

Note: This is the Author Accepted Copy of this manuscript. The published version of this manuscript is available at:

Mikayla N. Call, Alexandra L. Wilke, Zak Poulton, Ruth Boettcher, Sarah M. Karpanty, Eunbi Kwon, Aylett Lipford, Emily D. Gardner, Logan Anderson, James D. Fraser, Daniel H. Catlin, and Christy N. Wails
"Comparing In-Person Versus Camera Monitoring of Shorebird Reproductive Success," *Waterbirds* 45(3), 312-327, (27 June 2023). <https://doi.org/10.1675/063.045.0310>

Comparing In-Person versus Camera Monitoring of Shorebird Reproductive Success

MIKAYLA N. CALL¹, ALEXANDRA L. WILKE², ZAK POULTON², RUTH BOETTCHER³, SARAH M.

KARPANTY¹, EUNBI KWON⁴, AYLETT LIPFORD², EMILY D. GARDNER¹, LOGAN ANDERSON¹, JAMES D. FRASER¹, DANIEL H. CATLIN¹, CHRISTY N. WAILS¹

¹ Department of Fish and Wildlife Conservation, Virginia Tech, Cheatham Hall, 310 W. Campus Drive, Blacksburg, Virginia 24061, USA

² The Nature Conservancy in Virginia, Volgenau Virginia Coast Reserve, 11332 Brownsville Road – PO Box 158, Nassawadox, Virginia 23413, USA

³ Virginia Department of Wildlife Resources, 12610 Jacobus Creek Road, Machipongo, Virginia 23405, USA

⁴ Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard Gwinner Str, Seewiesen 82319, Germany

ACKNOWLEDGMENTS

We thank Managing Editor Dr. Paige Byerly and two anonymous reviewers for their constructive comments which improved the manuscript. This project is based upon work supported by National Fish and Wildlife Foundation (Project 0101.16.051260), the National Science Foundation Virginia Coast Reserve Long Term Ecological Research Grants DEB-17733 and DEB-1832221, the National Science Foundation under Grant Number 1735139, the Wildlife Restoration Grant Number F18AF00664 provided by the USFWS' Wildlife and Sportfish Restoration Program. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or other sponsors. All applicable ethical guidelines for the use of

26 birds in research have been followed, including those presented in the Ornithological Council's
27 "Guidelines to the Use of Wild Birds in Research" (Fair *et al.* 2010). We acknowledge that
28 during this research, we lived and worked on the homeland of the Tutelo, Monacan, Pocomoke,
29 Chincoteague, Occohannock, and Accomack People's homeland and we recognize their
30 continued connection to the land, water, and resources of these areas.

31

32 **Abstract.**— Shorebird reproductive success monitoring often relies on surveys of nest and
33 brood survival. However, conclusions may be inaccurate due to the challenges of gathering and
34 interpreting evidence of nest and brood fate. We tested the efficacy of in-person versus camera-
35 based monitoring to quantify productivity and evaluate threats to reproductive success of
36 American Oystercatchers (*Haematopus palliatus*) and Piping Plovers (*Charadrius melanotos*) at
37 Metompkin Island, Virginia. We deployed 73 cameras using three set-ups: at nests, at brood
38 sites, and along a transect. The same areas were also surveyed in-person approximately once per
39 week. Camera monitoring confirmed nest fate where in-person monitors could not determine fate
40 from field evidence and provided insight to the effectiveness of mammalian predator removal.
41 However, cameras failed to capture causes of mortality for mobile chicks and did not
42 consistently document chicks where in-person monitoring confirmed successful broods. Cameras
43 produced large quantities of data requiring 63.5–315 hours to review, depending on camera set-
44 up. We found cameras were useful for validating conclusions from in-person monitoring,
45 highlighting threats that surveys missed, and characterizing the predator community. Managers
46 should consider the tradeoff between potential benefits and required effort of camera monitoring
47 when deciding which method would be effective for meeting management goals.

48 **Key words.** — American Oystercatcher, *Charadrius melanotos*, *Haematopus palliatus*, Piping
49 Plover, predation, productivity
50
51 Running head: SHOREBIRD MONITORING METHODS

52 Monitoring is used to reduce uncertainty about a system and inform decisions regarding
53 management actions (Lyons *et al.* 2008). In most locations, monitoring of beach-nesting
54 shorebird reproductive success involves routine, in-person surveys for nests and broods during
55 the breeding season. When integrated with an adaptive management framework, monitoring
56 provides a useful way to evaluate the effectiveness of current management actions to address
57 those threats and ensure management goals are met (Gibbs *et al.* 1999). This approach of
58 continuous monitoring and re-evaluation of threats is important in dynamic landscapes such as
59 coastal systems that vary spatiotemporally in response to short-term disturbances (e.g., tropical
60 and extratropical storms; Robinson *et al.* 2019) and long-term changes (e.g., sea-level rise;
61 Galbraith *et al.* 2014).

62 Estimating productivity and identifying factors that limit reproductive success of shorebirds
63 from in-person surveys often is difficult, given that egg or chick loss events are rarely witnessed
64 by in-person monitoring (Ivan and Murphy 2005). Many beach-nesting shorebird species breed
65 in dry sand habitat where evidence of nest fate and causes of nest failure may be altered by
66 abiotic conditions (e.g., high winds, heavy rainfall, tidal inundation). Moreover, visits from
67 scavengers following nest failure may confuse the record by adding to or obscuring signs from
68 the original nest failure event, such as predator tracks (Lariviere 1999). As a result, nest fate
69 assignments and causes of nest failure may be erroneous, leading to inaccurate estimates of hatch
70 rates and misidentification of threats to nest success (Hillman 2012; Ellis *et al.* 2018).
71 Furthermore, shorebirds are semi- or fully precocial, meaning chicks leave the nest shortly after
72 hatching, giving observers less than 48 hours after hatching to observe chicks in the nest (Andes
73 *et al.* 2019). Once chicks leave the nest, they are challenging to re-locate, as they are highly

74 mobile and cryptically colored, making it difficult to monitor chick survival (Whittier and Leslie,
75 Jr. 2009; Lees *et al.* 2019).

76 Automatic cameras may provide an alternative method for estimating productivity and
77 identifying threats to reproductive success, as they can provide near-continuous monitoring of a
78 site (DeRose-Wilson *et al.* 2013; Hillman *et al.* 2015), increasing chances to determine nest fate
79 and capture evidence of events affecting nest success that may otherwise be missed by
80 investigators (Pietz and Granfors 2000; Liebezeit and Zack 2008; Ellis *et al.* 2018; Andes *et al.*
81 2019). Thus, cameras may reduce uncertainties about hatch success and threats to nest survival
82 by capturing information missed by in-person surveys. Additionally, cameras may highlight
83 threats to nest and chick survival by characterizing the predator community (Liebezeit and Zack
84 2008; McKinnon and Bêty 2009; Ellis *et al.* 2020; Brown *et al.* 2022) and the amount of
85 disturbance from humans.

86 American Oystercatchers (*Haematopus palliatus*) and Piping Plovers (*Charadrius melanotos*)
87 are intensively monitored and managed on the Western Atlantic Flyway. Both are species of
88 conservation concern under the U.S. Shorebird Conservation Plan due to population declines and
89 habitat loss (Brown *et al.* 2001), and the Atlantic coast breeding population of the Piping Plover
90 is federally threatened in the United States (U.S. Fish and Wildlife Service 1985). Range-wide
91 studies of the population abundances and productivity (i.e., number of fledged chicks per pair)
92 have identified threats to their reproductive success, namely loss of open sandy habitat due to
93 vegetative succession and coastal development (Robinson *et al.* 2019; Kwon *et al.* 2021),
94 disturbance from human activity (DeRose-Wilson *et al.* 2018; Kwon *et al.* 2021), and predation
95 pressures (Erwin *et al.* 2001). These efforts have informed decision-making for management
96 actions such as the implementation of seasonal beach closures and predator removal at breeding

97 sites (Melvin *et al.* 1991; Schulte *et al.* 2010). Monitoring is used to evaluate the effectiveness of
98 implemented actions (Brown *et al.* 2001).

