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Abstract. Topologically ordered quantum spin systems have become an area of great interest, as
they may provide a fault-tolerant means of quantum computation. One of the simplest examples of
such a spin system is Kitaev’s toric code. Naaijkens made mathematically rigorous the treatment
of toric code on an infinite planar lattice (the thermodynamic limit), using an operator algebraic
approach via algebraic quantum field theory. We adapt his methods to study the case of toric code
with gapped boundary. In particular, we recover the condensation results described in Kitaev and
Kong and show that the boundary theory is a module tensor category over the bulk, as expected.

1. Introduction

Kitaev’s quantum double model is a quantum spin system exhibiting topological order, and it
is a useful model to study since it exhibits non-abelian anyons [13]. These non-abelian anyons
allow for fault-tolerant quantum computation, which is of value in quantum information [21]. The
simplest example of Kitaev’s quantum double model is toric code. While the toric code model
exhibits abelian anyons, and is therefore less useful for computational purposes, it is nonetheless
well studied due to its simplicity [13, 15, 1]. Like in other topologically ordered quantum spin
systems, the fusion and braiding of the excitations in toric code are modeled by a unitary modular
tensor category, specifically Z(Hilbfd(Z/2Z)) [13]. We refer the reader to [14, Appendix E] for
more details on how topologically ordered spin systems are modeled by unitary modular tensor
categories.

Recently, Naaijkens used techniques from algebraic quantum field theory to study the case of toric
code on an infinite planar lattice [18, 19, 20]. In particular, he used these techniques to rigorously
analyze the thermodynamic limit. The more general case of Kitaev’s quantum double model for
abelian groups has been studied in analogous fashion [7]. Using these approaches, Naaijkens [18]
was able to recover the fusion and braiding statistics described in [13].

In algebraic quantum field theory [4, 5], one has a quasi-local C∗-algebra A that is the C∗-
inductive limit of a net Ai of von Neumann algebras corresponding to local regions i. Here we are
using an unspecified choice of local regions, with i an arbitrary index, as in this paragraph we are
sketching an abstract description of AQFT. We will later adapt this to our specific setting. We will
assume that A is faithfully represented on some Hilbert space H by means of a vacuum represen-
tation π0. One then considers superselection sectors, which are representations of A satisfying that
for any region i,

π|Aj
∼= π0|Aj
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for all j disjoint from i. An additional assumption that is often necessary is that of Haag duality,
which is that for all regions i,

Ai =

⎛⎝ ⋃︂
j∩i=∅

Aj

⎞⎠′

.

(Here we identify the Ai with their images under π0, a practice we will generally avoid in the
remainder in the text.) Under the assumption of Haag duality, the superselection sectors form a
braided C∗-tensor category, as described in detail in [8].

Naaijkens’ treatment of toric code used the following blueprint. He first constructed the super-
selection sectors corresponding to the known excitations in toric code [18]. He showed that these
sectors and their intertwiners formed the unitary modular tensor category Z(Hilbfd(Z/2Z)), as ex-
pected from previous work [13], even though he had not proven Haag duality at this point. He later
showed Haag duality [19] and proved that the known excitations exhausted all of the superselection
sectors [20].

A natural next step is to examine the case of toric code with boundary; see [15] for an in-depth
discussion of gapped boundaries in topologically ordered quantum spin models. We specifically
consider the case of a boundary where there is toric code on one side and vacuum on the other.
There are two types of gapped boundaries, namely the rough boundary and the smooth boundary;
see Figure 1 below. Due to the simplicity of the toric code model, these two types of boundary are in
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Figure 1. Lattices illustrating toric code with smooth boundary (left) and rough
boundary (right).

fact equivalent in some sense. In particular, one can pass from one boundary to the other by taking
the dual lattice and changing bases. We therefore focus our attention on the smooth boundary for
convenience. According to [15], the boundary excitations for a gapped boundary system exhibiting
topological order are given by a module tensor category over the unitary modular tensor category
of bulk excitations. Here, a module tensor category over a braided tensor category C is a tensor
category M equipped with a braided tensor functor F : C → Z(M), where Z(M) is the Drinfeld
center of M [9]. The module tensor category structure described in [15] is given by bringing a bulk
excitation to the boundary and mapping it to a half-braiding (an object in the Drinfeld center).
For toric code specifically, the boundary excitations should be described by the fusion category
Hilbfd(Z/2Z), as certain bulk excitations condense at the boundary. This category of boundary
excitations is then a module tensor category over the braided category of bulk excitations in the
way just described.

We adapt the work in [18, 19, 20] to the case of toric code with smooth boundary, recovering the
previously known description of how the excitations behave [15].

Theorem A. The fusion category of boundary excitations—more precisely, the fusion category of
superselection sectors localized in a fixed cone along the boundary—is a module tensor category over
the category of sectors for the bulk toric code.
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We prove this theorem in many parts. We begin by briefly reviewing some categorical notions
in §2. In §3, we present the model for toric code with smooth boundary. We construct a canonical
ground state in §4, and in §5 we construct the superselection sectors for the known excitations. We
show that these superselection sectors are localized and transportable along the boundary, and we
also show that the condensation results described in [15] hold. In §6, we present descriptions of the
intertwiners between these superselection sectors analogous to the one found in [18], and we define
the tensor product of superselection sectors and intertwiners between them. In §7, we prove that
the cone regions we consider give rise to infinite factors, allowing us to construct a fusion category
in §8 whose objects correspond to the known excitations. In §9, we construct a braided tensor
functor from the bulk toric code to the Drinfeld center of the fusion category constructed in §8,
which equips this category with the structure of a module tensor category. Finally, in §10 and §11,
we prove Haag duality and a property called the distal split property for the state ω0, allowing us
to show in §12 that we have accounted for all of the excitations in our model.

2. A brief overview of categorical definitions

In this section, we present a brief overview of category theory definitions that will be used. For
more detail see [9, §2]. We use the term tensor category to refer to a linear monoidal category,
as done in [9]. We say that a tensor category is rigid if every object has a dual and a predual,
and we said that a tensor category C is braided if it is equipped with a collection of isomorphisms
βa,b : a⊗ b→ b⊗ a for each a, b ∈ C that is natural in both inputs and satisfies the following braid
equations:

βa⊗b,c = (βa,c ⊗ idb)(ida⊗ab,c),
βa,b⊗c = (idb⊗βa,c)(βa,b ⊗ idc).

Note that in the above equations we have suppressed the associator isomorphisms that are part
of the data of being a monoidal category; however, all of the tensor categories we consider are
strict, meaning that the associator isomorphisms are all identity morphisms. A fusion category is
a semisimple rigid tensor category with finitely many isomorphism classes of simple objects and
with simple tensor unit. Most of the categories we consider are unitary fusion categories. These
are fusion categories equipped with a dagger structure, that is, for each morphism f : a→ b, there
exists a morphism f † : b→ a, and the map f ↦→ f † is an anti-linear involution. We further require
that with this choice of dagger structure, the endomorphism algebra for each object in the category
is a finite-dimensional C∗-algebra. In our examples, the dagger structure will generally correspond
to the adjoint in the C∗-algebraic setting.

We remark that the braided unitary fusion categories we consider satisfy a nondegeneracy condi-
tion making them unitary modular tensor categories. However, we will not make further mention of
this fact in what follows. For more information about modular tensor categories see [6, §8.13-8.14].

Example 2.1. One example of a fusion category we will use in the text is that of Hilbfd(Z/2Z).
This is the category of finite-dimensional Hilbert spaces graded by elements of the group Z/2Z.
The tensor product is given by the group structure in Z/2Z. That is to say, if Z/2Z = {1, g}, then
(V1 ⊕ Vg) ⊗ (W1 ⊕Wg) has 1-graded component (V1 ⊗W1) ⊕ (Vg ⊗Wg) and g-graded component
(V1 ⊗Wg)⊕ (Vg ⊗W1). The associator for this category is the standard “move parentheses map”;
that is to say, Hilbfd(Z/2Z) has trivial associator.

Given a tensor C, one can build a braided tensor category Z(C) called the Drinfeld center. We
remark that if C is a fusion category, then Z(C) is a modular tensor category. The objects in Z(C)
are half-braidings, which are pairs (z, σ−,z), where z ∈ C and σ−,z : − ⊗z → z ⊗ − is a natural
isomorphism satisfying that for all a, b ∈ C,

σa⊗b,z = (σa,z ⊗ idb)(ida⊗σb,z).
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As before, we suppress associator isomorphisms (which will be identities in our examples). A
morphism f : (z, σ−,z) → (w, σ−,w) in Z(C) is a morphism f : z → w in C satisfying that for all
a ∈ C,

(f ⊗ ida)σa,z = σa,w(ida⊗f).
For (z, σ−,z), (w, σ−,w) ∈ Z(C), we have that (z, σ−,z)⊗ (w, σ−,w) = (z ⊗w, σ−,z⊗w), where σ−,z⊗w

is given by the following formula:

σa,z⊗w := (idz ⊗σa,w)(σa,z ⊗ idw).

We then have that Z(C) is a braided tensor category, with braiding given by β(z,σ−,z),(w,σ−,w) := σz,w.
The goal of this paper will be to show that a specific fusion category M is a module tensor

category over a braided fusion category C in the manner described in [15].

Definition 2.2. Let M be a tensor category, and let C be a braided tensor category. We say that
M is a module tensor category over C if it equipped with a braided tensor functor F : C → Z(M).

Here a functor F : C → D between tensor categories is a tensor functor if it is equipped with
natural isomorphisms F 2

a,b : F (a ⊗ b) → F (a) ⊗ F (b) and F 1 : F (1C) → 1D that satisfy certain
coherence relations. In the example we will construct, these isomorphisms are idenities. We say
that a tensor functor F : C → D between braided tensor categories is braided if F 2

a,bF (β
C
a,b) =

βDF (a),F (b)F
2
a,b for all a, b ∈ C. Note that if F 2

a,b is the identity for all a, b ∈ C (as it will be in the

example we construct), the braided condition becomes simply F (βCa,b) = βDF (a),F (b).

Finally, occasionally in the course of the text, we refer to the notion of a C∗-tensor category. We
will typically use this term when we are referring to a tensor category with a dagger structure that
is not a unitary fusion category. In the literature, C∗-tensor category is often a stronger notion than
simply a tensor category with a dagger structure; see [22] for one paper using a stronger definition.
However, further discussion about this topic would take us too far afield.

3. Toric code with smooth boundary

We consider an infinite lattice with a smooth boundary, as shown in Figure 2. We associate with
each bond in the lattice a copy of C2. We let B denote the collection of all bonds in the lattice. As
in [18], for any finite subset Λ ⊆ B, we let A(Λ) be the finite-dimensional C∗-algebra corresponding
to the tensor product of M2(C) = B(C2) over the bonds in Λ. Note that if Λ1 ⊆ Λ2, then we have
a canonical inclusion A(Λ1) ⊆ A(Λ2). We define the algebra of local operators Aloc to be

Aloc :=
⋃︂

Λ⊆B finite

A(Λ),

and we define the quasi-local algebra A to be the completion of Aloc in norm. If Λ ⊆ B is any
subset, we define the algebra A(Λ) of operators localized in Λ to be the norm-completion of the
algebra

A(Λ)loc :=
⋃︂

Λ0⊆Λ finite

A(Λ0).

For an operator A ∈ Aloc, we define the support of A to be the collection of bonds supp(A) ⊆ B on
which A does not act as the identity.

We now describe the local Hamiltonians for the toric code model with smooth boundary. Note
that we have the following Pauli X, Y , and Z matrices in M2(C):

σX :=

(︃
0 1
1 0

)︃
, σY :=

(︃
0 −i
i 0

)︃
, σZ :=

(︃
1 0
0 −1

)︃
.

For a vertex s in the lattice, we let star(s) be the subset of B consisting of all bonds adjacent to
s (illustrated in Figure 2). Note that if s is on the boundary, star(s) only consists of three bonds,
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while otherwise star(s) consists of four bonds. Similarly, for face (or plaquette) p in the lattice, we
let plaq(p) be the subset of B consisting of all bonds adjacent to p (illustrated in Figure 2). For
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Figure 2. The lattice for toric code with smooth boundary. A star at a vertex in
the boundary, a plaquette, and a star at a vertex not in the boundary are illustrated
going from top right to bottom left.

a vertex s, we let As be the tensor product of Pauli X matrices over each of the bonds in star(s).
Similarly, for a plaquette p, we let Bp be the tensor product of Pauli Z matrices over each of the
bonds in plaq(p). Note that the matrices As and Bp commute for all vertices s and plaquettes p.
For a finite subset Λ ⊆ B, the local Hamiltonian has the form

HΛ = −
∑︂

star(s)⊆Λ

As −
∑︂

plaq(p)⊆Λ

Bp. (3.1)

We now want to frame the local Hamiltonians in (3.1) using the concept of interactions. An
interaction [3, p. 241] is a map Φ from the set of finite subsets of B to A satisfying that for any
finite subset Λ ⊆ B,

• Φ(Λ) ∈ A(Λ),
• Φ(Λ)∗ = Φ(Λ).

Observe that if we define the interaction Φ to be

Φ(Λ) =

⎧⎪⎨⎪⎩
−As if Λ = star(s),

−Bp if Λ = plaq(p),

0 otherwise,

(3.2)

then for any finite subset Λ ⊆ B,

HΛ =
∑︂
Λ0⊆Λ

Φ(Λ0).

We thus say that the local Hamiltonians HΛ are given by the interaction Φ. Note that the in-
teractions in (3.2) are invariant under the action of Z on the lattice by vertical translations (i.e.,
translations parallel to the boundary). More precisely, if we let τn : A → A denote translation by n
in the direction parallel to the boundary, then we have that for all finite Λ ⊆ B,

τn(Φ(Λ)) = Φ(n+ Λ),

where n+ Λ denotes the translation of Λ by n in the direction parallel to the boundary.
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4. Ground state

We proceed as in [18], which is based on the treatment in [1]. Note that for every finite subset
Λ ⊆ B, we have an action αΛ

t of R on A(Λ) given by

αΛ
t (A) := eitHΛAe−itHΛ for all A ∈ A(Λ).

We wish to take a limit over the net of finite subsets of B to obtain an action αt of R on A, and we
also want a closed operator δ defined on a dense subspace of A generating the dymanics, meaning

that αt = etδ. To do so, we will invoke [3, Thm. 6.2.4]. Observe that if Λ ⊆ B is a finite subset with
|Λ| > 4, then Φ(Λ) = 0, where Φ is the interaction described in (3.2). Furthermore, ∥Φ(Λ)∥ = 1
if Φ(Λ) ̸= 0, and if j ∈ B, then there are at most four finite subsets Λ ⊆ B such that j ∈ Λ and
Φ(Λ) ̸= 0. Hence, we have that

∑︂
n≥0

en

⎛⎜⎜⎝sup
j∈B

∑︂
Λ∋j

|Λ|=n+1

∥Φ(Λ)∥

⎞⎟⎟⎠ <∞.

Thus, the hypothesis of [3, Thm. 6.2.4] holds. We define a derivation δ with domain D(δ) = Aloc,
given on A ∈ A(Λ) (where Λ ⊆ B is finite) by

δ(A) := i
∑︂

Λ0∩Λ̸=∅

[Φ(Λ0), A].

By [3, Thm. 6.2.4], δ is norm-closable, and the closure δ generates a strongly continuous one-

parameter family of ∗-automorphisms αt of A, i.e., αt = etδ. Furthermore, we have that for all
A ∈ A,

lim
Λ⊆B finite

∥αt(A)− αΛ
t (A)∥ = 0,

uniformly for t in compact subsets of R.
Now, suppose A ∈ Aloc, and let Λ ⊆ B be a finite subset such that supp(A) ⊆ Λ and such that

any star or plaquette intersecting supp(A) is contained in Λ. Then we have that

δ(A) = i
∑︂

Λ0∩Λ̸=∅

[Φ(Λ0), A] = i[HΛ, A].

A ground state for this system [3, Thm. 6.2.52] is a state ω0 on A satisfying that for all X ∈ Aloc,

−iω0(X
∗δ(X)) ≥ 0.

We now construct such a state on A. To do so, we will make use of the following lemma, which is
a simple application of Cauchy-Schwarz.

Lemma 4.1 ([1, §2.1.1]). Suppose A is a unital C∗-algebra, and let ω be a state on A. Suppose
X ≤ I in A such that ω(X) = 1. (Here, I is the unit of A.) Then for all Y ∈ A, we have that

ω(XY ) = ω(Y X) = ω(Y ).

The existence of a ground state for the dynamics described above, which is also energy-minimizing,
is given by the following result.

Theorem 4.2. There exists a ground state ω0 : A → C for the dynamics given by the interactions
in (3.2), which satisfies that ω0(As) = ω0(Bp) = 1 for all stars s and plaquettes p. Furthermore,
ω0 is the unique state on A satisfying this property, and ω0 is pure.
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Proof. We proceed as in [1, §2.2.1], using arguments from [18, §2] for details omitted in that paper.
Let AXZ be the abelian, unital ∗-algebra generated by the star operators As and the plaquette
operators Bp. We define a state ω on AXZ by ω(As) = ω(Bp) = 1 for all star operators As and
plaquette operators Bp. Such a state exists since it exists in the boundary-less setting [18]. Indeed,
if we consider the collection of star and plaquette operators in the boundary-less setting for which
the centering vertex or face is on or left of a vertical line, then these operators satisfy the same
relations as the star and plaquette operators for the toric code with smooth boundary. Hence,
restricting the translation-invariant ground state for toric code without boundary (which takes the
value 1 on all star and plaquette operators) to the algebra generated by the star and plaquette
operators on or left of some vertical line gives a state on AXZ for the case with boundary that has
the desired properties. By Lemma 4.1, the equations ω(As) = ω(Bp) = 1 determine ω on AXZ .

