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ABSTRACT Non-cooperative games serve as a powerful framework for capturing the interactions among
self-interested players and have broad applicability in modeling a wide range of practical scenarios, ranging
from power management to path planning of self-driving vehicles. Although most existing solution algo-
rithms assume the availability of first-order information or full knowledge of the objectives and others’
action profiles, there are situations where the only accessible information at players’ disposal is the realized
objective function values. In this article, we devise a bandit online learning algorithm that integrates the
optimistic mirror descent scheme and multi-point pseudo-gradient estimates. We further prove that the
generated actual sequence of play converges a.s. to a critical point if the game under study is globally merely
coherent, without resorting to extra Tikhonov regularization terms or additional norm conditions. We also
discuss the convergence properties of the proposed bandit learning algorithm in locally merely coherent
games. Finally, we illustrate the validity of the proposed algorithm via two two-player minimax problems
and a cognitive radio bandwidth allocation game.

INDEX TERMS Game theory, learning theory, optimization under uncertainties, stochastic systems.

I. INTRODUCTION
Recent years have witnessed increasing interest in the analysis
of multi-agent systems and large-scale networks, which find a
wide range of applications such as thermal load management
of autonomous buildings [1], power management in sensor
network [2], and path planning and control of self-driving
cars [3], with prospects for further applicability in optimal
drug delivery in the treatment of diseases [4] and control of
environmental pollution [5], etc. One primary objective in
multi-agent systems is to devise local protocols for each agent,
by following which, the resulting group behavior is optimal
as measured by a certain system-level metric [6]. With its
origins in [7], game theory offers the theoretical tools to model
and examine the strategic choices and associated outcomes
of rational players who make decisions in a non-cooperative
manner. In particular, in the Nash equilibrium problem (NEP),
this group of players seeks to reach a stationary point known

as Nash equilibrium (NE), where no rational player has any
incentive to unilaterally deviate from it.
In order to devise an algorithm for the NEP or its variants,
it is crucial to have access to the first-order information, i.e.,
the partial gradient of the local objective function of each
player, the evaluation of which nevertheless usually requires
the action profiles from all players. In view of this, in some
studies [8], [9], [10], the availability of first-order oracles is
taken as a given, whereas some other studies [11], [12], [13]
investigate scenarios where a communication network exists
and players are willing to communicate with their trusted
neighbors and keep local estimates of others’ action pro-
files. Despite the progress discussed above, there are many
real-world scenarios where players only have access to the
observed objective values of selected actions, which makes
the bandit/zeroth-order learning strategy a compelling choice.
Our primary objective in this work is to develop an online
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learning algorithm for multi-player continuous games that are
globally or locally merely coherent with bandit information.
Related Work: There have been several recent notable con-
tributions to the field of bandit learning in games. In their
work [14], Bravo et al. proposed a bandit version of mirror de-
scent (MD), which guarantees a.s. convergence to an NEwhen
the game is strictly monotone and achieves a convergence rate
of O(1/t1/3) for strongly monotone cases. By employing a
barrier-based method, Lin et al. [15] improved the conver-
gence rate for strongly monotone games from O(1/t1/3) to
O(1/t1/2). Similar convergence rates have also been reported
in [16], [17], [18]. Huang et al. [19] developed two bandit
learning algorithms by integrating residual pseudo-gradient
estimates into single-call extra-gradient schemes that ensure
a.s. convergence to critical points of pseudo-monotone plus
games. Moreover, in strongly pseudo-monotone plus games,
by employing the proposed algorithms, the convergence rate
is further elevated to O(1/t1−� ).
To extend the analysis beyond the realm of strictly mono-
tone and pseudo-monotone plus games, Tatarenko et al. [20]
utilized the single time-scale Tikhonov regularization and a
doubly regularized approximate gradient descent strategy to
develop an algorithm that converges to NEs in probability
when the game is monotone and four decaying sequences are
tuned properly. In a recent study [21], Gao et al. introduced an
algorithm that integrates second-order learning dynamics and
Tikhonov regularization and established the a.s. convergence
of the sequence of play under the assumption that there exists
at least one interior variationally stable state (VSS). Yet, the
convergence is contingent on the norm condition that the �2-
norm of the state sequence should be greater than that of the
VSS, which can be challenging to verify during the iterative
process.
In the literature on variational inequalities (VIs) and their
stochastic versions (SVIs), Mertikopoulos et al. [22] showed
that the vanilla MD converges when the problem is strictly
coherent, a relaxed variant of strict monotonicity, but fails
to converge in merely coherent VIs. In contrast, the extra-
gradient (EG) method is capable of achieving convergence
to a solution in all coherent VIs, but it requires the exact
operator values. In the presence of random noise in operator
values, strict coherence is necessary to establish the conver-
gence of the EG iteration. Similar convergence analysis is also
reported in [23] for pseudo-monotone plus SVIs. To address
the challenges posed by random noise, Iusem et al. [24] de-
veloped an extra-gradient method for pseudo-monotone SVIs
that incorporates an iterative variance reduction procedure
and established both asymptotic convergence and conver-
gence rates in terms of the residual function for the proposed
algorithm.
In the realm of multi-player games without global mono-
tonicity or coherence, there exists a body of research that
delves into games satisfying the weak Minty variational in-
equality or negative comonotonicity: Pethick et al. [25] and
Cai et al. [26], [27] devised algorithm that ensure conver-
gence under the deterministic setting; Diakonikolas et al. [28]

proposed a generalization of the extra-gradient method that
ensures convergence to a stationary point for unconstrained
problems; Pethick et al. [29] extended their previous work
to stochastic cases and designed algorithms that converge
to solutions for constrained problems for a random iterate.
Another significant body of research has focused on local
solutions when global regularity conditions are absent: Mer-
tikopoulos and Zhou [8] investigated the local convergence
properties of mirror descent in deterministic and stochastic
cases; Hsieh et al. [30] focused on a class of single-call
extra-gradient methods in Euclidean space and established
local geometric convergence results for deterministic cases
and a local convergence rate of O(1/t ) for stochastic cases.
These local convergence rate results are later generalized by
Azizian et al. [31] to Banach spaces over a range of Legendre
exponents.
Contributions: In this work, we develop a bandit online

learning algorithm and establish the a.s. convergence of the
generated sequence of play under the regularity condition
that the game is merely coherent, which is broader and more
general than the games investigated in [14], [15], [16], [17],
[18]. The proposed algorithm leverages the optimistic mirror
descent (OMD) [30], [31] and a single-call extra-gradient
scheme as the backbone, which allows us to deal with the
absence of strict coherence and reduces the query cost in-
duced by the extra step. Alongside the OMD updates, the
multi-point pseudo-gradient estimation is employed and the
decaying rate of the variance of zeroth-order estimations can
be controlled by properly tuning the query count per iteration.
In contrast to [21], despite the requirement in our approach
that every solution is globally merely variationally stable,
we avoid enforcing the additional norm condition in [21,
Thm. 1]. Additionally, we investigate games with only local
mere coherence and establish that, by utilizing appropriate
initializations, the generated actual sequences of play can con-
verge to critical points (CPs) with sufficiently high probability.
Furthermore, the validity of the proposed algorithm is verified
through two two-player minimax problems and a cognitive
radio bandwidth allocation game.
Organization: In Section II, we provide a formal formula-

tion of the multi-player games and briefly introduce optimistic
mirror descent. Section III presents the multi-point pseudo-
gradient estimate and offers insights into the associated
systematic and stochastic errors. Subsequently, in Section IV,
we present the proposed algorithm and provide the main con-
vergence results in globally merely coherent games. Section V
is dedicated to the examination of local convergence for the
proposed learning algorithm. In Section VI, to demonstrate
the theoretical findings and the effectiveness of the proposed
algorithm, we conduct simulations for two-player zero-sum
games and the cognitive radio bandwidth allocation game.
Section VII concludes the article and highlights potential ex-
tensions and applications.
Basic Notations: Let R++ := (0,+∞) and N+ := N\{0}.

For a set of vectors {vi}i∈S, [vi]i∈S or [v1; · · · ; v|S|] denotes
their vertical stack. For a vector v and a positive integer i, [v]i
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denotes the i-th entry of v. We let � · � denote the �2-norm and
�·, ·� represent the canonical dot product. Let cl(S) denote the
closure of set S, int(S) the interior, and ∂S the boundary. The
symbols a ∧ b and a ∨ b stand for the lesser and the greater of
the two real numbers a and b, respectively.
A conference version of this article can be found in [32],
which mainly focuses on the convergence analysis under the
global mere coherence assumption.