99 We used cameras to remotely monitor the reproductive success of American Oystercatchers
100 and Piping Plovers on Metompkin Island, Virginia. This site is an important breeding location,
101 supporting an annual average of 92 American Oystercatcher pairs and 60 Piping Plover pairs
102 from 2002–2018 (The Nature Conservancy in Virginia and Virginia Department of Wildlife
103 Resources, unpubl. data). Managers have monitored the reproductive success of these species on
104 Metompkin Island since 2002 using nest and brood surveys and noted that overall productivity
105 has varied over time for both species at this site. However, as Metompkin Island is remote and
106 only accessible by boat, monitoring intervals may be long (i.e., surveying approximately once
107 per week), potentially biasing nest and chick survival estimates for the site. For these reasons,
108 Metompkin Island provides an ideal study system to compare the methods of in-person versus
109 camera monitoring. In addition to monitoring hatch success for both species, we also tested two
110 novel camera set-ups (i.e., cameras located at brood-rearing sites and along a transect at the
111 marsh edge) to monitor American Oystercatcher brood survival after chicks left the nest site. Our
112 objectives were to 1) compare the efficacy of in-person versus camera-monitoring to quantify
113 hatch and brood success, 2) test the utility of nest, brood, and transect-based cameras versus in-
114 person monitoring to evaluate the importance of predation relative to other threats to
115 reproductive success (e.g., abandonment, flooding, disturbance), 3) quantify any potential effects
116 of camera monitoring on nest survival relative to in-person monitoring, and 4) evaluate the effort
117 needed to process and review photos from camera monitoring to assist managers in making
118 decisions about future use of technologies in their monitoring and management programs.

119

METHODS

120 Study Area

121 Metompkin Island, Virginia ($37^{\circ} 44' 27.04''$ N, $75^{\circ} 33' 37.90''$ W) is a 10-km long, 107–
122 831-m wide undeveloped barrier island located approximately 1.5–2.5 km from the mainland of
123 the Delmarva Peninsula (Fig. 1). It is low-lying (mean elevation around 1.0 m asl), with a flat
124 topography that is frequently overwashed (Stallins *et al.* 2020). As a result, the vegetative
125 community on Metompkin Island is dominated by species such as Saltmeadow Cordgrass
126 (*Spartina patens*) that exhibit rapid growth following frequent disturbances (Brantley *et al.* 2014;
127 Brown and Zinnert 2020). The sandy beach used by breeding shorebirds varies around the mid-
128 point of the island. The northern half of Metompkin Island has sparsely vegetated beach habitat
129 and overwash areas backed by a salt marsh; in contrast, the southern half is dominated by a less
130 erosional dune structure (Stallins *et al.* 2020) and a denser vegetative community composed of
131 grasses and shrubs that terminates abruptly at the edge of the coastal bay.

132 Metompkin Island is part of a coastal system that provides crucial breeding, migration, and
133 wintering habitat for shorebirds on the Western Atlantic Flyway (Wilke *et al.* 2005).

134 Management priorities to benefit birds breeding on the island include year-round visitor use
135 policies (e.g., no dogs, no camping), seasonal access restrictions (i.e., visitors are only permitted
136 in the intertidal area and access is restricted to the inlets and roped corridors), and lethal
137 management of mammalian predators (i.e., red fox *Vulpes vulpes*, and raccoon *Procyon lotor*).
138 Managers also conduct seasonal weekly monitoring of the reproductive success of American
139 Oystercatchers, Piping Plovers, and Wilson's Plovers (*Charadrius wilsonia*).

140 American Oystercatcher productivity rates on Metompkin Island are generally high relative
141 to other locations along the Western Atlantic Flyway, making it one of the most important
142 breeding sites for this species along the U.S. Atlantic and Gulf coasts (Atlantic Flyway Shorebird

143 Initiative [AFSI] 2020). However, oystercatcher productivity has declined on Metompkin Island
144 from an average of 0.73 ± 0.08 (mean \pm SE) fledged chicks/pair in 2002–2015 to 0.25 ± 0.06
145 fledged chicks/pair in 2016–2018 (The Nature Conservancy, unpubl. data). This decline resulted
146 in a reproductive output below the estimated rate needed to maintain a stationary population on
147 the Virginia barrier islands (0.42 fledged chicks/pair assuming observed immigration rates;
148 Wilke *et al.* 2017). Piping Plover productivity averaged 1.29 ± 0.09 fledged/chicks per pair in
149 2002–2015 and 1.07 ± 0.04 in 2016 and 2018 (no data for 2017; Virginia Department of Wildlife
150 Resources, unpubl. data), both of which are sufficient rates to maintain a stationary population
151 (Hecht and Melvin 2009; Weithman *et al.* 2019).

152 Field Methods

153 *In-person field monitoring of reproductive success.* We monitored the reproductive success
154 of American Oystercatchers and Piping Plovers in-person by conducting walking surveys and
155 observations of breeding bird behavior. We conducted in-person monitoring methods for all
156 nests and broods from 1 April to 31 August 2019, even after cameras were placed. Due to the
157 remoteness of the site, in-person surveys occurred approximately once per week, or as weather
158 allowed. We located nests by observing breeding bird behavior and signs of nesting activity (e.g.,
159 dense tracks, scrapes) and through systematic searches of all suitable habitat on the island. For
160 all nests, we used Collector for ArcGIS (ESRI, Redlands, California, USA) to record the GPS
161 location and nest status (i.e., active or inactive) on each subsequent visit until the nest hatched or
162 failed.

163 We identified nest fate and cause of clutch loss when possible, using field-gathered evidence
164 (e.g., scat, tracks, yolk, eggshell fragments). For example, predation-caused nest failure could be
165 inferred from the absence of eggs well before the expected hatch date coupled with the presence

166 of predator tracks and egg yolk. Conversely, hatch success could be inferred from actual
167 observations of broods, adult behavior (e.g., alarm calls), the presence of bivalve shells, and the
168 presence of adult and chick tracks. Possible sources of clutch loss and associated evidence that
169 we considered during in-person monitoring included, but was not limited to, nest predation
170 (predator tracks and sign at nest site; Hunt *et al.* 2019), flooding (overwash sand texture and wet
171 substrate), and abandonment (sand accumulation in nest).

172 We defined a successful nest as one that had at least one egg hatch. For successful nests, we
173 monitored broods until chicks died or were considered fledged at 35 days for American
174 Oystercatchers (American Oystercatcher Working Group [AMOYWG] *et al.* 2020) and 25 days
175 for Piping Plovers (Elliott-Smith and Haig 2020). During site visits, we searched for broods from
176 a distance using binoculars or spotting scopes to minimize disturbance and recorded the status of
177 broods as alive or failed (i.e., all chicks were dead).

178 *Camera-based monitoring of reproductive success and threats to nests and broods.* We
179 used three sets of cameras to provide near-continuous monitoring of shorebird activity at
180 Metompkin Island (Fig. 1), which included cameras placed near active American Oystercatcher
181 and Piping Plover nests ('nest cameras'), at American Oystercatcher brood-rearing sites ('brood
182 cameras'), and along a transect adjacent to the marsh-beach interface to allow for a wide-angle
183 view of the marsh edge ('transect cameras'). A combination of solar panel kits and batteries
184 powered the cameras. We checked cameras approximately once per week, replacing memory
185 cards and batteries as needed. More detail on camera set-up is in AFSI (2020).

186 We deployed nest cameras (16 megapixel with 'no-glow' infrared 940 nm flash; Blaze
187 Video, Irvine, California, USA) set with a 15 m motion detection range and a 20 m infrared flash
188 range. These cameras operated 24 hr/day and captured three still images per trigger with a 5-sec

189 pause between image sequences. We placed nest cameras on steel posts 0.3 m above the ground
190 and 3–6 m from the nest. Cameras were placed by active nests with full clutches as site visits
191 allowed, and thus they were not always deployed at the same number of days post-laying
192 completion. After nest camera placement, we monitored the nest to ensure that adults resumed
193 incubation within 30–45 min. This threshold was carefully evaluated for each deployment to
194 ensure that existing conditions (e.g., weather, potential predators) would not pose a threat to
195 active nesting attempts. If an incubating adult did not return within the set threshold, the camera
196 was removed.

197 We mounted brood cameras (same model and specifications as nest cameras) on steel posts
198 1.0 m above the ground and positioned them to maximize their view of the marsh edge where
199 brood survey observations from the current and prior years indicated American Oystercatcher
200 brood activity. We focused this camera monitoring method on monitoring American
201 Oystercatcher chicks, as American Oystercatcher broods often stay within a nesting or feeding
202 territory, whereas Piping Plover broods have a more variable movement patterns and home range
203 sizes that tend to increase as they approach fledging (AMOYWG *et al.* 2020; Weithman *et al.*
204 2020). Each brood camera was associated with a brood territory (i.e., the area where chick-
205 rearing for one brood occurred) and we deployed cameras May through July 2019, as the nests of
206 the broods using each territory hatched. We continued to conduct in-person monitoring as
207 described above for all nests and broods monitored by cameras.