We let ω0 be a Hahn-Banach extension of ω to A. Then ω0 is a ground state by the argument
used in [18]. In particular, by Lemma 4.1, we have that for all X,Y ∈ Aloc,

−iω0(X
∗δ(Y )) = ω0(X

∗[HΛ, Y ])

=
∑︂

star(s)⊆Λ

(ω0(X
∗Y )− ω0(X

∗AsY )) +
∑︂

plaq(p)⊆Λ

(ω0(X
∗Y )− ω0(X

∗BpY )),

where Λ ⊆ B is any finite subset satisfying that supp(Y ) ⊆ Λ and every star and plaquette
intersecting supp(Y ) is contained in Λ. Taking X = Y and using that As ≤ I and Bp ≤ I shows
that −iω0(X

∗δ(X)) ≥ 0 for all X ∈ Aloc. Hence ω0 is a ground state.
We now show that there is only one Hahn-Banach extension ω0 of ω to A. We present an

argument inspired by the one in [1, §2.2.1]. It suffices to show that ω0 is determined on all tensor
products of σZ , σX , and σZσX , as these matrices along with the identity form a basis for M2(C).
Let X be such an operator. First, observe that if X anti-commutes with a star or plaquette operator
Y , then by Lemma 4.1, we have that

ω0(X) = ω0(Y XY ) = −ω0(X)

and hence ω0(X) = 0. We may therefore assume that X does not anti-commute with any star or
plaquette operator. In addition, if As is a star operator and Bp is a plaquette operator, then XAs

and BpX are also tensor products of σZ , σX , and σZσX , as As is a tensor product of σX and Bp

is a tensor product of σZ . Suppose j ∈ supp(X) is a bond in the north-most row of supp(X). If
j is a vertical bond, then X must act as σX on j, as otherwise X anti-commutes with the star
operator As0 at the vertex s0 on the north end of j. In this case, letting s1 denote the vertex at the
south end of j, we may assume that X acts as the identity on j by replacing X with XAs1 , since
ω0(XAs1) = ω0(X) by Lemma 4.1. Note that the only bonds other than j affected by replacing
X with XAs1 reside in the two rows directly south of j. Analogously, if j is a horizontal bond, we
may assume X acts as the identity on j by replacing X with BpX, where here Bp is the plaquette
operator with north-most bond j. As before, the only other bonds affected by replacing X with
BpX reside in the two rows directly south of j.

Proceeding in this manner, we may assume that supp(X) is contained in two consecutive rows
in the lattice (one with horizontal bonds and one with vertical bonds). We claim that at this
point, X must be the identity, and hence ω0(X) = 1. Suppose X ̸= I, so that supp(X) ̸= ∅.
Let j0 ∈ supp(X) be the bond in the north-most row of supp(X) that is furthest to the west.
Suppose that j0 is a vertical bond. (The situation where j0 is horizontal is handled analogously.)
We consider the bond j1 directly to the southwest of j0 (see Figure 3). Since j0 is in the north-most
row of supp(X), we have by the argument from before that X acts as σX on j0. Moreover, since X
acts as the identity on all bonds south of j1, we must have that X acts as σZ or the identity on j1,
as otherwise X anti-commutes with the plaquette operator whose north-most bond is j1. But then
X must anticommute with the plaquette operator Bp0 containing j0 and j1, since by hypothesis X
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j0

j1

Figure 3. The north-east most bond j0 (bold, orange) of an operator X that is the
tensor product of σZ , σX , and σZσX and only acts nontrivially on two consecutive
rows (here the rows containing j0 and j1). The bond j1 (bold, cyan) is the bond
directly southwest of j0.

acts as the identity on the other bonds of this plaquette. Hence supp(X) must be empty, so X is
the identity.

Lastly, we have that ω0 is pure. Indeed, suppose ϕ : A → C is a functional satisfying that
0 ≤ ϕ ≤ ω0. Then for all star operators As and plaquette operators Bp, we have that

0 ≤ ϕ(I −As) ≤ ω(I −As) = 0, 0 ≤ ϕ(I −Bp) ≤ ω(I −Bp) = 0,

so ϕ(As) = ϕ(I) = ϕ(Bp). Thus by the uniqueness condition for ω0, ϕ = ϕ(I) ·ω0, so ω0 is pure. □

Remark 4.3. We have that ω0 is invariant under the action of Z by translations parallel to the
boundary, since such translations map star operators to star operators and plaquette operators to
plaquette operators.

For the remainder of this paper, we let (π0,H,Ω) be the GNS representation for ω0. Note that
this means that H is the GNS Hilbert space corresponding to π0 and Ω is the canonical cyclic
vector.

5. Excitations

In toric code, pairs of excitations are given by string operators corresponding to finite paths, as
described in the following definition.

Definition 5.1 ([13, 18]). A finite path of type Z is a path γ in the lattice, with endpoints
vertices of the lattice (see Figure 4). The string operator corresponding to this path is the operator
ΓZ
γ :=

⨂︁
j∈γ σ

Z
j . Similarly, a finite path of type X is a path γ in the dual lattice, with endpoints

faces of the lattice or the boundary (see Figure 4). The string operator corresponding to this path
is the operator ΓX

γ :=
⨂︁

j∈γ σ
X
j . (Note that we say that j ∈ γ if j is a bond intersected transversally

by γ.) Finally, a finite path of type Y is a ribbon γ, consisting of a finite path γ1 of type X and an
adjacent path γ2 of type Z (see Figure 4). The string operator corresponding to this path is the
operator ΓY

γ := ΓX
γ1Γ

Z
γ2 .

The endpoints of paths of type Z, X, and Y are sites of type Z, X, and Y respectively. Note that
a site of type Z is a vertex, a site of type X is a plaquette, and a site of type Y is a vertex-plaquette
pairing (illustrated in Figure 4). These sites give the location of excitations corresponding to the
endpoints of a string operator. Note that a site of type Z can be located on the boundary, but a
site of type X or type Y must be located in the bulk of the lattice.

We wish to create single excitations by extending one endpoint of a path to infinity. We will
describe these excitations using the algebraic quantum field theory concept of superselection sectors.
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Figure 4. Finite paths of types Z, X, and Y , shown from top right to bottom
left. The path of type Z is the bold, orange path in the top right of the figure,
the path of type X is the dashed, blue path in the middle of the figure, and the
path of type Y is the path consisting of both a dashed, blue component and a bold,
orange component in the bottom left of the figure. The path of type X illustrated
is one with one “endpoint” at the boundary. The dotted lines in the path of type Y
illustrate the components of the ribbon, with the terminal dotted lines corresponding
to the sites at the endpoints.

We first define the notion of a cone along the boundary, which will be necessary in order to define
a superselection sector.

Definition 5.2 ([18, Def. 3.3]). A cone along the boundary is a subset Λ ⊆ B formed by taking all
bonds of the lattice that intersect the region enclosed by two rays making an angle smaller than
π/2, with one of the rays running along the boundary (see Figure 5).

Definition 5.3 ([22, 20]). A superselection sector is a representation π of A satisfying that for any
cone Λ along the boundary,

π|A(Λc)
∼= π0|A(Λc),

where the equivalence above is unitary equivalence. The above equation is called the superselection
criterion.

In our work, we will need a reformulation of Definition 5.3 that is easier to work with in practice.
This will be analogous to the notion of localized and transportable endomorphism in [18], but we will
rephrase the definitions of localization and transportability so that they refer not to endomorphisms
but to ∗-homomorphisms π : A → B(H), where H is as usual the GNS Hilbert space corresponding
to π0. Not every superselection sector corresponds to an endomorphism of A, a fact noted in
[18], so working with superselection sectors as ∗-homomorphisms into B(H) allows for a more
comprehensive treatment. Furthermore, doing so allows us to avoid identifying A with π0(A),
which is done in [18].

Definition 5.4 ([18, Def. 3.2]). Let Λ ⊆ B, and let π : A → B(H) be a ∗-homomorphism. We say
that π is localized in Λ if π(A) = π0(A) for all A ∈ A(Λc).

9
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Figure 5. A cone Λ along the boundary. The bolded orange bonds are those that
intersect the shaded region and are the elements of the set Λ ⊆ B depicted.

We will specifically consider the case of ∗-homomorphisms that are localized in a cone along
the boundary. However, it will sometimes be useful for us to consider regions that are not cones,
which is why Definition 5.4 is stated in more generality. Transportability, on the other hand, is
only defined for cones along the boundary.

Definition 5.5 ([18, Def. 4.1]). Let π : A → B(H) be a ∗-homomorphism localized in a cone Λ

along the boundary. We say that π is transportable if for all cones ˜︁Λ along the boundary, there

exists a ∗-homomorphism π′ : A → B(H) localized in ˜︁Λ that is unitarily equivalent to π.

Remark 5.6. Using arguments in [20, §2], if π is a superselection sector, then π is unitarily
equivalent to a ∗-homomorphism π′ : A → B(H) that is localized in a cone Λ along the boundary
and is transportable. We can therefore view superselection sectors as ∗-homomorphisms that are
localized and transportable.

Let Λ be a cone along the boundary. We wish to describe superselection sectors π localized in Λ.
We begin by taking an infinite path γ of type X, Y , or Z starting at the boundary and contained
in Λ. A path of type Z starting at the boundary is simply a path of type Z starting at a vertex
site s at the boundary. Paths of type X and Y starting at the boundary are shown in Figure 6.
By the argument in [18, Prop. 3.1], we have an automorphism ρkγ : A → A given on A ∈ Aloc by

ρkγ(A) = lim
n→∞

Γk
γnAΓ

k
γn .

Here k denotes the type of γ, and γn is the path consisting of the first n bonds of γ. Note that
π0 ◦ ρkγ is localized in any region Λ0 ⊆ B such that γ ⊆ Λ0. In particular, we have that π0 ◦ ρkγ is

localized in Λ. In addition, we have that ρkγ ◦ ρkγ = 1, where 1 is the identity automorphism.
Note that the above discussion did not use that the path γ started at the boundary. Thus, for

a site s in the bulk, we can define automorphisms of all types (X, Y , and Z) as described in [18,
Prop. 3.1]. For k ∈ {X,Y, Z} and an appropriate site s (in the bulk or on the boundary), we define
ωk
s := ω0 ◦ ρkγ , where γ is an infinite path (of the appropriate type) starting at s. By the argument

10
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Figure 6. An infinite path γ of type X (dashed, blue) starting at the boundary,
as well as an infinite path of type Y (dashed, blue combined with bold, orange)
starting at the boundary.

used in [18, Lem. 3.1], ωk
s does not depend on the path γ. Note that if s is on the boundary, then

s must be of type Z.
For k ∈ {X,Y, Z} and an appropriate site s, we let πks be the GNS representation of ωk

s . We
then have the following proposition, which mirrors [18, Thm. 3.1].

Proposition 5.7. Let Λ be a cone along the boundary. We then have the following:

• For any k ∈ {X,Y, Z} and appropriate site s in Λ, πks is localized in Λ, that is, π0|A(Λc)
∼=

πks |A(Λc).
• (Type Z particle can be moved to boundary) For any two vertex sites s, r in Λ (bulk or
boundary), πZs

∼= πZr .

Proof. Let k ∈ {X,Y, Z} and s be an appropriate site in Λ. The fact that π0|A(Λc)
∼= πks |A(Λc)

follows by an argument given in the proof of [18, Thm. 3.1], but we repeat it here. Let γ be a path
of the appropriate type starting at s and entirely contained in Λ. Then (π0 ◦ ρkγ ,H,Ω) is also a

GNS representation for ωk
s , and π0 ◦ ρkγ(A) = π0(A) for all A ∈ A(Λc). By uniqueness of the GNS

representation, π0 ◦ ρkγ ∼= πks , so the result follows.

Similarly, the fact that πZs
∼= πZr for any two vertex sites s, r in Λ (bulk or boundary) also follows

from an argument given in the proof of [18, Thm. 3.1], but we repeat it here. Let γ be an infinite
path contained in Λ of type Z starting at s. Let γ′ be a path from s to r of type Z entirely contained
in Λ. Then ωZ

r = ω0 ◦ AdΓZ
γ′ ◦ ρZγ . Hence (π0 ◦ AdΓZ

γ′ ◦ ρZγ ,H,Ω) is a GNS representation for ωZ
r .

But since Γγ′

Z is a unitary, we have that

π0 ◦AdΓZ
γ′ ◦ ρZγ ∼= π0 ◦ ρZγ ∼= πZs .

Hence by uniqueness of the GNS representation, πZs
∼= πZr , as desired. □

Furthermore, we obtain condensation of the type X excitations at the boundary, while the type
Z excitations do not condense at the boundary. This is described in the following theorem

Theorem 5.8. Let Λ be a cone along the boundary. We then have the following:

• (Type X particle condenses at the boundary) For any (bulk) plaquette site s in Λ, πXs
∼= π0.

• (Type Y particle becomes type Z at boundary) For any (bulk) combined site s in Λ, πYs
∼= πZr ,

where r is a vertex site on the boundary.
• (Type Z particle does not condense at the boundary) πZs ̸∼= π0 for a vertex site s in Λ.

11



Proof. We first show show that πXs
∼= π0 for any (bulk) plaquette site s. Let s be a plaquette

site. We let γ be an infinite path contained in Λ of type X starting at s, with γn the finite path
consisting of the first n segments of γ. Let γ′ be a path from s to the boundary of type X entirely
contained in Λ (see Figure 7). Then for any local operator A ∈ AXZ , eventually A commutes with

<latexit sha1_base64="0fX6l9Yv/vbevqgHxX4b/C/TqVI="></latexit>

Figure 7. An infinite path γ (dashed, orange), along with a path γ′ (dashed,
cyan) from the starting site of γ to the boundary.

ΓX
γ′ΓX

γn , since this is true for any star or plaquette operator. We thus have that AdΓX
γ′ ◦ρXγ (A) = A

for all A ∈ AXZ , and hence ω0 ◦AdΓX
γ′ ◦ ρXγ = ω0 since ω0 is determined by its values on AXZ . We

then have that (π0 ◦AdΓX
γ′ ◦ ρXγ ,H,Ω) is a GNS representation for ω0, so we have that

π0 ∼= π0 ◦AdΓX
γ′ ◦ ρXγ ∼= π0 ◦ ρXγ ∼= πXs ,

as desired.
Now, consider a (bulk) combined site s in Λ. Let γ be an infinite ribbon path contained in Λ

starting at s, and let γ1 and γ2 be the paths of type X and Z respectively that comprise γ. Let γ′

be a path from the plaquette site in s to the boundary, and let r denote the vertex site contained in
s. Let γ1n and γ2n denote the finite paths consisting of the first n segments of γ1 and γ2 respectively.
Then for any local operator A ∈ AXZ , eventually A commutes with ΓX

γ′ΓX
γ1
n
, so for large enough n,

AdΓX
γ′ ◦AdΓX

γ1
n
◦AdΓZ

γ2
n
(A) = AdΓZ

γ2
n
◦AdΓX

γ′ ◦AdΓX
γ1
n
(A) = AdΓZ

γ2
n
(A).

Hence for all local A ∈ AXZ , AdΓ
X
γ′ ◦ ρYγ (A) = ρZγ2(A). It follows that ω0 ◦ AdΓX

γ′ ◦ ρYγ = ωZ
r .

Indeed, ωZ
r = ω0 ◦ ρZγ2 takes the value 1 on all star and plaquette operators except for the star

operator Ar at the site r, as ωZ
r (Ar) = −1. By the argument used in the proof of Theorem 4.2,

therefore, ωZ
r is determined by its values on AXZ , so ω0 ◦ AdΓX

γ′ ◦ ρYγ = ωZ
r . We then have that

(π0 ◦AdΓX
γ′ ◦ ρYγ ,H,Ω) is a GNS representation for ωZ

r , so we have that

πZr
∼= π0 ◦AdΓX

γ′ ◦ ρYγ ∼= π0 ◦ ρYγ ∼= πYs .

The desired result follows by Proposition 5.7.
Finally, we show that πZs ̸∼= π0 for a vertex site s. Let s be a vertex site. We use an argument in

the proof of [18, Thm. 3.1], modified to fit our setting. For clarity, we repeat the argument in full.
Since ω0 is a pure state, the GNS representation π0 is irreducible. Since πZs can be obtained by
precomposing π0 with an automorphism of A, πZs is also irreducible. Hence ω0 and ωZ

s are factor
states. By [10, Prop. 10.3.7], π0 ∼= πZs if and only if π0 and πZs are quasi-equivalent. Thus, since
ω0 and ωZ

s are factor states, by [2, Cor. 2.6.11], in order to show that πZs ̸∼= π0, it suffices to show
12



that there exists ε > 0 such that for all finite sets ˆ︁Λ of the lattice, there exists a local operator

B ∈ A(ˆ︁Λc) such that |ω0(B)− ωZ
s (B)| ≥ ε∥B∥.

Let ε = 1, and let ˆ︁Λ be a finite subset of the lattice. Without loss of generality, we may assume

that ˆ︁Λ contains the star at s. Let γ be a non-self-intersecting curve on the dual lattice starting and

ending at the boundary such that ˆ︁Λ is contained in the interior of γ (see Figure 8), and let B := ΓX
γ .

Then B ∈ A(ˆ︁Λc) is a local operator, and B is the product of all star operators in the region bounded

<latexit sha1_base64="d87hbcFrwh0aULEWy+VuYSE8nfQ="></latexit>

s

Figure 8. A finite subset ˆ︁Λ ⊆ B (bolded orange bonds) containing the star at s,

and a curve γ (dashed cyan curve) starting and ending at the boundary with ˆ︁Λ
contained in the interior.

by γ, including the star operator at s. We thus have that ω0(B) = 1 and ωZ
s (B) = −1, so

|ω0(B)− ωZ
s (B)| = 2 > ∥B∥. □

Proposition 5.7 and Theorem 5.8, along with their proofs, give the following corollary.

