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Abstract—In this article, we focus on the stochastic gen-
eralized Nash equilibrium problem (SGNEP) which is an
important and widely usedmodel in many different fields. In
this model, subject to certain global resource constraints,
a set of self-interested players aims to optimize their lo-
cal objectives that depend on their own decisions and the
decisions of others and are influenced by some random
factors. We propose a distributed stochastic generalized
Nash equilibrium seeking algorithm in a partial-decision in-
formation setting based on the Douglas–Rachford operator
splitting scheme, which relaxes assumptions in the existing
literature. The proposed algorithm updates players’ local
decisions through augmented best-response schemes and
subsequent projections onto the local feasible sets, which
comprise most of the computational workload. The pro-
jected stochastic subgradient method is applied to provide
approximate solutions to the augmented best-response
subproblems for each player. The Robbins–Siegmund the-
orem is leveraged to establish the main convergence re-
sults to a true Nash equilibrium using the proposed inexact
solver. Finally, we illustrate the validity of the proposed al-
gorithm via two numerical examples: 1) a stochastic Nash–
Cournot distribution game and 2) a multiproduct assembly
problem with the two-stage model.

Index Terms—Distributed algorithm, generalized Nash
equilibrium, operator splitting, stochastic optimization,
variational inequality.

I. INTRODUCTION

IN THE Nash equilibrium problem (NEP), a set of self-interested players aims to optimize their individual payoffs
which depend not only on their own decisions but also on
the decisions of others [2]. The generalized Nash equilibrium
problem (GNEP) extends the NEP by considering additional
global resource constraints that these players should collectively
satisfy [3], [4]. In numerous practical applications, such as
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strategic behaviors in power markets [5], [6]; engagement of
multiple humanitarianorganizations in disaster relief [7]; and the
traffic assignment of strategic risk-averse users [8]; in addition
to couplings in objectives and global constraints, there is also
uncertainty involved in the objective functions. For example,
in the target-rate power-management problem for wireless net-
works, the power of battery-driven devices should be regulated
in a real-time manner in the presence of inherent stochastic
fluctuations of the underlying network [9]. These applications
motivate us to consider an extension to the GNEP, called the
stochastic generalized Nash equilibrium problem (SGNEP). In
the SGNEP, instead of deterministic objective functions, players
optimize the expected values of uncertain objective functions
which are dependent on some random variables. Although the
SGNEP can capture a wider range of applications, computing
its Nash equilibria becomes a much more challenging problem
compared to the GNEP, due to the absence of closed-form
expressions of the objective functions. Fortunately, as has been
shown in [10, Sec. 1.4], many SGNEPs can be formulated as
stochastic variational inequalities (SVIs) and solved by leverag-
ing existing results from this field, e.g., [11], [12], [13], [14],
[15].
Our aim in this article is to develop a distributed algorithm un-
der the partial-decision information setting for solving SGNEPs
over a network of players. In the context of noncooperative
games on networks, participants are self-interested and make
rational decisions that maximize their own payoffs. It is unreal-
istic that these participants will adopt any centralized methods
that require cooperation among them. Because of this, there is
an enduring research interest in distributing the computation
of Nash equilibria [16], [17], especially through the avenue of
the operator splitting technique [18], [19]. In addition to the
distributed computation, undermost circumstances, participants
can only have access to local information and decisions of
their neighbors, which constitutes a partial-decision information
setting [20], [21], [22]. One reason is that these players are
reluctant to send their local information and decisions to the
general public out of privacy concerns, while being willing to
share these with their trusted neighbors on the whole network.
Although there may exist some central node that collects and
distributes the necessary information to each player, this central
node is subject to performance limitations, such as single point
of failure, and limited flexibility and scalability [23]. The limited
capacity of communication channels also constrains information
sharing over the network.
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Significant efforts have been devoted to designing algorithms
to solve SGNEPs distributedly under the full-decision informa-
tion setting where each player has access to all other players’
decisions. Koshal et al. [11] considered a Cartesian stochastic
variational inequality problem with a monotone map. They
propose a stochastic iterative Tikhonov regularization method
and a stochastic iterative proximal-point method to solve it,
which let players update their regularization parameters and
centering terms properly after each iteration. Franci and Gram-
matico [24] proposed a solution based on the preconditioned
forward–backward (FB) operator splitting with the expected-
value pseudogradient assumed to be restricted cocoercive and
approximated via the stochastic approximation (SA) scheme.
To accelerate game dynamics and relax the cocoercivity as-
sumption, Cui et al. [25] adopted a forward–backward–forward
framework. These works are mostly gradient based which enjoy
low complexity in implementation and updating per player
step. Nevertheless, rational players would take best-response
actions given others’ strategies and deviate from gradient-based
schemes unless forced by some external authority. The work
in [26] provides an inexact generalization of the proximal
best-response (BR) schemes to the SNEP, whose corresponding
proximal BR map admits a contractive property. The authors
in [27] further consider SNEPs with composite objectives and
design a variable sample-size proximal BR scheme, under a
contractive property on the proximal BR map. Yet, far less
has been studied when it comes to the distributed solution
to SGNEPs with merely partial information. The only exist-
ing work to our best knowledge is [28], which also relies on
the FB framework along with the SA method. The conver-
gence of the proposed algorithms has been analyzed under
the assumption that the preconditioned forward operator is
restricted cocoercive, which only allows comparatively small
step sizes.
Our contributions can be summarized in the following as-

pects. First, we propose a distributed algorithm to solve the
SGNEP under the partial-decision information setting based
on the Douglas–Rachford splitting and the proximal mapping.
In the proposed algorithm, the involved players are asked to
update their decision vectors in two separate steps: 1) solving the
augmented best-response subproblems and 2) projecting onto
the local feasible sets after some linear transformations. The
updates of their local estimates and dual variables only require
some trivial linear transformations. This algorithm can deal with
cases where the scenario-based objectives of players are nons-
mooth, and relaxes some commonly made assumptions, such as
the α−cocoercivity with α > 1/2 in the FB splitting. Second,
we establish the convergence of the proposed algorithm under
assumptions concerning the properties of the pseudogradient,
the extended pseudogradient, and the stochastic subgradients of
the objectives. Without relying on the contractive property, the
proof in this article is based on the Robbins–Siegmund theorem
and extends the convergence results discussed in [26]. Drawing
tools and techniques from stochastic approximation and convex
analysis, we then construct a feasible inexact solver for the
augmented best-response subproblems based on the projected
stochastic subgradient method and discuss the prescribed accu-
racy within which the inexact solver should achieve such that the
algorithm convergence is ensured. The proposed inexact solver

based on the projected stochastic subgradient method requires
the projection onto some bounded box sets rather than the (po-
tentially complicated) local feasible sets of the original problem,
which considerably improves the computational efficiency.
The rest of this article is organized as follows. In Section II,

we formally formulate the SGNEP on networks and provide
some basic definitions as well as assumptions. In this section,
we recast the SGNEP as the zero-finding problem of a certain
operator and prove that the solution of the latter is a variational
equilibrium of the former. In Section III, a distributed algorithm
in a partial-decision information setting is proposed. Section IV
focuses on the convergence analysis of the proposed algorithm.
In this section, we also construct an inexact solver based on
the projected stochastic subgradient method. In Section V, to
demonstrate the theoretical findings and the proposed algorithm
in practical applications, we include two numerical examples:1)
a stochastic Nash–Cournot distribution game and 2) a multi-
product assembly problem with the two-stage model. Finally,
Section VI concludes this article.
Basic Notations: For a set of matrices {Vi}i∈S , we let

blkd(V1, . . . , V|S|) or blkd(Vi)i∈S denote the diagonal concate-
nation of these matrices, [V1, . . . , V|S|] as their horizontal stack,
and [V1; · · · ;V|S|] as their vertical stack. For a set of vectors
{vi}i∈S , [vi]i∈S , or [v1; · · · ; v|S|]denotes their vertical stack. For
a matrix V and a pair of positive integers (i, j), [V ](i,j) denotes
the entry on the ith row and the jth column of V . For a vector v
and a positive integer i, [v]i denotes the ith entry of v. Denote
R := R ∪ {+∞}, R+ := [0,+∞), and R++ := (0,+∞). Sn+
(respectively, Sn++) represents the set of all n× n symmetric
positive semidefinite (respectively, definite) matrices. ιS(x) is
defined to be the indicator function of a set S, i.e., if x ∈
S, then ιS(x) = 0; otherwise, ιS(x) = +∞. NS(x) denotes
the normal cone to the set S ⊆ Rn at the point x: if x ∈ S,
then NS(x) := {u ∈ Rn | supz∈S�u, z − x� ≤ 0}; otherwise,
NS(x) := ∅. If S ∈ Rn is a closed and convex set, the map
PjS : Rn → S denotes the projection onto S, i.e., PjS(x) :=
argminv∈S �v − x�2. We use⇒ to indicate a point-to-set map.
For an operator T : Rn ⇒ Rn, Zer(T ) := {x ∈ Rn | Tx � 0}
and Fix(T ) := {x ∈ Rn | Tx � x} denote its zero set and fixed
point set, respectively. We denote dom(T ) the domain of the
operator T and gra(T ) the graph of it. The resolvent and
reflected resolvent of T are defined as JT := (I + T )−1 and
RT := 2JT − I , respectively.