208 We placed seven cameras (PlotWatcher 6 Pro from Day 6 Outdoors, Columbus, Georgia,
209 USA and MAC200DN from Brinno, Taipei City, Taiwan) facing the marsh edge and along a
210 transect parallel to the marsh-beach interface, 40 m apart and 50–75 m from the marsh. We chose
211 the transect location based on locations of observed American Oystercatcher brood activity in the

212 previous year. Transect cameras operated from dawn to dusk (approximately 17 hr/day from
213 05:00 hr to 21:00 hr) on 24 May to 09 July 2019, and recorded images at 1-sec intervals, rather
214 than using motion detection, to improve chances of capturing individuals beyond the cameras'
215 motion detection range.

216 We reviewed photos from the nest and brood cameras for evidence of predation and other
217 causes of productivity loss (e.g., partial or complete clutch or chick loss due to flooding,
218 abandonment, and other non-predation events). As disturbance may reduce nest success by
219 altering incubation patterns (McGowan and Simons 2006), we also recorded disturbance events,
220 defined as any event that caused an incubating bird to leave the nest (e.g., another animal passing
221 near the nest), using nest camera photos. To characterize the predator community at nest and
222 chick rearing sites, we recorded the presence of all known or potential shorebird predators
223 (Boettcher *et al.* 2007, Wilke *et al.* 2007) on all three camera set-ups, regardless of whether the
224 predator interacted with a nest or brood.

225 Analyses

226 *Estimating hatch and brood success.* We assigned nest and brood fates separately from field
227 evidence from in-person monitoring, which began when a nest was found, and photographic
228 evidence from cameras, which was collected from the time each camera was placed. We used
229 only nests monitored with both methods, so that we could compare estimates of reproductive
230 success (hatch success, i.e., proportion of successful nests, and productivity, i.e., number of
231 fledged chicks per pair) produced by in-person versus camera monitoring. Comparing estimates of
232 reproductive success from these methods allowed us to assess the accuracy of estimates of
233 hatch success and productivity derived from in-person monitoring, which may be biased by long

234 monitoring intervals (Etterson and Bennett 2005; Andes *et al.* 2019), against less biased
235 estimates produced from camera monitoring.

236 To account for nests with unknown fate from in-person monitoring, we estimated upper and
237 lower limits for hatch success where we assumed all nests with unknown fates hatched or failed,
238 respectively. For camera-monitoring, we classified each nest attempt as hatched or failed from
239 photos and assigned cause of failure when possible. We reviewed brood camera photos for brood
240 presence by recording the maximum number of chicks seen on each camera twice per day, once
241 for the morning (00:00 to 11:59 hr) and once in the evening (12:00 to 23:59 hr). We only
242 estimated productivity for American Oystercatchers as camera monitoring of chick-rearing sites
243 focused on only American Oystercatcher broods. We considered a chick to be fledged if it was
244 observed at or after its expected fledge date during in-person surveys or on a camera.

245 *Determining threats during nest and chick-rearing stages.* We compared reasons for nest
246 failure and chick loss recorded during in-person and camera monitoring to determine accuracy of
247 fate assignment and threat identification for in-person monitoring. We reviewed footage from the
248 transect cameras using programs provided by the manufacturer of each camera that allowed us to
249 view still images in video format (Day 6 Outdoors GameFinder and Brinno Video Review). To
250 characterize activity of non-shorebird species at the marsh edge, we recorded presence of all
251 non-shorebird species. We also noted antagonistic interactions (e.g., attacking another species)
252 between these species and adults tending broods. As cameras provided more continuous
253 monitoring, we considered reasons for nest or chick loss determined from camera monitoring to
254 be more accurate than data from in-person monitoring.

255 To quantify threats to nest survival, we calculated capture rates of disturbance and clutch
256 loss events from nest camera photos. To quantify threats to chick survival, we calculated capture

257 rates for all predator and non-shorebird species detected on transect camera photos. We chose to
258 quantify capture rates for all non-shorebird species, rather than just known predators, because
259 non-predators sometimes disturb broods (A. Wilke, pers. obs.) and there was potential for the
260 cameras to highlight threats from species not typically considered to be shorebird predators. We
261 calculated capture rates as the number of independent events (i.e., occurring > 30 min apart),
262 divided by the total number of camera days and multiplied by 100 (i.e., event detections/100
263 camera days; Sollmann 2018). We recorded species observed from in-person and brood camera
264 monitoring, but could not calculate capture rates, as these methods were not designed to collect
265 data on independent capture events.

266 *Assessing camera effect on nest survival.* We used a logistic-exposure model (Shaffer 2004)
267 to predict survival of nests using methods similar to Kwon *et al.* (2018) in the statistical
268 computing environment R ver. 4.1.2 (R Core Development Team 2021). We first constructed a
269 global model with presence or absence of nest cameras, shorebird species (American
270 Oystercatcher or Piping Plover), location (northern or southern Metompkin), and nest age (days
271 since the start of incubation, with the start of incubation as Day 1) as predictor variables. We
272 could not estimate nest age from a known nest initiation date due to long in-person monitoring
273 intervals (7–10 days). Instead, we backdated initiation dates according to the known laying
274 sequence for the species (Colwell 2006) or from hatch dates. When possible, we were
275 conservative with our estimate of nest age (i.e., we assumed earlier initiation dates when
276 uncertain) and did not consider nests for which we could not estimate nest age because they were
277 found in the incubation phase and did not hatch.

278 We evaluated the fit of the global model with a Hosmer and Lemeshow goodness-of-fit test
279 (Hosmer *et al.* 2013). We then constructed 10 biologically plausible candidate models containing

280 only additive effects of parameters from the global model, including a null (intercept-only)
281 model, and used Akaike's Information Criterion corrected for the small sample sizes (AIC_c) to
282 compare the models (Burnham and Anderson 2002). As our top-ranked model weight was < 0.9 ,
283 we used model averaging (R package *AICmodavg*; Mazerolle 2020) to provide parameter
284 estimates using all candidate models (Johnson and Omland 2004; Arnold 2010). We report the
285 conditional average of all candidate models and the corresponding 95% confidence intervals.

286 *Quantifying effort of monitoring techniques.* We reviewed all camera photos manually using
287 built-in photo viewing applications on our computer systems or the manufacturer-provided photo
288 review software described above. To understand the added effort spent reviewing the large
289 amount of data collected by camera monitoring, we tracked the total number of hours required to
290 review all photos from camera monitoring. We could not compare the total effort required for in-
291 person monitoring versus camera monitoring because we conducted in-person surveys for all
292 other American Oystercatcher and Piping Plover nests and broods on Metompkin Island
293 simultaneously with in-person monitoring and camera trap deployment, maintenance, and
294 removal for the subset of nests and broods included in this study. As a result, we cannot
295 accurately estimate the field hours required for just this subset of nests alone or for camera set-up
296 and maintenance versus in-person monitoring of these nests. For these reasons, we only report
297 the time spent on camera data processing and review and do not report field hours.

298 **RESULTS**

299 We monitored the success of 27 American Oystercatcher nests, 28 Piping Plover nests,
300 and 11 American Oystercatcher broods with both in-person and camera monitoring methods. We
301 deployed 73 cameras, including 55 nest cameras, 11 brood cameras, and seven transect cameras,
302 which provided 1,800 cumulative camera days of monitoring (American Oystercatcher nests $n =$

303 557 days; Piping Plover nests $n = 566$; brood $n = 355$; transect $n = 322$). Set-up time for nest
304 cameras averaged 7 ± 3 min (mean \pm SE; range 2–18 min). Piping Plovers resumed incubation
305 faster than American Oystercatchers (mean \pm SE, 7 ± 7 min vs. 28 ± 18 min, respectively),
306 excluding the seven attempts that we abandoned when adults did not resume incubation within
307 the set threshold (American Oystercatcher $n = 6$, Piping Plover $n = 1$).

308 Of the 55 nest cameras deployed, 11 failed due to complications with solar panels (failure
309 rate = 0.20; American Oystercatcher $n = 5$, 18.5% of camera-monitored American Oystercatcher
310 nests; Piping Plover $n = 6$, 21.4% of camera-monitored Piping Plover nests). These nests were
311 removed from estimates of hatch success as we could not document nest fate from those cameras
312 for comparison with in-person observations, yielding 44 nests for analyses comparing in-person
313 versus camera monitored fate. No brood cameras failed, so all 11 were used to characterize the
314 predator threat during the chick-rearing stage; however, only eight cameras provided data on
315 chick presence and survival. No transect cameras failed and all were used to quantify predator
316 activity at the marsh edge.

317 Estimates of Hatch and Brood Success from In-Person vs. Camera Monitoring

318 *Hatch success estimates.* Using in-person monitoring, we were able to assign a suspected
319 nest fate for 82% of nests (American Oystercatcher $n = 20$, 90.9% of American Oystercatcher
320 nests used in analyses; Piping Plover $n = 16$, 72.7% of Piping Plover nests used in analyses), but
321 were unable to assign a fate for 18% of nests (American Oystercatcher $n = 2$, 9.1% of nests;
322 Piping Plover $n = 6$, 27.3% of nests). Camera monitoring improved accuracy of nest fate
323 assignment by confirming all nests with unknown fate from in-person monitoring as hatched or
324 failed (Table 1). Hatch success estimates from camera monitoring were between the lower and

325 upper limits of hatch success estimated from in-person monitoring for Piping Plovers and
326 equivalent to the upper limit for American Oystercatchers (Table 2).