Corollary 5.9. Let k ∈ {X,Y, Z} and s be an appropriate site. Then πks is a superselection sector.
More specifically, if γ is an infinite path of type k localized in the cone Λ along the boundary, then
π0 ◦ ρkγ is transportable in addition to being localized in Λ.

For simplicity of notation, we will define πkγ := π0 ◦ ρkγ , and we will use this notation for the
remainder of this paper.

6. Intertwiners and tensor products

We wish to build a unitary fusion category in which the simple objects are given by the boundary
excitations described in Theorem 5.8. To do so, we need that for two boundary excitations localized
in a cone Λ along the boundary, the intertwining isomorphisms are contained in π0(A(Λ))

′′. As
noted in [18], traditionally such a result is proven using Haag duality, which is the statement that
for each cone Λ, the following equality holds:

π0(A(Λ))
′′ = π0(A(Λ

c))′.
13



We will show later that Haag duality holds in this situation (see §10). However, there is also a
direct argument showing that for toric code without boundary, the intertwining isomorphisms for
excitations πZs and πZr localized in a cone Λ are contained in π0(A(Λ))

′′ [18], and this argument
holds without modification in the situation with boundary. This direct construction will be useful
for constructing a tensor functor from the bulk to the boundary (see §9), as well as for bounding
the number of excitations (see §12).

Proposition 6.1 ([18, Lem. 4.1]). Let γ1 and γ2 be two infinite paths of type Z starting at the
boundary. Then there is a unique unitary V such that AdV ◦ πZγ1 = πZγ2 and V Ω = ΓZ

γ′Ω, where Ω

is the GNS vector for ω0 and γ′ is any path of type Z from the starting site of γ1 to the starting
site of γ2.

Furthermore, if ˜︁γn is a sequence of paths of type Z from the nth vertex of γ1 to the nth vertex
of γ2 satisfying that the distances from ˜︁γn to the starting sites of γ1 and γ2 go to infinity, then
V = limWOT ΓZ

γ1
n
ΓZ˜︁γnΓZ

γ2
n
, where γin is the path consisting of the first n bonds of γi.

Remark 6.2. We observe that in the above proposition, we identify the string operators ΓZ
γ with

their image under the GNS representation π0. This identification is common in the field of operator
algebras. In fact, since A is a UHF (uniformly hyperfinite) algebra, it is simple, so A ∼= π0(A). (For
more information on UHF algebras, see [10], specifically page 759 and section 12 of that text.) We
will generally try to distinguish A and π0(A) for clarity, but we will often identify string operators
and star and plaquette terms with their image under π0. We hope that it will be clear from context
when we have done so.

We also have a similar direct construction for unitaries intertwining condensed typeX excitations
and the identity. We will not need to use this construction once we have shown Haag duality;
however, the proof is illustrative of the techniques used in proving [18, Lem. 4.1].

Proposition 6.3. Let γ be an infinite path of type X starting at the boundary. Then there is a
unique unitary V such that AdV ◦ πXγ = π0 and V Ω = Ω (where Ω is the GNS vector for ω0).
Furthermore, if ˜︁γn is a sequence of paths of type X from the nth face of γ to the boundary satisfying
that the distance from ˜︁γn to the starting bond of γ goes to infinity, then V = limWOT ΓX

γnΓ
X˜︁γn, where

γn is the path consisting of the first n bonds of γ.

Proof. First, note that as shown in the proof of [18, Lem. 4.1], we have that AsΩ = Ω for all stars
s, since

∥AsΩ− Ω∥2 = ω0((As − I)∗(As − I)) = ω0(2I − 2As) = 0. (6.4)

The existence and uniqueness of V follows by the same argument used in [18, Lem. 4.1]. In
particular, V is unique by Schur’s Lemma, and V exists by uniqueness of the GNS representation.

To show that V = limWOT ΓX
γnΓ

X˜︁γn , we follow the proof of [18, Lem. 4.1], with modifications to

fit our setting. For clarity, we repeat the argument in full. Note that ΓX
γnΓ

X˜︁γn is the product of the

star operators in the region bounded by γn ∪ ˜︁γn and the boundary. Hence ΓX
γnΓ

X˜︁γnΩ = Ω by (6.4).

Now, if A ∈ Aloc, then there exists N ∈ N such that for all n ≥ N ,

supp(A) ∩ (γ \ γn) = supp(A) ∩ ˜︁γn = ∅.

We then have that for all n ≥ N ,

ΓX
γnΓ

X˜︁γnρXγ (A)ΓX
γnΓ

X˜︁γn = ΓX
γnΓ

X˜︁γnΓX
γnAΓ

X
γnΓ

X
γnΓ

X˜︁γn = ΓX˜︁γnAΓX˜︁γn = A.

Hence, after applying π0 to both sides of the above equation, we have that for all A,B ∈ Aloc,

lim
n→∞

⟨ΓX
γnΓ

X˜︁γnπXγ (A)Ω|πXγ (B)Ω⟩ = lim
n→∞

⟨π0(A)ΓX
γnΓ

X˜︁γnΩ|πXγ (B)Ω⟩ = ⟨π0(A)Ω|πXγ (B)Ω⟩.
14



On the other hand, we have that for all A,B ∈ Aloc,

⟨V πXγ (A)Ω|πXγ (B)Ω⟩ = ⟨π0(A)V Ω|πXγ (B)Ω⟩ = ⟨π0(A)Ω|πXγ (B)Ω⟩.

Thus, since the sequence (ΓX
γnΓ

X˜︁γn) is uniformly bounded and πXγ (Aloc)Ω is dense in H (as ρXγ is an

automorphism of A and πXγ = π0 ◦ ρXγ ), we obtain that V = limWOT ΓX
γnΓ

X˜︁γn , as desired. □

We will also need an explicit description of the intertwiners between two distinct condensed type
X excitations in order to construct a tensor functor from the bulk to the boundary in §9. We can
obtain such an explicit description using [18, Lem. 4.1].

Proposition 6.5. Let γ1 and γ2 be two infinite paths of type X starting at the boundary. Then
there is a unique unitary V such that AdV ◦ πXγ1 = πXγ2 and V Ω = Ω (where Ω is the GNS vector

for ω0). Furthermore, if ˜︁γn is a sequence of paths of type X from the nth face of γ1 to the nth face
of γ2 satisfying that the distances from ˜︁γn to the starting bonds of γ1 and γ2 go to infinity, then
V = limWOT ΓX

γ1
n
ΓX˜︁γnΓX

γ2
n
, where γin is the path consisting of the first n bonds of γi.

Proof. As before, existence and uniqueness of V follow by the argument used in [18, Lem. 4.1]. We
let ˆ︁γ1 (respectively ˆ︁γ2) be the infinite path consisting of all but the first bond of γ1 (respectively

γ2). Then by [18, Lem. 4.1], we have that ˆ︁V := limWOT ΓXˆ︁γ1
n
ΓX˜︁γn+1

ΓXˆ︁γ2
n
intertwines πXˆ︁γ1 and πXˆ︁γ2 .

(Here ˆ︁γin is the path consisting of the first n bonds of ˆ︁γi.) We now let ΓX
1 (respectively ΓX

2 ) be the

Pauli X operator on the first bond of γ1 (respectively γ2), and we let V := ΓX
1
ˆ︁V ΓX

2 = ΓX
2
ˆ︁V ΓX

1 . We

then have that V = limWOT ΓX
γ1
n
ΓX˜︁γnΓX

γ2
n
. Also, ρX

γi = AdΓX
i ◦ ρXˆ︁γi for i ∈ {1, 2}, so after applying

π0, we have that

V πXγ1(−) = ΓX
2
ˆ︁V ΓX

1 π
X
γ1(−) = ΓX

2
ˆ︁V πXˆ︁γ1(−)ΓX

1 = ΓX
2 π

Xˆ︁γ2(−)ˆ︁V ΓX
1 = πXγ2(−)ΓX

2
ˆ︁V ΓX

1 = πXγ2(−)V.

Furthermore, for all n ∈ N, ΓX
γ1
n
ΓX˜︁γnΓX

γ2
n
is the product of the star operators in the region enclosed

by γ1n ∪ ˜︁γn ∪ γ2n and the boundary. Hence ΓX
γ1
n
ΓX˜︁γnΓX

γ2
n
Ω = Ω for all n ∈ N, so we have that for all

ξ ∈ H,
⟨V Ω, ξ⟩ = lim

n→∞
⟨ΓX

γ1
n
ΓX˜︁γnΓX

γ2
n
Ω, ξ⟩ = ⟨Ω, ξ⟩

and thus V Ω = Ω. □

Finally, we have canonical intertwiners between two type Y excitations, analogous to the inter-
twiners described in Proposition 6.1.

Proposition 6.6. Let γ1 and γ2 be two infinite paths of type Y starting at the boundary, with γik
denoting the path of type k comprising γi for i = 1, 2 and k ∈ {X,Z}. Then there is a unique
unitary V such that AdV ◦ ρYγ1 = ρYγ2 and V Ω = ΓZ

γ′Ω, where γ′ is any path of type Z from the

starting site of γ1Z to the starting site of γ2Z .

Proof. The proof is analogous to that of Proposition 6.5. As before, uniqueness follows by Schur’s
Lemma. Existence follows by an argument similar to the one used in [18, Lem. 4.1]. Let γ′

be a path of type Z from the starting site of γ1Z to the starting site of γ2Z . Note that by the
argument in the proof of Theorem 5.8, ω0 ◦ ρYγ1 = ω0 ◦ AdΓZ

γ′ ◦ ρYγ2 , and thus (π0 ◦ ρYγ1 ,H,Ω)
and (π0 ◦ AdΓZ

γ′ ◦ ρYγ2 ,H,Ω) are both GNS representations corresponding to this state. Hence by

uniqueness of the GNS representation, there exists a unitary ˜︁V intertwining πYγ1 and AdΓZ
γ′ ◦ πYγ2

such that ˜︁V Ω = Ω. Now, let V = ΓZ
γ′ ˜︁V . Then

V πYγ1(−) = ΓZ
γ′ ˜︁V πYγ1(−) = ΓZ

γ′ΓZ
γ′πYγ2(−)ΓZ

γ′ ˜︁V = πYγ2(−)V,

and V Ω = ΓZ
γ′ ˜︁V Ω = ΓZ

γ′Ω, as desired. □
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We want to build a C∗-tensor category with objects superselection sectors π : A → B(H) cor-
responding to paths starting at the boundary and morphisms being intertwiners. To motivate the
following discussion, we will momentarily identify A ∼= π0(A). If we do this, then the superselection
sectors corresponding to paths are endomorphisms of A, so it would make sense to define the tensor
product of objects to be composition. In this case, the tensor product of morphisms S : ρ1 → ρ2
and T : ρ′1 → ρ′2 should be S⊗T := Sρ1(T ). However, the intertwiners need not live in A. Further-
more, for a more general superselection sector π : A → B(H), π(A) need not be π0(A). We remedy
the situation similarly to [18]. We let Aup be the C∗-algebra generated by the algebras π0(A(Λ))

′′,
where Λ is an upward-oriented cone along the boundary. We similarly have a C∗-algebra Adown

corresponding to the downward-oriented cones along the boundary. Note that A ∼= π0(A) ⊆ Aup

and A ∼= π0(A) ⊆ Adown. Furthermore, for all cones Λ along the boundary, π0(A(Λ))
′′ ⊆ Aup or

π0(A(Λ))
′′ ⊆ Adown. As in [18, Prop. 4.2], we have that a superselection sector π : A → B(H)

corresponding to an infinite path has a unique extension to an endomorphism πup : Aup → Aup, as
well as a unique extension to an endomorphism πdown : Adown → Adown. (Note that in order to
view A as a subalgebra of Aup or Adown, one must first identify A with π0(A).)

Proposition 6.7. Let π : A → B(H) be any superselection sector. Then π has a unique extension
πup to Aup that is WOT-continuous on π0(A(Λ))

′′ for all upward-oriented cones Λ along the bound-
ary. Similarly π has a unique extension πdown to Adown that is WOT-continuous on π0(A(Λ))

′′

for all downard-oriented cones Λ along the boundary. Furthermore, if π corresponds to an infinite
path, then πup(Aup) ⊆ Aup and πdown(Adown) ⊆ Adown, i.e., πup and πdown are endomorphisms of
Aup and Adown respectively.

Proof. Our proof follows the proof of [18, Prop. 4.2], with modifications when necessary. For clarity,
we include the entire argument. We consider the case of extending π to Aup; the proof for Adown

is analogous. Let Λ be an upward-oriented cone along the boundary. Since π is transportable,
there exists a unitary V ∈ B(H) such that π = AdV ◦ ˜︁π, where ˜︁π is localized in a downward-
oriented cone along the boundary disjoint from Λ. Note that for all A ∈ A(Λ), ˜︁π(A) = π0(A), so
π(A) = V π0(A)V

∗ for all A ∈ A(Λ). Since multiplication is separately WOT-continuous, there is a
unique WOT-continuous extension ˆ︁π of π to π0(A(Λ))

′′ given by ˆ︁π(B) := V BV ∗ for B ∈ π0(A(Λ))
′′.

(Note that for A ∈ A(Λ), π(A) = ˆ︁π(π0(A)).) Now, ˆ︁π is also norm-continuous, so this uniquely
determines πup.

Now, suppose π corresponds to an infinite path. To see that πup(Aup) ⊆ Aup, it suffices to show
that πup(π0(A(Λ))

′′) ⊆ π0(A(Λ))
′′ for all upward-oriented cones Λ along the boundary. Let Λ be

an upward-oriented cone along the boundary. Then by WOT-continuity of πup, we have that

πup(π0(A(Λ))
′′) ⊆ πup(π0(A(Λ)))

′′ = π(A(Λ))′′.

Now, for A ∈ A(Λ)loc, we have that π(A) ∈ π0(A(Λ)loc). Hence π(A(Λ)) ⊆ π0(A(Λ)), which
completes the proof. □

The argument in the last paragraph of the above proof gives the following corollary.

Corollary 6.8. Let π be a superselection sector corresponding to a path γ of any type. Suppose
Λ ⊆ B is contained in an upward-oriented (resp. downward-oriented) cone along the boundary and
satisfies that γ ⊆ Λ. Then πup(π0(A(Λ))

′′) ⊆ π0(A(Λ))
′′ (resp. πdown(π0(A(Λ))

′′) ⊆ π0(A(Λ))
′′).

In particular, if γ is contained in an upward-oriented (resp. downward-oriented) cone Λ along the
boundary, then πup(π0(A(Λ))

′′) ⊆ π0(A(Λ))
′′ (resp. πdown(π0(A(Λ))

′′) ⊆ π0(A(Λ))
′′).

Remark 6.9. Once we have shown that our model satisfies Haag duality, we will have that if
π : A → B(H) is a superselection sector localized in the cone Λ along the boundary, then π(A(Λ)) ⊆
π0(A(Λ))

′′ by an argument provided in [20, §2]. In this case, we have that πup(Aup) ⊆ Aup if Λ
is an upward-oriented cone and πdown(Adown) ⊆ Adown if Λ is a downward-oriented cone. Indeed,
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suppose Λ is an upward-oriented cone; the downward-oriented case is analogous. Let ˜︁Λ be any

other upward-oriented cone. Then there exists an upward-oriented cone ˆ︁Λ such that Λ ⊆ ˆ︁Λ and˜︁Λ ⊆ ˆ︁Λ. Since π is localized in Λ, it is also localized in ˆ︁Λ. Hence we have that

πup(π0(A(˜︁Λ))′′) ⊆ πup(π0(A(˜︁Λ)))′′ ⊆ πup(π0(A(ˆ︁Λ)))′′ = π(A(ˆ︁Λ))′′ ⊆ π0(A(ˆ︁Λ))′′ ⊆ Aup,

so πup(Aup) ⊆ Aup.

At this point, we can show that all intertwiners between superselection sectors corresponding to
infinite paths localized in a cone Λ along the boundary live in π0(A(Λ))

′′. The key to proving this
is a slightly more general result, which can be used to show that the intertwiners between two type
Y excitations live in more restricted regions of the lattice.

Lemma 6.10. Suppose π1, π2, π
′
1, π

′
2 are superselection sectors corresponding to infinite paths lo-

calized in a region Λ ⊆ B that is contained in an upward-oriented (resp. downward-oriented) cone
along the boundary. For i = 1, 2, let ρi and ρ′i be the automorphisms of A corresponding to the
paths defining πi and π

′
i, so that πi = π0 ◦ ρi and π′i = π0 ◦ ρ′i. Suppose S : π1 → π′1 and T : π2 → π′2

are intertwiners such that S, T ∈ π0(A(Λ))
′′. Then Sπup1 (T ) (resp. Sπdown

1 (T )) is an intertwiner
from π0 ◦ ρ1 ◦ ρ2 to π0 ◦ ρ′1 ◦ ρ′2, and Sπ

up
1 (T ) ∈ A(Λ)′′ (resp. Sπdown

1 (T ) ∈ A(Λ)′′).

Proof. We consider the case where Λ is contained in an upward-oriented cone; the downward-
oriented case is analogous. We have that Sπup1 (T ) is an intertwiner from π0 ◦ ρ1 ◦ ρ2 to π0 ◦ ρ′1 ◦ ρ′2,
since for all A ∈ A,

Sπup1 (T )π0(ρ1(ρ2(A))) = Sπup1 (T )π1(ρ2(A)) = Sπup1 (T )πup1 (π0(ρ2(A))) = Sπup1 (Tπ2(A))

= Sπup1 (π′2(A)T ) = Sπup1 (π0(ρ
′
2(A))T ) = Sπ1(ρ

′
2(A))π

up
1 (T )

= π′1(ρ
′
2(A))Sπ

up
1 (T ) = π0(ρ

′
1(ρ

′
2(A)))Sπ

up
1 (T ).

Furthermore, Sπup1 (T ) ∈ A(Λ)′′ by Corollary 6.8. □

Theorem 6.11. Let Λ be a cone along the boundary, and let π and π′ be superselection sectors
corresponding to infinite paths contained in Λ or vacuum. Then any intertwiner from π to π′ is in
A(Λ)′′.