II. PROBLEM FORMULATION

A. Stochastic Game Formulation and SGNE

In this section, we formulate the SGNEP on networks. There
are N players participating in the game, indexed by N :=
{1, . . . , N}. Each player i ∈ N needs to determine its local de-
cision vector xi ∈ Xi to optimize its objective, where Xi ⊆ Rni
is the local feasible set/action space of player i. This Nash
equilibrium seeking problem is generalized because, besides
the local constraints {Xi}i∈N , the decision vectors of all the
players should satisfy some global resource constraints, i.e.,�
i∈N Aixi ≤ c. Here, we have the matrixAi ∈ Rm×ni withm

denoting the number of the (global) affine coupling constraints,
and the constant vector c ∈ Rm representing the quantities of
available resources. Altogether, for each player i, the feasible
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set of the decision vector xi is given by

X̃i(x−i) := Xi ∩ {xi ∈ Rni | Aixi +
�
j∈N−iAjxj ≤ c} (1)

where N−i := N\{i}, and x−i denotes the stack of decision
vectors except that of player i. Accordingly, the feasible set of
the collective decision vector x := [x1; · · · ;xN ] is given by

X̃ := X ∩ {x ∈ Rn | Ax − c ≤ 0} (2)

where X := �i∈N Xi, n :=�i∈N ni, and A := [A1,A2,
. . . , AN ].
To capture uncertainty in practical settings, we consider
stochastic games, where the objective function Ji(xi;x−i) of
each player i is the expected value of certain function Ji.
Formally, given the decisions x−i of the other players, each
player i aims to solve the following local problem:�
minimize xi∈XiJi (xi;x−i) = Eξi [Ji (xi;x−i, ξi)]
subject to Aixi ≤ c−

�
j∈N−i Ajxj

(3)

where ξi : Ωi → Rnξi is a random variable in a well-defined
probability space.
Given the above formulation of the SGNEP, we have the
following standing assumptions that hold throughout this article.

Assumption 1: (Scenario-Based Objectives) For each player
i ∈ N , given any fixed sample ωi ∈ Ωi, the scenario-based
objective Ji(·; ·, ξi(ωi)) is proper and continuous. In addition,
Ji(xi;x−i, ξi(ωi)) is a convex function w.r.t. xi given any fixed
x−i and ωi ∈ Ωi.

Assumption 2: (Feasible Sets) Each local feasible set Xi is
nonempty, compact, and convex. The collective feasible set X̃
is nonempty, and the Mangasarian–Fromovitz constraint quali-
fication (MFCQ) holds [10, Ch. 3.2] and [29, Sec. 16.2.3].
Collectively solving the problems in (3) gives rise to the
stochastic generalized Nash equilibrium (SGNE), the formal
definition of which is given as follows [24], [30].

Definition 1: The collective decisionx∗ ∈ X̃ is an SGNEif no
player can benefit by unilaterally deviating from x∗. Specifically,
for all i ∈ N , Ji(x∗i ;x∗−i) ≤ Ji(xi;x∗−i) for any xi ∈ X̃i(x∗−i).
Under Assumption 1, the SGNE seeking problems can be
transformed to the corresponding generalized quasi-variational
inequality (GQVI) [29, Sec. 12.2]. As shown in [29, Prop. 12.3],
Definition 1 of SGNE coincides with the following definition
from the perspective of GQVI.

Definition 2: The collective decision x∗ ∈ X̃ is an SGNE if
x∗ along with a suitable g∗ ∈�i∈N ∂xiJi(x∗i ;x∗−i) is a solution
of the problem GQVI(

�
i∈N X̃i,

�
i∈N ∂xiJi), i.e.,

(x− x∗)T g∗ ≥ 0,∀x ∈ �i∈N X̃i �x∗−i� . (4)

As suggested in [29, Sec. 12.2.3], under Assumptions 1 and
2, we can equivalently recast the problem in (3) into a set
of inclusions by considering the Karush–Kuhn–Tucker (KKT)
conditions of the above GQVI such that ∀i ∈ N

0 ∈ ∂xiJi
�
x∗i ;x

∗
−i
�
+ATi λi +NXi (x

∗
i)

0 ∈ − (Ax∗ − c) + NRm+ (λi) (5)

where λi is the Lagrangian multiplier for the global resource
constraints Aixi ≤ c−

�
j∈N−i Ajxj for each player i.

In this article, we restrict our attention to a subset of these
SGNEs where the players share the same coupled constraints
and, hence, all the Lagrangian multipliers are in consensus,
i.e., λ1 = . . . = λN . This gives rise to a generalized variational
inequality (GVI) problem. This subclass of the SGNEs, known
as the variational stochastic generalized Nash equilibria (v-
SGNEs) [3], [4], enforces the idea of economic fairness and
enjoys better social stability/sensitivity [31]. We will focus on
this subclass since we can leverage a variety of tools that have
been developed for solving (G)VIs [10, Ch. 10–12] and design
the modified best-response dynamics based on it.

Definition 3: The collective decision x∗ ∈ X̃ is a vari-
ational SGNE (v-SGNE) if x∗ along with a suitable g∗ ∈�
i∈N ∂xiJi(x∗i ;x∗−i) is a solution of the GVI(X̃ ,

�
i∈N ∂xiJi),

i.e.,

(x− x∗)T g∗ ≥ 0, ∀x ∈ X̃ . (6)

Similarly, the KKT system of the above GVI is given by

0 ∈ ∂xiJi
�
x∗i ;x

∗
−i
�
+ATi λ+NXi (x

∗
i)

0 ∈ − (Ax∗ − c) + NRm+ (λ) (7)

where λ is the Lagrangianmultiplier for the global constraints in
(3). Notice that theGVI in (6) is not completely equivalent to the
initial SGNEP in (3) as the game may admit an SGNE, while
the GVI has no solution. We make the following assumption
concerning the existence of v-SGNEs.

Assumption 3: (Existence of v-SGNE) The SGNEP consid-
ered admits a nonempty set of v-SGNEs.

Remark 1: The existence and multiplicity of solutions of
GNEPs with continuously differentiable objectives have been
extensively studied, and the related theories can be found in [10,
Ch. 2 and 3]. For the GNEPs with nonsmooth objectives, we
can check the existence of v-GNEs of these GNEPs by [29,
Prop. 12.11]. If the closed-form expressions of the objectives
Ji(xi;x−i) for any i ∈ N are unavailable and we cannot apply
the above results, [30, Sec. 4] provides sufficient conditions to
guarantee the existence of v-SGNEs based on the properties of
scenario-based objectives.

B. Network Game Formulation

In network games, there exists an underlying communication
graph G = (Ng, Eg), where players can communicate with their
neighbors through arbitrators on the edges. The node set Ng
denotes the set of all players, and Eg ⊆ Ng ×Ng is the set of
directed edges. The cardinalities |Ng| and |Eg| are denoted by
Ng and Eg . In this case, Ng = N and Ng = N . We use (i, j)
to denote a directed edge having node/player i as its tail and
node/player j as its head. For notational brevity, let Ni denote
the set of immediate neighbors of player i who can directly
communicate with it,N+i := {j ∈ N | (j, i) ∈ Eg} the set of in-
neighbors of player i, andN−i := {j ∈ N | (i, j) ∈ Eg} the set
of out-neighbors of player i. Note that although the multipliers
we are going to introduce are defined in a directed fashion, we
assume each node can send messages to both its in- and out-
neighbors, and G should satisfy the following assumption.

Assumption 4: (Communicability) The underlying commu-
nication graph G = (Ng, Eg) is undirected and connected. Be-
sides, it has no self-loops.
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We next recast the SGNEP in (3) as the zero-finding problem
of a certain operator that can be carried out distributedly over
the communication graph G via the network Lagrangian of this
game; see [32] for more details. Now for each player i ∈ N ,
besides its local decision vector yii ∈ Xi, it keeps a local estimate
yji ∈ Rnj of the player j’s decision for all j ∈ N−i, which
together constitutes its augmented decision vector yi. Here, we
use yii to denote the local decision of each player i to distinguish
from the case where only local decision xi are maintained and
considered. We denote y−ii := [y

j
i ]j∈N−i the vertical stack of

{yji }j∈N−i and yi := [y
j
i ]j∈N the vertical stack of {yji }j∈N ,

both in prespecified orders. Denote n<i =
�
j∈N ,j<i nj and

n>i =
�
j∈N ,j>i nj . The extended feasible set of y := [yi]i∈N

is defined as X̂ := X̂1 × X̂2 × · · · × X̂N with each one de-
fined as X̂i := Rn<i ×Xi × Rn>i . For brevity, we shall write
{yi} in replacement of the more cumbersome notation {yi}i∈N
and similarly for other variables on nodes and edges (e.g.,
the dual variables {μji}(j,i)∈Eg to be introduced below will
be denoted simply by {μji}), unless otherwise specified. In
the reformulated zero-finding problem, we introduced a set of
dual variables {λi} to enforce the global resource constraints.
Moreover, another two sets of dual variables {μji} and {zji}
are introduced to guarantee the consensus of {yi} and {λi}.
It is worth mentioning that {yi} and {λi} are maintained by
players, while {μji} and {zji} are maintained by arbitrators on
the edges.
We next give a brief introduction to two commonly used

operators in the distributed solution of GNEP: 1) the pseu-
dogradient F : Rn ⇒ Rn and 2) the extended pseudogradient
F̃ : RnN ⇒ Rn. The pseudogradient F is the Cartesian product
of the partial subgradients of the objective functions of all
players, which is given as follows:

F : x �→�i∈N [∂xiJi (xi;x−i)] . (8)

In contrast, the extended pseudogradient F̃ defined in (9) is a
commonly used operator under the partial-decision information
setting, where each player keeps the local estimates of others’
decisions and then uses these estimates as the parametric inputs

F̃ : [yi]i∈N �→
�
i∈N
�
∂yiiJi

�
yii ; y

−i
i

��
. (9)

To incorporate the extended pseudogradient F̃ into a fixed-point
iteration, we then introduce the individual selection matrices
{Ri}i∈N and their diagonal concatenation R ∈ Rn×nN
Ri =

�
0ni×n<i , Ini ,0ni×n>i

�
, R = blkd (R1, . . . ,RN ) .