II. SETUP AND PRELIMINARIES
A. GAME FORMULATION
In a multi-player non-cooperative game G with N players,
indexed by N := {1, . . . ,N}, each player i ∈ N aims to op-
timize its own local objective Ji by adjusting its action xi ∈
Xi ⊆ Rni , which can be described as follows:

minimize
xi∈Xi

Ji(xi; x−i), (1)

where x−i := [x j] j∈N−i denotes the stack action of other play-
ers that parameterizes the objective Ji withN−i := N\{i} and
x := [x j] j∈N; Xi denotes the feasible set of player i, and for
brevity, we letX :=� j∈N X j ⊆ Rn represent the global strat-
egy space and X−i :=� j∈N X j ⊆ Rn−i with n :=� j∈N n j
and n−i :=� j∈N−i n j . Our analysis primarily lies within Eu-
clidean space; however, it has the potential to be extended
to finite-dimensional Hilbert spaces. Our blanket assumptions
for the objective functions Ji’s and the local feasible sets Xi’s
will be as follows.
Assumption 1: For each player i, the local objective func-
tion Ji is continuously differentiable in x over the global
strategy space X. Moreover, its individual strategy space Xi
is compact and convex, and has a non-empty interior.
Given the smoothness posited in Assumption 1, a single-
valued operator that we will leverage extensively throughout
is the pseudo-gradient operator F : Rn→ Rn. It is defined as
the concatenation of all the partial gradient operators, i.e.,

F : x �→ [∇xi Ji(xi; x−i )]i∈N. (2)

Before proceeding, we remark that Assumption 1 implic-
itly implies that F is Lipschitz continuous on X with some
constant L, i.e., for any x and x� ∈ X, we have

�F (x)− F (x�)� ≤ L�x − x��. (3)

As for the solution concept, we focus on critical points
(CPs) [33, Sec. 2.2], a more relaxed solution concept than
Nash equilibria (NEs), whose definition is given as follows.
Definition 1 (Critical Points): A decision profile x∗ ∈ X is
a critical point of the game G if it is a solution to the associated
(Stampacchia) variational inequality (VI), i.e.,

�F (x∗), x − x∗� ≥ 0, ∀x ∈ X, (4)

where �·, ·� represents the canonical inner product.
CPs are the fixed points of the “linearized” best-response
iterate x �→ argminx�∈X�F (x), x�� and can be perceived as lo-
cal NEs [33]. CPs form a superset of NEs and coincide with

them when Ji is convex and continuously differentiable in xi

for all i [34, Sec. 1.4.2]. We postulate that the games discussed
in this work admit at least one CP inside X.
In this work, our aim is to propose a new algorithm that
is applicable to a broader class of games as compared to
strictly monotone games and pseudo-monotone plus games.
Moreover, we intend to further relax pseudo-monotonicity
assumptions that are usually imposed upon the structure of
the game to the ones merely upon equilibria. Two assumptions
are employed in Sections IV and V to facilitate the analysis of
global and local convergence, respectively.
Assumption 2 (Global Mere Coherence [22], [33]): The
game G is globally merely coherent if every CP x∗ of G is
globally merely variationally stable, i.e., �F (x), x − x∗� ≥ 0
for all x ∈ X.
Assumption 3 (Local Mere Coherence): The game G is
locally merely coherent (around a CP set X∗ ⊆ X) if there
exists a neighborhood U with a non-empty interior, such that
X∗ ⊆ int(U ) and for every CP x∗ ∈ X∗, �F (x), x − x∗� ≥ 0
for all x ∈ U ∩ X.
We can infer that the set X∗ is compact due to the inherent
properties of the problem setup, i.e., the feasible set is com-
pact, and a CP should fulfill (4).
Remark 1: The reason why we assume that every CP is
merely variationally stable in the above assumptions is that
we leverage the residual function ε(·) defined in Lemma 4 to
prove convergence. Since the convergence of ε(·) only implies
the existence of a convergent subsequence to a CP, this con-
dition is needed to pass the subsequence convergence to the
whole-sequence convergence. In contrast, [21] only requires
that there exists a variationally stable x∗, and constructs an
energy function specified for x∗ to prove the convergence.
Yet, another norm condition �Xk�2 ≥ �x∗� for all k is posited
regarding the generated sequence (Xk )k∈N+ and the verifica-
tion of it can be challenging. If there are multiple solutions
satisfying variational stability, at the very beginning of the
iteration, it might be unclear which solution one should focus
on and the sequence will converge to, and the choice of energy
function requires some extra care.

B. OPTIMISTIC MIRROR DESCENT
In this subsection, we shall provide a brief overview of the
optimistic mirror descent (OMD) algorithm, as well as related
concepts and results. As an extension of the Euclidean projec-
tion, the mirror map ∇ψ∗ : Rn→ Rn is defined as:

∇ψ∗(z) = argmax
x∈X

{�z, x� − ψ (x)}, (5)

where ψ : domψ → R is a so-called distance-generating
function (DGF) with domψ denoting a convex and open set
where ψ is well-defined. The DGF ψ fulfills the following
conditions [35, Sec. 4.1]: i) ψ is continuously differentiable
and μ̃-strongly convex for some μ̃ > 0; ii) ∇ψ (domψ ) = Rn;
iii) cl(domψ ) ⊇ X and limx→∂ (domψ ) �∇ψ (x)�∗ = +∞. The
definition of DGF ψ allows us to introduce a pseudo-distance
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called the Bregman divergence, which is defined as:

D(p, x) = ψ (p)− ψ (x)− �∇ψ (x), p− x�, (6)

∀p, x ∈ domψ . To letD(p, ·) represent a certain distance mea-
sure to p and use this measure to define a neighborhood of p,
we make the following assumption.
Assumption 4 (Bregman Reciprocity): The chosen DGF ψ
satisfies that if the sequence (xk )k∈N+ converges to some point
p, i.e., �xk − p� → 0, then D(p, xk )→ 0.
Then, the Bregman divergence generates the prox-mapping
Px,X : Rn→ domψ ∩ X for some fixed x ∈ domψ ∩ X that
plays a critical role in mirror descent and its variants:

Px,X(y) = argmin
x�∈X

{�y, x − x�� + D(x�, x)}. (7)

With all these in hand, the OMD [30], [31] can be expressed
as below.

Xk+1/2 = PXk ,X(−τkF (Xk−1/2))
Xk+1 = PXk ,X(−τkF (Xk+1/2)), (8)

where (τk )k∈N+ denotes a proper sequence of step sizes. The
update consists of the following two steps. Given the base
state Xk at step k, in the look-forward step, the leading state
Xk+1/2 is procured by updating Xk with the proxy F (Xk−1/2)
queried at Xk−1/2 rather than the exact pseudo-gradient F (Xk )
queried at Xk to reduce the oracle call per iteration. This
step is essential in anticipating the landscape of F and fa-
cilitating the convergence when F is merely monotone, i.e.,
�F (x)− F (y), x − y� ≥ 0, for all x and y feasible [36]. In the
state-updating step, the base state Xk is revised to Xk+1 fol-
lowing the pseudo-gradient information F (Xk+1/2). The OMD
falls into the single-call category, distinguishing itself from
the conventional extra gradient algorithm [24] by exclusively
utilizing the first-order information at the leading state Xk+1/2,
rather than at both Xk and Xk+1/2.