Proof. Note that if π ̸∼= π′, then the only intertwiner π → π′ is zero. Hence, without loss of
generality, we have that either π and π′ correspond to paths of the same type, π corresponds to a
path of type X and π′ is the identity, or π corresponds to a path of type Y and π′ corresponds to a
path of type Z. In all but the cases where π corresponds to a path of type Y , the result follows by
Schur’s Lemma and Proposition 6.1, Proposition 6.5, or Proposition 6.3. Thus, it suffices to consider
the case where π corresponds to a path of type Y and π′ corresponds to a path of type Z or type
Y . In this case, π = π0 ◦ρ1 ◦ρ2, where ρ1 and ρ2 are automorphisms of A corresponding to paths of
type X and Z respectively. Similarly, π′ = π0 ◦ρ′1 ◦ρ′2, where ρ′1 is an automorphism corresponding
to a path of type X and ρ′2 is either an automorphism corresponding to a path of type Z or the
identity. By Propositions 6.1, 6.3, and 6.5, there exist unitary intertwiners U1 : π0 ◦ ρ1 → π0 ◦ ρ′1
and U2 : π0 ◦ρ2 → π0 ◦ρ′2 that live in A(Λ)′′. By Lemma 6.10, if Λ is an upward-oriented cone, then
U1(π0 ◦ ρ1)up(U2) ∈ A(Λ)′′ is a unitary intertwiner from π to π′, and by Schur’s Lemma, the result
follows. If Λ is downward-oriented, the result follows by using U1(π0 ◦ ρ1)down(U2) instead. □

Remark 6.12. Suppose π1 : A → B(H) and π2 : A → B(H) are superselection sectors. Then
V ∈ B(H) is an intertwiner from π2 to π2 if and only if V intertwines πup1 and πup2 . The reverse
direction is clear since πupi extends πi for each i = 1, 2. The forward direction follows since πupi is
an extension of πi that is WOT-continuous on π0(A(Λ))

′′ for each upward-oriented cone Λ along
the boundary and since multiplication is separately WOT-continuous. Furthermore, if ρ1 and ρ2
are automorphisms of A corresponding to infinite paths, then (π0 ◦ρ1 ◦ρ2)up = (π0 ◦ρ1)up ◦ (π0 ◦ρ2)
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since the latter is an extension of π0 ◦ρ1 ◦ρ2 to Aup that is WOT-continuous on π0(A(Λ))
′′ for each

upward-oriented cone Λ along the boundary. Analogous results hold if one replaces up with down
in all relevant locations.

We now fix a cone Λ along the boundary. Without loss of generality, we may assume that Λ is
oriented upward. For two superselection sectors π1, π2 corresponding to paths localized in Λ, we
define π1 ⊗ π2 := πup1 ◦ π2. Furthermore, given intertwiners S : π1 → π′1 and T : π2 → π′2, we have
that T ∈ π0(A(Λ))

′′, so we may define S ⊗ T := Sπup1 (T ). Note that since S ∈ π0(A(Λ))
′′, by

Lemma 6.10 and Remark 6.12, S ⊗ T : π1 ⊗ π2 → π′1 ⊗ π′2 and S ⊗ T ∈ π0(A(Λ))
′′. This gives the

structure of a C∗-tensor category, with tensor unit π0.
Note that the above construction did not use that the superselection sectors corresponded to

paths. That is, there is a more general C∗-tensor category consisting of all superselection sectors
localized in Λ, with the same tensor product as just defined. In §12, we will show that the only
simple sectors correspond to paths, so we are justified in restricting ourselves in this way.

We also have that the C∗-tensor category of sectors corresponding to paths is rigid, meaning
that any object π has a dual object. A dual object for an object π consists of an object π along
with morphisms R : π0 → π ⊗ π and R : π0 → π ⊗ π satisfying the following zig-zag equations:

π(R∗)R = I, R∗π(R) = I.

Since every automorphism ρ corresponding to an infinite path satisfies that ρ ◦ ρ = 1, we have
that π ⊗ π = π0 for all superselection sectors π corresponding to paths. Hence every such sector is
self-dual, with R = I and R = I.

Lastly, by Schur’s Lemma, we have that End(π) ∼= C for any superselection π corresponding to
an infinite path. Here, End(π) is the space of self-intertwiners of π, the endomorphisms of π in
the category we have just constructed. Thus, we will have a fusion category of excitations if we
can take direct sums of superselection sectors. To show we can do this, we must first show that
π0(A(Λ))

′′ is an infinite factor.

7. Cone algebras

In this section, we show that for a cone Λ along the boundary, π0(A(Λ))
′′ is an infinite factor.

Following [18], for a subset Λ ⊆ B, we define RΛ := π0(A(Λ))
′′. We then have the following lemma,

which is analogous to [18, Lem. 5.1].

Lemma 7.1. For any subset Λ ⊆ B, we have that RΛ ∨RΛc = B(H), where H is the GNS Hilbert
space for ω0.

Proof. The proof of [18, Lem. 5.1] still holds in this setting. In particular, note that if Λ ⊆ B,
then RΛ =

⋁︁
b∈Λ π0(A({b}))′′. Thus, since π0 is an irreducible representation, we have that for all

Λ ⊆ B, RΛ ∨RΛc = π0(A)
′′ = B(H). □

The key to showing that RΛ is an infinite factor will be showing that RΛ being finite implies
that ω0 is tracial. We will therefore need the following lemma in order to obtain a contradiction.

Lemma 7.2. The state ω0 : A → C is not tracial.

Proof. Let ˜︁γ be a loop of type Z, and let γ1 and γ2 be paths of type X starting at the boundary such
that γ1 and γ2 each intersect ˜︁γ at one bond and such that γ1 and γ2 share the same non-boundary
endpoint (see Figure 9). Then ΓZ˜︁γ is a product of plaquette operators, and ΓX

γ1Γ
X
γ2 = ΓX

γ2Γ
X
γ1 is a

product of star operators since γ1 ∪ γ2 is a path of type X starting and ending at the boundary.
Hence ω0(Γ

X
γ1Γ

X
γ2Γ

Z˜︁γ ) = 1. On the other hand, ΓZ˜︁γ and ΓX
γ1 anti-commute since γ1 and ˜︁γ intersect

at one bond, so we have that

ω0(Γ
X
γ2Γ

Z˜︁γ ΓX
γ1) = −ω0(Γ

X
γ2Γ

X
γ1Γ

Z˜︁γ ) = −1 ̸= ω0(Γ
X
γ1Γ

X
γ2Γ

Z˜︁γ ).
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Figure 9. A loop ˜︁γ of type Z (bold, orange path), and paths γ1 and γ2 of type
X starting at the boundary (dashed, cyan and purple) each intersecting ˜︁γ once and
sharing the same non-boundary endpoint (blue dot).

Thus ω0 is not tracial. □

For n ∈ Z, we let τn : A → A denote translation by n in the direction parallel to the boundary.
Recall that ω0 is translation invariant, so ω0 ◦ τn = ω0 for all n ∈ Z. Using this, we have the
following theorem, analogous to [18, Thm. 5.1].

Theorem 7.3. Let Λ ⊆ B be a cone along the boundary. Then RΛ is an infinite factor.

Proof. We follow the proof of [18, Thm. 5.1], modifying the argument as appropriate for our situa-
tion. For clarity, we present the argument in full. Note that the proof in [18] is itself an adaptation
of an argument from [12]. We first show that RΛ is a factor. Note that since Z(RΛ) = RΛ ∩ R′

Λ,
we have that Z(RΛ)

′ ⊇ RΛ∨R′
Λ. Thus, since RΛc ⊆ R′

Λ, we get that Z(RΛ)
′ = B(H), from which

it follows that RΛ is a factor.
We now show that RΛ is an infinite factor. We first note that the restriction of ω0 to A(Λ) is

a factor state. Indeed, since ω0 is a factor state, we have by [2, Thm. 2.6.10] that for all Λ1 ⊆ B
finite and ε > 0, there exists Λ′

1 ⊆ B finite such that for all Λ2 ⊆ B finite with Λ2 ∩ Λ′
1 = ∅,

|ω0(AB)− ω0(A)ω0(B)| ≤ ε∥A∥∥B∥
for all A ∈ A(Λ1) and B ∈ A(Λ2). We thus have that the above statement holds replacing B with
Λ, so the restriction of ω0 to A(Λ) is a factor state by [2, Thm. 2.6.10].

Now suppose, towards contradiction, that RΛ is finite. Then there exists a normal tracial state

ψ on RΛ, which gives a tracial state ˜︁ψ := ψ ◦ π0 on A(Λ). Since the restriction of ω0 to A(Λ) is

a factor state, we have by [10, Prop. 10.3.14] that ˜︁ψ is quasi-equivalent to the restriction of ω0 to

A(Λ). Furthermore, ˜︁ψ is also a factor state, since quasi-equivalence preserves factoriality.
We will now show that ω0 is tracial, contradicting Lemma 7.2. Let A,B ∈ Aloc, and let ε > 0. By

[2, Cor. 2.6.11], there exists a finite subset ˆ︁Λ ⊆ Λ such that for all X ∈ A(Λ\ ˆ︁Λ), |ω0(X)− ˜︁ψ(X)| <
ε∥X∥. Now, since A and B are local operators and Λ is a cone along the boundary, there exists

n ∈ Z such that τn(supp(A)) ∪ τn(supp(B)) ⊆ Λ \ ˆ︁Λ. We then have that

|ω0(AB)− ˜︁ψ(τn(AB))| = |ω0(τn(AB))− ˜︁ψ(τn(AB))| < ε∥A∥∥B∥,

and similarly |ω0(BA)− ˜︁ψ(τn(BA))| < ε∥A∥∥B∥. Hence we have that

|ω0(AB)− ω0(BA)| ≤ |ω0(AB)− ˜︁ψ(τn(AB))|+ |ω0(BA)− ˜︁ψ(τn(BA))| < 2ε.

Since ε > 0 was arbitrary, we have that ω0 is tracial, the desired contradiction. □
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Note that Theorem 7.3 implies that [18, Cor. 5.1] holds in this setting.

Corollary 7.4 ([18, Cor. 5.1]). Let Λ ⊆ B be a cone along the boundary. Then there exist isometries
V1, V2 ∈ RΛ such that V1V

∗
1 + V2V

∗
2 = 1.

We further have that RΛ is the hyperfinite II∞ factor for a cone Λ along the boundary, by the
argument in [23].

Proposition 7.5. Let Λ be a cone along the boundary. Then RΛ is type II∞.

Proof. We have that RΛ is not type I by adapting the proof of [17, Prop. 2.2] to obtain that RΛ is
type I only if ω0 is quasiequivalent to ω0|A(Λ) ⊗ ω0|A(Λc). The argument in [18, Thm. 5.1] showing
that this condition is not met holds in this setting as well. The fact that RΛ is not type III follows
by adapting the argument in [23] to this setting. □

8. The fusion category ∆(Λ)

Since [18, Cor. 5.1] holds for cones along the boundary, we have that [18, Lem. 6.1] holds for
these cones, as the proof of this lemma holds without modification.

Lemma 8.1 ([18, Lem. 6.1]). Suppose π1 and π2 are superselection sectors localized in a cone Λ
along the boundary. Then we have a direct sum superselection sector π1 ⊕ π2 that is also localized
in Λ.

The direct sum sector π1 ⊕ π2 is given by (π1 ⊕ π2)(A) := V1π1(A)V
∗
1 + V2π2(A)V

∗
2 for A ∈ A,

where V1 and V2 are isometries satisfying the conditions in [18, Cor. 5.1]. The idea behind this
definition is that π1 ⊕ π2 satisfies the categorical definition of a direct sum. Specifically, V1 and V2
witness the inclusion of π1 and π2 into π1 ⊕ π2, and V

∗
1 and V ∗

2 are the projections from π1 ⊕ π2
onto π1 and π2 respectively. While π1 ⊕ π2 is not a direct sum in the Hilbert space sense, one can
verify that V1 and V2, along with their adjoints, satisfy the same relations as the inclusion maps do
in the case of Hilbert space direct sums. This is why we may refer to π1 ⊕ π2 as a direct sum in
our setting.

We fix a cone Λ along the boundary. Without loss of generality, we assume Λ is oriented upward.
We define a fusion category ∆(Λ) as follows. The objects of ∆(Λ) are the superselection secotrs
given by infinite paths of all types starting at the boundary and contained in Λ, as well as the direct
sums of these sectors. (Again, we will show in §12 that the superselection sectors corresponding
to infinite paths are the only simple sectors, so this restriction is justified.) The tensor product of
objects is defined as it is at the end of §6, i.e., π1 ⊗ π2 := πup1 ◦ π2. The morphisms in ∆(Λ) are
intertwiners. Note that because the intertwiners for the simple objects (i.e., the sectors given by
infinite paths) live in π0(A(Λ))

′′ and the isometries witnessing the direct sums also live in π0(A(Λ))
′′

by Corollary 7.4, we have that all morphisms in ∆(Λ) live in π0(A(Λ))
′′. We can therefore define

the tensor product of morphisms as follows: if S : π1 → π′1 and T : π2 → π′2, then S⊗T := Sπup1 (T ).
Hence ∆(Λ) is a strict monoidal category. Furthermore, since each simple object of ∆(Λ) is self-
dual, ∆(Λ) is a unitary fusion category. We now show that ∆(Λ) ∼= Hilbfd(Z/2Z), as expected from
[15].

Proposition 8.2. The fusion category ∆(Λ) is monoidally equivalent to Hilbfd(Z/2Z).

Proof. We proceed similarly to the proof of [18, Thm. 6.2]. We view Hilbfd(Z/2Z) as a skeletal
category, meaning that there is exactly one object in each isomorphism class. In this case there
are two simple objects, 1 and g, in Hilbfd(Z/2Z), which satisfy that g ⊗ g = 1. In addition, the
associators in Hilbfd(Z/2Z) are trivial. We define the functor F : Hilbfd(Z/2Z) → ∆(Λ) to be the
unique linear functor satisfying that F (1) = π0 and F (g) = π, where π is a superselection sector
corresponding to an infinite path of type Z contained in Λ. Since π ⊗ π = π0 and Hilbfd(Z/2Z)
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and ∆(Λ) are strict tensor categories, F is a strict tensor functor. Furthermore, F is fully faithful
by construction, and F is essentially surjective by Proposition 5.7 and Theorem 5.8. Thus F is a
monoidal equivalence, as desired. □

9. Functor from bulk to boundary

Let Λ be a cone along the boundary. We now wish to equip the category ∆(Λ) with the structure
of a module tensor category over the category of sectors for bulk toric code, described in [18, §6].
To do so, we wish to define a braided tensor functor F from the category of bulk toric code sectors
to Z(∆(Λ)). We would like F to be defined as follows: we extend an infinite path γ defining a
bulk excitation to the boundary, and then we map this boundary excitation to a half-braiding in
a way that remembers which type of bulk excitation it came from. In what follows, we proceed in
the opposite order. Namely, given an infinite path γ defining a boundary excitation of type k, we
first define a half-braiding of πkγ that remembers the type k of bulk excitation πkγ corresponds to.
We will then define a functor that maps bulk excitations to these half-braidings in the way just
described and show that this functor is in fact a braided tensor functor.

Let Λ be a cone along the boundary. Without loss of generality, we assume that Λ is oriented
upward. Let π be a superselection sector corresponding to an infinite path γ of type X, Y , or Z,
starting at the boundary and contained in Λ. We wish to construct a half-braiding σ−,π, where
σϖ,π : ϖ⊗π → π⊗ϖ for ϖ ∈ ∆(Λ). We proceed similarly to the discussion preceding [18, Lem. 4.2].

Let ϖ ∈ ∆(Λ). Let ˜︁Λ ⊆ B be a cone along the boundary such that Λ ⊆ ˜︁Λ and such that there exists

an infinite path ˜︁γ of the same type as γ starting at the boundary and contained in ˜︁Λ\Λ (see Figure

10). Then there exists a unitary V intertwining π and π˜︁γ , and π˜︁γ is localized in ˜︁Λ\Λ. Furthermore,

by Theorem 6.11, we have that V ∈ π0(A(˜︁Λ))′′ ⊆ Aup. We also have that ϖup ◦ π˜︁γ = (π˜︁γ)up ◦ϖ.
Indeed, ϖ and π˜︁γ are localized in disjoint regions, so ϖup ◦ π˜︁γ(A) = (π˜︁γ)up ◦ ϖ(A) for all local
operators A. Recalling that ϖup◦π˜︁γ = ϖ⊗π˜︁γ and (π˜︁γ)up◦ϖ = π˜︁γ⊗ϖ, we can define an intertwiner
σϖ,π : ϖ ⊗ π → π ⊗ϖ by

σϖ,π := V ∗ϖup(V ). (9.1)

Note that since π and π˜︁γ are irreducible representations of A, we must have that any two unitary
intertwiners V, V ′ between π and π˜︁γ differ by a scalar. Thus σϖ,π does not depend on the choice

of unitary V . We now show that σϖ,π does not depend on the choice of cone ˜︁Λ and path ˜︁γ.
Proposition 9.2. Let Λ, π, and ϖ be as in the discussion above. Then σϖ,π does not depend on

the choice of ˜︁Λ and ˜︁γ in the discussion above.