(10)
Notice that yii = Riyi and RiRTi = Ini . Finally, the set-valued
operator T we are going to study is given as follows:

T :

⎡⎢⎢⎢⎣
y

λ

μ

z

⎤⎥⎥⎥⎦ �→
⎡⎢⎢⎢⎣
RT (F̃(y) + ΛTλ) +Bnμ+ ρμLny +NX̂ (y)
NRmN+ (λ)− ΛRy + c+Bmz + ρzLmλ

−BTn · y
−BTm · λ

⎤⎥⎥⎥⎦
(11)

where Λ is the diagonal concatenation of {Ai}i∈N , i.e.,
Λ := blkd(A1, . . . , AN ); c is the vertical stack of {ci}i∈N

with
�
i∈N ci = c; Bn := (B ⊗ In), Ln := (L⊗ In), Bm :=

(B ⊗ Im), Lm := (L⊗ Im), B and L are the incidence matrix
and Laplacian matrix of the underlying communication graph,
respectively, with L = B · BT ; and y, λ, μ, and z are the stack
vectors of {yi}, {λi}, {μji}, and {zji}, respectively; ψ denotes
the stack of the primal and dual variables, i.e., ψ := [y; λ;μ; z].

Theorem 1: Suppose Assumptions 1 to 4 hold, and there
exists ψ∗ := [y∗; λ∗;μ∗; z∗] ∈ Zer(T). Then, y∗ = 1N ⊗ y∗,
λ∗ = 1N ⊗ λ∗, and (y∗, λ∗) satisfies the KKT conditions (7)
for v-GNE with x∗ replaced with y∗. Conversely, for a solution
(y†, λ†) of the KKT problem in (7), there exist μ† and z† such
that ψ† := [1N ⊗ y†;1N ⊗ λ†;μ†; z†] ∈ Zer(T).

Proof: See the proof of [32, Th. 1]. �
Thus, finding a v-SGNE of the game in (3) is equivalent

to solving for a zero point of the operator T. To facilitate the
convergence analysis of the algorithm to be proposed for the
latter task, we make two parallel assumptions, either of which
is instrumental for the convergence proof in Section IV.

Assumption 5: (Convergence Condition) At least one of the
following statements holds.
1) The operator RT F̃+ρμ2 Ln is maximally monotone.
2) The pseudogradient F is strongly monotone and Lips-
chitz continuous, i.e., there exist η > 0 and θ1 > 0, such
that ∀x, x� ∈ Rn, �x− x,� F(x)− F(x�)� ≥ η�x− x��2
and �F(x)− F(x�)� ≤ θ1�x− x��. The operator RT F̃
is Lipschitz continuous, i.e., there exists θ2 > 0, such that
∀y,y� ∈ RnN , � F̃(y)− F̃(y�)� ≤ θ2�y − y��. More-
over, ρμ ≥ 2

σ1
( (θ1+θ2)

2

4η + θ2), where σ1 is the smallest
positive eigenvalue of L.

III. AUGMENTED BEST-RESPONSE SCHEME

To compute the zeros of the operator T given in the
previous section, we leverage the Douglas–Rachford (DR)
splitting method which combines operator splitting and the
Krasnoselskii–Mann (K–M) schemes. Given a nonexpansive
operator Q with a nonempty fixed point set Fix(Q), the K–M
scheme [33, Sec. 5.2] suggests the following iteration:

ψ(k+1) := ψ(k) + γ(k)
�
Qψ(k) − ψ(k)

�
(12)

where (γ(k))k∈N is a sequence such that γ(k) ∈ [0, 1] for all
k ∈ N and �k∈N γ(k)(1 − γ(k)) =∞. Here, we introduce a
set of local bounded box constraints {XBi }which can be chosen
manually as long as it satisfies Xi ⊆ XBi for all i ∈ N . We sim-
ilarly define the extended box set X̂B := X̂B1 × X̂B2 × · · · X̂BN ,
where the extended box set of each player i is defined as
X̂Bi := Rn<i ×XBi × Rn>i . It is easy to see that the normal
cones of X̂B and X̂ satisfy NX̂B +NX̂ = NX̂ . The motivation
for introducing these box sets is to simplify the computation
while maintaining boundedness for the convergence analysis as
we will show later in this article. We split the operator T into
the following operators A and B:

A : ψ �→ (D + Ay)ψ and B : ψ �→ (D +By)ψ (13)
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withD, Ay , and By defined by

D =

⎡⎢⎢⎢⎣
ρμ
2 Ln

1
2 (ΛR)T 1

2Bn 0

−12ΛR ρz
2 Lm 0 1

2Bm
− 12BTn 0 0 0

0 − 1
2
BTm 0 0

⎤⎥⎥⎥⎦ (14)

Ay : ψ �→

⎡⎢⎢⎢⎣
RT F̃(y) + NX̂ B(y)

c

0

0

⎤⎥⎥⎥⎦ , By : ψ �→
⎡⎢⎢⎢⎣
NX̂ (y)
NRmN+ (λ)

0

0

⎤⎥⎥⎥⎦ .
(15)

Furthermore, we introduce the following design matrix Φ for
distributedly computing the resolvents JΦ−1 A and JΦ−1 B:

Φ =

⎡⎢⎢⎢⎣
τ−11 − ρμ2 Ln − 12 (ΛR)T − 12Bn 0

− 1
2
ΛR τ−12 − ρz2 Lm 0 − 1

2
Bm

− 12BTn 0 τ−13 0

0 − 1
2
BTm 0 τ−14

⎤⎥⎥⎥⎦
(16)

where τ 1 := blkd (τ11In, . . . , τ1NIn) with τ11 ∈ R++, . . . ,
τ1N ∈ R++; similarly for τ 2, τ 3, and τ 4. Notice that these step
sizes τ 1, . . . , τ 4 should be small enough to guarantee that Φ is
positive definite. Conservative upper bounds for these step sizes
can be derived using the Gershgorin circle theorem [34].

Assumption 6: The step sizes τ 1, . . . , τ 4 are chosen prop-
erly such that the design matrix Φ in (16) is positive definite.
Specifically, it suffices to choose τ−11i >

1
2�Ai�1 + (12 + ρμ)di,

τ−12i >
1
2
�Ai�∞ + ( 12 + ρz)di ∀i ∈ N , and τ−13j > 1, τ−14j > 1∀j ∈ Eg .

Here, di denotes the degree of node/player i. In general, de-
termining the above step sizes requires some global information
acquired through coordination among players, such as a proper
ρμ. After the incorporation of the design matrixΦ, we nowwork
in the inner product space K, which is a real vector space en-
dowedwith the inner product �ψ1, ψ2�K = ψT1 Φψ2. For brevity,
let Ā := Φ−1A and B̄ := Φ−1B. In the DR splitting scheme,
the general operator Q in (12) is given byℛ∗ := RB̄ ◦RĀ and
it suggests the following exact iteration:

ψ̃(k+1) := �∗(ψ̃(k)), with�∗ = Id + γ(k)(ℛ∗ − Id). (17)
Given a generic single-valued operator Q, we say that Q is
restricted nonexpansive w.r.t. a set S if, for all ψ ∈ domQ
and ψ∗ ∈ S, �Qψ −Qψ∗� ≤ �ψ − ψ∗� [20]; if, in addition,
S = Fix(Q), then Q is quasinonexpansive [33, Def. 4.1(v)].
From the main convergence results in [32, Th. 2 and 3], if
Assumptions 1 to 6 hold, even though ℛ∗ is not nonexpansive
in a general sense, it possesses quasinonexpansiveness in the
inner-product space K, and, hence, the sequence (y(k)i )k∈N
generated by the exact iteration above (see [32, Algorithm 1]
for detailed implementations) will converge to a v-SGNE of the
original problem defined in (3).
However, unlike the problem setting in [32], where each
player has a closed-form objective function, here, the objective
function is expected-value, and all too often its closed-form ex-
pression may be unavailable. Consequently, the argmin opera-
tion in the first player loop of [32, Algorithm1] cannot be carried

out exactly. In this case, we need a desirable inexact solver such
that although at each iteration step it can only get an approximate
solution, the computed sequence can still eventually converge
to a v-SGNE. A similar approximation strategy to resolvent has
been discussed in [35]. We let RĀ denote the (scenario-based)
approximate operator to the exact reflected resolvent RĀ, and
ℛ denote the corresponding composite RB̄ ◦RĀ. Substituting
the operator ℛ∗ with ℛ in [32, Algorithm 1] gives rise to the
following approximate iteration:

ψ̃(k+1) := �
�
ψ̃(k)
�
, with�= Id+ γ(k)(ℛ− Id). (18)

The updating steps of (18) are presented in Algorithm 1. For
brevity, let ỹ−i(k)iL :=

�
j∈N

i
(ỹ
−i(k)
i − ỹ−i(k)j ), and similarly for

ỹ
i(k)
iL , λ̃

(k)
iL , ŷ

i(k+1)
iL , and λ̂(k+1)iL ; let μ̃−i(k)iB :=

�
j∈N+

i
μ̃
−i(k)
ji −�

j∈N−
i
μ̃
−i(k)
ij , and similarly for μ̃i(k)iB , z̃

(k)
iB , μ̂

(k+1)
iB , and ẑ(k+1)iB ;

let ŷ(k+1)ji := ŷ
(k+1)
i − ŷ(k+1)j , and similarly for λ̂(k+1)ji , ȳ(k+1)ji ,

and λ̄(k+1)ji .
Depending on the inexact solver adopted, RĀ usually admits
no explicit formulas. Yet, as will be shown later in the next
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section, we can still establish the convergence of Algorithm 1
based on some specific properties of RĀ.