III. MULTI-POINT PSEUDO-GRADIENT ESTIMATION
In this article, we examine the scenario where the first-order
information at the leading state, i.e., F (Xk+1/2) is not readily
available, and players need to estimate them based on the re-
alized objective function values. A prevalent technique in the
literature of first-order information estimation methods is the
simultaneous perturbation stochastic approximation (SPSA)
approach [14]. For each i ∈ N, let Bi, Si ⊆ Rni denote the unit
ball and the unit sphere centered at the origin. At each itera-
tion k, before implementing the SPSA estimate, we initially
undertake the following perturbation step:

X̂ ik+1/2=
�
1− δk
ri

�
X ik+1/2 +

δk

ri
(pi + riuik )= X̄ ik+1/2 + δkuik,

(9)

where uik is randomly sampled from Si ⊆ Rn
i
and we define

uk := [uik]i∈N; δk represents the random query radius at it-
eration k; B(pi, ri ) ⊆ Xi is an arbitrary fixed Euclidean ball
within the feasible set Xi that centers at pi with radius ri;

X̄ ik+1/2 := (1− δk/ri )X ik+1/2 + (δk/ri )pi. Denote X̄k+1/2 :=
[X̄ ik+1/2]i∈N. In the merit of the feasibility adjustment in (9),
the action to be taken will sit within the feasible set, i.e.,
X̂ ik+1/2 ∈ Xi and X̂k+1/2 := [X̂ ik+1/2]i∈N ∈ X. Then SPSA es-
timation can be expressed as n

i

δk
Ji(X̂k+1/2)uik . Nevertheless,

as previously noted in [14], the SPSA approach incurs an
increasing estimation variance when the query radius is re-
duced to improve the estimation accuracy, which results in
conservative choices of updating step sizes τk and signif-
icant degradation of the convergence rate. To resolve this
conundrum, there has been increased consideration given to
schemes such as two-point estimation and residual estimation
to keep the variance bounded. On account of this, we consider
the multi-point pseudo-gradient estimation (MPG) scheme,
whose counterparts in the field of optimization can be found
in [37]. At every iteration k, each player i executes the pertur-
bation step in (9) (Tk + 1) times in an independent manner,
takes the action X̂ ik+1/2,t , and observes the associated real-
ized objective function values Ji(X̂k+1/2,t ), where the variable
t ∈ N is an index of the multiple samples taken per iteration.
The multi-point pseudo-gradient estimate can be formulated
as below:

Gik :=
ni

δkTk

Tk�
t=1

�
Ji(X̂k+1/2,t )−Ji(X̂k+1/2,0)

�
uik,t , (MPG)

where (uik,t )t = 0,...,Tk are i.i.d. random variables uniformly
distributed over Si; the action taken by player i is given
by X̂ ik+1/2,t := (1 − δkri )X ik+1/2 +

δk
ri
(pi + riuik,t ) = X̄ ik+1/2 +

δkuik,t ; X̂k+1/2,t := [X̂ ik+1/2,t ]i∈N. To simplify the presenta-
tion, we will henceforth use Ĵ ik,t to represent the realized

objective value Ji(X̂k+1/2,t ) for the t-th sample at itera-
tion k. Prior to delving into the properties of MPG, we
first outline the probability setup to streamline our later
discussion. Let (�,F,P) denote the underlying probabil-
ity space. The filtration (Fk )k∈N+ is constructed as Fk :=
σ {X0, {u1,t }T1t = 0, . . . , {uk−1,t }

Tk−1
t = 0}, which captures the up-

date that results in Xk , i.e., the entire information up to and
including iteration k − 1. Then to characterize MPG, we start
by considering the following decomposition of it:

Gik = ∇xi Ji(Xk+1/2)+
�
Gik − E[Gik | Fk]

�
+ �E[Gik | Fk]−∇xi Ji(Xk+1/2)� .

For brevity, we let Bik := E[Gik | Fk]−∇xi Ji(Xk+1/2) rep-
resent the systematic error and V ik := Gik − E[Gik | Fk] the
stochastic error. To facilitate later analysis, for each Ji, we
introduce the δ-smoothed objective function J̃ iδ:

J̃ iδ (x
i; x−i ) := 1

Vi
δ

�
δS−i

�
δBi

J i(xi + τ̃ i; x−i + τ−i )d τ̃ idτ−i,
(10)

where S−i :=
�
j∈N−i S j ⊆ Rn

−i
; Viδ := vol(δBi ) · vol(δS−i ).

The lemmas presented below provide an examination of the
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Algorithm 1: Zeroth-Order Variance-Reduced Learning
of CPs Based on Optimistic Mirror Descent (Player i).

1: Initialize: X i0 = X i1/2 = X i1 ∈ Xi ∩ domψ i arbitrarily;
Gi0 = 0ni ; pi, ri to be the center and radius of an
arbitrary ball within the set Xi; Tk satisfies�
k∈N+ 1/Tk <∞.

2: procedure At the k-Th iteration (k ∈ N+)
3: X ik+1/2← PXik,Xi (−τG

i
k−1)

4: for t = 0, . . . , Tk do
5: Randomly sample the direction uik,t from Si
6: X̂ ik+1/2,t ← (1 − δkri )X ik+1/2,t +

δk
ri
(pi + riuik,t )

7: Take action X̂ ik+1/2,t
8: Observe the realized objective function value

Ĵ ik,t := Ji(X̂ ik+1/2,t ; X̂−ik+1/2,t )
9: end for
10: Gik ← ni

δkTk

�Tk
t=1(Ĵ

i
k,t − Ĵ ik,0)uik,t = 1

Tk

�Tk
t=1G

i
k,t

11: X ik+1 ← PXik,Xi (−τG
i
k )

12: end procedure
13: Return: {X̂ ik+1/2}i∈N

properties of Bik and V
i
k , which will be later employed in

the proof of the main theorem. Their proofs are reported in
Appendix A.
Lemma 1: Suppose that Assumption 1 holds. Then at each
iteration k, the conditional expectation satisfies E[Gik | Fk] =∇xi J̃ iδk (X̄k+1/2) a.s. for every i ∈ N. Moreover the system-
atic error Bk := [Bik]i∈N possesses a decaying upper bound�Bk� ≤ αBδk for some positive constant αB.
In contrast to the single-point or two-point estimates, the
advantage of utilizing MPG is primarily demonstrated in
the following lemma, which measures the decaying rate of the
stochastic error w.r.t. the number of samples.
Lemma 2: Suppose that Assumption 1 holds. Then at
each iteration k, the squared norm of Vk := [V ik ]i∈N satisfies
E[�Vk�2 | Fk] ≤ αV /Tk for some positive constant αV .

IV. A VARIANCE-REDUCTION LEARNING ALGORITHM
AND CONVERGENCE ANALYSIS
In view of the properties of OMD introduced in Section II-B,
we design a zeroth-order algorithm for merely coherent games
by incorporating MPG into OMD, the precision of which can
be controlled by adjusting the sample size per iteration. Each
player of the group possesses their own local μ̃i-strongly con-
vex DGF, denoted by ψ i. Additionally, the function ψ (x) :=�
i∈N ψ i(xi ) with x := [xi]i∈N represents the group DGF,

which is μ̃-strongly convex. The proposed approach is out-
lined in Algorithm 1.
The Robbins-Siegmund (R-S) theorem serves as a heavy-
lifting tool in the field of stochastic optimization to examine

the convergence of sequences. Its formal statement is pre-
sented as follows.
Lemma 3 ([38, Th. 1]): Let (�,F, P) be a probability space
and (Fk )k a filtration of F. For each k = 1, 2, . . ., Zk , βk , ξk ,
and ζk are non-negative Fk-measurable random variables that
satisfy E[Zk+1 | Fk] ≤ (1+ βk )Zk + ξk − ζk . If

�
k∈N+ βk <

∞ a.s. and�k∈N+ ξk <∞ a.s., then limk→∞ Zk exists and is
finite a.s. and

�
k∈N+ ζk <∞ a.s.

To employ the theorem, it is necessary to guarantee that�
k∈N+ ξk is finite a.s. Recall from Lemma 2, in the variance

reduction scenario, the decaying upper bound is constructed
for E[�Vk�2 | Fk] rather than the random variable �Vk�2.
In the meantime, unlike the typical extra-gradient method,
OMD leverages the pseudo-gradient F (Xk−1/2) from the last
iteration when updating to the leading state Xk+1/2. This
approximation brings the stochastic error �Vk−1�2 into the
recurrent inequality which, due to the absence of the averaging
effect, does not possess a decaying upper bound and prevents
us from applying the R-S theorem. Motivated by the consid-
eration above, our next step will be establishing a variant of
the R-S theorem by relaxing the condition imposed upon the
sequence (ξk )k∈N+ . The proofs for the results in this section
are reported in Appendix B
Theorem 1: Let (�,F,P) be a probability space and
(Fk )k a filtration of F. For each k = 1, 2, . . ., Zk , ξk ,
and ζk are non-negative Fk-measurable random variables
that satisfy E[Zk+1 | Fk] ≤ Zk + ξk − ζk with E[Z1] <∞. If�
k∈N+ E[ξk] <∞, then Zk converges a.s. to some random

variable Z∞ with E[Z∞] <∞ and
�
k∈N+ ζk <∞ a.s.