Proof. We proceed as in the proofs of [8, Prop. 8.42] and [8, Lem. 8.40]. Let ˜︁Λ and ˜︁Λ′ be two cones

containing Λ such that there exist paths ˜︁γ and ˜︁γ′ of the same type as γ contained in ˜︁Λ \ Λ and˜︁Λ′ \ Λ respectively. We can then take a cone ˆ︁Λ containing both ˜︁Λ and ˜︁Λ′, and ˜︁γ and ˜︁γ′ are both

contained in ˆ︁Λ. Thus, we may assume without loss of generality that ˜︁Λ = ˜︁Λ′ = ˆ︁Λ.
Now, let V be an intertwiner from π to π˜︁γ and let V ′ be an intertwiner from π to π˜︁γ′ . Then

W := V ′V ∗ is an intertwiner from π˜︁γ to π˜︁γ′ . Furthermore, by Propositions 6.1 and 6.5, Lemma

6.10, and Schur’s Lemma, W ∈ π0(A(˜︁Λ \ Λ))′′. Since ϖ is localized in Λ, ϖup is the identity on

π0(A(˜︁Λ \ Λ))′′. Hence ϖup(W ) =W , and thus

(V ′)∗ϖup(V ′) = V ∗W ∗ϖup(WV ) = V ∗W ∗Wϖup(V ) = V ∗ϖup(V ). □

We now show that σ−,π does in fact define a half-braiding.

Proposition 9.3. Let Λ be a cone along the boundary, and let π be a superselection sector corre-
sponding to an infinite path γ of type X, Y , or Z, starting at the boundary and contained in Λ.
Then σ−,π, as defined in (9.1), is a half-braiding.
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Figure 10. A cone Λ along the boundary (gray shaded region) with a path γ of

typeX contained in Λ (black dashed curve). The entire shaded area depicts a cone ˜︁Λ
containing Λ such that there exists a path ˜︁γ of type X (red dashed curve) contained

in ˜︁Λ \ Λ (cyan shaded region).

Proof. We proceed as in the proof of [8, Prop. 8.50]. We first show naturality. To do so, we must
show that if ϖ,ϖ′ ∈ ∆(Λ) and T is an intertwiner from ϖ to ϖ′, then

(Iρ ⊗ T )σϖ,π = σϖ′,π(T ⊗ Iπ).

Let ϖ,ϖ′ ∈ ∆(Λ), and let T be an intertwiner from ϖ to ϖ′. Then T ∈ π0(A(Λ))
′′. Let ˜︁Λ ⊆ B

be a cone along the boundary such that Λ ⊆ ˜︁Λ and such that there exists an infinite path ˜︁γ of the

same type as γ starting at the boundary and contained in ˜︁Λ \ Λ. Let V be an intertwiner from π

to π˜︁γ . Since π˜︁γ is localized in ˜︁Λ \ Λ, we have that (π˜︁γ)up(T ) = T . Thus, we have that

(Iπ ⊗ T )σϖ,π = πup(T )V ∗ϖup(V ) = V ∗(π˜︁γ)up(T )ϖup(V )

= V ∗Tϖup(V ) = V ∗(ϖ′)up(V )T = σϖ′,π(T ⊗ Iπ).

We now show that σ−,π satisfies the braid equation for a half-braiding. Let ϖ,ϖ′ ∈ ∆(Λ). We
must show that

σϖ⊗ϖ′,π = (σϖ,π ⊗ Iϖ′)(Iϖ ⊗ σϖ′,π).

As before, let ˜︁Λ ⊆ B be a cone along the boundary such that Λ ⊆ ˜︁Λ and such that there exists an

infinite path ˜︁γ of the same type as γ starting at the boundary and contained in ˜︁Λ \ Λ. Let V be
an intertwiner from π to π˜︁γ . We then have that

σϖ⊗ϖ′,π = V ∗(ϖup ◦ (ϖ′)up)(V ) = V ∗ϖup(V V ∗(ϖ′)up(V ))

= V ∗ϖup(V )ϖup(V ∗(ϖ′)up(V )) = (σϖ,π ⊗ Iϖ′)(Iϖ ⊗ σϖ′,π). □
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We now wish to construct a functor from the bulk to the boundary that equips the boundary
with the structure of a module tensor category. Let Λ be a cone along the boundary. On simple
objects, we define the functor as follows: we take a superselection sector πγ corresponding to a
bulk excitation with γ an infinite path localized in Λ, and we extend γ to a path ˜︁γ starting at the
boundary localized in Λ. The functor then maps πγ to F (πγ) := (π˜︁γ , σ−,π˜︁γ ). We also define F to
map π0 to the trivial half-braiding of π0. On morphisms, we wish to map the canonical intertwiner
between π and π′, as described in Propositions 6.1, 6.5, and 6.6, to the canonical intertwiner between
F (π) and F (π′). Since the canonical intertwiner U : π → π′ is characterized by the property that
UΩ = ΓγΩ, if γ is a path from the starting site of π to the starting site of π′, this assignment
of morphisms is clearly functorial. (Note that by “site” we are only referring to vertex endpoints,
not condensed type X excitations. If ρ corresponds to a path of type X starting at the boundary,
then γ = ∅.) However, for this assignment to give a well-defined functor, we must show that the
canonical intertwiners are half-braiding morphisms.

Proposition 9.4. Let Λ be a cone along the boundary, and let π and π′ be superselection sectors
corresponding to paths γ and γ′ of the same type contained in Λ. Then the unique unitary in-
tertwiner U : π → π′ satisfying that UΩ = Γˆ︁γΩ for any path ˆ︁γ from the starting site of γ to the
starting site of γ′ is a morphism from (π, σ−,π) to (π′, σ−,π′).

Proof. Let ˜︁Λ ⊆ B be a cone along the boundary such that Λ ⊆ ˜︁Λ and such that there exists an

infinite path ˜︁γ of the same type as γ starting at the boundary and contained in ˜︁Λ \ Λ. Let V be
the canonical intertwiner from π to π˜︁γ , and let V ′ be the canonical intertwiner from π′ to π˜︁γ . Then
U = (V ′)∗V , since (V ′)∗V is a unitary intertwiner from π to π′ satisfying that (V ′)∗V Ω = Γˆ︁γΩ
for any path ˆ︁γ from the starting site of γ to the starting site of γ′. Now, let ϖ ∈ ∆(Λ). Then
σϖ,π = V ∗ϖup(V ) and σϖ,π′ = (V ′)∗ϖup(V ′). We thus have that

(U ⊗ Iϖ)σϖ,π = UV ∗ϖup(V ) = (V ′)∗ϖup(V ) = (V ′)∗ϖup(V ′)ϖup((V ′)∗V )

= σϖ,π′ϖup(U) = σϖ,π′(Iϖ ⊗ U),

so U : (π, σ−,π) → (π′, σ−,π′). □

By semisimplicity, defining F on simple objects and morphisms between simple objects, as we
have done, uniquely determines F . We now show that the functor F is a strict tensor functor. To
prove this, again by semisimplicity, it suffices to show that if π and π′ are superselection sectors
corresponding to infinite paths localized in a cone Λ along the boundary, then (π ⊗ π′, σ−,π⊗π′) =
(π, σ−,π)⊗(π′, σ−,π′), where the tensor product on the right is the tensor product in Z(∆(Λ)). This
result follows from the next proposition.

Proposition 9.5. Let Λ be a cone along the boundary, and let π and π′ be superselection sectors
corresponding to paths γ and γ′ contained in Λ. Then for all ϖ ∈ ∆(Λ), we have that

σϖ,π⊗π′ = (Iπ ⊗ σϖ,π′)(σϖ,π ⊗ Iπ′).

Proof. Let ˜︁Λ′ ⊆ B be a cone along the boundary such that Λ ⊆ ˜︁Λ′ and such that there exists an

infinite path ˜︁γ′ of the same type as γ′ starting at the boundary and contained in ˜︁Λ′ \ Λ. Now, let˜︁Λ ⊆ B be a cone along the boundary such that ˜︁Λ′ ⊆ ˜︁Λ and such that there exists an infinite path˜︁γ of the same type as γ starting at the boundary and contained in ˜︁Λ \ ˜︁Λ′. Let V be the canonical
intertwiner from π to π˜︁γ , and let V ′ be the canonical intertwiner from π′ to π˜︁γ′ . Note that π˜︁γ is

localized in ˜︁Λ \ ˜︁Λ′, so (π˜︁γ)up(V ′) = V ′ as V ′ ∈ π0(A(˜︁Λ′))′′. Hence we have that

V ⊗ V ′ = (π˜︁γ)up(V ′)V = V ′V.

Since V ⊗ V ′ is a unitary intertwiner from π ⊗ π′ to π˜︁γ ⊗ π˜︁γ′ , we have that for all ϖ ∈ ∆(Λ),

σϖ,π⊗π′ = (V ⊗ V ′)∗ϖup(V ⊗ V ′) = V ∗(V ′)∗ϖup(V ′V ).
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Finally, for all ϖ ∈ ∆(Λ), we have that ϖup(V ′) ∈ π0(A(˜︁Λ′))′′ and thus

(Iπ ⊗ σϖ,π′)(σϖ,π ⊗ Iπ′) = πup((V ′)∗ϖup(V ′))V ∗ϖup(V ) = V ∗(π˜︁γ)up((V ′)∗ϖup(V ′))ϖup(V )

= V ∗(V ′)∗ϖup(V ′)ϖup(V ) = σϖ,ρ⊗ρ′ . □

Using Proposition 9.5, we have that the functor F is essentially surjective once we have shown
that (πX , σ−,πX ) is not the trivial half-braiding, as in that case (πX , σ−,πX ) and (πZ , σ−,πZ ) tensor
generate Z(∆(Λ)).

Proposition 9.6. Let Λ be a cone along the boundary, and let π be a superselection sector corre-
sponding to a path γ of type X contained in Λ and starting at the boundary. Then (π, σ−,π) is not
isomorphic to (π0, σ−,π0), where σ−,π0 is the trivial half-braiding.

Proof. By Proposition 9.4, we may assume that γ is contained in a cone Λ0 ⊆ Λ along the boundary
such that there exists a superselection sector ϖ of type Z localized in Λ \ Λ0. It suffices to show
that a unitary intertwiner U : π → π0 is not a morphism (π, σ−,π) → (π0, σ−,π0) in Z(∆(Λ)). Note

that since π is localized in Λ0, U ∈ π0(A(Λ0))
′′, so ϖup(U) = U . Let ˜︁Λ ⊆ B be a cone along

the boundary such that Λ ⊆ ˜︁Λ and such that there exists an infinite path ˜︁γ of type X starting

at the boundary and contained in ˜︁Λ \ Λ. Let V be the canonical intertwiner from π to π˜︁γ , as
described in Proposition 6.5. Then σϖ,π = V ∗ϖup(V ). Now, recall from Proposition 6.5 that

V = limWOT ΓX
γnΓ

Xˆ︁γnΓX˜︁γn , where γn and ˜︁γn are the paths consisting of the first n bonds of γ and ˜︁γ
respectively and (ˆ︁γn) is a sequence of paths of type X from the nth face of γ to the nth face of ˜︁γ
satisfying that the distance from ˆ︁γn to the starting bonds of γ and ˜︁γ goes to infinity. Note that each
path ˆ︁γn intersects the path giving rise to ϖ an odd number of times, while γ and ˜︁γ do not intersect
the path giving rise to ϖ. Hence ϖ(ΓX

γnΓ
Xˆ︁γnΓX˜︁γn) = −ΓX

γnΓ
Xˆ︁γnΓX˜︁γn for all n ∈ N, so ϖup(V ) = −V by

WOT-continuity of ϖup. Thus, we have that

σϖ,ρ = V ∗ϖup(V ) = −I,

so we have that

(U ⊗ Iϖ)σϖ,π = −U, σϖ,π0(Iϖ ⊗ U) = ϖup(U) = U.

Hence U is not a morphism (π, σ−,π) → (π0, σ−,π0) in Z(∆(Λ)). □

Lastly, we have that F respects the braiding, as we have defined the braiding in the manner of
[18].

Theorem 9.7. The functor F defined in the preceding paragraphs is a strict braided tensor functor
from bulk toric code to Z(∆(Λ)). Hence, ∆(Λ) is a module tensor category over the category of
sectors for bulk toric code.

Proof. It remains to show that F is braided. By semisimplicity, it suffices to show that for all
superselection sectors π, π′ corresponding to paths in the bulk, we have that F (βπ,π′) = σF (π),F (π′),
where βπ,π′ denotes the braiding defined in [18]. Let Λ′ be a cone (not along the boundary) disjoint

from Λ such that there exists a cone ˜︁Λ along the boundary with Λ ∪ Λ′ ⊆ ˜︁Λ (see Figure 11).
Let γ be the path corresponding to π′, and let γ be a path in Λ′ of the same type as γ. Then
βπ,π′ = V ∗πup(V ), where V is a unitary intertwiner from π′ to πγ (see [18, p. 365]). Now, we

may assume without loss of generality that ˜︁Λ \ Λ contains a path ˜︁γ starting at the boundary and

extending γ. Note that we can define a functor ˜︁F mapping into Z(∆(˜︁Λ)) analogously to how

we defined F , and ˜︁F extends F by construction. Furthermore, by how ˜︁F is defined, we may

assume that ˜︁F (πγ) = π˜︁γ . Then ˜︁F (V ) is a unitary intertwiner from ˜︁F (π′) = F (π′) to π˜︁γ , so
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Figure 11. A cone Λ along the boundary (gray shaded region) along with a cone

Λ′ disjoint from Λ (orange shaded region) such that there exists a cone ˜︁Λ along the

boundary (entire shaded region) with Λ ∪ Λ′ ⊆ ˜︁Λ.
σF (π),F (π′) = ˜︁F (V )∗F (π)up( ˜︁F (V )). Hence, we have that

F (βπ,π′) = ˜︁F (βπ,π′) = ˜︁F (V ∗πup(V )) = ˜︁F (V )∗ ˜︁F (π)up( ˜︁F (V )) = ˜︁F (V )∗F (π)up( ˜︁F (V )) = σF (π),F (π′).
□

Theorem 9.7 is very close in statement to Theorem A. However, we have not yet shown that the
only excitations are given by infinite paths. In the remainder of the paper, we prove technical results
that will allow us to conclude that the only simple superselection sectors are those corresponding
to infinite paths. This will complete the proof of Theorem A.

10. Haag duality for cones along the boundary

In this section, we prove Haag duality for cones along the boundary, i.e., that the following
theorem holds.

Theorem 10.1. Let Λ be a cone along the boundary. Then

π0(A(Λ))
′′ = π0(A(Λ

c))′.

Let Λ ⊆ B be a cone along the boundary. Note that π0(A(Λ))
′′ ⊆ π0(A(Λ

c))′ by locality, so
we must show that π0(A(Λ

c))′ ⊆ π0(A(Λ))
′′. We also use the notation RΛ := π0(A(Λ))

′′ and
RΛc := π0(A(Λ

c))′′, as was done in section 7. Our proof of Haag duality in this setting will follow
the proof of Haag duality in [19, §3], with appropriate modifications.

For any subset ˜︁Λ ⊆ B, we can consider the set of path operators

F˜︁Λ :=
{︂
Γγ : γ is a finite path of type X or Z contained in ˜︁Λ}︂ .
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Note that for paths of type X, we include cases where γ is a path starting at the boundary. In

what follows, we specifically consider the cases where ˜︁Λ = Λ and ˜︁Λ = Λc. Note that [19, Lem. 3.3]
holds in this setting, as the proof still holds without modification.

Lemma 10.2 ([19, Lem. 3.3]). The vector space

span
{︂
Γ1 · · ·Γn

ˆ︁Γ1 · · · ˆ︁ΓmΩ : Γ1, . . . ,Γn ∈ FΛ, ˆ︁Γ1, . . . , ˆ︁Γm ∈ FΛc

}︂
is dense in H, the GNS Hilbert space associated to π0.

We now consider the vector space

HΛ := span {Γ1 · · ·ΓnΩ : Γ1, . . . ,Γn ∈ FΛ} ⊆ H,
and we let PΛ ∈ B(H) be the projection onto this subspace. We have that HΛ is an invariant
subspace for π0(A(Λ)) (and hence RΛ), as the proof of [19, Lem. 3.5] holds in this setting.

Lemma 10.3 ([19, Lem. 3.5]). The subspace HΛ ⊆ H is invariant for π0(A(Λ)), i.e., π0(A(Λ))HΛ ⊆
HΛ.

Note that [19, Lem. 3.5] also includes the statement that the an operator A ∈ RΛ is uniquely
determined by its restriction toHΛ. However, the proof given there holds for operators inR′

Λc ⊇ RΛ

as well.

Lemma 10.4. An operator A ∈ R′
Λc is uniquely determined by its restriction to HΛ.

Proof. This result follows by an argument in the proof of [19, Lem. 3.5], but we include the proof
here for convenience. Suppose A1, A2 ∈ R′

Λc such that A1|HΛ
= A2|HΛ

. By Lemma 10.2, it suffices

to show that A1
ˆ︁ΓΓΩ = A2

ˆ︁ΓΓΩ if ˆ︁Γ is a product of operators in FΛc and Γ is a product of operators

in FΛ. Let ˆ︁Γ be a product of operators in FΛc and Γ be a product of operators in FΛ. Then since

A1, A2 ∈ R′
Λc , A1 and A2 commute with ˆ︁Γ, so

A1
ˆ︁ΓΓΩ = ˆ︁ΓA1ΓΩ = ˆ︁ΓA2ΓΩ = A2

ˆ︁ΓΓΩ. □

Since we wish to show that R′
Λc ⊆ RΛ, we would expect that HΛ is also an invariant subspace

for R′
Λc . This is true, and it is in fact an important step in proving Haag duality. To prove this

fact, we need to define the boundary of a cone Λ along the boundary.

Definition 10.5. Let Λ be a cone along the boundary. We say that a star s or plaquette p is in
the boundary of Λ if s (or p) contains bonds both in Λ and in Λc.

We can now prove invariance of HΛ under R′
Λc .

Lemma 10.6. The subspace HΛ ⊆ H is invariant for R′
Λc, i.e., R′

ΛcHΛ ⊆ HΛ.