IV. CONVERGENCE ANALYSIS AND CONSTRUCTION OF
INEXACT SOLVER

A. General Convergence Results Using Approximate
Solution

In this subsection, we study the sufficient conditions from a
generic perspective to guarantee the convergence of Algorithm 1
to a v-SGNE of the problem (3) basedon the Robbins–Siegmund
theorem [36, Th. 1]. We first define the approximate error and
its norm for each iteration as

�(k) := ℛ
�
ψ̃(k)
�
−ℛ∗

�
ψ̃(k)
�
and ε(k) := ��(k)�K (19)

where ψ̃(k) := [ỹ(k); λ̃
(k)
; μ̃(k); z̃(k)]. We next introduce

the residual function res(ψ̃) := �ψ̃ −ℛ∗(ψ̃)�K such that
res(ψ̃∗) = 0 is a necessary condition for ψ̃∗ to belong to the
fixed-point set of ℛ∗. This relation can be easily checked by
using [33, Prop. 26.1(iii)]. Let Fk denote the σ-field comprised
of {ψ̃(0), {ξ(0)i }i∈N , . . . , {ξ(k−1)i }i∈N }, where for each major
iteration k ∈ N, ξ(k)i = {ξ(k)i,0 , . . . , ξ(k)i,T (k)i −1}, and T

(k)
i denotes

the number of noise realizations that player i observes at the kth
iteration.

Theorem 2: Consider the SGNEP given in (3), and suppose
Assumptions 1 to 6 hold. Moreover, (γ(k))k∈N is a sequence
such that γ(k) ∈ [0, 1] and�k∈N γ(k)(1 − γ(k)) = +∞. If the
sequence (ψ̃(k)) generated by the inexact solver satisfies
i) (�ψ̃(k)�K)k∈N is bounded a.s.;
ii)
�
k∈N γ

(k)E[ε(k) | F(k)] <∞ a.s.,
then (ψ̃(k))k∈N converges to a fixed point of ℛ∗ a.s., and

limk→∞ JĀ(ψ̃(k)) = ψ∗ a.s. Also, the corresponding entries of
ψ∗ satisfy y∗ = (1N ⊗ y∗) and λ(k) = (1⊗ λ∗). Here, y∗ is a
v-SGNE of the original SGNEP (3) and (y∗, λ∗) together is a
solution to the KKT conditions (6) of the SGNEP.

Proof: See Appendix A. �
Before proceeding, it is worth highlighting why we need to

keep both the conditions (i) and (ii) to hold in Theorem 2.
Although the condition (i), i.e., (�ψ̃(k)�K)k∈N is bounded a.s., is
a necessary condition for the summability statement in (ii), as has
been showed in [33, Prop. 5.34] for deterministic cases, under
the partial-information setting, a natural strategy is to prove the
condition (i) first using a more primitive condition, and then
establish the condition (ii) based on (i). The conditions (i) and
(ii) to ensure the convergence in Theorem 2will be later verified
explicitly in Theorem 3 for our specific approximate strategy
outlined in Section IV-B.

Remark 2:When provingTheorem 2, the inequalities invoked
follow from the quasi-nonexpansiveness of the exact operator
ℛ∗ and the Cauchy–Schwarz inequality. The proof and conclu-
sion in Theorem 2 thus can be applied to the analysis of a general
continuous operator Q in (12) and its approximation other than
the operators ℛ∗ and ℛ in this article, as long as the operator
Q is quasinonexpansive and the conditions regarding (γ(k))k∈N ,
(ε(k))k∈N , and (ψ̃(k))k∈N in Theorem 2 are satisfied.

B. Construction of a Desirable Inexact Solver

As we discussed at the end of Section III, it is challenging to
solve the augmented best-response subproblems that involve the
exact expected-valueobjectives (the argmin problems in thefirst
player for-loop ofAlgorithm 1). Theorem 2 suggests that we can
still obtain a v-SGNE by solving these augmented best-response
subproblems not precisely but up to some prescribed accuracy.
In this subsection, we consider a specific scenario-based solver
using the projected stochastic subgradient method [37, Ch. 2].
As has been shown in the existing literature [38], the weighted
average of the projected stochastic subgradient method pos-
sesses anO(1/t) convergence rate if the subgradient is unbiased
and the variance of the subgradient is finite. Here, we study
the explicit conditions that the projected stochastic subgradient
solver should satisfy to serve as a feasible inexact solver in
the context of distributed SGNEP with only partial-decision
information, as suggested in Theorem 2.
We first assume the unbiasedness and finite-variance

properties of a general projected stochastic subgradient method.
Throughout this subsection, we use k to index the major
iterations (the iteration of the v-SGNE seekingAlgorithm1) and
t to index the minor iterations (the iteration of the inexact solver
in the first player for-loop of Algorithm 1). Furthermore, at each
major iteration k, for each player i, let the augmented scenario-
based objective function be denoted by Ĵ (k)i (vi; ξ

(k)
i,t ) :=

Ji(vi; y
−i(k+1)
i , ξ

(k)
i,t ) + (ϕ̃

(k)
i )

T yii +
1
2τ1i
�vi − ỹi(k)i �22, and

the augmented expected-value objective function be denoted by

Ĵ
(k)

i (vi) := Ji(vi; y
−i(k+1)
i ) + (ϕ̃

(k)
i )

T vi +
1
2τ1i
�vi − ỹi(k)i �22,

where ϕ̃(k)i :=
1
2
(ATi λ̃

(k)
i + μ̃

i(k)
iB + ρμỹ

i(k)
iL ). Note that Ĵ

(k)

i (·)
is the objective in the first player-loop of Algorithm 1 that
needs to be inexactly solved. Here, the vector ϕ̃(k)i represents
some augmented terms that enforce the consensus constraints
and the global resource constraints. For brevity, the local
estimates of the other players’ decisions y−i(k+1)i are omitted
from the arguments of the augmented functions defined above.
Let T (k)i denote the total number of the projected stochastic
subgradient steps taken in the kth major iteration by player i.
The subgradient of the scenario-based objective function at the
kth major iteration and the tth minor iteration is denoted by
g
(k)
i,t ∈ ∂yii Ĵ

(k)
i (y

i(k+1)
i,t ; ξ

(k)
i,t ), where t = 0, 1, . . . , T

(k)
i − 1.

Assumption 7: For each player i ∈ N , at eachmajor iteration
k of Algorithm 1, the following statements hold.
i) (Unbiasedness) At each minor iteration t, there ex-
ists a g(k)i,t ∈ ∂yii Ĵ

(k)
i (y

i(k+1)
i,t ; ξ

(k)
i,t ) such that E[g

(k)
i,t |

σ{Fk, ξ(k)i,[t]}] is a.s. a subgradient of the expected-value
augmented objective Ĵ

(k)

i (·) at yi(k+1)i,t , where ξ(k)i,[t] :=

{ξ(k)i,0 , . . . , ξ(k)i,t−1} with ξ(k)i,[0] := ∅.
ii) (Upper-bounded variance) For any yii ∈ XBi , there ex-
ists a g(k)i ∈ ∂yii Ĵ

(k)
i (y

i
i ; ξi) such that E[�g(k)i �22 | Fk] ≤

α2g,i�ψ̃(k)�22 + β2g,i a.s. for some positive constants αg,i
and βg,i.

We refer the reader to the paragraph before Theorem 2 for the
definitions of the stack vector ψ̃(k) and the filtration (Fk)k∈N
as a reminder. The proposed inexact solver for the first player
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for-loop of Algorithm 1 is given in Subroutine 2. Note that the
DR splitting scheme ensures local feasibility with single projec-
tion onto local feasible sets, and requires multiple projections
onto relaxed bounded box sets, which considerably reduces the
computational complexity compared with other methods, such
as proximal-point scheme [21].
The following lemma discusses the convergence rate of Sub-
routine 2 as a minor updating routine insideAlgorithm1.We use
y
i(k+1)
i,∗ to denote the accurate minimizer of the expected-value

augmented function Ĵ
(k)

i (·).
Lemma 1: Suppose Assumptions 1 to 7 hold. Then, for any
T = 1, . . . , T

(k)
i , the distance between the approximate solution

by Subroutine 2 and the accurate solution satisfies E[�yi(k+1)i,T −
y
i(k+1)
i,∗ �22 | Fk] ≤ 4τ21i T−1(α2g,i�ψ̃(k)�22 + β2g,i) a.s.