Lemma 4 (Standing Inequality): Suppose Assumption 1
holds and the step size τ satisfies (τL/μ̃)2 ≤ 1/12. For the
iteration k ≥ 3, the following recurrent relation holds:

D(x∗,Xk+1)+ μ̃15 �Xk+1/2 − Xk−1/2�
2 ≤ D(x∗,Xk )

+ μ̃
15
�Xk−1/2 − Xk−3/2�2 − μ̃30 �Xk+1/2 − Xk−1/2�

2

− μ̃
30
�Xk − Xk+1/2�2 − μ̃40 ε(Xk )

− τ �F (Xk+1/2),Xk+1/2 − x∗� + �̂k, (11)

where the residual function is defined as ε(x) :=
�x − Px,X(−τF (x))�2 and the errors are captured by
�̂k := |τ �Bk,Xk+1/2 − x∗�| − τ�Vk,Xk+1/2 − x∗� +
μ̃/(12 L2)�Bk − Bk−1 + Vk − Vk−1�2 + μ̃/(120 L2) ·
�Bk−1 − Vk−1�2 + μ̃/(15 L2) · �Bk−1 − Bk−2 + Vk−1 −
Vk−2�2.
With these results available, we can establish the following
conclusion about the convergence of Algorithm 1 and the
sufficient conditions to guarantee it.
Theorem 2: Consider a game G. Suppose that Assump-
tions 1, 2, and 4 hold. In addition, the sequence of query radius
(δk )k∈N+ and the sequence of the reciprocal of sample size
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(1/Tk )k∈N+ are monotonically decreasing and satisfy�
k∈N+

δk <∞,
�
k∈N+

1/Tk <∞. (12)

The step size τ satisfies (τL/μ̃)2 ≤ 1/12. Then the base state
(Xk )k∈N+ as well as the leading state (Xk+1/2)k∈N+ converge
a.s. to a CP x∗ of G. Moreover, the actual sequence of play
also satisfy limk→∞ X̂k+1/2,t = x∗ a.s., for arbitrary t .

V. LOCAL CONVERGENCE OF THE BANDIT LEARNING
ALGORITHM
This section is dedicated to exploring the scenario in which
the mere coherence property does not hold on the whole fea-
sible set X but instead on a limited vicinity of certain CPs.
In preparation for further analysis, we postulate the following
Lipschitz assumption on the group DGF ψ . As a reminder, the
group DGF ψ is defined as the sum of individual DGFs, i.e.,
ψ (x) :=�i∈Nψ i(xi ).
Assumption 5: The group DGF ψ is L̃-smooth on X, i.e.,
for arbitrary xa and xb in X,

ψ (xa) ≤ ψ (xb)+ �∇ψ (xb), xa − xb� + L̃2 �xa − xb�
2.

An equivalent condition is that ∇ψ : X→ Rn is L̃-Lipschitz:
�∇ψ (xa)−∇ψ (xb), xa − xb� ≤ L̃�xa − xb�2.

As a result, for each player i ∈ N, its DGF ψ i is L̃i-smooth
with the constant L̃i ≤ L̃.
Assuming Assumption 3 holds, we can identify a smaller
region around the CP set X∗ as Ũ� := {x : D(X∗, x) ≤ �} ⊆
U , where D(X∗, x) := infx�∈X∗ D(x�, x). For each x∗ ∈ X∗, we
also let Ũ� (x∗) := {x : D(x∗, x) ≤ �} ⊆ Ũ� . It is straightfor-
ward to verify that Ũ� = ∪x∗∈X∗Ũ� (x∗). In light of the relation
D(x∗, x) ≥ μ̃2 �x − x∗�2, we can deduce that �x∗ − x�2 ≤ 2�μ̃
holds for all x ∈ Ũ� (x∗) as well. In the forthcoming analysis,
we will center around the following two sets that take feasi-
bility into account:

U� := Ũ� ∩ X and U� (x∗) := Ũ� (x∗) ∩ X. (13)

To facilitate our analysis, for an arbitrary x∗ ∈ X∗, we de-
fine �̂Bk,x∗ and �̂

V
k,x∗ = �̃Vk,x∗ + �̄Vk,x∗ such that �̂k ≤ �̂Bk,x∗ +

�̂Vk,x∗ with �̂k given in Lemma 4 as

�̂Bk,x∗ := |τ �Bk,Xk+1/2 − x∗�| + (μ̃/L2)·�
(1/3)�Bk�2+(37/60)�Bk−1�2+(4/15)�Bk−2�2

�
,

�̃Vk,x∗ := − τ �Vk,Xk+1/2 − x∗�, �̄Vk,x∗ := (μ̃/L2)·�
(1/3)�Vk�2+(37/60)�Vk−1�2+(4/15)�Vk−2�2

�
.

For conciseness, we shall henceforth drop the subscript x∗
in �̃Vk,x∗ , �̄

V
k,x∗ , etc., for notational simplicity and use the

following notations:

Sk :=
k�
t=3
�̃Vk,x∗ ∈ Fk+1, and Rk :=

k�
t=3
�̄Vk,x∗ ∈ Fk+1.

The variables Sk and Rk represent upper bounds for the cu-
mulated errors introduced by the stochastic error (Vt )t=1,...,k .
Define the event Ex∗k for k ≥ 3 as follows:

Ex∗k :=
�
ω : max

3≤�≤k
[|Sk| + Rk] (ω) ≤

�

16

�
. (14)

In particular, we set Ex∗2 = �. It is worth mentioning that
Ex∗k ∈ Fk+1 since Xk+1/2 ∈ Fk yetVk /∈ Fk and it forms a con-
tracting sequence of events, i.e., Ex∗2 ⊇ Ex∗3 ⊇ Ex∗4 ⊇ · · · ⊇
Ex∗k ⊇ · · · . Furthermore, we draw attention to that the values
of Sk and Rk are dependent on x∗ and Ex∗k is tied to �, although
this dependence is not explicitly captured in the notations. The
proofs of this section are reported in Appendix C.
Lemma 5: Suppose Assumption 1 holds and Xk+1/2 ∈ U� .

Then the MPG is upper bounded by a constant Ḡ, i.e.,

�Gk� ≤ Ḡ := 2N
�
i∈N
ni∇̄ i�, (15)

where for each i ∈ N, ∇̄ i� := maxz∈U� �∇xJi(z)�.
Lemma 6: Suppose Assumptions 1, 3, and 5 hold. More-

over, there exists an x∗ ∈ X∗ such that the leading state
Xk−1/2 and the action profile Xk satisfy Xk−1/2 ∈ U� (x∗) and
D(x∗,Xk ) ≤ (7/8)�, respectively. Additionally, τ is chosen
sufficiently small such that τ L̃Ḡ/μ̃3/2 ≤ √2/16√�. Then
D(x∗,Xk+1/2) ≤ �, i.e., Xk+1/2 ∈ U� (x∗).
The event Ex∗k represents that up to iteration k, the cumu-

lated error induced by the stochastic error never goes beyond
the chosen threshold �/16. In Lemma 7, we will prove that if
Ex∗k happens, then the leading state Xt+1/2 will stay within the
region of attractionUε(x∗) for t = 1, . . . , k + 1.
Lemma 7: Suppose Assumptions 1, 3, and 5 hold, and there

exists an x∗ ∈ X∗ such that X1 ∈ U�/2(x∗) ⊆ U� . Moreover,
τ and the monotonically decreasing sequence (δk )k∈N+ are
properly selected such that

τ L̃Ḡ/μ̃3/2 ≤
√
2/16
√
�,

τ Ḡ ·
�
�

μ̃

�1/2
+ τ

2

μ̃
Ḡ2 ≤ �/16, and

�
k≥3

�
ταB

�
2�

μ̃

�1/2
δk +

5μ̃α2B
4L2

(δk−2)2
�
< (1/16)�.