Proof. We follow the proof of [19, Lem. 3.6], modifying the argument as appropriate. For clarity, we
include the full proof here. Let B ∈ R′

Λc . We wish to show that BHΛ ⊆ HΛ. Note that by density,
it is sufficient to show that BΓ1 · · ·ΓnΩ ∈ HΛ, for all Γ1, . . . ,Γn ∈ FΛ. Let Γ1, . . . ,Γn ∈ FΛ, and
let ξ := Γ1 · · ·ΓnΩ. Again by density, in order to show that Bξ ∈ HΛ, it is sufficient to show that

⟨η|Bξ⟩ = 0 for all η ∈ H⊥
Λ of the form η = Γˆ︁Γ1 · · · ˆ︁ΓmΩ, where ˆ︁Γ1, . . . , ˆ︁Γm ∈ FΛc and Γ is the

product of operators in FΛ. We let ˆ︁Γ1, . . . , ˆ︁Γm ∈ FΛc and Γ be the product of operators in FΛ, and

we set η := Γˆ︁Γ1 · · · ˆ︁ΓmΩ, not necessarily in H⊥
Λ .

First, suppose η ∈ H⊥
Λ and suppose there exists a star operator As or a plaquette operator Bp

in RΛc that anti-commutes with ˆ︁Γ1 · · · ˆ︁Γm. We consider the case of a star operator As ∈ RΛc that

anti-commutes with ˆ︁Γ1 · · · ˆ︁Γm; the case of a plaquette operator is treated analagously. In this case,
since FΛ ⊆ RΛ ⊆ R′

Λc , we have that

⟨η|Bξ⟩ = ⟨η|BΓ1 . . .ΓnAsΩ⟩ = ⟨η|AsBξ⟩ = ⟨Asη|Bξ⟩ = −⟨Γˆ︁Γ1 · · · ˆ︁ΓmAsΩ|Bξ⟩ = −⟨η|Bξ⟩,
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and thus ⟨η|Bξ⟩ = 0.

Now, suppose every star and plaquette operator As, Bp ∈ RΛc commutes with ˆ︁Γ1 · · · ˆ︁Γm. (Note

that a star or plaquette operator must either commute or anti-commute with ˆ︁Γ1 · · · ˆ︁Γm.) We claim
that in this case, η ∈ HΛ, so η /∈ H⊥

Λ unless η = 0. For all i = 1, . . . ,m, we let γi ⊆ Λc denote the

path giving ˆ︁Γi. Note that if two paths γi and γj share an endpoint, which is a face in the bulk or
a vertex in the bulk or along the boundary, we can concatenate γi and γj to form a new path. We

can thus combine the operators ˆ︁Γi and ˆ︁Γj in the product ˆ︁Γ1 · · · ˆ︁Γm, possibly at the expense of a
minus sign. Proceeding in this way, we can assume that no two paths γi and γj share an endpoint,
not including the “endpoint” of the boundary for paths of type X. Furthermore, if γi is a path that

is a loop or a path of type X starting and ending at the boundary, then ˆ︁Γi is a product of star or

plaquette operators, and hence ˆ︁ΓiΩ = Ω. We can therefore remove from the product ˆ︁Γ1 · · · ˆ︁Γm anyˆ︁Γi corresponding to loops or paths of type X starting and ending at the boundary, again possibly
at the expense of a minus sign.

With these simplifications, we have that the endpoints of the paths γ1, . . . , γm are all disjoint,
no path γi is a loop, and no path γi of type X both starts and ends on the boundary. Note that

a star or plaquette operator acting on an endpoint site of a path γi must anti-commute with ˆ︁Γi.
Thus, by assumption, any such star or plaquette must be in the boundary of Λ. If γi is a path with
both endpoints sites in the lattice (i.e., γi is not a path of type X starting at the boundary), then
there exists a path γ′i ⊆ Λ with the same endpoints as γi. On the other hand, if γi is a path of type
X starting at the boundary, then there exists a path γ′i ⊆ Λ of type X starting at the boundary,
with γ′i and γi sharing the same non-boundary endpoint. For i = 1, . . . ,m, we let Γ′

i be the string

operator associated to the path γ′i. Then for all i, Γ′
i
ˆ︁Γi is a product of star or plaquette operators

since γi ∪ γ′i is a loop or a path of type X starting and ending at the boundary. Hence for all i,

Γ′
iΩ = ˆ︁ΓiΩ, so we have that

η = Γˆ︁Γ1 · · · ˆ︁ΓmΩ = ±ΓΓ′
1 · · ·Γ′

mΩ ∈ HΛ,

as desired. □

Note that Lemma 10.2 and Lemma 10.6, coupled with a standard result of von Neumann algebra
theory, give the following corollary.

Corollary 10.7. If PΛ ∈ B(H) is the projection onto HΛ, then PΛ ∈ R′
Λ and PΛ ∈ RΛc.

We now let AΛ := RΛPΛ ⊆ B(HΛ) and BΛ := PΛRΛcPΛ ⊆ B(HΛ). Note that AΛ and BΛ are
von Neumann algebras by a standard result of von Neumann algebra theory. Furthermore, Ω ∈ HΛ

is a cyclic vector for AΛ, by how HΛ was defined. We let AΛ,sa and BΛ,sa denote the self-adjoint
elements of AΛ and BΛ respectively. The key step in proving Theorem 10.1 is the following lemma,
which is analogous to [19, Lem. 3.8].

Lemma 10.8. The real vector space AΛ,saΩ+ iBΛ,saΩ is dense in HΛ.

Proof. We follow the proof of [19, Lem. 3.8], modifying it as appropriate. For clarity, we include the
proof in full. Since AΛ,saΩ+iBΛ,saΩ is a real vector space, it is sufficent to show that ΓΩ ∈ AΛ,saΩ+
iBΛ,saΩ and iΓΩ ∈ AΛ,saΩ+ iBΛ,saΩ for all products Γ of operators in FΛ. Let Γ := Γ1 · · ·Γn, where
Γi ∈ FΛ for all i. Note that each of the Γi are self-adjoint, and two operators Γi and Γj either
commute or anti-commute. Hence either Γ∗ = Γ or Γ∗ = −Γ. Now, we have that ΓPΛ ∈ AΛ by
how AΛ was defined. Thus, if Γ∗ = Γ, then ΓΩ ∈ AΛ,saΩ, while if Γ∗ = −Γ, then iΓΩ ∈ AΛ,saΩ.

Now, suppose there exists a star operatorAs or a plaquette operatorBp inRΛ that anti-commutes
with Γ. We consider the case of a star operator As ∈ RΛ that anti-commutes with Γ; the case of a
plaquette operator is treated analogously. If Γ∗ = Γ, then iAsΓPΛ ∈ AΛ is self-adjoint, and thus

iΓΩ = iΓAsΩ = −iAsΓΩ ∈ AΛ,saΩ.
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On the other hand, if Γ∗ = −Γ, then AsΓPΛ ∈ AΛ is self-adjoint, and thus

ΓΩ = ΓAsΩ = −AsΓΩ ∈ AΛ,saΩ.

We thus have that ΓΩ ∈ AΛ,saΩ+iBΛ,saΩ and iΓΩ ∈ AΛ,saΩ+iBΛ,saΩ if there exists a star operator
or plaquette operator in RΛ that anti-commutes with Γ.

Now, suppose every star and plaquette operator in RΛ commutes with Γ. (Recall that a star
or plaquette operator must either commute or anti-commute with Γ.) For all i = 1, . . . , n, we let
γi ⊆ Λ be the path corresponding to the string operator Γi. By the argument in the proof of
Lemma 10.6, we may assume that the endpoints of the paths γ1, . . . , γn are all disjoint, no path γi
is a loop, and no path γi of type X both starts and ends on the boundary. By the same argument
as in that proof, any star or plaquette at an ending site of a path γi must be in the boundary of
Λ. Thus, if γi is a path with both endpoints sites in the lattice (i.e., γi is not a path of type X
starting at the boundary), then there exists a path γ′i ⊆ Λc with the same endpoints as γi. On the
other hand, if γi is a path of type X starting at the boundary, then there exists a path γ′i ⊆ Λc

of type X starting at the boundary, with γ′i and γi sharing the same non-boundary endpoint. For

i = 1, . . . , n, we let ˆ︁Γi be the string operator associated with γ′i, and we let ˆ︁Γ := ˆ︁Γ1 · · · ˆ︁Γn. Thenˆ︁Γ ∈ RΛc , and by the same argument as in the proof of Lemma 10.6, we have that ˆ︁ΓΩ = ±ΓΩ.

We now claim that Γ∗ = Γ if and only if ˆ︁Γ∗ = ˆ︁Γ. Let i, j ∈ {1, . . . , n}, i ̸= j. We claim that Γi

and Γj commute if and only if ˆ︁Γi and ˆ︁Γj commute, which is sufficient to prove the desired claim.
Indeed, we first note that γi and γj are paths of the same type if and only if γ′i and γ

′
j are paths of

the same type, so we may restrict ourselves to the case where γi and γj are paths of different type.
Without loss of generality, we may assume that γi and γ

′
i are paths of type Z (i.e., paths on the

lattice, not the dual lattice). In this case, γi ∪ γ′i is a loop on the lattice. Thus, γi ∪ γ′i intersects
γj ∪ γ′j in an even number of bonds. Hence, γi and γj intersect in an even number of bonds if and

only if γ′i and γ
′
j intersect in an even number of bonds, so Γi and Γj commute if and only if ˆ︁Γi andˆ︁Γj do.

We can now complete the proof that ΓΩ ∈ AΛ,saΩ+ iBΛ,saΩ and iΓΩ ∈ AΛ,saΩ+ iBΛ,saΩ. Note
that we have already shown that if Γ∗ = Γ, then ΓΩ ∈ AΛ,saΩ + iBΛ,saΩ, and if Γ∗ = −Γ, then

iΓΩ ∈ AΛ,saΩ+ iBΛ,saΩ. If Γ
∗ = Γ, then ˆ︁Γ∗ = ˆ︁Γ, so PΛ

ˆ︁ΓPΛ ∈ BΛ,sa. We thus have in this case that

iΓΩ = iPΛΓΩ = ±iPΛ
ˆ︁ΓΩ = ±iPΛ

ˆ︁ΓPΛΩ ∈ iBΛ,saΩ.

On the other hand, if Γ∗ = −Γ, then ˆ︁Γ∗ = −ˆ︁Γ, and hence iPΛ
ˆ︁ΓPΛ ∈ BΛ,sa. Thus, in this case, we

have that

ΓΩ = PΛΓΩ = ±PΛ
ˆ︁ΓΩ = ±PΛ

ˆ︁ΓPΛΩ ∈ iBΛ,saΩ.

We have thus shown that ΓΩ ∈ AΛ,saΩ+ iBΛ,saΩ and iΓΩ ∈ AΛ,saΩ+ iBΛ,saΩ in all possible cases,
as desired. □

Theorem 10.1 now follows by the proof of [19, Thm. 3.1], which we repeat here for convenience.

Proof of Theorem 10.1. It remains to show that R′
Λc ⊆ RΛ. Note that by Lemma 10.8 and [24,

Thm. 2], we have that AΛ = B′
Λ. The result then follows by Lemma 10.4, since AΛ = RΛPΛ and

B′
Λ = R′

ΛcPΛ. □

11. Distal split property

We wish to show that there are only two nonequivalent simple superselection sectors, namely
the vacuum π0 and the type Z excitation πZ . We will show this by using the machinery developed
in [20, §3] with an argument analogous to the one in [20, §4]. To do so, we will need to show that
there exists a relation Λ1 ≪ Λ2 on cones Λ1,Λ2 along the boundary such that if this relation is
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satisfied, then there exists a type I factor N such that RΛ1 ⊆ N ⊆ RΛ2 . This property is called
the distal split property [18, Def. 5.1].

Definition 11.1 ([18]). Let Λ1,Λ2 ⊆ B be cones along the boundary. We say Λ1 ≪ Λ2 if Λ1 ⊆ Λ2

and if a star or plaquette is contained in Λ1 ∪Λc
2, then this star or plaquette is either contained in

Λ1 or Λc
2.

Using Haag duality, there is a quick argument to show that if Λ1 ≪ Λ2, then there exists a type
I factor N such that RΛ1 ⊆ N ⊆ RΛ2 , which proves that ω0 satisfies the distal split property (see
[18, Thm. 5.2]). However, in order to apply the argument in [20, §4], we will need to adapt the
more direct proof found in [19, §4] to the case of toric code with boundary. The following proof
closely mirrors the one in [19, §4] but is modified as appropriate for our setting.

We fix Λ1,Λ2 cones along the boundary such that Λ1 ≪ Λ2. We let Λ0 := Λc
1 ∪ Λ2. We fix two

vertex sites v1 on the boundary of Λ1 and v2 on the boundary of Λ2, and we fix a path γb from v1
to v2 contained in Λ0. In addition, we let S denote the collection of vertices and faces whose stars
and plaquettes are contained in Λ0. If S is nonempty, we fix a vertex ˆ︁v ∈ S and a face ˆ︁p ∈ S. We
fix paths γˆ︁v and γˆ︁p contained in Λ0 from ˆ︁v and ˆ︁p respectively to the boundary of Λ1. Furthermore,
for any s ∈ S \ {ˆ︁v, ˆ︁p}, we fix a path γs of the appropriate type from s to ˆ︁v or ˆ︁p contained in

Λ0. We let F0 :=
{︂
ΓZ
γb

}︂
∪ {Γγs : s ∈ S}. Furthermore, we define F0 := {Γ1 · · ·Γn : Γi ∈ F0},

FΛ1
:= {Γ1 · · ·Γn : Γi ∈ FΛ1}, and FΛc

2
:=

{︁
Γ1 · · ·Γn : Γi ∈ FΛc

2

}︁
. We now define

H0 := spanF0Ω ⊆ H.

We have the following lemma, which is analogous to [19, Lem. 4.3].

Lemma 11.2. We have that spanFΛ1F0FΛc
2
Ω is dense in H.

Proof. We follow the proof of [19, Lem. 4.3], modifying it to fit our setting. For clarity, we include
the full argument. Note that by Lemma 10.2, it suffices to show that if Γ is a product of (finite)

path operators, then there exists Γ1 ∈ FΛ1 ,
ˆ︁Γ ∈ F0, and Γ2 ∈ FΛc

2
such that ΓΩ = Γ1

ˆ︁ΓΓ2Ω.
Furthermore, since any two path operators either commute or anti-commute, it suffices to assume
that Γ is actually a single path operator Γγ of typeX or Z. Note that if γ is a closed loop or a path of
type X starting and ending on the boundary, then Γγ is a product of star or plaquette operators and
thus ΓγΩ = Ω. Hence, we may assume that this is not the case, i.e., that γ generates an excitation
at one or both endpoints. We first assume that γ generates excitations at both endpoints, i.e., γ is
not a path of type X starting on the boundary. If both endpoints of γ lie in Λ1 and its boundary or
in Λc

2 and its boundary, then these endpoints can be joined by a path γ′ contained in Λ1 or Λc
2, and

ΓγΩ = Γγ′Ω ∈ FΛ1F0FΛcΩ. On the other hand, if both these endpoints lie in S, then letting s1 and
s2 denote the endpoints of γ, we have that ΓγΩ = Γγs1

Γγs2
Ω if s1, s2 /∈ {ˆ︁v, ˆ︁p} and ΓγΩ = Γγs1

Ω if
s2 ∈ {ˆ︁v, ˆ︁p}. Hence ΓγΩ ∈ F0Ω if both endpoints of γ are in Λ0. If one endpoint of γ lies in S and
one lies in Λ1 or its boundary, we let s1 denote the endpoint in Λ0 and s2 denote the endpoint in
Λ1. In this case, we can get from s1 to s2 by taking γs1 , followed by γˆ︁v or γˆ︁p depending on the
type of γ, followed by a path in Λ1 from the Λ1-boundary endpoint of γˆ︁v or γˆ︁p to s2. The product
Γ′ of these path operators then lives in F0FΛ1 and Γ′Ω = ΓγΩ.

To handle the remaining cases where γ generates excitations at both endpoints, we must handle
the cases where γ is type Z and where γ is type X differently. First, suppose one endpoint of γ is
in Λ1 or its boundary and one is in Λc

2 or its boundary. If γ is type Z, we can get from one endpoint
to the other by taking γb along with paths in Λ1 and Λc

2 from the endpoints of γb to the endpoints
of γ. The product Γ′ of these path operators then lives in FΛ1F0FΛc

2
and Γ′Ω = ΓγΩ. On the other

hand, if γ is type X, we can take paths in Λ1 and in Λc
2 from the endpoints of γ to the boundary.

The product Γ′ of these path operators then lives in FΛ1FΛc
2
and Γ′Ω = ΓγΩ since Γ′Γγ is the path
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operator for a path of type X starting and ending at the boundary. Lastly, suppose one endpoint
(denoted s1) of γ lies in S and the other (denoted s2) lies in Λc

2 or its boundary. If γ is type Z, we
can connect s1 and s2 as follows: we take γs1 , followed by γˆ︁v, followed by a path in Λ1 from the
Λ1-boundary endpoint of γˆ︁v to the Λ1-boundary endpoint of γb, followed by γb, followed by a path
in Λc

2 from the Λ2-boundary endpoint of γb to s2. The product Γ
′ of these path operators then lives

in FΛ1F0FΛc
2
and Γ′Ω = ΓγΩ. If γ is type X, we can take a path from s2 to the boundary that is

contained in Λc
2, and we can construct a path from s1 to the boundary by taking γs1 , followed by

γˆ︁p, followed by a path from the Λ1-boundary endpoint of γˆ︁p to the actual boundary. The product
Γ′ of these path operators then lives in FΛ1F0FΛc

2
and Γ′Ω = ΓγΩ. This takes care of all possible

cases where γ generates excitations at both endpoints.
Finally, we suppose that γ is a path of type X starting at the boundary. If the non-boundary

endpoint of γ lies in Λ1 or Λc
2 or the boundary of Λ1 or Λc

2, we can take a path γ′ from the non-
boundary endpoint of γ to the boundary that is entirely contained in Λ1 or in Λc

2, and ΓγΩ =
Γγ′Ω ∈ FΛ1F0FΛcΩ. On the other hand, if the non-boundary endpoint s of γ lies in S, we can get
from s to the boundary as follows: we take γs, followed by γˆ︁p, followed by a path in Λ1 from the
Λ1-boundary endpoint of γˆ︁p to the actual boundary. The product Γ′ of these path operators then
lives in FΛ1F0 and Γ′Ω = ΓγΩ. □

We now wish to construct a unitary map U : H → HΛ1 ⊗HΛc
2
⊗H0. Note that by Lemma 11.2,

it will suffice to define U for vectors in spanFΛ1F0FΛc
2
Ω. If Γ1 ∈ FΛ1 , Γ2 ∈ FΛc

2
, and ˆ︁Γ ∈ F0, we say

that Γ1
ˆ︁ΓΓ2Ω is in canonical form, as in [19].

