and the fusion rule 7®7 = 1®7.
This makes Fib the smallest fusion category (in several senses) which is not pointed, i.e.
where the simple objects do not form a group. Fib can be constructed in several ways,
including as the semisimple quotient of the Temperly-Lieb category at index ¢ [KL94]. In
[BD12], the associator and braidings on categories with these fusion rules are determined
algebraically; see also [TTWLO08], although they pick the opposite braiding. The fusion
category Fib consists of the following data.

e Simple objects (edge labels): {1,7}.
e Quantum dimension d; =1, d, = .
o Fusionrules 1 ® 1 =1, 17271271, 7Q7=16T.

e F-symbols:

with all other F-symbols being 1. Here, ¢ = 14V5 g the golden ratio, and —¢~! =

2
1_—2‘/5 is the other root of 2 — 2 — 1.

The fusion category Fib can be made into a UMTC with two different braidings, which
are reverse to one another; we arbitrarily denote one by Fib, so that the other is Fib, where ~
refers to the fact that the braiding is reversed. The UMTC Fib has the following additional
data.

e Braiding and R-symbols: The braiding between 7 and 7 is given by
Y
Brr=q° I+q6<p ¢
2mi/10 g g primitive 10th-root of unity such that ¢ = q+q~'. Equivalently,
a b a b
\
we list the R-symbols ? = R Y . For Fib, R7" = ¢®, R]" = ¢, and all other
C

C

where g = e

R-symbols are 1.
: Loy
S-matrix: § = —=
e S-matrix v (4,0 _1>

e T-matrix: T = (1 0)
0gq

I
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To obtain the UMTC Fib, we replace ¢ with ¢~', to obtain the following.
e R-symbols: R7" = ¢, R]" = ¢*, all other R symbols are 1.

e S-matrix: identical to Fib.

e T-matrix: T = (1 06)
0gq

By [Miig03c, Rem. 4.3], we have a braided tensor equivalence Z(Fib) = Fib XFib,
allowing us to derive the data of Z(Fib) from that of Fib and Fib. Explicitly, the UMTC
Z(Fib) has the following data.

e Simple objects (anyon types): {I1X 1,7 XK 1,1 X 7,7 X 7}. For brevity, we rename
the anyons as follows: 1 := 1K1, 7 :=7X1, 7:= 1K1, b:=7X7. Here, T
does not denote the dual of 7 but rather the fact that 7 € Fib C Z(Fib) carries the
inverse half-braiding. We choose the name b for 7 X7 because, as we will see, b is a
non-Abelian boson.

e Fusion rules:

T T b
T T b
1®e7| b TPHb

b |17 TODb
TOLTOL1DTESTDD

Sl i [ e N0t
SN |

e The F-symbols, R-symbols, S-matrix and T-matrix can be obtained by tensoring the
matrices for Fib and Fib. In particular, we can see that b is a boson. First, b has
trivial twist 8, = 1, because

Oy = 0700, 07 = (¢" - ¢°) idyr = idy,

since the 7 and 7 particles are transparent to one another. We can also compute the
R-symbols R’ = RPTRZ™ = 1 and R?* = R]"R]” = 1. Note that b is not bosonic
in all fusion channels: R = RY"R]" = ¢3, and R%b =R]"RLT =¢".

The double Z(Fib) contains a single nontrivial connected étale algebra A = 1 @ b,
which is the canonical Lagrangian algebra [DNO13, §3.2] A = 1@ 7 X7 in FibXFib. Since
A is Lagrangian, Z(Fib)'$¢ = Vec, and the condensed phase has trivial topological order.
However, this A is a minimal example where the underlying object of A is not just the
direct sum of invertible objects.

Since all fusion spaces in Fib are 1-dimensional, i.e. Fib is multiplicity free, we can
implement the condensation of A on the hexagonal lattice, with spins associated to each
link. (One could instead associate a spin to each vertex, but this would lead to higher
dimensional local Hilbert spaces, which would make the Hamiltonian more complicated to
write down). Each ordinary link receives a 2-dimensional Hilbert space, with basis vectors
|1) and |7) labeled by the simple objects of Fib, while the vertical red link receives a
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3-dimensional Hilbert space, with basis vectors |1}, |¢), and |6), where ¢ and € are basis
vectors for the 1-dimensional spaces Fib(1 — F(7X7)) and Fib(r — F(7XT)) respectively.

The original Levin-Wen Hamiltonian (without the added vertical links) associated to
Fib is described in [LWO05, § VI.B], and our Hamiltonian will be a modification. The A4,
term projects onto the subspace where 0, 2, or 3 of the links which meet at v are labelled
by |7) or |#). For a vertical link ¢, Cy projects onto the subspace spanned by |1).