(16)

Then on the event Ex∗K , the sequence (Xt+3/2)t≤K will not
escape U� (x∗).
To leverage the conditional invariance of U� (x∗) regarding

the whole sequence (Xk+1/2)k∈N+ , we construct the limiting
event that imposes an upper bound on stochastic errors:

Ex∗∞ :=
�
ω : sup

�≥3
[|S�| + R�](ω) ≤ �16

�
. (17)
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In Theorem 3, we will prove that the probability measure
of event Ex∗∞ can be made arbitrarily close to 1 by letting the
sample size sequence (Tk )k∈N+ increase rapidly enough.
Theorem 3: Suppose Assumptions 1, 3, and 5 hold, X1 ∈

U�/2, and τ and (δk )k∈N+ satisfy the conditions listed in (16).
Let p ∈ (0, 1) be an arbitrary but fixed constant. The sequence
(Tk )k∈N+ is monotonically increasing and fulfills

αV
�̃
( 2τ

2�
μ̃
+

5μ̃
4 L2
) ·�∞k=1 1Tk ≤ p with �̃ := (( �16 − 14 ) ∨ 14 ) ∧ ( �16 )2. Then

for any x∗ ∈ X∗ with X1 ∈ U�/2(x∗), the probability of event
Ex∗∞ satisfies P(Ex∗∞ ) ≥ 1− p.
While the occurrence of the event Ex∗∞ depends on the par-
ticular x∗ ∈ X∗ selected, the conditions outlined in Theorem 3
that ensure its probability can be close to 1 are uniform across
X∗ and do not rely on x∗. Likewise, the conditions stated
in Lemma 7 to guarantee the invariance of Xt+3/2 regarding
U� (x∗) do not depend on x∗.
Finally, we will show in Theorem 4 that if the random
sample ω belongs to event Ex∗∞ , the actual sequence of play
will locally converge to a CP x� ∈ U� (x∗).
Theorem 4: Suppose Assumptions 1, 3, 4, and 5 hold,
X1 ∈ U�/2. Moreover, the selected τ , (δk )k∈N+ , and (Tk )k∈N+
satisfy (τL/μ̃)2 ≤ 12, the conditions listed in (16), and�
k∈N+ 1/Tk <∞. Then for any x∗ ∈ X∗ that satisfies X1 ∈

U�/2(x∗), on event Ex∗∞ , the actual sequence of play will con-
verge a.s. to a CP x� ∈ U�.
Remark 2: Combining the results of Theorems 3 and 4
yields that if all the conditions given in these two theorems are
fulfilled and (Tk )k∈N+ is chosen to satisfy

αV
�̃
( 2τ

2�
μ̃
+ 5μ̃
4 L2
) ·�∞

k=1
1
Tk
≤ p < 1, then for arbitrary initialization X1 ∈ U�/2,

the generated sequence of play X̂k+1/2,t will converge to a CP
with probability no less than 1 − p.

VI. NUMERICAL EXPERIMENTS
In the conference version [32, Sec. V], a rock-paper-scissors
(RPS) game and a least square estimation game are examined,
both of which satisfy global mere coherence. The RPS game
leverages the negative entropy as DGF and its mirror map
can be reduced to a softmax function, where the numerical
comparison with [21] is also included. In this section, we
conduct two sets of numerical experiments that only satisfy
local mere coherence but not global mere coherence. We note
that the scope of these two games is not covered by the results
in [10], [15], [21].

A. TWO-PLAYER MINIMAX PROBLEMS
In this subsection, we use two two-player minimax saddle-
point problems to illustrate the effectiveness of the proposed
method. Similar numerical examples have been previously
discussed in [25], [39], which takes the following form:

minimize
x1∈X1

maximize
x2∈X2

f (x1, x2). (18)

FIGURE 1. The pseudo-gradient field F of (19) and the actual sequences of
play X̂k+1/2 generated by Algorithm 1.

Specifically, we consider a minimax problem that is formu-
lated as follows:

fa(x1, x2) = x1 · x2 + ψa(x1)− ψa(x2), (19)

where ψa(z) = 2
21 z
6 − 13z4 + 13z2, X1 = X2 = [−2, 2]. As

demonstrated in [25, Example 4], x∗ := [0; 0] is a global
CP for the feasible region. The pseudo-gradient field un-

derneath this saddle point problem is given by F :

�
x1

x2

�
�→�

∇x1 fa(x1, x2)
−∇x2 fa(x1, x2),

�
. For the corresponding ODE ẋ = −F (x),

the region X under consideration contains both an attracting
and a repellent limit cycle, as proved in [25, Prop. 2]. The
experimental results are depicted in Fig. 1. The background
color displays the value of �F (x), x − x∗� with x ∈ X1 × X2.
The underlying pseudo-gradient field and the attracting limit
cycle are graphically presented in Fig. 1(a). In the simulation,
we choose the query radius as δk = 0.1(k + 10)−1.1. Fig. 1(b)
displays the actual sequences of play, with the legends provid-
ing a comprehensive account of the parameters selected. Fig. 1
indicates that the appropriate selection of the initial point
within the basin of attraction results in a converging sequence
towards the CP x∗. When the sample count Tk per iteration
is insufficient, the estimation error may temporarily or even
permanently drive the sequence away from the solution, as
evidenced by the red curve.
In a similar vein, another example featuring a smaller basin
of attraction is formulated in the following manner:

fb(x
1, x2) = (x1 − 0.05)(x2 − 0.3) + ψb(x1)− ψb(x2),

(20)

where ψb(x) = 16x6 − 12x4 + 14x2, X1 = X2 = [−3/2, 3/2].
We can procure the CP x� = [0.1422; 0.2346] via direct nu-
merical computation. In Fig. 2(a), we visualize the underlying
pseudo-gradient field and the values of �F (x), x − x∗� and
highlight the attractive limit cycle with the solid grey curve.
In our simulations, we manipulate Tk and X0, and the results
in Fig. 2(b) indicate that while increasing Tk decreases the es-
timation error, proper selection of X0 remains a crucial factor
for achieving convergence to the CP.
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FIGURE 2. The pseudo-gradient field F of (20) and the actual sequences of
play X̂k+1/2 generated by Algorithm 1.

B. COGNITIVE RADIO BANDWIDTH ALLOCATION PROBLEM
We consider a cognitive radio bandwidth allocation game
whose transmissions are over single-input single-output
(SISO) frequency-selective channels [36], [40]. It is com-
posed of P primary users (PUs) and N secondary users (SUs),
with the SUs indexed by N := {1, . . . ,N}. Each SU i com-
petes against each other to maximize its own information
rate, while simultaneously accounting for the cost incurred by
determining its power allocation vector xi ∈ Xi ⊆ RS over the
S ∈ N+ subcarriers. The objective for each SU i ∈ N can be
characterized by the following expression:

Ji(xi; x−i ) = (pi )T xi −
S�
s=1
ris(x

i; x−i ) with

ris(x
i; x−i ) = log

�
1+ |Hiis |2[xi]s
(σ is )2 +

�
j∈N−i |H

i j
s |2[x j]s

�
,

(21)

where (σ is )
2 represents the thermal noise power over the sub-

carrier s; Hi js denotes the channel transfer function between
the secondary transmitter j and the receiver i; [xi]s repre-
sents the s-th entry of the vector xi, which accounts for the
power allocation decision of subcarrier s. Additionally, each
SU i must adhere to a set of local constraints, which include
prescribed transmit power and acceptable levels of degrada-
tion on the performance of the PUs. The local feasible set
of SU i is described as Xi := {xi ∈ RS : 0 ≤ xi ≤ bi, 1T xi ≤
b̄i,
�S
s=1 |Qpis |2[xi]s ≤ I pitot, ∀p ∈ {1, . . . , P}}, where we let

bi ∈ RS++ and b̄i ∈ R++;Qpis denote the channel transfer func-
tion between the secondary transmitter i and the primary
receiver p over the subcarrier s; I pitot is the maximum interfer-
ence allowed to be generated by the SU i at the PU p over the
whole spectrum.
When conducting the experiments, we consider a game
with P = 3 PUs, N = 10 SUs, and S = 5 subcarriers. Let τ =
0.01. An interior CP x∗ is found and we verify numerically
that the symmetric part of the Jacobian of the pseudo-gradient
operator at x∗ is positive definite, which entails that it fulfills
Assumption 3. The starting point X0 is initialized in a proper

FIGURE 3. Performance of Algorithm 1 in the cognitive radio allocation
game: (a) relative distance to the cp under study, i.e., �X̂k+1/2 − x∗�2/�x∗�2;
(b) updating step lengths per iteration, i.e., �Xk+1 − Xk�2.

neighborhood of x∗. Four different sets of query radius δk
and query count Tk have been chosen for implementation. In
Fig. 3(a), a comparison of the relative distances to x∗ reveals
that the convergence rate of the actual sequence of play is pos-
itively correlated with the rates of increase in Tk and decrease
in δk . When Tk remains a constant or merely grows sublin-
early, the actual sequence of play will be bounded away from
x∗ and fail to converge to it. Fig. 3(b) displays a comparison
of updating step lengths for various choices of parameters,
indicating that the curves associated with summable (δk )k∈N+
and (1/Tk )k∈N+ exhibit fewer fluctuations and maintain a de-
creasing trend. The rolling averages with a window size of
100 are depicted through the opaque curves, while the original
fluctuations are illustrated by semi-transparent curves.