327 *Productivity estimates.* We estimated a higher productivity for American Oystercatchers
328 from in-person monitoring than from brood camera monitoring (0.63 fledged chicks/pair via in-
329 person surveys versus 0.25 fledged chicks/pair via brood cameras). Brood cameras recorded
330 chick presence on eight of the 11 cameras, but only documented chicks at or after their estimated
331 fledge dates for two broods. Observations from cameras and in-person monitoring agreed on the
332 number of chicks that fledged from these two broods, but we noted fledged chicks from an
333 additional two broods during in-person monitoring that were not detected by the brood cameras
334 for a total of four fledged broods.

335 Threats in Nest and Chick-rearing Stages: In-Person vs. Camera Monitoring

336 *Causes of Abandonment and Clutch Loss.* During in-person monitoring, we noted three nests
337 as failed due to abandonment (American Oystercatcher $n = 1$, 4.5% of nests; Piping Plover $n = 2$,
338 9.1% of nests). Cameras confirmed all abandoned nests, but only provided insight to an obvious
339 reason for abandonment for one American Oystercatcher nest, which was abandoned after the
340 nest was flooded by a high tide.

341 We did not assign any sources of partial or complete clutch loss during in-person monitoring
342 besides nest abandonment; as a result, we could not compare additional sources of clutch loss
343 noted from in-person monitoring with camera observations. Cameras documented causes of
344 partial or complete clutch loss for six nest attempts (American Oystercatcher $n = 1$, 4.5% of
345 nests; Piping Plover $n = 5$, 22.7% of nests) where we assigned unknown causes of nest failure
346 during in-person monitoring. For two of these attempts (American Oystercatcher $n = 1$, 4.5% of
347 nests; Piping Plover $n = 1$, 4.5% of nests), we noted sign at the nest site during in-person

348 monitoring but were still unable to assign a cause of failure. Camera-recorded causes of partial
349 and complete clutch loss included predation by a Herring Gull (*Larus argentatus*), Laughing
350 Gulls (*Leucophaeus atricilla*), and an Atlantic ghost crab (*Ocypode quadrata*); trampling by a
351 Canada Goose (*Branta canadensis*); and nest abandonment.

352 *Causes of Brood Loss.* Nest cameras placed at two different Piping Plover nests captured
353 one chick mortality event when an American Oystercatcher predated a newly hatched Piping
354 Plover chick before it was mobile and one event when a Peregrine Falcon (*Falco peregrinus*)
355 appeared to predate a Piping Plover chick. In-person monitoring noted that these nests had likely
356 hatched but did not identify any cause of chick loss. Neither monitoring method noted causes of
357 mortality for chicks of either species after chicks left the nest site.

358 *Identification of Other Threats.* American Oystercatchers were the most frequently captured
359 species on all nest cameras (excluding pairs associated with nests on American Oystercatcher
360 nest cameras; Table 3). The next most frequently captured species at nests were white-tailed deer
361 (*Odocoileus virginianus*), grackles (*Quiscalus quiscula* and *Q. major*), and human recreationists
362 at American Oystercatcher nests, and Atlantic ghost crabs, Least Terns (*Sterna antillarum*), and
363 Peregrine Falcons at Piping Plover nests. In-person monitoring noted the presence of these
364 species on Metompkin Island and signs of some (e.g., grackles, humans, and Atlantic ghost
365 crabs) at specific nest sites, but we could not calculate capture rates from in-person monitoring
366 data.

367 Four wild mammal species were observed on the nest cameras, including red fox, white-
368 tailed deer, muskrat (*Ondatra zibethicus*), and raccoon (combined 0.98 events/100 camera days;
369 4.54% of encounters on all cameras; Table 3). All four of these species were observed on
370 cameras at American Oystercatcher nests and caused incubating adults to leave the nest;

371 however, none of these species were documented predating the monitored nests. Predator species
372 that are targeted for removal on Metompkin Island (i.e., red fox and racoon) had a combined nest
373 camera capture rate of 0.18 events/100 camera days (< 1% of all captures on nest cameras).
374 Additionally, an off-leash dog (*Canis lupus familiaris*) was observed once near a Piping Plover
375 nest.

376 Diamondback Terrapins (*Malaclemys terrapin*), grackles, and Atlantic ghost crabs were
377 most frequently encountered on transect cameras (Table 3). Crows (*Corvus brachyrhynchos* and
378 *C. ossifragus*), Herring Gulls, and Laughing Gulls were the only other known shorebird
379 predators observed on transect cameras (all < 1% of encounters). There were no mammals
380 captured on transect cameras.

381 Several known shorebird predators were observed in chick-rearing areas on the brood
382 cameras, including 8 bird species (i.e., Laughing Gull, Herring Gull, Great Black-backed Gull
383 *Larus marinus*, Black-crowned Night-heron *Nycticorax nycticorax*, Great Horned Owl *Bubo*
384 *virginianus*, Peregrine Falcon, crows, and grackles), two mammal species (i.e., raccoon and dog),
385 and Atlantic ghost crabs. Recreationists also were seen on the brood cameras with the dog.

386 Effect of Cameras on Nest Survival

387 The global model to predict daily nest survival fit the data well ($\chi^2_8 = 13.64, p = 0.09$). The
388 top model was the null model (Table 4). Four of the candidate models included camera presence,
389 though we did not find strong evidence to suggest that camera presence had an effect on daily
390 nest survival ($\beta = 0.38, 95\% \text{ CI} = -0.57\text{--}1.32$).

391 Effort Required for In-Person vs Camera Monitoring

392 The nest, brood and transect cameras produced a total of 2.76 terabytes of data (i.e., 1.5
393 terabytes, 230 gigabytes, and 1.03 terabytes of data, respectively). We expended 11.5 hours

394 processing images, which included time spent uploading and organizing data from the cameras.
395 Nest camera review required 139 hours by one person to review photos encompassing 1,123
396 camera days. Two reviewers spent a combined 63.5 hours reviewing photos from brood cameras
397 (355 camera days) for brood presence and chick mortality events. Two reviewers spent a
398 combined 315 hours to review all the time-lapse footage recorded from the 322 camera days
399 captured by transect cameras (approximately 5,152 hours of footage; 61,000 photos/camera/day).
400 Thus, in total we spent 517.5 hours processing camera data.

401 **DISCUSSION**

402 Camera monitoring was useful for validating the accuracy of nest fate assignments from in-
403 person monitoring and for improving the accuracy of overall hatch success estimates for
404 American Oystercatchers and Piping Plovers. Camera monitoring confirmed the fate of nests
405 where signs of hatching or failure were recorded as unknown by in-person monitors and thus
406 improved hatch success estimates. Our results were similar to other studies that found camera
407 monitoring improved the accuracy of hatch success estimates for shorebirds (e.g., Ellis *et al.*
408 2018; Andes *et al.* 2019) and songbirds (e.g., Ball and Bayne 2012), despite our limited sample
409 size and short (i.e., one-year) study duration.

410 We also tested the efficacy of using cameras to monitor American Oystercatcher chick
411 survival once chicks had left the nest. We found that cameras were less useful for monitoring
412 chick survival and fledging than in-person monitoring, as not all cameras consistently recorded
413 chick presence. Only eight of the 11 brood cameras documented chick presence at least once and
414 only two continued to record their presence until the chicks reached their expected fledge dates,
415 whereas in-person monitoring confirmed that four of the camera-monitored broods fledged
416 chicks. This suggests that camera monitoring underestimated productivity for American

417 Oystercatchers, possibly due to chicks remaining outside the detection range of cameras (e.g.,
418 hidden in the marsh grass).