Lemma 11.3. We have a well-defined unitary map U : H → HΛ1 ⊗HΛc
2
⊗H0, given on vectors in

canonical form by

UΓ1
ˆ︁ΓΓ2Ω := Γ1Ω⊗ Γ2Ω⊗ ˆ︁ΓΩ. (11.4)

Proof. We follow the proof of [19, Lem. 4.4], modifying it as appropriate for our setting. For clarity,
we present the full argument. First, observe that (11.4) uniquely determines U by Lemma 11.2. We
show that U is an isometry, which will imply that U is well-defined. To show that U is an isometry,

it suffices by Lemma 11.2 to show that for all η1 := Γ1
ˆ︁ΓΓ2Ω and η2 := Γ′

1
ˆ︁Γ′Γ′

2Ω in canonical form,

then ⟨η1|η2⟩ = ⟨Uη1|Uη2⟩. Let η1 := Γ1
ˆ︁ΓΓ2Ω and η2 := Γ′

1
ˆ︁Γ′Γ′

2Ω be in canonical form. First,

suppose that ˆ︁Γ ̸= ±ˆ︁Γ′. In that case there exists a star or plaquette operator that anti-commutes

with one of ˆ︁Γ and ˆ︁Γ′ and commutes with the other, so ω0(ˆ︁Γ∗ˆ︁Γ′) = 0 by Lemma 4.1 and hence
⟨Uη1|Uη2⟩ = 0. We show that ⟨η1|η2⟩ = 0. If there exists a star or plaquette contained in Λ0

that anti-commutes with exactly one of ˆ︁Γ and ˆ︁Γ′, then ⟨η1|η2⟩ = 0 by Lemma 4.1, since this star
or plaquette operator commutes with all operators in FΛ1 and FΛc

2
. Now, suppose the only star

and plaquette operators that anti-commute with exactly one of ˆ︁Γ and ˆ︁Γ′ live in FΛ1 or FΛc
2
. In

that case, the path operator ΓZ
ξb

is a factor in exactly one of ˆ︁Γ and ˆ︁Γ′, say ˆ︁Γ, since Γ1
ˆ︁ΓΓ2Ω and

Γ′
1
ˆ︁Γ′Γ′

2Ω are in canonical form. We then have that the operator Γ1
ˆ︁ΓΓ2 gives an odd number of

type Z excitations in Λ1 (and in Λc
2 as well). However, Γ′

1
ˆ︁Γ′Γ′

2 gives an even number of type Z
excitations in each of these regions. Hence there exists a star operator that anti-commutes with

exactly one of Γ1
ˆ︁ΓΓ2 and Γ′

1
ˆ︁Γ′Γ′

2, so ⟨η1|η2⟩ = 0.

We now consider the case where ˆ︁Γ = ±ˆ︁Γ′. Without loss of generality, we may assume thatˆ︁Γ = ˆ︁Γ′. In that case, we must show that

ω0(Γ
∗
1Γ

′
1Γ

∗
2Γ

′
2) = ω0(Γ

∗
1Γ

′
1)ω0(Γ

∗
2Γ

′
2).

Note that since Λ1 ≪ Λ2, a star or plaquette operator cannot anti-commute both with a path
operator in FΛ1 and with a path operator in FΛc

2
. Thus, if there is a star or plaquette operator

that anti-commutes with exactly one of Γ1 and Γ′
1, then both sides of the above equation are zero
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as this path operator must commute with Γ2 and Γ′
2. Similarly, both sides of the above equation

are zero if there is a star or plaquette operator that anti-commutes with exactly one of Γ2 and Γ′
2.

If there are no such star and plaquette operators, then Γ∗
1Γ

′
1 and Γ∗

2Γ
′
2 commute with all star and

plaquette operators, so they are, up to sign, the product of star and plaquette operators. Hence in
this case, ω0(Γ

∗
1Γ

′
1Γ

∗
2Γ

′
2) = ±1 and ω0(Γ

∗
1Γ

′
1)ω0(Γ

∗
2Γ

′
2) = ±1, with the signs being the same.

Finally, the image of U is clearly dense in HΛ1 ⊗HΛc
2
⊗H0, so U is a unitary. □

We will now show that the distal split property holds for ω0 by explicitly constructing a type
I factor N such that RΛ1 ⊆ N ⊆ RΛ2 . To do so, we will show that URΛ1U

∗ acts solely on the
first factor of HΛ1 ⊗HΛc

2
⊗H0 and URΛc

2
U∗ acts solely on the second factor, a result that will be

important for obtaining a bound on the number of nonequivalent simple superselection sectors.

Proposition 11.5. Let U : H → HΛ1 ⊗ HΛc
2
⊗ H0 be as in Lemma 11.3. Then we have that

URΛ1U
∗ = RΛ1PΛ1 ⊗ I⊗ I and URΛc

2
U∗ = I⊗RΛc

2
PΛc

2
⊗ I, where PΛ1 and PΛc

2
are the projections

onto HΛ1 and HΛc
2
respectively.

Proof. This proof is identical to an argument in the proof of [19, Thm. 4.5], but we repeat it here
for convience. First note that RΛ1HΛ1 ⊆ HΛ1 by Lemma 10.3, and similarly RΛc

2
HΛc

2
⊆ HΛc

2
.

Hence PΛ1 ∈ R′
Λ1

and PΛc
2
∈ R′

Λc
2
. We show that URΛ1U

∗ = RΛ1PΛ1 ⊗ I ⊗ I; the other result

follows by an analogous argument. To show this, it suffices to show that UAU∗ = APΛ1 ⊗ I ⊗ I for
all A ∈ RΛ1 . Let A ∈ RΛ1 . Then by a density argument, it suffices to show that

UAU∗(η ⊗ ΓΩ⊗ ˆ︁ΓΩ) = Aη ⊗ ΓΩ⊗ ˆ︁ΓΩ
for all η ∈ HΛ1 , Γ ∈ FΛc

2
, and ˆ︁Γ ∈ F0. Let η ∈ HΛ1 , Γ ∈ FΛc

2
, and ˆ︁Γ ∈ F0. Then U

∗(η⊗ΓΩ⊗ ˆ︁ΓΩ) =ˆ︁ΓΓη by the definition of U . Furthermore, since A ∈ RΛ1 , we have by locality that A commutes

with Γ and ˆ︁Γ, and since RΛ1HΛ1 ⊆ HΛ1 , we have that Uˆ︁ΓΓAη = Aη ⊗ ΓΩ ⊗ ˆ︁ΓΩ. Thus, we have
that

UAU∗(η ⊗ ΓΩ⊗ ˆ︁ΓΩ) = UAˆ︁ΓΓη = Uˆ︁ΓΓAη = Aη ⊗ ΓΩ⊗ ˆ︁ΓΩ. □

At this point, the distal split property follows from Proposition 11.5 by an argument in the proof
of [19, Thm. 4.5].

Theorem 11.6. Let U : H → HΛ1 ⊗ HΛc
2
⊗ H0 be as in Lemma 11.3. Then the type I factor

N := U∗(B(H0)⊗ I ⊗ I)U satisfies that RΛ1 ⊆ N ⊆ RΛ2.

12. Bounding the number of excitations

In this section, we show that the number of nonisomorphic simple superselection sectors is at
most 2, and hence is equal to 2 since we have already constructed two distinct such sectors (the
vacuum and πZ). By simple, we mean that End(π) ∼= C, where again End(π) denotes the space
self-intertwiners of π (the endomorphisms of π in the category ∆(Λ)). We use the approach in [20].
Following [20], we let C2 be the collection of subsets of B of the form Λ1 ∪ Λ2, where Λ1 and Λ2

are (disjoint) cones along the boundary such that there exists a cone Λ along the boundary with
Λ1 ≪ Λ and Λ2 ⊆ Λc (see Figure 12). Note that by the distal split property, if Ξ = Λ1 ∪ Λ2 ∈ C2,
with Λ1 and Λ2 disjoint cones as just described, then RΞ = RΛ1∨RΛ2

∼= RΛ1⊗RΛ2 . For Ξ ∈ C2, we

define ˆ︁RΞ := R′
Ξc . Since π0 is an irreducible representation, the proof of [20, Lem. 3.2] still applies

here to give that RΞ ⊆ ˆ︁RΞ is an irreducible subfactor. Note that for any subfactor N ⊆ M with a
normal conditional expectation E : M → N, we can define the Kosaki-Longo index [16, Thm. 4.1]
by [M : N]E := λ−1, where

λ := sup {r ≥ 0 : E(X) ≥ rX for all X ∈ M+} .
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Figure 12. The gray shaded regions depict a region Ξ ∈ C2. The top gray shaded
region is a cone Λ1 along the boundary, and the cyan shaded region depicts the set
Λ ∩ Λc

1, where Λ is a cone along the boundary with Λ1 ≪ Λ. The bottom shaded
region depicts a cone Λ2 ⊆ Λc along the boundary.

(Note that if λ = 0, then [M : N]E = ∞.) We let [M : N] = infE [M : N]E ; if [M : N] < ∞, there
is a unique normal conditional expectation such that [M : N]E = [M : N] [16, Thm. 5.5]. We now

define µ := infΞ∈C2 [ ˆ︁RΞ : RΞ]. By the argument used in the proof of [11, Lem. 13], we have the
following result.

Proposition 12.1. The number of nonisomorphic simple superselection sectors for toric code with
boundary is bounded above by µ.

We now wish to show that for all Ξ ∈ C2, [ ˆ︁RΞ : RΞ] = 2. This will show that µ = 2 and hence
that there are at most 2 nonisomorphic simple superselection sectors. To show this, we follow the

proof in [20, §4], modifying it to fit our setting. Let Ξ ∈ C2. In order to show that [ ˆ︁RΞ : RΞ] = 2,

we will show that ˆ︁RΞ is given by a crossed product of RΞ with Z/2Z. Proving this fact requires
several steps. Since Ξ ∈ C2, Ξ = Λ1 ∪Λ2, where Λ1 and Λ2 are (disjoint) cones along the boundary
such that there exists a cone Λ along the boundary with Λ1 ≪ Λ and Λ2 ⊆ Λc. We let V be a
unitary intertwiner between two type Z superselection sectors, one in Λ1 and one in Λ2, satisfying
the conditions of Proposition 6.1. Recall that V = limWOT ΓZ

γ1
n
ΓZ˜︁γnΓZ

γ2
n
, where γ1 and γ2 are infinite

paths of type Z with γ1 ⊆ Λ1 and γ
2 ⊆ Λ2, γ

1
n and γ2n are the first n bonds of γ1 and γ2 respectively,

and (˜︁γn) is a sequence of paths from the nth vertex of γ1 to the nth vertex of γ2 such that the
distance from ˜︁γn to the starting sites of γ1 and γ2 goes to infinity. The main step in proving thatˆ︁RΞ is given by a crossed product of RΞ with Z/2Z is the following lemma.

Lemma 12.2. We have that ˆ︁RΞ = RΞ ∨ {V }.
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For ease of notation, we write A := RΞ ∨ {V } for the remainder of this section. We also write
B := RΞc . Note thatA ⊆ B′ by locality and by the fact that every local operator in A(Ξc) eventually
commutes with ΓZ

γ1
n
ΓZ˜︁γnΓZ

γ2
n
. Hence in order to prove Lemma 12.2, it remains to show that B′ ⊆ A.

The proof of this will be similar to the proof of Haag duality in §10. Like with the proof of Haag
duality, we will proceed by restricting to a subspace of H. In particular, we consider the subspace
HΞ := AΩ. We now fix a path γZ from a vertex site entirely contained in Λ1 to a vertex site entirely
contained in Λ2. (By “entirely contained in” we mean that the star at the vertex is contained in
the cone.) As before, we let FΞ be the collection of all path operators corresponding to paths in Ξ.
We also define FΞ := FΞ ∪ {ΓZ

γZ
}. Similarly, we have

FΞ := {Γ1 · · ·Γn : Γi ∈ FΞ} , FΞc := {Γ1 · · ·Γn : Γi ∈ FΞc} , FΞ :=
{︁
Γ1 · · ·Γn : Γi ∈ FΞ

}︁
.

We now describe a useful dense subspace of HΞ, which is an analogue of [20, Lem. 4.4].

Lemma 12.3. The space spanFΞΩ is a dense subspace of HΞ. In fact, we have that

FΞΩ =
{︁
ΓV iΩ : Γ ∈ FΞ, i ∈ {0, 1}

}︁
. (12.4)

Proof. We follow the proof of [20, Lem. 4.4], modifying it as appropriate for our setting. For
clarity, we include the full argument. We first claim that V commutes or anti-commutes with each
Γ ∈ FΞ. Since FΞ ∪ {V } generates A = RΞ ∨ {V } as a von Neumann algebra, this will imply
that span

{︁
ΓV iΩ : Γ ∈ FΞ, i ∈ {0, 1}

}︁
is a dense subspace of HΞ since V 2 = I. Let Γ ∈ FΞ. Recall

that V = limWOT ΓZ
γ1
n
ΓZ˜︁γnΓZ

γ2
n
as described above. For each n ∈ N, ΓΓZ

γ1
n
ΓZ˜︁γnΓZ

γ2
n
= ±ΓZ

γ1
n
ΓZ˜︁γnΓZ

γ2
n
Γ,

and since Γ is local this sign eventually becomes constant. Thus, since multiplication is separately
WOT-continuous, ΓV = ±V Γ.

We now show that (12.4) holds. For i ∈ {1, 2}, we let γi be a path from the starting site of γi to
the endpoint of γZ in Λi. Then γ1 ∪ γZ ∪ γ2 is a path from the starting site of γ1 to the starting
site of γ2. By [18, Lem. 4.1], we have that V Ω = ΓZ

γ1Γ
Z
γZ
ΓZ
γ2Ω, from which (12.4) follows. □

In order to restrict to HΞ, we need HΞ to be an invariant subspace for A and B′. This is true,
as detailed in the following lemma.

Lemma 12.5. We have that AHΞ ⊆ HΞ and B′HΞ ⊆ HΞ. Furthermore, elements of B′ are
uniquely determined by their restriction to HΞ.

Proof. We follow the proof of [20, Lem. 4.5], modifying it to fit our setting. For clarity, we present
the argument in full. The fact that AHΞ ⊆ HΞ is clear from the definition of HΞ. We now show

that B′HΞ ⊆ HΞ. Let B ∈ B′. Note that by Lemma 12.3, it suffices to show that BΓV iΩ ∈ HΞ for

all Γ ∈ FΞ and i ∈ {0, 1}. Let Γ ∈ FΞ and i ∈ {0, 1}, and let ξ := ΓV iΩ. Note that by an argument
similar to the proof of Lemma 11.2, the space spanFΞcFΞΩ is dense in H. Thus, in order to show

that Bξ ∈ HΞ, it is sufficient to show that ⟨η|Bξ⟩ = 0 for all η ∈ H⊥
Ξ

of the form η = ˆ︁Γ˜︁ΓΩ, whereˆ︁Γ ∈ FΞc and ˜︁Γ ∈ FΞ. We let ˆ︁Γ ∈ FΞc and ˜︁Γ ∈ FΞ, and we set η := ˆ︁Γ˜︁ΓΩ, not necessarily in H⊥
Ξ
.

First, suppose there exists a star or plaquette operator in A(Ξc) that anti-commutes with ˆ︁Γ. We
consider the case of an anti-commuting star operator As; the case of a plaquette operator is handled
analogously. Note that As commutes with ΓV i since As ∈ B and ΓV i ∈ A ⊆ B′. Furthermore, As

commutes with ˜︁Γ since any excitations from ˜︁Γ lie in Ξ. Thus, since B ∈ B′, we have that

⟨η|Bξ⟩ = ⟨η|BΓV iAsΩ⟩ = ⟨η|AsBΓV iΩ⟩ = ⟨As
ˆ︁Γ˜︁ΓΩ|ξ⟩ = −⟨ˆ︁Γ˜︁ΓAsΩ|ξ⟩ = −⟨η|Bξ⟩,

so ⟨η|Bξ⟩ = 0 as desired.

Now, suppose that there are no star and plaquette operators in A(Ξc) that anti-commute with ˆ︁Γ.
We claim that in this case η ∈ HΞ, so η /∈ H⊥

Ξ
unless η = 0. Proceeding as in the proof of Lemma

10.6, we may assume that the excitations at the end of each path operator in the product ˆ︁Γ ∈ FΞc
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live on the boundary of Ξ = Λ1 ∪ Λ2, and that there are no paths giving no excitations (i.e., no
closed loops or paths of type X starting and ending at the boundary). A path operator giving a
pair of excitations on the boundary of Λ1 or on the boundary of Λ2 acts identically on Ω to a path
operator in A(Λ1) or A(Λ2) giving the same excitations. Similarly, a path operator giving a single
type X excitation on the boundary of Ξ (i.e., an operator given by a path starting at the actual
boundary) acts identically on Ω to a path operator in A(Ξ) giving the same excitation. A path
operator of type Z giving one excitation on the boundary of Λ1 and one excitation on the boundary
of Λ2 acts identically on Ω to an operator given by a path with the same endpoints consisting of γZ
and segments in Ξ. Finally, a path of type X giving one excitation on the boundary of Λ1 and one
excitation on the boundary of Λ2 acts identically on Ω to the product of two path operators, one of
which corresponds to a path in Λ1 from the Λ1-endpoint of the original path to the boundary and
the other corresponds to a path in Λ2 from the Λ2-endpoint of the original path to the boundary.