VII. CONCLUSION
In this work, we investigate bandit learning in multi-player
continuous games with an emphasis on handling merely
coherent cases. A new learning algorithm is proposed by inte-
grating the idea of optimistic mirror descent and multi-point
pseudo-gradient estimation. Under the assumptions posited
and the conditions that the sequences of query radius δk and
the reciprocal of sample size Tk are absolutely summable,
the actual sequence of play generated by the proposed al-
gorithm is shown to converge a.s. to a CP of the globally
merely coherent game. For games featuring only local mere
coherence, we establish the convergence of actual sequences
of play in some neighborhoods of CPs with high probability.
There are several potential directions for future exploration.
The first one is relaxing the requirements for the number
of samples per iteration Tk, since the superlinear growth of
Tk may prevent the application of the proposed algorithm
when the bandit feedback is inadequate. Furthermore, when
it comes to a large-scale player network, the asynchronicity of
the updates is a prevalent issue and the cost of synchronization
is prohibitive, which is further exacerbated by the multi-point
scheme considered. We intend to address these questions in
future work.
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APPENDIX
A. PROOF OF SECTION III
1) PROOF OF LEMMA 1
By the tower property F̃k := σ {Fk ∪ σ {uk,0}} ⊇ Fk
and the linearity of conditional expectation, we have
E[Gik | Fk] = E[E[Gik | F̃k] | Fk] = 1

Tk

�Tk
t=1 E[

ni
δk
E[(Ĵ ik,t −

Ĵ ik,0)u
i
k,t | F̃k] | Fk]. For every t ∈ {1, . . . , Tk}, it follows

from Lemma 1 of [19] that ∇xi J̃ iδk (X̄k+1/2) is a version
of the conditional expectation ni

δk
E[(Ĵ ik,t − Ĵ ik,0)uik,t | F̃k].

Based on the fact that X̄k+1/2 ∈ Fk , we have the following
relation holds a.s.: E[Gik | Fk] = 1

Tk

�Tk
t=1 E[∇xi J̃ iδk (X̄k+1/2) |

Fk] = ∇xi J̃ iδk (X̄k+1/2). With the above results in hand, the
norm of systematic error �Bik� can be reformulated as�Bik� = �∇xi J̃ iδk (X̄k+1/2)−∇xi Ji(Xk+1/2)�, and the proof for
Lemma 2 of [19] directly carries over.

2) PROOF OF LEMMA 2
Using the definition of MPG and the linearity of conditional
expectation, we have:

E[�Gik�2 | F̃k] =
�
ni

δkTk

�2
E

⎡⎢⎣
������
Tk�
t=1
(Ĵ ik,t − Ĵ ik,0)uik,t

������
2

| F̃k

⎤⎥⎦
=
�
ni

δkTk

�2 � Tk�
t=1
E[�(Ĵ ik,t − Ĵ ik,0)uik,t�2 | F̃k]+

�
1≤s,t≤Tk,s �=t

E[(Ĵ ik,s − Ĵ ik,0)(Ĵ ik,t − Ĵ ik,0) · �uik,s, uik,t � | F̃k]
�
.

For each pair (s, t ) with s �= t , denote F̃k,s := σ {F̃k ∪ σ {uk,s}}
and the conditional expectation of the inner product can be
reformulated as follows:�

ni

δk

�2
E
��(Ĵ ik,s − Ĵ ik,0)uik,s, (Ĵ ik,t − Ĵ ik,0)uik,t � | F̃k�

(a)= E
��
ni

δk
(Ĵ ik,s − Ĵ ik,0)uik,s,

E

�
ni

δk
(Ĵ ik,t − Ĵ ik,0)uik,t | F̃k,s

������F̃k�
(b)= E
��
ni

δk
(Ĵ ik,s − Ĵ ik,0)uik,s,∇xi J̃ iδk (X̄k+1/2)

� ����F̃k�
(c)=
�
E

�
ni

δk
(Ĵ ik,s − Ĵ ik,0)uik,s | F̃k

�
,∇xi J̃ iδk (X̄k+1/2)

�
= �∇xi J̃ iδk (X̄k+1/2)�2 a.s.,

where (a) follows from the fact that F̃k,s ⊇ F̃k and (Ĵ ik,s −
Ĵ ik,0)u

i
k,s is F̃k,s-measurable; (b) and (c) can be deduced by

applying the same arguments in Lemma 1. Combining the

observations above yields:

E[�Gik�2 | F̃k] =
�
ni

δkTk

�2 Tk�
t=1
E
��(Ĵ ik,t − Ĵ ik,0)uik,t�2 | F̃k�

+
�
1− 1
Tk

�
�∇xi J̃ iδk (X̄k+1/2)�2, a.s.

For the stochastic error V ik := Gik − E[Gik | Fk] = Gik −∇xi J̃ iδk (X̄k+1/2), applying the results above gives:
E[�V ik�2 | F̃k] = E[�Gik −∇xi J̃ iδk (X̄k+1/2)�2 | F̃k]
= E[�Gik�2 | F̃k]− 2E[�Gik,∇xi J̃ iδk (X̄k+1/2)� | F̃k]
+ �∇xi J̃ iδk (X̄k+1/2)�2

= E[�Gik�2 | F̃k]− �∇xi J̃ iδk (X̄k+1/2)�2

=
�
ni

δkTk

�2 Tk�
t=1
E[�(Ĵ ik,t − Ĵ ik,0)uik,t�2 | F̃k]

− 1
Tk
�∇xi J̃ iδk (X̄k+1/2)�2

≤
�
ni

δk

�2 1
Tk
E[(Ĵ ik,t − Ĵ ik,0)2�uik,t�2 | F̃k] a.s.

The difference (Ĵ ik,t − Ĵ ik,0)2 can be further bounded as:

(Ĵ ik,t − Ĵ ik,0)2
(a)= (�∇xJi(Z ), X̂k+1/2,t − X̂k+1/2,0�)2

≤ �∇xJi(Z )�2 · �X̂k+1/2,t − X̂k+1/2,0�2
(b)≤ ∇̄2i · δ2k�uk,t − uk,0�2 = 4N∇̄2i δ2k , (A.1)

where, in (a), we apply the mean value theorem for differ-
entiable function and let Z denote some convex combination
of X̂k+1/2,t and X̂k+1/2,0; for the relation (b) we let ∇̄i :=
maxx∈X �∇xJi(x)� and apply the definition in (9). Conse-
quently, it can be directly inferred that E[�V ik�2 | F̃k] ≤
4N (∇̄ini )2/Tk and E[�Vk�2 | F̃k] ≤ 4N

�
i∈N(∇̄ini )2/Tk .

B. PROOF OF SECTION IV
1) PROOF OF THEOREM 1
Before proceeding, we attribute the proving technique lever-
aged below to that of [41, Th. 2.3.5], while we provide
complete proof for a simplified version and fill out some
omitted steps of the reference for the completeness of this
work. By letting ζ̂k :=

�k
t=2 ζt−1 for k ≥ 2 and ζ̂1 = 0, the

recurrent inequality can be expressed as

E[Zk+1 + ζ̂k+1 | Fk] ≤ Zk + ζ̂k + ξk,∀k ∈ N+. (B.1)

Likewise, let ξ̂k :=
�k
t=2 ξt−1 for k ≥ 2 and ξ̂1 = 0, and we

have 0 ≤ ξ̂k � ξ̂∞. It follows from the monotone conver-
gence theorem that E[ξ̂k]� E[ξ̂∞] and

�
k∈N+ E[ξk] <∞

implies E[ξ̂∞] <∞. Through the integration of this definition
into (B.1), we can construct a new recurrent inequality as
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follows:

E[Zk+1 + ζ̂k+1 + E[ξ̂∞ | Fk+1]− ξ̂k+1 | Fk]
≤ Zk + ζ̂k + E[ξ̂∞ | Fk]− ξ̂k. (B.2)

Based on the observation that ξ̂∞ − ξ̂k ≥ 0, we can let Z̃k :=
Zk + ζ̂k + E[ξ̂∞ | Fk]− ξ̂k , which forms a sequence of non-
negative random variables, and deduce that:

E[Z̃k+1 | Fk] ≤ Z̃k . (B.3)