419 Effective monitoring for species of conservation concern should not only focus on estimating
420 population abundance and demographic rates, but also assist with threat identification (Campbell
421 *et al.* 2002). Both in-person and camera monitoring methods aimed to identify sources of nest
422 and chick loss and other potential threats. Observations from in-person and camera monitoring
423 agreed on abandonment as a cause of nest failure, and cameras provided further insight into
424 threats. Evidence collected by cameras confirmed predation by gull species and Atlantic ghost
425 crabs, and in one case trampling by a Canada Goose, as sources of clutch loss, whereas field
426 evidence found at these sites during in-person monitoring was challenging to interpret and
427 inconclusive. In these instances, investigators correctly identified the presence of species that
428 caused egg loss but failed to attribute them to that loss. Evidence of egg loss at a nest may be
429 difficult to identify during in-person monitoring, as a nest site may become altered (e.g.,
430 presence of additional tracks) following the egg loss event by multiple predation attempts,
431 scavengers visiting the nest site, or adult activity following the event (White *et al.* 2010).
432 Investigators may also fail to consider previously unknown or underrealized species as threats,
433 such as trampling by a non-predator species in our study, when assessing evidence around a
434 failed nest or conducting predator surveys (Lariviere 1999; Liebezeit and Zack 2008). These
435 reasons, as well as the ephemeral nature of field evidence on a sandy, sparsely vegetated beach
436 exposed to wind, precipitation, and other abiotic factors that can obliterate sign (Ellis *et al.* 2018;
437 Andes *et al.* 2019), may explain why in-person monitoring was inconclusive on the cause of egg
438 loss.

439 Disturbance that is separate from predation and causes incubating adults to leave the nest is
440 an important threat to consider as it may reduce productivity (McGowan and Simons 2006;
441 Denmon *et al.* 2013; DeRose-Wilson *et al.* 2018). However, signs of disturbance to incubating
442 adults or broods are not easy to identify with in-person monitoring for the same reasons as signs
443 of predation, and behavioral changes due to frequent disturbance events are difficult to identify
444 without routine behavioral surveys. Cameras at nests and brood-rearing areas identified events
445 that caused incubating adults to leave the nest or elicited a defensive response from adults
446 tending broods, such as recreationists or another animal passing closely to a nest or approaching
447 a brood. While none of these events were direct sources of egg or chick loss, they may contribute
448 to reduced nest and chick survival by altering adult behavior, such as time spent incubating a
449 nest or tending to chicks (McGowan and Simons 2006; DeRose-Wilson *et al.* 2018). Thus,
450 camera monitoring appeared to be useful in our study for identifying sources of disturbance that
451 in-person monitoring may miss, but management of these sources (e.g., other animals passing
452 nests or broods) may be limited except for management actions restricting recreational activities
453 and visitor access to the site to reduce disturbance from recreationists and off-leash dogs.

454 Cameras were also useful for evaluating the effectiveness of current management actions.
455 In-person monitoring prior to this study on Metompkin Island indicated that predation was the
456 primary ongoing threat to the reproductive success of American Oystercatchers and Piping
457 Plovers. Previous observations of red fox and raccoon predation of nests on Metompkin Island
458 (R. Boettcher, Z. Poulton, and A. Wilke, pers. obs.) led to decisions to manage this threat
459 through the lethal removal of mammalian predators. Both in-person and camera monitoring
460 indicated mammalian predator management appears to be successful, as neither method noted
461 signs of red fox or racoon predation events and cameras captured few mammalian predators.

462 In addition to using cameras for monitoring shorebird nest success, we were also interested in
463 testing the utility of using cameras to monitor chicks once they left the nest. Assessments of
464 threats to productivity must consider drivers of chick survival in addition to drivers of nest
465 success, as chick survival is an equally important component of productivity (Cohen *et al.* 2009).
466 Long intervals between site visits made it difficult to identify mortality in newly hatched chicks
467 during in-person monitoring, as the period that American Oystercatcher and Piping Plover chicks
468 are immobile is less than 48 hours (AMOYWG *et al.* 2020; Elliott-Smith and Haig 2020).
469 Cameras recorded one predation event of a newly hatched Piping Plover chick by an American
470 Oystercatcher that we failed to identify during in-person monitoring. However, we did not
471 successfully identify sources of mortality for mobile chicks from either monitoring method,
472 despite documenting chick loss (i.e., noting that there were fewer chicks in a brood over time).

473 Although cameras helped to characterize the predator community at brood sites and captured
474 known shorebird predators at the marsh edge, they did not improve our ability to monitor
475 survival of or to identify threats to mobile chicks over in-person monitoring in this study. Our
476 methods for monitoring broods with cameras may not have been successful at our site due to the
477 broods' access to the marsh and tidal flats during low tide, making them unavailable for
478 detection on the cameras. It is possible that the brood and transect camera set-ups described in
479 this study are viable methods at sites where broods' movements are more restricted by island
480 topography and where broods are less likely to be hidden in vegetative cover. Additionally, a set-
481 up with more cameras covering a broader view of brood rearing areas during day and night or
482 using time-lapse versus motion-triggered settings on the cameras may increase chances of
483 capturing chick presence and potential mortality events. However, the efficacy of these or
484 different set-ups at other sites cannot be confirmed without further testing. Additionally,

485 alternative methods such as tagging and tracking chicks using telemetry may aid with confirming
486 threats to chick survival. These methods have been used in previous studies of shorebird chick
487 survival, such as one study that relocated American Oystercatcher chick remains and conducted
488 mortality investigations to identify causes of chick death (Schulte and Simons 2015).

489 In general, cameras seem unlikely to affect the daily survival rate of nests in our study and
490 previous studies (e.g., McKinnon and Béty 2009; Richardson *et al.* 2009; Ellis *et al.* 2018; Andes
491 *et al.* 2019; McGuire *et al.* 2022). However, managers should still consider that cameras may
492 have the potential to alter predator behavior, causing a change in nest predation rates by
493 attracting predators (Hillman 2012; DeRose-Wilson *et al.* 2013) or deterring neophobic predators
494 that avoid new and unusual objects (Herranz *et al.* 2002). In our study, a Peregrine Falcon
495 appeared to use the camera equipment at one nest for perching and may have predated one chick.
496 Managers that choose to use cameras for remote monitoring should be aware of this potential for
497 perching and consider taking measures such as using perch deterrents and comparing nest
498 survival for nests with and without cameras.

499 Managers also should consider the effort required for conducting camera monitoring versus
500 in-person monitoring. As we continued to conduct in-person monitoring on Metompkin Island
501 throughout the breeding season, we were able to conduct routine checks and maintenance on
502 deployed cameras; however, such routine visits to cameras may not be necessary if memory card
503 space and battery power are sufficient for longer deployments. If routine checks are not
504 necessary, camera monitoring requires less overall time spent at the monitoring site than in-
505 person monitoring, which may be beneficial when monitoring remote, difficult-to-access, or
506 sensitive sites.

507 While camera monitoring may require less time in the field, some camera set-ups in our
508 study produced large quantities of data that required more time for processing and review.
509 Camera set-up (i.e., nest versus brood versus transect) and camera settings (e.g., motion-
510 detection versus time-lapse) affected the type and quantity of data collected from camera
511 monitoring, and thus also the amount of effort required to review the data. Camera photo review
512 using methods for manually reviewing and recording data from photos for 73 cameras required
513 over 500 hours, with the seven time-lapse transect cameras requiring the most hours for review
514 (i.e., approximately 61% of the time spent on camera data). We found that motion-triggered nest
515 cameras, which required 139 additional hours to review, were effective for improving accuracy
516 of hatch success estimates and providing insight to true causes of egg loss. In contrast, brood and
517 transect cameras, which required a combined 378.5 hours to review, were less useful for
518 estimating fledge success and identifying causes of chick mortality. However, brood and transect
519 cameras were useful for providing insight to the predator community active in and near brood-
520 rearing territories.

521 We found that camera use may be beneficial for monitoring shorebird reproductive success at
522 remote sites, where long monitoring intervals may lead to more inaccurate classifications of nest
523 fate. Additionally, camera monitoring may reduce uncertainty in systems where little is known
524 about the predator community or other local threats, though larger quantities of data from more
525 cameras or time-lapse photography may be needed to collect this data, requiring more effort to
526 review. Managers should consider these tradeoffs when deciding which method of monitoring
527 would be most useful for answering their questions and meeting their management goals.

528

LITERATURE CITED

529 American Oystercatcher Working Group, E. Nol, and R. C. Humphrey. 2020. American
530 Oystercatcher (*Haematopus palliatus*), v. 1.0. In Birds of the World (A.F. Poole, Ed.).
531 Cornell Lab of Ornithology, Ithaca, New York, U.S.A.
532 <https://doi.org/10.2173/bow.ameoys.01>, accessed 02 February 2022.

533 Andes, A. K., T. L. Shaffer, M. H. Sherfy, C. M. Hofer, C. M. Dovichin, and S. N. Ellis-Felege.
534 2019. Accuracy of nest fate classification and predator identification from evidence at
535 nests of Least Terns and Piping Plovers. *Ibis* 161:286–300.

536 Arnold, T. W. 2010. Uninformative parameters and model selection using Akaike's Information
537 Criterion. *The Journal of Wildlife Management* 74:1175–1178.

538 Atlantic Flyway Shorebird Initiative (AFSI). 2020. Guidance and best practices for coordinated
539 predator management to benefit temperate breeding shorebirds in the Atlantic Flyway,
540 2020 Supplement: 2019 demonstration project reports & camera guidance.