Proof: See Appendix B. �
From Lemma 1, we can conclude that for each player i ∈ N ,
after the kth major iteration of Algorithm 1 where player i im-
plements T (k)i projected stochastic subgradient steps in Subrou-

tine 2, E[�yi(k+1)i − yi(k+1)i,∗ �22 | Fk] ≤ (2τ1i)
2

T
(k)
i

(α2g,i�ψ̃(k)�22 +
β2g,i). Based on this result, it is straightforward to derive an

upper bound for the approximate error ε(k) := �ℛ(ψ̃(k))−
ℛ∗(ψ̃(k))�K. As will be shown later, this upper bound can
be treated as a function of T (k) := min{T (k)i : i ∈ N} which
we can tune to provide a desirable sequence of approximation
accuracies.

Lemma 2: Consider (ε(k))k∈N generated by Algorithm 1
using Subroutine 2 as the inexact solver. SupposeAssumptions 1
to 7 hold. Then there exist some positive constants αψ and βψ
such that the following relation holds a.s.:

E
�
ε(k) | Fk

�
≤
�
T (k)
�−1/2 �

αψ�ψ̃(k)�K + βψ
�
. (20)

Proof: See Appendix C. �
Lemma 2 establishes the relationship between the approxi-
mate errorε(k) and the stackvector ψ̃(k) at eachmajor iterationk.
Let γ(k)T := γ(k)(T (k))−1/2. From Theorem 2, it suffices to have
(γ
(k)
T )k∈N summable and (�ψ̃(k)�)k∈N bounded. To this end, we
next show how the abstract conditions listed in Theorem 2 can
be guaranteed by some explicit choices of the parameters and
finally prove the a.s. convergence of Algorithm 1.

Theorem 3: Consider the sequence (ψ̃(k))k∈N generated by
Algorithm 1 using Subroutine 2 as an inexact solver. Sup-
pose Assumptions 1 to 7 hold. In addition, the sequence
(γ(k))k∈N satisfies 0 ≤ γ(k) ≤ 1 and

�
k∈N γ

(k)(1 − γ(k)) =
+∞, and the sequence (γ(k)T )k∈N is absolutely summable. Then

(�ψ̃(k)�K)k∈N is bounded a.s., and
�
k∈N γ

(k)E[ε(k) | Fk] <
∞ a.s.

Proof: See Appendix D. �
Combining the results of Theorems 2 and 3, we can obtain
the following main result of this work.

Corollary 1: Under the same assumptions of Theorem 3, the
sequence (ψ̃(k))k∈N will converge to a fixed point of ℛ∗ and
the associated sequence ([yi(k)i ]i∈N )k∈N generated by JĀ(ψ̃(k))
will converge to a v-SGNE of the problem (3).
Based on Corollary 1, to get a solution arbitrarily closed to a
v-SGNE,wewill runAlgorithm1 for a sufficiently largenumber
of major iterations. Then, we use the obtained last-iterate ψ̃(k)

to run Subroutine 2 for another sufficiently large number of
minor iterations T (k) [39, Lemma 3]. To ensure the convergence
of Algorithm 1, it suffices to properly choose (γ(k))k∈N and
(T (k))k∈N such that (γ

(k)
T )k∈N is a summable sequence. As an

example for admissible parameters, we can choose γ(k) = 1/ka

and T (k) = kb, with 0 < a ≤ 1 and a+ b/2 > 1. This can be
manipulated to make the proposed algorithmwork under differ-
ent practical settings. For instance, if these players areworking in
a feedback-parsimonious setting, i.e., the available realizations
of noisy first-order/gradient information per iteration are scarce,
one can choose a faster decaying rate for (γ(k))k∈N as long
as
�
k∈N γ

(k) = +∞ and let (T (k))k∈N grow linearly or even
sublinearly. In contrast, if the available realizations are abundant,
one can let (T (k))k∈N grow superlinearly while fixing γ(k) to
be some constant such that the proposed algorithm can enjoy a
faster convergence rate.

V. CASE STUDY AND NUMERICAL SIMULATIONS

A. Stochastic Nash–Cournot Distribution Game

We evaluate the performance of the proposed algorithm with
aNash–Cournot distribution problem [10, Sec. 1.4.3] [40] over a
transport network. Several firms (indexedbyN := {1, . . . , N}),
who produce a common homogeneous commodity, participate
in this game. These firms try to optimize their own payoffs
by deciding the quantity of the commodity to produce at each
factory and the quantities to distribute to different markets. A
transport network is provided, with markets as the nodes and
roads as the edges. Let NT denote the node set of this network
and ET the edge set, distinguished from Ng and Eg of the
underlying communication network G. Denote cardinalities of
NT and ET by NT and ET , and the incident matrix of this
transport network by BT ∈ RNT×ET .
Each firm has NTi factories at certain nodes on this trans-
port network, given by the set NTi . Its decision vector xi ∈
RET+NTi is comprised of two parts (xi := [ui; vi]): each entry
of ui ∈ RET+ represents the quantity of the commodity delivered
through a road in ET ; each entry of vi ∈ RNTi+ represents the
quantity of the commodity produced by one of its factories
in NTi . The indicator matrix which maps from each entry
of vi to the corresponding node on the transport network is
denoted by Ei ∈ RNT×NTi , and we let Ai := [BT ,Ei]. These
two parts (ui and vi) together uniquely determine the distri-
bution of commodity Aixi over the markets. If we assume
that the factories owned by firm i have maximum production
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Fig. 1. Performances of Algorithm 1 in a Nash–Cournot Game.

capacities bi ∈ RNTi++ , then each entry of the vector ui ∈ RET is
upper-bounded by �bi�1, and the local feasible set Xi is a poly-
topewhich can bewritten as:Xi := {xi ∈ RET+NTi | 0 ≤ vi ≤
bi, 0 ≤ ui ≤ �bi�1 ⊗ 1ET ,Aixi ≥ 0}. The objective function
of each firm i is given by: Ji(xi;x−i, ξi) = xTi Qixi + Ct(ui) +
Cip(vi)− (P (Ax) + ξi)TAixi, where Qi ∈ SET+NTi++ , A :=
[A1, . . . , AN ], x := [x1; . . . ;xN ] ∈ Rn with n := NET +�
i∈N NTi , and P (Ax) := w − ΣAxmaps from the total quan-

tities Ax of the commodity at markets to their unit prices with
w ∈ RNT+ and Σ ∈ SNT++. The transport cost Ct is defined as the
sum of the costs at all roads, i.e., Ct(ui) :=

�
k∈ET C

k
t ([ui]k),

where each road k ∈ ET has Ckt ([ui]k) := ηk([ui]k − (1 −
1

1+[ui]k
)). The production cost Cip is also defined as the sum

of the costs at all factories, i.e., Cip(vi) :=
�
k∈NTi C

i,k
p (vi),

where each factory k ∈ NTi has Ci,kp ([vi]k) := κi,k([vi]k −
(1 − 1

1+[vi]k
)). The total income (P (Ax) + ξi)TAixi captures

uncertainty in theunit prices through the randomvector ξi,which
has its entries independently identically distributed with mean
zero.
Furthermore, we assume that each market has a maximum

capacity for the commodity, and the decision vectors of the
players should collectively satisfy the global resource
constraints

�
i∈N Aixi ≤ c, where c ∈ RNT++. Building on

the discussed setups, each firm i ∈ N , given the pro-
duction and distribution strategies of the other players
(x−i), aims to solve the following optimization prob-
lem: minimizexi∈Xi Eξi [Ji(xi;x−i, ξi)], subject to Aixi ≤
c−�j∈N−i Ajxj .

1) Assumptions Verification: We use the transport net-
work of the city of Oldenburg [41] (Fig. 2 top): it con-
sists of NT = 29 nodes (markets) and ET = 2 × 34 directed
edges (roads). Five firms (N = 5) participates in this game,
and each firm has a single factory at a given location/node
{8, 14, 21, 10, 29}. Each factory has its maximum production
capacity uniformly sampled from the interval [10, 14], andQi is
a diagonal matrix with the diagonal entries uniformly sampled

Fig. 2. v-SGNE obtained by Algorithm 1.

from [2, 3]. In the transport costs, we have 1
8
ηk ∈ (0, 1] being

the ratio between the length of road k and the maximum length
of the roads in ET . In the production costs, we fix the coefficients
κi,k = 2. In the price function P (·), we draw each entry of the
vector w uniformly from the interval [26, 30] and set [Σ]ii := 1
for all i ∈ NT and [Σ]ji := 0.3 · (1 − 18η(j,i)) for all (j, i) ∈ ET .
For each player i ∈ N , it is easy to check by definition that

Ji(xi;x−i, ξi) and Ji(xi;x−i) are smooth and proper, and they
are convex in xi. Moreover, the pseudogradient F is strongly
monotone on the local compact feasible sets

�
i∈N Xi (detailed

verifications are omitted due to space limit). Then by [10,
Th. 2.3.3], this problem admits a unique v-SGNE. We set the
communication graph of the players to be composed of an
undirected circle plus two randomly selected edges. Therefore,
Assumptions 1 to 4 are fulfilled. We choose ρμ = 8 and then
appropriately set the step sizes to be τ 1 = 0.0285 ⊗ INn, τ 2 =
0.09 ⊗ INm, τ 3 = 0.5⊗ IEn, and τ 4 = 0.5⊗ IEm. It can be
checked numerically that the conditions in Assumptions 5 and 6
are satisfied. We further set ξi ∼ U [−2, 2] and can easily verify
the conditions in Assumption 7.