Furthermore, for each k ∈ N+, E[Z̃k] ≤ E[Z̃1] = E[Z1]+
E[ξ̂∞] <∞, which together with the preceding observations
indicates that (Z̃k )k∈N+ is a non-negative super-martingale.
Straightforward application of the martingale convergence
theorem yields: limk→∞ Z̃k = Z̃∞ a.s., where Z̃∞ is
a L1 random variable, i.e., E[|Z̃∞|] <∞. Denote
ξ̂ ck := E[ξ̂∞ | Fk]− ξ̂k ∈ Fk . Note that (ξ̂ ck )k∈N+ is a

non-negative super-martingale and limk→∞ E[ξ̂ ck ] =
limk→∞ E[E[ξ̂∞ | Fk]− ξ̂k] = limk→∞(E[ξ̂∞]− E[ξ̂k]) =
E[ξ̂∞]− limk→∞ E[ξ̂k] = 0 as demonstrated earlier, and
thus ξ̂ ck

k→∞→ 0 a.s. As a result, limk→∞(Zk + ζ̂k ) = Z̃∞ a.s.
Since the sequence (ζ̂k )k∈N+ is non-negative, monotonically
increasing and bounded from above, its limit exists
a.s., i.e., limk→∞ ζ̂k = ζ̂∞ a.s. Moreover, due to the
surrogate relation that ζ̂∞ ≤ Z̃∞ and E[Z̃∞] <∞, we
then obtain E[ζ̂∞] <∞. Therefore, we arrive at the
conclusion that

�
k∈N+ ζk = limk→∞ ζ̂k <∞ a.s. and

limk∈N+ Zk = Z̃∞ − ζ̂∞ a.s. and the limit is L1, i.e.,

E[Z̃∞ − ζ̂∞] <∞.

2) PROOF OF LEMMA 4
By applying the standing recurrent inequality of OMD [19,
Lemma A.2][22, Prop. B.3] and letting x∗ denote one CP of
G, we can obtain the following relation for the k-th iteration:
D(x∗,Xk+1) ≤ D(x∗,Xk )− τ �Gk,Xk+1/2 − x∗�

+ τ
2

2μ̃
�Gk − Gk−1�2 − μ̃2 �Xk+1/2 − Xk�

2

≤ D(x∗,Xk )− τ �F (Xk+1/2),Xk+1/2 − x∗� − μ̃2
· �Xk+1/2−Xk�2 − τ �Bk,Xk+1/2−x∗�− τ �Vk,Xk+1/2 − x∗�

+ τ
2

2μ̃
�F (Xk+1/2)−F (Xk−1/2)+Bk − Bk−1+Vk −Vk−1�2,

where we apply the decomposition of MPG. By appealing to
the Cauchy-Schwarz inequality and the L-Lipschitz continuity
of F , we can derive that

D(x∗,Xk+1) ≤ D(x∗,Xk )− τ �F (Xk+1/2),Xk+1/2 − x∗�

− μ̃
2
�Xk+1/2 − Xk�2 + (τL)

2

μ̃
�Xk+1/2 − Xk−1/2�2 + �̂k,1,

(B.4)

where �̂k,1 := −τ �Bk,Xk+1/2 − x∗� − τ �Vk,Xk+1/2 − x∗� +
τ 2/μ̃�Bk − Bk−1 +Vk − Vk−1�2 represents the error term,
which we aim to demonstrate as being suitably diminutive.
To facilitate the convergence analysis in the merely coher-

ent scenario, we upper bound −�Xk+1/2 − Xk�2 as follows:

− �Xk+1/2 − Xk�2 ≤ −12�Xk − PXk ,X(−τF (Xk ))�
2

+ �PXk ,X(−τGk−1)− PXk ,X(−τF (Xk ))�2

(a)≤ −1
2
ε(Xk )+ τ

2

μ̃2
�Gk−1 − F (Xk )�2 ≤ −12ε(Xk )

+ 2
�
τL

μ̃

�2
�Xk−1/2 − Xk�2 + 2

�
τ

μ̃

�2
�Bk−1 +Vk−1�2

≤ −1
2
ε(Xk )+ 4

�
τL

μ̃

�2
�Xk−1/2 − Xk+1/2�2

+4
�
τL

μ̃

�2
�Xk+1/2−Xk�2+2

�
τ

μ̃

�2
�Bk−1 +Vk−1�2,

where in (a), ε(x) := �x − Px,X(−τF (x))�2 serves as a resid-
ual function and we leverage the 1/μ̃-Lipscthiz continuity of
PXk ,X [19, Lemma A.1 iv)]. By the observation that ε(x�) = 0
is equivalent to the zero inclusion that 0 ∈ NX(x�)+ τF (x�),
we can assert that x� is a CP of G ⇐⇒ ε(x�) = 0. In light
of the upper bound derived above and the choice of step size
(τL/μ̃)2 ≤ 1/12, (B.4) can be reformulated as:

D(x∗,Xk+1) ≤ D(x∗,Xk )− μ̃2
�
1− 1
10

�
�Xk+1/2 − Xk�2

+ 1
10

�
− μ̃
4
ε(Xk )+ μ̃6 �Xk−1/2 − Xk+1/2�

2 + μ̃
6

· �Xk+1/2 − Xk�2
�
+ μ̃
12
�Xk+1/2 − Xk−1/2�2

− τ �F (Xk+1/2),Xk+1/2 − x∗� + �̂k,1 + �̂k,2, (B.5)

where �̂k,2 := μ̃/(120 L2) · �Bk−1 −Vk−1�2. We reapply the
Cauchy-Schwarz inequality to �Xk+1/2 − Xk−1/2�2, yielding
�Xk+1/2 − Xk−1/2�2 ≤ 2�Xk+1/2 − Xk�2 + 2�Xk − Xk−1/2�2,
while it can be recursively obtained that for all k ≥ 3,
�Xk − Xk−1/2�2 = �∇ψ∗(∇ψ (Xk−1)− τGk−1)
−∇ψ∗(∇ψ (Xk−1)− τGk−2)�2 ≤ (τ/μ̃)2�Gk−1 − Gk−2�2

≤ 2(τL/μ̃)2�Xk−1/2 − Xk−3/2�2 + 2(τ/μ̃)2�k,3,
with �k,3 := �Bk−1 − Bk−2 + Vk−1 −Vk−2�2. Adding
(μ̃/10) · �Xk+1/2 − Xk−1/2�2 to both sides of (B.5) and
substituting �Xk+1/2 − Xk−1/2�2 of the R.H.S. with the
proceeding inequality produce:

D(x∗,Xk+1)+ μ̃10 �Xk+1/2 − Xk−1/2�
2 ≤ D(x∗,Xk )

− τ�F (Xk+1/2),Xk+1/2 − x∗� − 13μ̃30 �Xk+1/2 − Xk�
2
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− μ̃
40
ε(Xk )+ μ̃5 �Xk+1/2 − Xk−1/2�

2 + �̂k,1 + �̂k,2

≤ D(x∗,Xk )+ μ̃15 �Xk−1/2 − Xk−3/2�
2

− τ�F (Xk+1/2),Xk+1/2 − x∗� − μ̃30 �Xk − Xk+1/2�
2

− μ̃
40
ε(Xk )+ �̂k,1 + �̂k,2 + �̂k,3,

where �̂k,3 := μ̃/(15 L2)�k,3. Further manipulating the co-
efficients of �Xk+1/2 − Xk−1/2�2 gives ∀k ≥ 3:

D(x∗,Xk+1)+ μ̃15 �Xk+1/2 − Xk−1/2�
2 ≤ D(x∗,Xk )

+ μ̃
15
�Xk−1/2 − Xk−3/2�2 − μ̃30 �Xk+1/2 − Xk−1/2�

2

− μ̃
30
�Xk − Xk+1/2�2 − μ̃40 ε(Xk )

− τ �F (Xk+1/2),Xk+1/2 − x∗� + �̂k, (B.6)

where we set �̂k := |τ �Bk,Xk+1/2 − x∗�| − τ �Vk,Xk+1/2 −
x∗� + μ̃/(12 L2)�Bk − Bk−1 +Vk − Vk−1�2 + μ̃/(120 L2) ·
�Bk−1 −Vk−1�2 + μ̃/(15 L2) · �Bk−1 − Bk−2 +Vk−1 −
Vk−2�2 ≥ �̂k,1 + �̂k,2 + �̂k,3.