541 Ball, J. R., and E. M. Bayne. 2012. Using video monitoring to assess the accuracy of nest fate
542 and nest productivity estimates by field observation. *The Auk* 129:438–448.

543 Boettcher, R., T. Penn, R. R. Cross, K. T. Terwilliger, and R. A. Beck. 2007. An overview of the
544 status and distribution of Piping Plovers in Virginia. *Waterbirds* 30:138–151.

545 Bradley, R. D., L. K. Ammeran, R. J. Baker, L. C. Bradley, J. A. Cook, R. C. Dowler, C. Jones,
546 D. J. Schmidly, F. B. Stangl Jr., R. A. Van den Bussche, B. Würsig. 2014. Revised checklist
547 of North American mammals north of Mexico, 2014. Museum of Texas Tech University,
548 Lubbock, Texas, U.S.A.

549 Brantley, S. T., S. N. Bissett, D. R. Young, C. W. V. Wolner, and L. J. Moore. 2014. Barrier
550 island morphology and sediment characteristics affect the recovery of dune building
551 grasses following storm-induced overwash. *PLoS ONE* 9:e104747.

552 Brown, J. K., and J. C. Zinnert. 2020. Topography and disturbance influence trait-based
553 composition and productivity of adjacent habitats in a coastal system. *Ecosphere*
554 11:e03139.

555 Brown, T. M., V. Olek, J. Roth, and L. McKinnon. 2022. Spatial variation in predator
556 communities, predation risk, and shorebird daily nest survival near a sub-Arctic human
557 settlement. *Polar Biology*. <https://doi.org/10.1007/s00300-022-03061-0>, accessed 28 July
558 2022.

559 Brown, S., C. Hickey, B. Harrington, and R. Gill, editors. 2001. *United States Shorebird*
560 *Conservation Plan*, 2nd ed. Manomet Center for Conservation Sciences, Manomet,
561 Massachusetts, U.S.A.

562 Burnham, K. P., and D. R. Anderson. 2002. *Model selection and multimodel inference: a*
563 *practical information-theoretic approach*, 2nd ed. Springer-Verlag, New York, New York,
564 U.S.A.

565 Campbell, S. P., J. A. Clark, L. H. Crampton, A. D. Guerry, L. T. Hatch, P. R. Hosseini, J. J.
566 Lawler, and R. J. O'Connor. 2002. An assessment of monitoring efforts in endangered
567 species recovery plans. *Ecological Applications* 12:674–681.

568 Chesser, R. T., S. M. Billerman, K. J. Burns, C. Cicero, J. L. Dunn, B. E. Hernández-Baños, A.
569 W. Kratter, I. J. Lovette, N. A. Mason, P. C. Rasmussen, J. V. Remsen, Jr., D. F. Stotz, and
570 K. Winker. 2021. *Checklist of North American Birds* (online). American Ornithological
571 Society. <http://checklist.aou.org/taxa>, accessed 31 March 2022.

572 Cohen, J. B., L. M. Houghton, and J. D. Fraser. 2009. Nesting density and reproductive success
573 of Piping Plovers in response to storm- and human-created habitat changes. *Wildlife*
574 *Monographs* 173:1–24.

575 Colwell, M. A. 2006. Egg-laying intervals in shorebirds. *Wader Study Group Bulletin* 111:50–
576 59.

577 Denmon, P., B. D. Watts, and F. M. Smith. 2013. Investigating American Oystercatcher
578 (*Haematopus palliatus*) nest failure on Fisherman Island National Wildlife Refuge,
579 Virginia, USA. *Waterbirds* 36:156–165.

580 DeRose-Wilson, A., J. D. Fraser, S. M. Karpanty, and D. H. Catlin. 2013. Nest-site selection and
581 demography of Wilson's Plovers on a North Carolina barrier island. *Journal of Field*
582 *Ornithology* 84:329–344.

583 DeRose-Wilson, A. L., K. L. Hunt, J. D. Monk, D. H. Catlin, S. M. Karpanty, and J. D. Fraser.
584 2018. Piping Plover chick survival negatively correlated with beach recreation. *The*
585 *Journal of Wildlife Management* 82:1608–1616.

586 Elliott-Smith, E., and S. M. Haig. 2020. Piping Plover (*Charadrius melanotos*), v. 1.0. *In Birds of*
587 *the World* (A.F. Poole, Ed.). Cornell Lab of Ornithology, Ithaca, New York, U.S.A.
588 <https://doi.org/10.2173/bow.pipplo.01>, accessed 02 February 2022.

589 Ellis, K. S., R. T. Larsen, and D. N. Koons. 2020. The importance of functional responses among
590 competing predators for avian nesting success. *Functional Ecology* 34:252–264.

591 Ellis, K. S., J. F. Cavitt, R. T. Larsen, and D. N. Koons. 2018. Using remote cameras to validate
592 estimates of nest fate in shorebirds. *Ibis* 160:681–687.

593 Erwin, R. M., B. R. Truitt, and J. E. Jiménez. 2001. Ground-nesting waterbirds and mammalian
594 carnivores in the Virginia Barrier Island Region: running out of options. *Journal of*
595 *Coastal Research* 17:292–296.

596 Etterson, M. A., and R. S. Bennett. 2005. Including Transition Probabilities in Nest Survival
597 Estimation: A Mayfield Markov Chain. *Ecology* 86:1414–1421.

598 Fair, J. M., E. Paul, J. Jones, A. B. Clark, C. Davie, and G. Kaiser. 1997. Guidelines to use of
599 wild birds in research. The Ornithological Council, Washington, D.C., U.S.A.

600 Galbraith, H., D. W. DesRochers, S. Brown, and J. M. Reed. 2014. Predicting vulnerabilities of
601 North American shorebirds to climate change. PLoS ONE 9:e108899.

602 Gibbs, J. P., H. L. Snell, and C. E. Causton. 1999. Effective monitoring for adaptive wildlife
603 management: lessons from the Galápagos Islands. The Journal of Wildlife Management
604 63:1055–1065.

605 Hecht, A., and S. M. Melvin. 2009. Population trends of Atlantic Coast Piping Plovers, 1986–
606 2006. Waterbirds 32:64–72.

607 Herranz, J., M. Yanes, and F. Suárez. 2002. Does photo-monitoring affect nest predation?
608 Journal of Field Ornithology 73:97–101.

609 Hillman, M. D. 2012. Evaluating the impacts of military and civilian overflights and human
610 recreation on Least Terns, Common Terns, Gull-billed Terns, and Black Skimmers at
611 Cape Lookout National Seashore, North Carolina. M.S. Thesis, Virginia Tech,
612 Blacksburg, Virginia, U.S.A.

613 Hillman, M. D., S. M. Karpanty, J. D. Fraser, and A. Derose-Wilson. 2015. Effects of aircraft
614 and recreation on colonial waterbird nesting behavior. The Journal of Wildlife
615 Management 79:1192–1198.

616 Hosmer, D. W., S. Lemeshow, and R. X. Sturdivant. 2013. Applied logistic regression, 3rd ed.
617 John Wiley and Sons, Hoboken, New Jersey, U.S.A.

618 Hunt, K. L., S. M. Karpanty, K. L. Davis, A. Wilke, N. Meyers, C. Spiegel, S. Schulte, D. H.
619 Catlin, and J. D. Fraser. 2019. Guidance and best practices for coordinated predation

620 management to benefit temperate breeding shorebirds in the Atlantic Flyway. U.S. Fish
621 and Wildlife Service and National Fish and Wildlife Foundation.

622 Ivan, J. S., and R. K. Murphy. 2005. What preys on Piping Plover eggs and chicks? *Wildlife*
623 *Society Bulletin* 33:113–119.

624 Johnson, J. B., and K. S. Omland. 2004. Model selection in ecology and evolution. *Trends in*
625 *Ecology & Evolution* 19:101–108.

626 Kwon, E., J. D. Fraser, D. H. Catlin, S. M. Karpanty, C. E. Weithman, and B. Muiznieks. 2018.
627 Presence of ghost crabs and Piping Plover nesting success. *The Journal of Wildlife*
628 *Management* 82:850–856.

629 Kwon, E., S. Robinson, C. E. Weithman, D. H. Catlin, S. M. Karpanty, J. Altman, T. R. Simons,
630 and J. D. Fraser. 2021. Contrasting long-term population trends of beach-nesting
631 shorebirds under shared environmental pressures. *Biological Conservation* 260:109178.

632 Lariviere, S. 1999. Reasons why predators cannot be inferred from nest remains. *The Condor*
633 101:718–721.

634 Lees, D., T. Schmidt, C. D. H. Sherman, G. S. Maguire, P. Dann, G. Ehmke, and M. A. Weston.
635 2019. An assessment of radio telemetry for monitoring shorebird chick survival and
636 causes of mortality. *Wildlife Research* 46:622.