2) Simulation Results: The sequence (γ(k))k∈N is fixed to
be 1/2, and the subgradient steps taken are chosen as T (k) =
�10−4k2.1�+ 20. We compare the performance of Algorithm 1
with that of [28], with c = 4 and the relaxed step sizes chosen as
0.04. These step sizes are empirically pushed to near the upper
limit of convergence; otherwise, [20, Lemma 6] suggests a set of
minuscule and conservative step sizes (≈ 3× 10−5). The perfor-
mances of the proposedalgorithmare shown in Fig. 1.Weuse the
thick and semitransparent lines to illustrate the real fluctuations
of the metrics throughout the iterations, while using the thin
lines to exhibit the simple moving averages of the metrics with
a window size of 30. The averages of the normalized distances
to the v-SGNE are presented in Fig. 1(a), where the unique
v-SGNE is calculated using the centralized method from [42].
Note that y(k)j denotes the stack of player j’s local decision and
local estimates at the kth iteration, and y∗ the v-SGNE of the

Authorized licensed use limited to: Purdue University. Downloaded on November 01,2023 at 18:25:13 UTC from IEEE Xplore.  Restrictions apply. 



HUANG AND HU: DISTRIBUTED COMPUTATION OF STOCHASTIC GNE 955

game. Fig. 1(b) shows the relative lengths of the updating step
at each iteration. Let ȳ(k) := 1

N

�
j∈N y

(k)
j . Fig. 1(c) exhibits

how the sums of the standard deviations of the local estimates
{yj}, i.e.,

�n
�=1(

1
N

�
j∈N ([y

(k)
j ]� − [ȳ(k)]�)2)

1
2 , evolve over

the iterations. Itmeasures the level of consensus among different
local estimates yj . Fig. 1(d) is almost the same as Fig. 1(c)
except that we are now investigating the consensus of local dual
variables {λj}. The computed v-SGNE of this problem is illus-
trated in Fig. 2, where we use five different colors to represent
the different players/firms. The top panel includes a geographic
illustration, with the locations of the factories denoted by the
colored letters and the total quantities transported on the roads
illustrated by the brightness of the edges. The bottom panel
shows the commodity contributions from the players at each
market on this transport network.

B. Multiproduct Assembly Game With the Two-Stage
Model

The two-stage stochastic programming problem originated
from [43] and found its applications in fields, such as finan-
cial planning and control [44, Sec. 1.2], investment in power
plants [44, Sec. 1.3], transportation planning during emergency
response [45], etc. We now consider a multiproduct assem-
bly problem using the two-stage model [46, Sec. 1.3.1]. In a
game network with N manufacturers/players indexed by N :=
{1, . . . , N}, each player i produces �i types of commodities.
There are in total m different subassemblies that have to be
ordered from a third-party vendor. Each player i needs ni
different types of subassemblies in total, and a unit of commodity
j requires hi,(j,v) units of subassembly v, where j = 1, . . . , �i
and v = 1, . . . , ni. The demands for player i’s commodities are
modeled as a random vectorDi := [Di,1; · · · ;Di,�i ], which has
its range Di inside a bounded set in the positive orthant.
We start by formulating the second-stage problem. Let the
numbers of subassemblies ordered by player i be denoted by
xi ∈ Rni+ , which is treated as a parameter in the second-stage
problem. In this stage, player i makes a production plan about
the quantity of each commodity to produce based on the re-
alized demand vector di ∈ R�i+ . This production plan should
maximize the profit and at the same time not exceed the
quantities of available subassemblies. The income of player
i is comprised of the unit selling prices of the commodities
pi ∈ R�i and the unit salvage values of subassemblies that
are not used s ∈ Rm. Denote the numbers of produced units
by zi ∈ R�i+ , and the numbers of subassemblies left in inven-
tory by yi ∈ Rni+ . We introduce the matrix Hi ∈ R�i×ni with
each entry [Hi](j,v) = hi,(j,v) and a binary matrix Ai ∈ Rm×ni
mapping each entry of yi to one among the m subassem-
blies. In addition, assume the full-row-rank matrix Hi has
�i ≤ ni and no column sums to zero. Then we can define
the nonsmooth function Qi(xi; di) = min{−pTi zi − sTAiyi |
yi = xi −HTi zi,0 ≤ zi ≤ di, yi ≥ 0}, theminimizer of which
is the best production plan.
WithQi(xi; di) defined, we can then formulate the first-stage
problem. The price of subassembly v per unit consists of the
base cost Cv , which is a random variable and the additional
cost with the increasing ratio [Σ](ν,ν) per ordered unit. At this
stage, when making decisions about the preorder quantities xi

to maximize the profit, each player i is uncertain about the base
prices of subassemblies and the demands for its commodities.
Each player i has an expected-value objective w.r.t. the random
vectors C := [Cν ]ν=1,...,m and Di. Moreover, their decisions
should collectively satisfy the global constraints concerning the
available subassemblies. Altogether, the first-stage problem for
each player i can be expressed as⎧⎨⎩minimizexi∈Xi

E
�
1
2
xTi Qixi+(C+ΣAx)

T Aixi+Qi (xi;Di)
�

subject to Aixi ≤ c−
�
j∈N−i Ajxj

(21)
where A := [A1, . . . , AN ], x := [x1; . . . ;xN ], Xi is a compact
and convex local feasible set for xi, Qi, and Σ are diagonal
matrices with each diagonal entry positive, and the constant
vector c ∈ Rm denotes thequantities of available subassemblies.
Suppose N = 5 players participate in this game to compete
form = 10 types of subassemblies. The decision vector of each
player i has dimension ni chosen uniformly at random from
{7, 8, 9, 10}. The local feasible set Xi is the direct product of ni
connected compact intervals. Thecommunicationgraphconsists
of a directed circle and two randomly selected edges.

1) Assumptions Verification: We claim that the function
Qi(xi; di) is a piecewise linear function in xi ∈ Xi given any
fixed di ∈ Di, where Di and Xi are both bounded. We first
introduce the residual variable ri = di − zi and convert the
inequality constraints in Qi(xi; di) to equality ones as follows:�

minimizezi≥0,hi≥0,ri≥0 − pTi zi − sTAihi
subject to hi = xi −HTi zi, zi + ri = di.

(22)

By letting Bi =

�
HTi Ini 0ni×�i
I�i 0�i×ni I�i

�
, ui := [zi;hi; ri],

qi :=
�−pi;−ATi s;0�i�, Ĩi = [Ini ;0�i×ni ], and d̃i = [0ni ; di],

the above constrained linear programming can be presented
as: minimizeui q

T
i ui, while subject toBiui = Ĩixi + d̃i and

ui ≥ 0. Its dual problem can then be derived as

maximizevi
�
Ĩixi + d̃i

�T
vi, subject toB

T
i vi ≤ qi. (23)

We progress with the dual problem which only has xi as
the coefficients of the objective function. Since the feasible
set Xi is compact inside the nonnegative orthant, the simplex
method will identify a vertex solution to the problem (23),
even though the problem may admit unbounded solutions. Note
that the polyhedral Pi := {vi ∈ Rni+�i | BTi vi ≤ qi} only ad-
mits a finite number of verticesVi := {V1, V2, . . . , VM} (−∞
excluded). Thus, Qi(xi; di) := maxVj∈Vi V Tj · [xi; di], which
completes the proof that Qi(xi; di) is a piecewise linear
function in xi. It follows that the expected value function
EDi [Qi(xi;Di)] is a convex function in xi [47, Sec. 3.2.1].
Applying the arguments in [32, Sec. V] to the remaining
parts of Ji(xi;x−i), we can show that the pseudogradient F
is strongly monotone. By [29, Prop. 12.11], this multiproduct
assembly problem admits a unique Nash equilibrium. It can
also be checked numerically that there exists a ρμ > 0 such
that the operator RT F̃+ρμ2 Ln is maximally monotone. These
arguments guarantee that Assumptions 1, 3, and 5 hold for
this SGNEP.
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Fig. 3. Performances of Algorithm 1 for the two-stage model.

To guarantee that Assumption 7 holds, it suffices to verify
that the nonsmooth parts of the objectives fulfill these condi-
tions. We can establish the interchangeability of subdifferential
and integral using [46, Th. 7.52]. We then consider the func-
tion φi(χ) := maxvi∈Pi(vTi · χ), where Pi := {vi ∈ Rni+�i |
BTi vi ≤ qi}. Since the set Pi is nonempty, φi(χ) is the support
function of Pi. By definition, the support function φi(χ) is
the conjugate function of the indicator function ιPi(χ), i.e.,
φi(χ) = maxvi∈Pi(vTi · χ) = maxvi(vTi · χ− ιPi(vi)). Since
the set Pi is convex and closed, the function ιPi(χ) is con-
vex, lower semicontinuous and proper. By [46, Th. 7.5 and
(7.24)], we obtain ∂φi(χ) = argmaxvi{vTi · χ− ιPi(vi)} =
argmaxvi∈Pi{vTi · χ}. Moreover, by the chain rule, the subd-
ifferential should be ∂Qi(xi; di) = ĨTi · argmaxvi∈Pi{(Ĩixi +
d̃i)
T · vi}. As we discussed in the verification of Assump-

tion 1, the solution set of argmaxvi∈Pi{(Ĩixi + d̃i)T · vi}
must contain at least one of Pi’s vertices. Hence, we
can always find a bounded subgradient of Qi such that
Assumption 7 (ii) holds.