The B, and D, , terms are more complicated. As in [LWO05], we will not write out
the B, term explicitly, because, as is generally the case for objects in a fusion category
with dimension greater than 1, By does not factor as a tensor product of operators local
to a smaller region, meaning that the final description is not more concise or enlightening
than (4.1). For the same reasons, we will not write out the entire D, , term. However, we
have given definitions of B, and D, 4 as linear combinations of tensor products of operators
local at each vertex, and we will explicitly compute those local operators which involve the
half-braiding, multiplication, and separator of A.

First, we begin with the B) term, which involves the half-braiding of A when the
inserted 7-loop crosses under the vertical link of p. When resolving the B term (3.4) as
in (2.5), we end up with local operators of the following form at the vertex v incident to
the vertical link.

~

T v

The action of this operator on the local Hilbert space H, = C(z — Ay) is given by

fre—4 Cf

If the vertical link is labelled by |1), i.e. on states in the image of Cy, these operators

trivialize to de—e. The subspace where the on the vertical link is in span{|¢),|0)}, corre-
sponding to the summand b C A, is also preserved. For each choice of e and e, we thus get
a matrix Me,e] € C(A, A) = My(C).

We can compute the half-braiding of b under 7 using the hexagon equation. In the
same basis as the associator/F-symbols, the half-braiding e, : 7b — b7 is given by

T _ ( _9072 q3/2m> 1 (1)

e

RV p?

where ¢1/2 = ¢27i/20,
There are 3 possible choices for each of the vertices @ and e: ~7" = Y ST — TT,

Aol = ﬁ : 7 — 71, and v = ©~1/2>" . 1 — 77. Thus, there are 9 matrices to
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o, Wo o s it b 1,0
)= (
u[r e = (
)= (
[y 7=
ol )= (77)
iy o] =
(
(

W[y 7]

M [¢_1/2\/’ ¢_1/2\/‘

ey 1= (1)

Each 0 in these matrices appears because of the requirement that B} = (B; )T = 0 on states
which excite A,.

The other difficulty is in resolving the D, , term. Most of the term is analogous to
string operators, and can be written as local operators in a similar way, as shown in (3.5).
The novel ingredient is the condensation morphism

><:me:,414—>1414,

viewed as a morphism in X. In other words, we want the corresponding matrices u” €
End(X (1 — AA)) =2 M5(C) and p! € End(X(1 — AA)) = M;5(C).

To give a basis for X(r — AA), we consider that any morphism 7 — AA factors as
(f®g)o~y, where v : 7 — xy is a fusion channel, zy € Irr(X) are edge labels, and f : z — A
and g : y — A. Since there is at most one fusion channel 7 — xy, it suffices to pick f and g
in the basis {|1), ), [0)} of X(1 — A) ® X (1 — A) previously chosen. This gives the basis

{106),16:), 1.0),101),[10)} € X (1 — AA).
In the same way, we obtain a basis

{160), |e0), 1), [10), [11)} € X(1 — AA).
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In the above bases, the matrices are as follows.

e B e A Y I Y (e Y

1 q3/2W @73 5073 75073/2 73073/2
NT — § 43/2W o3 o3 *30_3/2 ﬂp—:a/z
q—7/2W 7()0—3/2 7@—3/2 1 1
q—7/2W —<p—3/2 —e0_3/2 1 1
(pz q2<,0—3/2 q22<,0_1 q22<,0_1 q23<p_1/2
) q—2@—3/2 3 90—1 _2()0—1/2 _2@—1/2 3@_1
1_ = 25 -1 _o,.-1/2
wo= q “2¢p 2¢ 2 2 0
6 —20 1 —1/2
q “2¢p —2p 2 2 0
g 23p" 12 3p71 0 0 3

We now consider the fates of anyons in the condensed phase, i.e. at £ = 1. We begin
by computing the category Z(Fib), making use of the free-forgetful adjunction. Because
AZ1db, we have TAZ 7B T D b=TA. Therefore, the free modules 7A4 and TA4 are
simple and isomorphic. Finally, bA4 X2 b P 1 PT7BT P b, so bAy = Ay & 7A4. Thus,
Irr(Z(Fib) 4) contains two simple objects: the vacuum A4, and a single species of excitation
TAL.

The module 7A 4 is not local, and hence does not correspond to a topological excitation
at t = 1. By the R-symbols RZ’T = Rg’b = ¢° and R%T = R;’b = ¢5, we can see that the
double-braiding between b and 7 is given by

A
b _
é =q° I +q° IT
T b T b T b
where the trivalent vertices on the right-hand side are chosen so that
idTb = p + IT
T b T b

Thus, the defect operators o] will not commute with D), ;, terms which cross r, and hence
create an excitation which is not topologically mobile.
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