637 Liebezeit, J. R., and S. Zack. 2008. Point counts underestimate the importance of Arctic foxes as
638 avian nest predators: evidence from remote video cameras in Arctic Alaskan oil fields.
639 *Arctic* 61:153–161.

640 Lyons, J. E., M. C. Runge, H. P. Laskowski, and W. L. Kendall. 2008. Monitoring in the context
641 of structured decision-making and adaptive management. *The Journal of Wildlife*
642 *Management* 72:1683–1692.

643 Mazerolle, M. J. 2020. AICcmodavg: Model selection and multimodel inference based on (Q)
644 AIC(c). R package version 2.3-1, <https://cran.r-project.org/package=AICcmodavg>,
645 accessed 28 January 2022.

646 McGowan, C. P., and T. R. Simons. 2006. Effects of recreation on the incubation behavior of
647 American Oystercatchers. *The Wilson Journal of Ornithology* 118:485–493.

648 McGuire, R., C. Latty, S. Brown, S. Schulte, S. Hoepfner, S. Vassallo, and P. Smith. 2022. No
649 evidence that cameras affect shorebird nest survival on the coastal plain of Arctic
650 National Wildlife Refuge, AK. *Ibis* 164:329–335.

651 Melvin, S. M., C. R. Griffin, and L. H. Macivor. 1991. Recovery strategies for Piping Plovers in
652 managed coastal landscapes. *Coastal Management* 19:21–34.

653 McKinnon, L., and J. Béty. 2009. Effect of camera monitoring on survival rates of High-Arctic
654 shorebird nests. *Journal of Field Ornithology* 80:280–288.

655 Pietz, P. J., and D. A. Granfors. 2000. Identifying predators and fates of grassland passerine nests
656 using miniature video cameras. *The Journal of Wildlife Management* 64:71–87.

657 R Core Development Team, R: a language and environment for statistical computing v. 4.1.2. R
658 Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>, accessed
659 28 January 2022.

660 Richardson, T. W., T. Gardali, and S. H. Jenkins. 2009. Review and meta-analysis of camera
661 effects on avian nest success. *The Journal of Wildlife Management* 73:287–293.

662 Robinson, S., J. Fraser, D. Catlin, S. Karpanty, J. Altman, R. Boettcher, K. Holcomb, C. Huber,
663 K. Hunt, and A. Wilke. 2019. Irruptions: evidence for breeding season habitat limitation
664 in Piping Plover (*Charadrius melanotos*). *Avian Conservation and Ecology* 14:19

665 Schulte, S. A., and T. R. Simons. 2015. Factors affecting the reproductive success of American
666 Oystercatchers *Haematopus palliatus* on the Outer Banks of North Carolina. *Marine*
667 *Ornithology* 43:37–47.

668 Schulte, S., S. Brown, D. Reynolds, and The American Oystercatcher Working Group. 2010. A
669 conservation action plan for the American Oystercatcher (*Haematopus palliatus*) for the
670 Atlantic and Gulf Coasts of the United States, version 2.1. U.S. Fish and Wildlife Service
671 and the Western Hemisphere Shorebird Reserve Network.

672 Shaffer, T. L. 2004. A unified approach to analyzing nest success. *The Auk* 121:526–540.

673 Sollmann, R. 2018. A gentle introduction to camera-trap data analysis. *African Journal of*
674 *Ecology* 56:740–749.

675 Stallins, J., L.-C. Hsu, J. Zinnert, and J. Brown. 2020. How bottom-up and top-down controls
676 shape dune topographic variability along the U.S. Virginia barrier island coast and the
677 inference of dune dynamical properties. *Journal of Coastal Conservation* 24:30.

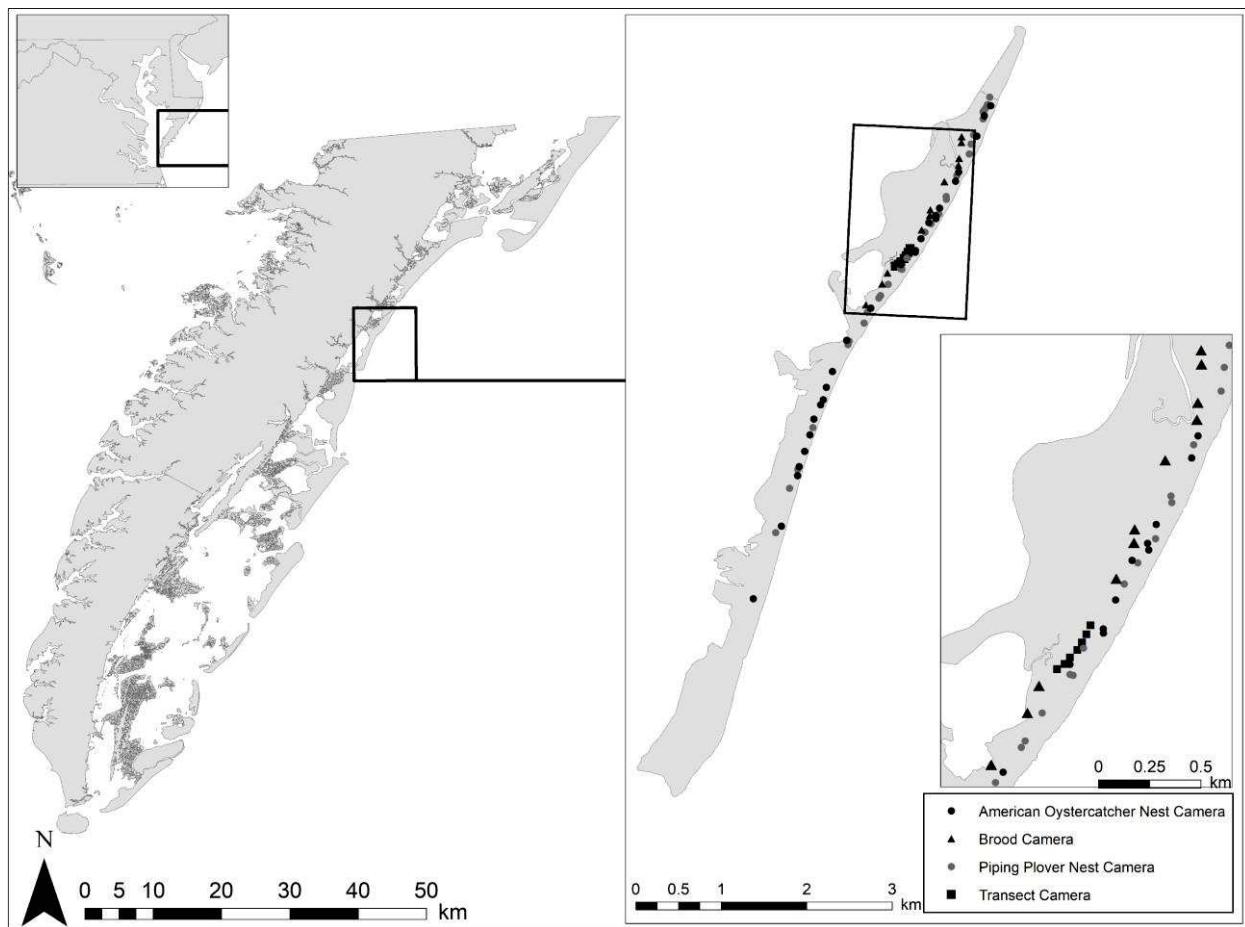
678 U.S. Fish and Wildlife Service. 1985. Determination of endangered and threatened status for
679 Piping Plover. *Page Federal Register* 50:50726-50734.

680 Weithman, C. E., J. D. Fraser, S. M. Karpanty, and D. H. Catlin. 2020. Relationship of current
681 management practices to movements of Piping Plover broods in an Atlantic Coast
682 population. *Journal of Field Ornithology* 91:170–188.

683 Weithman, C. E., S. G. Robinson, K. L. Hunt, J. Altman, H. A. Bellman, A. L. DeRose-Wilson,
684 K. M. Walker, J. D. Fraser, S. M. Karpanty, and D. H. Catlin. 2019. Growth of two
685 Atlantic Coast Piping Plover populations. *The Condor* 121:1–14.

686 White, C. L., L. R. Strauss, and S. K. Davis. 2010. Video evidence of Piping Plover nest
687 predation. *Northwestern Naturalist* 91:202–205.

688 Whittier, J. B., and D. M. Leslie, Jr. 2009. Survival and movement of chicks of the Least Tern
689 (*Sterna antillarum*) on an alkaline flat. The Southwestern Naturalist 54:176–181.