2) Simulation Results: We restrict each random vari-
able Di to having a finite range {d1, . . . , dL} with the
probability distribution {P1, . . . , PL}. Under this restriction,
the objective function of each player i can be explicitly
written as: Ji(xi;x−i) = 1

2x
T
i Qixi + (E[C] + ΣAx)TAixi +�L

l=1 PlQi(xi; dl). The method proposed in [32] can then be
applied to compute the unique v-SGNE for reference. The
performance of Algorithm 1 when solving this multiproduct
assembly problem is illustrated in Fig. 3. The thin lines reflect
the simple moving averages of these metrics with a window
size of 20. The curves of T (k) ∝ k2.1 illustrate a steady conver-
gence toward the v-GNE, as suggested in Theorem 3, while the
trajectories of T (k) = 20 stop decreasing after some iterations.
The curves of T (k) ∝ k also keep descending yet with a gentler
trend compared with those of T (k) ∝ k2.1, which suggests the
possibility of some relaxations to the current conditions in
Theorems 2 and 3. For the detailed figure descriptions, see
Section V-A2.

VI. CONCLUSION

In this article, we study the SGNEP and propose a dis-
tributed stochastic algorithm under the partial-information set-
ting based on solving augmented best-response subproblems
induced by the Douglas–Rachford scheme. The proposed algo-
rithm is proved to converge to a true v-SGNE if the sequence of
inertial step sizes and the inverse of the number of realizations
per major iteration decrease altogether at a proper rate. This
raises the question if there exists a less conservative bound
for this decreasing rate such that the proposed algorithm can
still converge yet with a faster convergence rate and fewer
observations needed per major iteration. Another interesting
work remains concerning the convergence rate analysis of the
proposed algorithm. Aswe have previously mentioned, the fixed
point iteration discussed in this article engages two reflected
resolvent operators,whichmerely admit quasinonexpansiveness
rather than contractiveness. The convergence rate analysis under
this setting remains an underexplored yet increasingly active
direction [48], [49], [50]. Finally, although we only analyze the
projected stochastic subgradient method, the main convergence
result in Theorem 2 actually allows a lot of possibilities. It would
be interesting to develop inexact solvers based on different
stochastic optimization schemes that are more sample-efficient
or further relax the assumptions made.

APPENDIX

A Proof of Theorem 2

Proof: The following proof is largely inspired from that
of [33, Prop. 5.34] for deterministic sequences andnonexpansive
operators case with suitable modifications. Given an arbitrary
initial point ψ̃(0) = ψ̃(0)∗ , we let (ψ̃(k))k∈N denote the sequence
generated by (18) and (ψ̃(k)∗ )k∈N the auxiliary sequence con-
structed by letting ψ̃(k+1)∗ := �∗(ψ̃(k)). We next try to extract
a recursive relationship w.r.t. �ψ̃(k+1) − ψ̃∗�2K to establish that�
k∈N res(ψ̃

(k)) <∞ a.s., where ψ̃∗ is a fixed point of ℛ∗.

Writing the explicit formula of �ψ̃(k+1)∗ − ψ̃∗�2K yields
�ψ̃(k+1)∗ − ψ̃∗�2K = �(1 − γ(k))ψ̃(k)+γ(k)ℛ∗

�
ψ̃(k)
�
− ψ̃∗�2K

= (1− γ(k))�ψ̃(k) − ψ̃∗�2K+γ(k)�ℛ∗
�
ψ̃(k)
�
−ℛ∗(ψ̃∗)�2K

− γ(k)(1 − γ(k))�ℛ∗
�
ψ̃(k)
�
− ψ̃(k)�2K

(a)

≤ �ψ̃(k) − ψ̃∗�2K − γ(k)
�
1− γ(k)

��
res
�
ψ̃(k)
��2
,

where (a) follows from the fact thatℛ∗ is quasi-nonexpansive.
Next, we derive a recursive relationship for �ψ̃(k+1) − ψ̃∗�2K as
�ψ̃(k+1)−ψ̃∗�2K = �γ(k)�(k)+ψ̃(k+1)∗ − ψ̃∗�2K
=�ψ̃(k+1)∗ −ψ̃∗�2K+

�
γ(k)ε(k)

�2
+2
�
γ(k)�(k), ψ̃

(k+1)
∗ −ψ̃∗

�
K

(a)

≤ �ψ̃(k) − ψ̃∗�2K − γ(k)
�
1− γ(k)

��
res
�
ψ̃(k)
��2

+
�
γ(k)ε(k)

�2
+ 2γ(k)ε(k)�ψ̃(k) − ψ̃∗�K,

Authorized licensed use limited to: Purdue University. Downloaded on November 01,2023 at 18:25:13 UTC from IEEE Xplore.  Restrictions apply. 



HUANG AND HU: DISTRIBUTED COMPUTATION OF STOCHASTIC GNE 957

where (a) follows from the relation derived above and the
Cauchy–Schwarz inequality. Taking conditional expectation
E[· | F(k)] on both sides yields

E
�
�ψ̃(k+1) − ψ̃∗�2K | F(k)

�
≤ �ψ̃(k) − ψ̃∗�2K − γ(k)

�
1− γ(k)

��
res
�
ψ̃(k)
��2

+ E
�
2γ(k)ε(k)�ψ̃(k) − ψ̃∗�K +

�
γ(k)ε(k)

�2
| F(k)

�
.

(24)
Based on the fact that

�
k∈N γ

(k)E[ε(k) | F(k)] < +∞ a.s.

and (�ψ̃(k) − ψ̃∗�K)k∈N is bounded a.s., we can obtain
that

�
k∈N E[2γ(k)ε(k)�ψ̃(k) − ψ̃∗�K + (γ(k)ε(k))2 | F(k)] <

∞ a.s. By applying the Robbins–Siegmund (R–S) Theo-
rem [36, Th. 1], we can then conclude that on a set Ω̂
which has probability one,

�
k∈N γ

(k)(1 − γ(k))res(ψ̃(k))2 <
∞ with γ(k) ∈ [0, 1] and �k∈N γ(k)(1 − γ(k)) = +∞. Now
we fix an arbitrary sample path ω̂ ∈ Ω̂ for subsequent anal-
ysis, while omitting ω̂ for brevity. In the following we will
prove by contradiction that lim infk→∞ res(ψ̃(k))2 = 0. Sup-
pose otherwise that lim infk→∞ res(ψ̃(k))2 = δ, where δ > 0
is some positive constant. Then there exists a sufficiently
large Kδ such that for any k > Kδ, res(ψ̃(k))2 > δ/2. By
this lower bound, we have

�
k>Kδ

γ(k)(1 − γ(k))res(ψ̃(k))2 >
δ/2
�
k>Kδ

γ(k)(1 − γ(k)) = +∞, which contradicts the pre-
vious statement that

�
k∈N γ

(k)(1 − γ(k))res(ψ̃(k))2 <∞.
This shows that lim infk→∞ res(ψ̃(k))2 = 0. As a result,
there exists a subsequence, denoted by (ψ̃(ki))i∈N , such that
limi→∞ res(ψ̃(ki))2 = 0.
Moreover, the subsequence (ψ̃(ki))ki∈N is bounded, and
thus, has a convergent subsequence (ψ̃(li))i∈N , where (li)i∈N ⊆
(ki)i∈N such that limi→∞ ψ̃(li) = ψ̃†. If Assumption 5(i) holds,
by definition, ℛ∗ is a nonexpansive mapping. It follows
from [33, Cor. 4.28] that ψ̃† ∈ Fix(ℛ∗). If Assumption 5(ii)
holds instead, from [32, Lemma 6],ℛ∗ is a continuousmapping,
i.e., limi→∞ res(ψ̃(li)) = 0 implies ℛ∗(ψ̃†) = ψ̃† and hence
ψ̃† ∈ Fix(ℛ∗). Therefore, we can substitute ψ̃∗ in (24) with ψ̃†.
By [36, Th. 1], limk→∞ �ψ̃(k) − ψ̃†�2K exists. Since (ψ̃(li))i∈N
is a subsubsequence of (ψ̃(k))k∈N converging to the fixed point
ψ̃†, we can conclude that limk→∞ �ψ̃(k) − ψ̃†�2K = 0, and hence
limk→∞ ψ̃(k) = ψ̃†. Altogether, ψ† := JĀ(ψ̃†) belongs to the
zero set of T in (11). Combining this with the conclusions of
Theorem 1, the proof is complete. �

B Proof of Lemma 1

Proof: For each player i ∈ N , at an arbitrary major iteration
k and its minor iteration t = 0, . . . , T (k)i − 1, by applying the
update inside the for-loop of Algorithm 2 and using the non-
expansiveness of the projection operator onto a convex set, we
can obtain the following inequality of the distance between the
approximate minimizer after the tth minor iteration yi(k+1)i,t+1 and

the accurate minimizer yi(k+1)i,∗

�yi(k+1)i,t+1 − yi(k+1)i,∗ �22 ≤ �yi(k+1)i,t − κi,t · g(k)i,t − yi(k+1)i,∗ �22.
(25)

Expanding the �2 norm and taking conditional expectation E[· |
σ{Fk, ξ(k)i,[t]}] on both sides of (25) yields