Proceeding in this way, we have that ˆ︁ΓΩ = ±ˆ︁Γ′Ω for some ˆ︁Γ′ ∈ FΞ, so

η = ˆ︁Γ˜︁ΓΩ = ±ˆ︁Γ′˜︁ΓΩ ∈ HΞ.

Finally, we show that elements of B′ are uniquely determined by their restriction to HΞ. Let
A1, A2 ∈ B′ such that A1|HΞ

= A2|HΞ
. Since spanFΞcFΞΩ is dense in H, it suffices to show that

A1
ˆ︁Γ˜︁ΓΩ = A2

ˆ︁Γ˜︁ΓΩ for all ˆ︁Γ ∈ FΞc and ˜︁Γ ∈ FΞ. But this holds since A1 and A2 commute with allˆ︁Γ ∈ FΞc and ˜︁ΓΩ ∈ HΞ if ˜︁Γ ∈ FΞ. □

We wish to prove Lemma 12.2 using the argument in the proof of Theorem 10.1. To do so, we
need an analogue of Lemma 10.8. We let AΞ := APΞ ⊆ B(HΞ) and BΞ := PΞBPΞ ⊆ B(HΞ), where
PΞ is the projection onto HΞ. Note that by Lemma 12.5, PΞ ∈ A′ and PΞ ∈ B. We also let AΞ,sa

and BΞ,sa be the self-adjoint elements of AΞ and BΞ respectively. Lemma 12.2 will then follow by
the proof of Theorem 10.1, once we have proven the following lemma.

Lemma 12.6. The real vector space AΞ,saΩ+ iBΞ,saΩ is dense in HΞ.

Proof. We follow the proof of [20, Lem. 4.6], modifying it to fit our setting. For clarity, we include

the full argument. Note that by Lemma 12.3, it suffices to show that ˆ︁ΓΩ ∈ AΞ,saΩ + iBΞ,saΩ and

iˆ︁ΓΩ ∈ AΞ,saΩ + iBΞ,saΩ for all ˆ︁Γ ∈ FΞ. Let ˆ︁Γ ∈ FΞ. Note that by Lemma 12.3, we have thatˆ︁ΓΩ = ΓV iΩ for some Γ ∈ FΞ and i ∈ {0, 1}. We let A := ΓV i. By the proof of Lemma 12.3,

A∗ = A or A∗ = −A. If A∗ = A, then APΛ ∈ AΞ,sa and hence ˆ︁ΓΩ = AΩ ∈ AΞ,saΩ. On the other

hand, if A∗ = −A, then iAPΛ ∈ AΞ,sa and hence iˆ︁ΓΩ = iAΩ ∈ AΞ,saΩ.

Now, suppose there exists a star or plaquette operator in A(Ξ) that anti-commutes with A. We
consider the case of an anti-commuting star operator As; the case of a plaquette operator is handled
similarly. We then have that iAsA is self-adjoint if A is self-adjoint and AsA is self-adjoint if iA is
self-adjoint. In the first case, we have that

iˆ︁ΓΩ = iAΩ = iAAsΩ = −iAsAΩ ∈ AΞ,sa,

and similarly in the second case we have that ˆ︁ΓΩ ∈ AΞ,sa.

It remains to consider the case where there are no star and plaquette operators in A(Ξ) that
anti-commute with A. In this case, we have that any excitations generated by A must live on the
boundary of Ξ, where we view V as generating excitations at the endpoints of the paths whose
operators converge weakly to V . For any pair of type Z excitations generated by A, we can find
a path of type Z in Ξc that generate the same excitations. In addition, for any type X excitation
generated by A, we can find a path in Ξc of type X starting at the boundary and ending at this
excitation. The product B ∈ RΞc of all of these path operators then generates the same excitations
as A. We claim that B is self-adjoint if and only if A is (and thus that B∗ = −B if and only if
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A∗ = −A). Since A and B commute, we have that (AB)∗ = A∗B∗. Hence the desired claim will
follow if we can show that AB is self-adjoint. Note that the operator AB does not generate any
excitations. Thus, rearranging the factors of AB if necessary, we have that all of the path operators
in AB correspond to closed loops or paths of type X starting and ending on the boundary, where
we view a path operator including a factor of V as corresponding to an infinite loop. Note that
any finite closed loop or path of type X starting and ending on the boundary is the product of
star and plaquette operators. Hence if AB does not contain a factor of V , we have that AB is
self-adjoint. On the other hand, if AB does contain a factor of V , then AB is the weak limit of
operators that are the product of star and plaquette operators (and hence are self-adjoint). The
result then follows since the adjoint is WOT-continuous.

Note that the operator B ∈ RΞc satisfies that BΩ = ±AΩ = ±ˆ︁ΓΩ. Hence if A∗ = A, then
PΛBPΛ ∈ BΞ,sa and thus

iˆ︁ΓΩ = ±iPΛBPΛΩ ∈ iBΞ,saΩ.

Similarly, ˆ︁ΓΩ ∈ iBΞ,saΩ if A∗ = −A, which completes the proof. □

We now wish to show that RΞ ∨ {V } is isomorphic to the crossed product of RΞ under a
Z/2Z-action implemented by V . We first claim that V implements an action of Z/2Z on RΞ.
Since V 2 = I, it suffices to show that VRΞV ⊆ RΞ. To see this, observe that spanFΞ forms a
WOT-dense ∗-subalgebra of RΞ. As explained in the proof of Lemma 12.3, V either commutes or
anti-commutes with each operator in FΞ, so V (spanFΞ)V ⊆ spanFΞ. The result then follows since
multiplication is separately WOT-continuous.

We now show that RΞ ∨ {V } is isomorphic to the crossed product RΞ ⋊α Z/2Z, where α is the
action of Z/2Z on RΞ implemented by V .

Proposition 12.7. We have that ˆ︁RΞ is isomorphic to RΞ⋊αZ/2Z, where α is the action of Z/2Z
on RΞ implemented by V . In particular, there exists a ∗-isomorphism Φ: RΞ ⋊α Z/2Z → ˆ︁RΞ such
that Φ(RΞ) = RΞ. Furthermore, α is an outer action on RΞ.

Proof. We follow the proof of [20, Lem. 4.7], with modifications to fit our setting. For clarity, we
include the full argument. Note that viewing H⊗ ℓ2(Z/2Z) ∼= H⊕H, we can view RΞ ⋊α Z/2Z ⊆
B(H⊗ ℓ2(Z/2Z)) as consisting of operators of the following form [10, Def. 13.1.3]:

X =

(︃
RI RZV
RZV RI

)︃
. (12.8)

We define a map Φ: RΞ⋊α Z/2Z → ˆ︁RΞ by Φ(X) = RI +RZV . Note that Φ is a ∗-homomorphism
since V implements the action α : Z/2Z → RΞ. Furthermore, Φ(RΞ) = RΞ, when we view RΞ ⊆
RΞ ⋊α Z/2Z in the canonical way. We also have that Φ is normal. Indeed, suppose φ : ˆ︁RΞ → C is

a normal state on ˆ︁RΞ. Then there exists a sequence (ξn) of vectors in H such that ∥ξn∥2 = 1 and
φ =

∑︁
n⟨ξn| · ξn⟩. We let ηn := ξn ⊕ 0 and ˜︁ηn := ξn ⊕ ξn, and we consider the normal state ψ on

RΞ ⋊α Z/2Z given by ψ :=
∑︁

n⟨ηn| · ˜︁ηn⟩. Then we have that for all X ∈ RΞ ⋊α Z/2Z as in (12.8),

ψ(X) =
∑︂
n

⟨ηn|X˜︁ηn⟩ = ∑︂
n

⟨ξn|(RI +RZV )ξn⟩ = φ(Φ(X)).

Hence φ ◦ Φ is a normal state on RΞ ⋊α Z/2Z, so Φ is normal.
Since Φ is a normal ∗-homomorphism, Φ(RΞ⋊αZ/2Z) is a von Neumann algebra, which contains

both RΞ and V . Thus, since ˆ︁RΞ = RΞ ∨{V } by Lemma 12.2, we have that Φ(RΞ⋊α Z/2Z) = ˆ︁RΞ.

In order to show that Φ: RΞ ⋊α Z/2Z → ˆ︁RΞ is an isomorphism, therefore, it remains to show that
Φ is injective.
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To show injectivity of Φ, we use the unitary decomposition of H described in Lemma 11.3. Recall
that Ξ = Λ1 ∪ Λ2, where there exists Λ a cone along the boundary with Λ1 ≪ Λ and Λ2 ⊆ Λc. By
Lemma 11.3, we have a well-defined unitary U : H → HΛ1 ⊗HΛc ⊗H0 given by

UΓ1
ˆ︁ΓΓ2Ω := Γ1Ω⊗ Γ2Ω⊗ ˆ︁ΓΩ

for Γ1 ∈ FΛ1 , Γ2 ∈ FΛc , and ˆ︁Γ ∈ F0. Here H0 and F0 are as defined in §11. Furthermore, since
RΛ2 ⊆ RΛc , we have by Proposition 11.5 that URΛ1U

∗ acts only on the HΛ1 tensor factor and
URΛ2U

∗ acts only on the HΛ2 tensor factor. Note that since RΞ = RΛ1 ∨ RΛ2 , we have that
URΞU

∗ = URΛ1U
∗ ⊗ URΛ2U

∗. Thus, URΞU
∗ acts only on HΛ1 ⊗HΛc . For ease of notation, we

let K := HΛ1 ⊗HΛc .
We recall from §11 that one of the path operators generating F0 corresponds to a path γb of type

Z in Λ ∩ Λc
1 from a site on the boundary of Λ1 to a site on the boundary of Λ. Without loss of

generality, we may assume that γb = γZ ∩ (Λ ∩ Λc
1), where γZ is the path defined earlier in this

section. Note that ξI := Ω and ξZ := ΓZ
γbΩ are orthogonal vectors in H0. For k ∈ {I, Z}, we define

Pk := I ⊗ |ξk⟩⟨ξk|. Observe that Pk commutes with URΛ1U
∗ and URΛ2U

∗ and thus commutes
with URΞU

∗ = URΛ1U
∗ ⊗ URΛ2U

∗.
Now, suppose X ∈ RΞ ⋊α Z/2Z is as described in (12.8). We then have that for k ∈ {I, Z},

PkUΦ(X)U∗ = PkU(RI +RZV )U∗ = URIU
∗Pk + URZU

∗PkUV U
∗.

We claim that for all η ∈ K, PkUV U
∗(η ⊗ Ω) = δk,ZUV U

∗(η ⊗ Ω). By continuity, it suffices to
consider the case where η = Γ1Ω ⊗ Γ2Ω for some Γ1 ∈ FΛ1 and Γ2 ∈ FΛc

2
. Let Γ1 ∈ FΛ1 and

Γ2 ∈ FΛc
2
, and let η := Γ1Ω⊗Γ2Ω. Recall from the proof of Lemma 12.3 that V Ω = ΓZ

γ′
1
ΓZ
γZ
ΓZ
γ′
2
Ω for

some paths γ′1 in Λ1 and γ′2 in Λ2. Using that γb = γZ ∩ (Λ ∩Λc
1), we have that V Ω = ΓZ

γ1Γ
Z
γbΓ

Z
γ2Ω

for some paths γ1 in Λ1 and γ2 in Λc. Thus, since V either commutes or anti-commutes with each
path operator, we have that

UV U∗(η ⊗ Ω) = UV Γ1Γ2Ω = ±UΓ1Γ2V Ω = ±UΓ1Γ2Γ
Z
γ1Γ

Z
γbΓ

Z
γ2Ω

= ±UΓ1Γ
Z
γ1Γ

Z
γbΓ2Γ

Z
γ2Ω = ±Γ1Γ

Z
γ1Ω⊗ Γ2Γ

Z
γ2Ω⊗ ΓZ

γbΩ.

We thus have that PkUV U
∗(η ⊗ Ω) = δk,ZUV U

∗(η ⊗ Ω), as desired.
Now, suppose Φ(X) = 0. Then for each k ∈ {I, Z}, we have that PkUΦ(X)U∗ = 0. In particular,

we have that for all η ∈ K,

0 = PIUΦ(X)U∗(η ⊗ Ω) = URIU
∗PI(η ⊗ Ω) + URZU

∗PIUV U
∗(η ⊗ Ω) = URIU

∗(η ⊗ Ω).

Since URIU
∗ only acts on K (and not on the factor of H0), we have that URIU

∗ = 0 and hence
RI = 0. Similarly, we have that for all η ∈ K,

0 = PZUΦ(X)U∗(η ⊗ Ω) = URIU
∗PZ(η ⊗ Ω) + URZU

∗PZUV U
∗(η ⊗ Ω) = URZV U

∗(η ⊗ Ω).

We wish to conclude that URZU
∗ = 0, which will complete the proof. To see this, it suffices to

show that URZU
∗(Γ1Ω⊗ Γ2Ω⊗ ΓZ

γbΩ) = 0 for all Γ1 ∈ FΛ1 and Γ2 ∈ FΛc , by density and the fact

that URZU
∗ only acts on K. Let Γ1 ∈ FΛ1 and Γ2 ∈ FΛc . We let γ1 and γ2 be paths in Λ1 and Λc

respectively so that V Ω = ΓZ
γ1Γ

Z
γbΓ

Z
γ2Ω. Furthermore, we let η := Γ1Γ

Z
γ1Ω⊗ Γ2Γ

Z
γ2Ω ∈ K. Then by

the argument in the preceding paragraph, we have that

UV U∗(η ⊗ Ω) = ±Γ1Ω⊗ Γ2Ω⊗ ΓZ
γbΩ.

Thus, we have that

0 = URZV U
∗(η ⊗ Ω) = ±URZU

∗(Γ1Ω⊗ Γ2Ω⊗ ΓZ
γbΩ),

as desired.
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To show that α is an outer action on RΞ, it suffices to show that V /∈ RΞ, since α is implemented
by V . We show this by showing that there exists an operator in B(H) that commutes with RΞ but
not V . Recall that U∗PIU commutes withRΞ. However, U

∗PIU does not commute with V . Indeed,
for nonzero η ∈ K, PIUV U

∗(η ⊗ Ω) = 0, but PI(η ⊗ Ω) = η ⊗ Ω and hence UV U∗PI(η ⊗ Ω) ̸= 0
since V is a unitary. Thus V /∈ RΞ, so α is outer. □

It is a well-known fact from subfactor theory that [RΞ ⋊α Z/2Z : RΞ] = 2 for an outer action α.
Thus, Proposition 12.7 along with Proposition 12.1 gives the following result.

Theorem 12.9. There are exactly two nonisomorphic simple superselection sectors for toric code
with boundary.

Proof. By Proposition 12.7, µ = 2, since [ ˆ︁RΞ : RΞ] = 2 for all Ξ ∈ C2. Hence, by Proposition 12.1,
there are at most two nonisomorphic simple superselection sectors for toric code with boundary.
We have that there are exactly two such sectors, since by Theorem 5.8, there exist two such sectors
(namely the vacuum and the type Z sector πZ). □

Acknowledgments. We would like to thank David Penneys for his support and invaluable com-
ments on this work. We would also like to thank Pieter Naaijkens for his comments on this paper
and for answering questions about his prior work on the subject. We would like to thank Corey
Jones for suggesting this avenue of research as well as for his helpful exposition of the basics of
algebraic quantum field theory. We would like to thank Peter Huston and Kyle Kawagoe for dis-
cussions about topological order, and we would like to thank Sean Sanford for discussions about
module tensor categories. We would like to thank Eric Roon for discussions on time evolution in
the thermodynamic limit and ground states. Finally, we would like to thank Yoshiko Ogata for
noticing an error in an earlier version of this paper. The author was partially supported by NSF
DMS 1654159 and 2154389.

References

[1] R. Alicki, M. Fannes, and M. Horodecki. A statistical mechanics view on Kitaev’s proposal for quantum memories.
J. Phys. A, 40(24):6451–6467, 2007.

[2] O. Bratteli and D.W. Robinson. Operator algebras and quantum statistical mechanics. 1. Texts and Monographs
in Physics. Springer-Verlag, New York, second edition, 1987. C∗- and W ∗-algebras, symmetry groups, decompo-
sition of states.

[3] O. Bratteli and D.W. Robinson. Operator algebras and quantum statistical mechanics. 2. Texts and Monographs
in Physics. Springer-Verlag, Berlin, second edition, 1997. Equilibrium states. Models in quantum statistical
mechanics.

[4] S. Doplicher, R. Haag, and J.E. Roberts. Local observables and particle statistics. I. Comm. Math. Phys.,
23:199–230, 1971.

[5] S. Doplicher, R. Haag, and J.E. Roberts. Local observables and particle statistics. II. Comm. Math. Phys.,
35:49–85, 1974.

[6] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2015.

[7] L. Fiedler and P. Naaijkens. Haag duality for Kitaev’s quantum double model for abelian groups. Rev. Math.
Phys., 27(9):1550021, 43, 2015.

[8] H. Halvorson and M. Mueger. Algebraic quantum field theory. In J. Butterfield and J. Earman, editors, Handbook
of the philosophy of physics. Kluwer Academic Publishers, 2006.

[9] A. Henriques, D. Penneys, and J. Tener. Categorified trace for module tensor categories over braided tensor
categories. Doc. Math., 21:1089–1149, 2016.

[10] R.V. Kadison and J.R. Ringrose. Fundamentals of the theory of operator algebras. Vol. II, volume 16 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 1997. Advanced theory, Corrected
reprint of the 1986 original.
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