690 Wilke, A. L., B. D. Watts, B. R. Truitt, and R. Boettcher. 2005. Breeding season status of the
691 American Oystercatcher in Virginia, USA. Waterbirds 28:308–315.

692 Wilke, A. L., R. Boettcher, A. Duerr, P. Denmon, B. R. Truitt, K. Holcomb, and B. D. Watts.
693 2017. Population dynamics and survival rates of American Oystercatchers (*Haematopus*
694 *palliatus*) in Virginia, USA. Waterbirds 40:55–71.

695 Wilke, A. L., D. F. Brinker, B. D. Watts, A. H. Traut, R. Boettcher, J. M. McCann, B. R. Truitt,
696 and P. P. Denmon. 2007. American Oystercatchers in Maryland and Virginia, USA:
697 Status and distribution. Waterbirds 30:152–162.

698

711 TABLES

712 **Table 1. Number of nests with each possible fate assignment (success, failed, unknown) for**
713 **American Oystercatchers (*Haematopus palliatus*, $n = 22$) and Piping Plover (*Charadrius***
714 ***melodus*, $n = 22$) nests monitored with both camera and in-person monitoring methods on**
715 **Metompkin Island, Virginia, in 2019.**¹

	American Oystercatcher	Piping Plover
Success		
Camera	20	15
In-Person	18	11
Failed		
Camera	2	7
In-Person	2	5
Unknown		
Camera	0	0
In-Person	2	6

716 ¹ Results are calculated from 44 nests; whereas 55 total were monitored, 11 cameras failed and
717 thus those nests are excluded, as we could not document nest fate from those cameras for
718 comparison with field observations.

719 **Table 2. Hatch success estimates (i.e., the proportion of nests estimated to have hatched at**
720 **least one egg in the clutch) from camera and in-person monitoring methods on American**
721 **Oystercatcher (*Haematopus palliatus*, $n = 22$) and Piping Plover (*Charadrius melanotos*, $n =$**
722 **22) nests on Metompkin Island, Virginia, in 2019. Standard error is reported in**
723 **parentheses. Lower and upper hatch success estimates from in-person monitoring assume**
724 **that all nests with unknown fates failed or hatched, respectively. Only one hatch estimate is**
725 **reported for camera monitoring, as there were no unknown nest fates from this method.**

	American Oystercatcher	Piping Plover
Camera	0.91 (0.06)	0.68 (0.10)
In-Person (Lower)	0.82 (0.08)	0.50 (0.11)
In-Person (Upper)	0.91 (0.06)	0.77 (0.09)

726

727 **Table 3. Number of events (individual detections \geq 30 minutes apart; 'N'), capture rate (N/100 camera days; 'Rate'), and**
728 **percent of total captures (%) of species documented causing predation and disturbance on nest cameras (n = 27 American**
729 **Oystercatcher and 28 Piping Plover; n = 55 combined; 1,123 camera days) and all species (excluding American Oystercatcher**
730 **or Piping Plover) detected on transect cameras (n = 7; 322 camera days) at Metompkin Island, Virginia in April–August 2019.**
731 **Several species could not be determined past genus, family, or order due to photo quality. Species are listed taxonomically**
732 **following the American Ornithological Union Species Checklist (Chesser *et al.* 2021) for birds and North American**
733 **Mammalian Species Checklist (Bradley *et al.* 2014) for mammals.**

Species	Oystercatcher Nest			Plover Nest			All Nests			Transect		
	N	Rate	%	N	Rate	%	N	Rate	%	N	Rate	%
Laughing Gull (<i>Leucophaeus atricilla</i>)	1	0.18	1.43	6	1.06	3.55	7	0.62	2.94	14	4.35	0.99
Herring Gull (<i>Larus argentatus</i>)	4	0.72	5.71	3	0.53	1.78	7	0.62	2.94	1	0.31	0.07
Black-backed Gull sp. (<i>Larus marinus/fuscus</i>)	-	-	-	-	-	-	-	-	-	4	1.24	0.28
Gull sp. (Laridae sp.)	1	0.18	1.43	2	0.35	1.18	3	0.27	1.26	12	3.73	0.85
Black Skimmer (<i>Rynchops niger</i>)	-	-	-	-	-	-	-	-	-	8	2.48	0.57
Least Tern (<i>Sternula antillarum</i>)	1	0.18	1.43	17	3.00	10.06	18	1.60	7.56	72	22.36	5.11
Tern sp. (Sterninae sp.)	1	0.18	1.43	1	0.18	0.59	1	0.09	0.42	-	-	-

Species	Oystercatcher Nest			Plover Nest			All Nests			Transect		
	N	Rate	%	N	Rate	%	N	Rate	%	N	Rate	%
Heron or Egret sp. <i>(Ardea or Egretta sp.)</i>	-	-	-	-	-	-	-	-	-	88	27.33	6.25
Osprey <i>(Pandion haliaetus)</i>	-	-	-	1	0.18	0.59	1	0.09	0.42	-	-	-
Bald Eagle <i>(Haliaeetus leucocephalus)</i>	3	0.54	4.29	1	0.18	0.59	4	0.36	1.68	-	-	-
Great Horned Owl <i>(Bubo virginianus)</i>	1	0.18	1.43	-	-	-	1	0.09	0.42	-	-	-
Peregrine Falcon <i>(Falco peregrinus)</i>	-	-	-	12	2.12	7.10	12	1.07	5.04	-	-	-
Hawk or Falcon sp. <i>(Buteo or Falco sp.)</i>	-	-	-	2	0.35	1.18	2	0.18	0.84	2	0.62	0.14

Species	Oystercatcher Nest			Plover Nest			All Nests			Transect		
	N	Rate	%	N	Rate	%	N	Rate	%	N	Rate	%
Crow spp. (<i>Corvus</i> spp.)	-	-	-	-	-	-	-	-	-	14	4.35	0.99
Eastern Meadowlark (<i>Sturnella magna</i>)	-	-	-	-	-	-	-	-	-	3	0.93	0.21
Red-winged Blackbird (<i>Agelaius phoeniceus</i>)	-	-	-	1	0.18	0.59	1	0.09	0.42	95	29.50	6.74
Grackle spp. (<i>Quiscalus</i> spp.)	7	1.26	10.00	9	1.59	5.33	16	1.42	6.72	311	96.58	22.07
Human (<i>Homo sapiens</i>)	7	1.26	10.00	5	0.88	2.96	12	1.07	5.04	-	-	-
Muskrat (<i>Ondatra zibethicus</i>)	1	0.18	1.43	-	-	-	1	0.09	0.42	-	-	-
Domestic dog (<i>Canis lupus familiaris</i>)	1	0.18	1.43	-	-	-	1	0.09	0.42	-	-	-

Species	Oystercatcher Nest			Plover Nest			All Nests			Transect		
	N	Rate	%	N	Rate	%	N	Rate	%	N	Rate	%
Red fox	1	0.18	1.43	-	-	-	1	0.09	0.42	-	-	-
(<i>Vulpes vulpes</i>)												
Northern raccoon	1	0.18	1.43	-	-	-	1	0.09	0.42	-	-	-
(<i>Procyon lotor</i>)												
White-tailed deer	8	1.44	11.43	-	-	-	8	0.71	3.36	-	-	-
(<i>Odocoileus virginianus</i>)												

735 **Table 4. Candidate models examining effect of predictor variables on nest survival of**
 736 **American Oystercatchers (*Haematopus palliatus*) and Piping Plovers (*Charadrius melanotos*)**
 737 **at Metompkin Island, Virginia during the breeding season, April-August 2019. Models are**
 738 **ranked by ascending ΔAIC_c , and the number of parameters (K), log likelihood, Akaike**
 739 **weight (w_i), and cumulative Akaike weight ($\sum w_i$) are given. AIC_c for the top-ranked model**
 740 **was 203.01.**

Candidate model ^a	K	Log likelihood	ΔAIC_c	w_i	$\sum w_i$
Null	1	-100.50	0.00	0.19	0.19
Location	2	-99.55	0.13	0.18	0.36
Species	2	-99.99	1.00	0.11	0.48
Camera	2	-100.03	1.07	0.11	0.58
Location + Species	3	-99.12	1.28	0.10	0.68
Camera + Location	3	-99.30	1.64	0.08	0.77
Age	2	-100.47	1.97	0.07	0.84
Age + Location	3	-99.54	2.12	0.06	0.90
Camera + Species	3	-99.65	2.34	0.06	0.96
Camera + Location + Species	4	-98.96	3.00	0.04	1.00

741
 742 ^a Variables in the model include species (American Oystercatcher or Piping Plover), location
 743 (northern or southern Metompkin Island), nest age measured as the number of days from the start
 744 of incubation, and camera presence or absence.

745