E
�
�yi(k+1)i,t+1 − yi(k+1)i,∗ �22 | σ{Fk, ξ(k)i,[t]}

�
≤ κ2i,tE

�
�g(k)i,t �22 | σ{Fk, ξ(k)i,[t]}

�
+ �yi(k+1)i,t − yi(k+1)i,∗ �22

− 2κi,t�yi(k+1)i,t − yi(k+1)i,∗ ,g
(k)
i,t � (26)

where g(k)i,t := E[g
(k)
i,t | σ{Fk, ξ(k+1)i,[t] }] ∈ ∂yii Ĵ

(k)

i (y
i(k+1)
i,t ) by

Assumption 7. Using the 1/τ1i-strong convexity of Ĵ
(k)

i , the

inner product inside (26) satisfies �yi(k+1)i,t − yi(k+1)i,∗ ,g
(k)
i,t � ≥

Ĵ
(k)

i (y
i(k+1)
i,t )− Ĵ(k)i (yi(k+1)i,∗ ) + 1

2τ1i
�yi(k+1)i,t − yi(k+1)i,∗ �22. We

then take conditional expectations E[· | Fk] on both sides of
the above inequality. By the rule of successive conditioning and

the fact that yi(k+1)i,∗ minimizes Ĵ
(k)

i (·), the following inequality
holds:

E
�
�yi(k+1)i,t+1 − yi(k+1)i,∗ �22 | Fk

�
≤ κ2i,tE

�
�g(k)i,t �22 | Fk

�
+ (1 − κi,t

τ1i
)E
�
�yi(k+1)i,t − yi(k+1)i,∗ �22 | Fk

�
, a.s. (27)

Rearranging (27) and applying Assumption 7(ii) yields

1

κi,t
E
�
�yi(k+1)i,t+1 − yi(k+1)i,∗ �22 | Fk

�
−
�
1

κi,t
− 1
τ1i

�
·

E
�
�yi(k+1)i,t −yi(k+1)i,∗ �22 | Fk

�
≤κi,t

�
α2g,i�ψ̃(k)�22+β2g,i

�
, a.s.

(28)
By setting κi,t :=

2τ1i
t+2 , multiplying both sides of (28) by (t+

1)/2, and telescoping (28) for t = 0, . . . , T − 1, for an arbitrary
T ∈ {1, . . . , T (k)i }, we have that the following holds a.s.:

(T + 1)T

4τ1i
E
�
�yi(k+1)i,T − yi(k+1)i,∗ �22 | Fk

�
≤
T−1�
t=0

t+ 1

2
· 2τ1i
t+ 2

�
α2g,i�ψ̃(k)�22 + β2g,i

�
.

Simplifying the inequality above, we deduce that E[�yi(k+1)i,T −
y
i(k+1)
i,∗ �22 | Fk] ≤ 4τ21i T−1(α2g,i�ψ̃(k)�22 + β2g,i) a.s.

C Proof of Lemma 2

Proof: By the nonexpansiveness of the reflected resolvent
RB̄, the approximate error ε(k) should satisfy E[ε(k) | Fk] ≤
E[�RĀ(ψ̃(k))−RĀ(ψ̃(k))�K | Fk] = 2E[�ψ(k+1) − ψ(k+1)∗
�K | Fk], where ψ(k+1) = [y(k+1); λ(k+1);μ(k+1); z(k+1)] :=
JĀ(ψ̃(k)) is the stack vector obtained by using the
inexact solver suggested in Algorithm 2 and ψ(k+1)∗ =

[y
(k+1)
∗ ;λ

(k+1)
∗ ;μ

(k+1)
∗ ; z

(k+1)
∗ ] := JĀ(ψ̃

(k)) is the one using
the accurate solver. Given Lemma 1 and the first two for-loops
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in Algorithm 1, the approximate error of the dual variables λ
has the following upper bound:

E
�
�λ(k+1) − λ(k+1)∗ �2 | Fk

�
≤ E
�
�τ2ΛR(y(k+1) − y(k+1)∗ )�2 | Fk

�
≤ �τ2ΛR�2 · E

�
�y(k+1) − y(k+1)∗ �2 | Fk

�
.

Similar results can be trivially derived for μ and z, the
details of which are omitted for brevity. Altogether, we
have that the following relation E[�ψ(k+1) − ψ(k+1)∗ �2 | Fk] ≤
C1 · E[�y(k+1) − y(k+1)∗ �2 | Fk] holds for some constant C1.
For each i ∈ N , the local estimates of others’ decisions
are the same in yi(k+1) and yi(k+1)∗ , while the local deci-
sions, by Lemma 1, satisfy E[�yi(k+1)i − yi(k+1)i,∗ �22 | Fk] ≤
4τ21i(T

(k)
i )

−1(α2g,i�ψ̃(k)�22 + β2g,i) a.s. Pick the maximum coef-
ficients ᾱg := max{αg,i : i ∈ N}, β̄g := max{βg,i : i ∈ N},
τ̄1 := max{τ1,i : i ∈ N} and the minimum minor steps taken
T (k) := min{T (k)i : i ∈ N} over all players. By Jensen’s in-
equality and the nonnegativity ofαg,i, βg,i, and �ψ̃(k)�, an upper
bound for the stacked local decisions and estimates is given by

E
�
�y(k+1) − y(k+1)∗ �2 | Fk

�
≤
�
E

��
i∈N
�yi(k+1)i − yi(k+1)i∗ �22 | Fk

��1/2

≤ 2
√
Nτ̄1

�
T (k)
�−1/2 �

ᾱg�ψ̃(k)�2 + β̄g
�
, a.s.

Combining the above inequalities, we derive the following a.s.
upper bound in the Euclidean space:

E
�
�ψ(k+1) − ψ(k+1)∗ �2 | Fk

�
≤ C2

�
T (k)
�−1/2 �

ᾱg�ψ̃(k)�2 + β̄g
�

(29)

where C2 := 2C1τ̄1
√
N .We convert the above conclusion from

the Euclidean space to the inner product space K defined by
the positive definite design matrix Φ. The maximum (resp.
minimum) eigenvalue of Φ is denoted by σ̄Φ (resp. σΦ). Then
(29) implies the following relation holds a.s. in K:

E
�
�ψ(k+1) − ψ(k+1)∗ �K | Fk

�
≤ C2

√
σ̄Φ�

T (k)
�1/2 � ᾱg√σΦ �ψ̃(k)�K + β̄g

�
. (30)

Hence, there exist positive constants αψ and βψ independent of
k such thatE[ε(k) | Fk] ≤ (T (k))−1/2(αψ�ψ̃(k)�K + βψ) a.s.�

D Proof of Theorem 3

Proof: Consider (ψ̃(k))k∈N generated by the approximate
iteration �= Id+ γ(k)(ℛ− Id) and (ψ̃(k)∗ )k∈N generated by
ψ̃
(k+1)
∗ := �∗(ψ̃(k)). Let ψ̃∗ denote one of the fixed points of

ℛ∗. To prove that (ψ̃(k))k∈N is bounded a.s., note that

E
�
�ψ̃(k+1) − ψ̃∗�K | Fk

�
= E
�
�ψ̃(k+1) − ψ̃(k+1)∗ + ψ̃

(k+1)
∗ − ψ̃∗�K | Fk

�
≤ γ(k)E

�
ε(k) | Fk

�
+E
�
��∗
�
ψ̃(k)
�
−�∗

�
ψ̃∗
�
�K | Fk

�
.

Let γ(k)T := γ(k)(T (k))−1/2. By applying Lemma 2 and using
the fact that�∗ is (quasi)nonexpansive, we have

E
�
�ψ̃(k+1) − ψ̃∗�K | Fk

�
≤ γ(k)T

�
αψ�ψ̃(k)�K + βψ

�
+ E
�
�ψ̃(k) − ψ̃∗�K | Fk

�
= γ

(k)
T

�
αψ�ψ̃(k) − ψ̃∗ + ψ̃∗�K + βψ

�
+ �ψ̃(k) − ψ̃∗�K

≤
�
1+αψγ

(k)
T

�
�ψ̃(k)−ψ̃∗�K + γ(k)T

�
αψ�ψ̃∗�K+βψ

�
, a.s.

Since �ψ̃∗�K <∞ and we assume that (γ(k)T )k∈N is summable,
by the R–S Theorem [36, Th. 1], we have that limk→∞ �ψ̃(k) −
ψ̃∗�K exists and is finite a.s. Consequently, there exists
a set Ω̂ with probability one, such that for any ω̂ ∈ Ω̂,
the sequence (�ψ̃(k)(ω̂)− ψ̃∗�K)k∈N is bounded. Therefore,
we can find some constant B(ω̂) which satisfies, for all
k ∈ N, �ψ̃(k)(ω̂)�K = �ψ̃(k)(ω̂)− ψ̃∗ + ψ̃∗�K ≤ �ψ̃(k)(ω̂)−
ψ̃∗�K + �ψ̃∗�K ≤ B(ω̂).
Since the deterministic sequence (�ψ̃(k)(ω̂)�K)k∈N is upper

bounded by aconstantB(ω̂) for any ω̂ ∈ Ω̂, combiningLemma2
and the summability of (γ(k)T )k∈N , we finally can conclude that�
k∈N γ

(k)E[ε(k) | Fk](ω̂) ≤�k∈N γ(k)T (αψ�ψ̃(k)(ω̂)�K +
βψ) ≤

�
k∈N γ

(k)
T (αψB(ω̂) + βψ) <∞. �
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