3) PROOF OF THEOREM 2
Utilizing the fact that x∗ is a critical point of the game and
Assumption 2 is satisfied, we can infer that, when Xk+1/2 ∈
X, �F (Xk+1/2),Xk+1/2 − x∗� ≥ 0. By invoking Lemma 4 and
taking the conditional expectation E[· | Fk] of both sides, we
can deduce that

E[D(x∗,Xk+1)+ μ̃15 �Xk+1/2 − Xk−1/2�
2 | Fk] ≤ D(x∗,Xk )

+ μ̃
15
�Xk−1/2 − Xk−3/2�2 − μ̃30 �Xk+1/2 − Xk−1/2�

2

− μ̃
30
�Xk − Xk+1/2�2 − μ̃40 ε(Xk )+ E[�̂k | Fk]. (B.7)

The parameters satisfy
�
k∈N+ δk <∞ and

�
k∈N+ 1/Tk <

∞, which together with Lemma 1 implies �k≥3 |τ �Bk,
Xk+1/2 − x∗�| ≤

�
k≥3 τ�Bk� · DX ≤

�
k≥3 τDXαBδk <∞.

Likewise,
�
k≥3 �Bk�2 ≤

�
k≥3(αBδk )2 < ∞. The

application of Lemma 2 allows us to characterize the
squared norm of the stochastic error Vk , resulting in�
k≥3 E[�Vk�2] ≤

�
k≥3 αV /Tk <∞. Moreover, the inner

product involving the stochastic error Vk satisfies

E[�Vk,Xk+1/2 − x∗�] = E[�E[Vk | Fk],Xk+1/2 − x∗�] = 0.
Through the synthesis of the aforementioned findings, we
can ascertain that

�
k≥3 E[�̂k] <∞. Then the application of

Theorem 1 allows us to assert the following:
i)
�
k≥3 μ̃/40 · ε(Xk ) <∞ a.s.;

ii)
�
k≥3 μ̃/30 · �Xk+1/2 − Xk−1/2�2 <∞ a.s.;

iii)
�
k≥3 μ̃/30 · �Xk+1/2 − Xk�2 <∞ a.s.;

iv) D(x∗,Xk+1)+ μ̃/15 · �Xk+1/2 − Xk−1/2�2 converges
a.s. to some L1 random variable.

These results entail that there exists a sample set �̂ ⊆ �
and P(�̂) = 1 such that for any ω ∈ �̂, the above statements
i) − iv) hold true for the deterministic sequences (Xk (ω))k∈N+
and (Xk+1/2(ω))k∈N+ . Moreover, since (Xk (ω))k∈N ∈ X and
the map Px,X(−τF (x)) is continuous in x, there exists
a subsequence (km)m∈N+ such that Xkm (ω)

m→∞→ x� and
limm→∞ ε(Xkm (ω)) = ε(x�) = 0, i.e., x� is a CP of G. We
can then substitute x� for x∗ in iv). Since ii) suggests that
�Xk+1/2 − Xk−1/2�2(ω) k→∞→ 0, we can assert from iv) that
D(x�,Xk(ω)) admits a finite limit. In conjunction with As-

sumption 4, it follows that D(x�,Xkm (ω))
m→∞→ 0 and hence

D(x�,Xk(ω))
k→∞→ 0, i.e., the base states (Xk (ω))k∈N+ con-

verge to x�. Combining this result with iii) yields that the
leading states (Xk+1/2(ω))k∈N+ converge to x�, and the a.s.
convergence of the actual sequence of play (X̂k+1/2,t (ω))k∈N+
to x� is directly derived from (9) and δk

k→∞→ 0.

C. PROOF OF SECTION V
1) PROOF OF LEMMA 5
By employing the definition of MPG, it can be attained that

�Gik� ≤
ni

δkTk

Tk�
t=1
|Ji(X̂k+1/2,t )− Ji(X̂k+1/2,0)|�uik,t�

(a)≤ ni

δkTk
·
Tk�
t=1
|�∇xJi(Z ), δk (uk,t − uk,0)�|

(b)≤ n
i

Tk

Tk�
t=1
∇̄ i� · �uk,t − uk,0�

(c)≤ 2Nni∇̄ i�,

where regarding (a), it stems from the mean value theorem for
differentiable function and letting Z denote some convex com-
bination of X̂k+1/2,t and X̂k+1/2,0; in (b), we apply the Cauchy-
Schwarz inequality and let ∇̄ i� := maxz∈U� �∇xJi(z)�; (c)
ensues from that �uk,t − uk,0� ≤

�
i∈N �uik,t − uik,0� ≤ 2N .

Consequently, �Gk� ≤
�
i∈N �Gik� ≤ 2N

�
i∈N ni∇̄ i� .

2) PROOF OF LEMMA 6
By applying the “three-point identity” of the Bregman diver-
gence [35, Sec. 4.1], we can relate Xk+1/2 to Xk as follows:

D(x∗,Xk+1/2) = D(x∗,Xk )− D(Xk+1/2,Xk )
+ �∇ψ (Xk+1/2)−∇ψ (Xk ),Xk+1/2 − x∗�
≤ D(x∗,Xk )+ �∇ψ (Xk+1/2)−∇ψ (Xk )� · �Xk+1/2 − x∗�
(a)≤ D(x∗,Xk )+ L̃�Xk+1/2 − Xk� · �Xk+1/2 − x∗�
(b)≤ D(x∗,Xk )+ τ L̃

μ̃
· �Gk−1� · �Xk+1/2 − x∗�
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(c)≤ 7
8
� + τ L̃Ḡ

μ̃
·
�
2

μ̃
D(x∗,Xk+1/2)

�1/2
≤ 7
8
� + 1
8

√
� ·�D(x∗,Xk+1/2),

where (a) is the outcome of Assumption 5; (b) can be
deduced from that Xk+1/2 = PXk,X(−τGk−1) and PXk ,X is
1/μ̃-Lipschitz continuous; in (c), we employ Lemma 5
and D(p, x) ≥ μ̃/2�p− x�2. It immediately entails that
D(x∗,Xk+1/2) ≤ �.

3) PROOF OF LEMMA 7
We prove this property by induction. For the first iteration,
X3/2 = X1 and X2 = PX1,X(−τG1), and it follows that

D(x∗,X2) ≤ D(x∗,X1)− τ �G1,X3/2 − x∗� + τ
2

2μ̃
�G1�2

≤ �/2+ τ Ḡ ·
�
�

μ̃

�1/2
+ τ

2

2μ̃
Ḡ2 ≤ �/2+ �/16 = 9�/16,

where we note that �X3/2 − x∗�2 ≤ 2/μ̃ · D(x∗,X3/2) ≤ �/μ̃.
Lemma 6 implies that X5/2 ∈ U� (x∗). For the second iteration,
X5/2 = PX2,X(−τG1) and X3 = PX2,X(−τG2), and by similar
arguments, it follows that

D(x∗,X3) ≤ D(x∗,X2)−τ �G2,X5/2 − x∗�+ τ
2

2μ̃
�G2−G1�2

≤ �/2+ �/16 + τ Ḡ ·
�
2�

μ̃

�1/2
+ 2τ

2

μ̃
Ḡ2 ≤ 11�/16.

Again using Lemma 6, we have X7/2 ∈ U� (x∗).
To prove the statement, we will utilize an inductive ar-
gument. For an arbitrary k ∈ {3, 4, . . . ,K}, suppose that
Xt+1/2 ∈ U� (x∗) holds for all 3 ≤ t ≤ k, and we aim to
show Xk+3/2 ∈ U� (x∗). By applying Lemma 4, neglecting the
negative terms on the R.H.S., and telescoping them across
t = 3, . . . , k, we have

D(x∗,Xk+1)+ μ̃15 �Xk+1/2−Xk−1/2�
2 ≤ D(x∗,X3)+ μ̃

15

· �X5/2 − X3/2�2 −
k�
t=3
τ �F (Xt+1/2),Xt+1/2 − x∗� +

k�
t=3
�̂k .

Since by the inductive hypothesis, Xt+1/2 ∈ U� (x∗) for 3 ≤
t ≤ k, �F (Xt+1/2),Xt+1/2 − x∗� ≥ 0, for all 3 ≤ t ≤ k. In
addition, �X5/2 − X3/2�2 ≤ 2�X5/2 − X2�2 + 2�X2 − X1�2 ≤
4(τ Ḡ/μ̃)2. Combining the properties above yields:

D(x∗,Xk+1) ≤ D(x∗,X3)+ 415 ·
τ 2Ḡ2

μ̃
+

k�
t=3
�̂k .

We then proceed to upper bound �̂k by separating it into the
parts associated with systematic errors and stochastic errors,
i.e., �̂k ≤ �̂Bk,x∗ + �̂Vk,x∗ . After applying Cauchy-Schwarz in-
equality and triangle inequality, �̂Bk,x∗ can be upper bounded

as:

�̂Bk,x∗ ≤ταBδk
�
2�

μ̃

�1/2
+ μ̃α

2
B

L2

�
1

3
δ2k +

37

60
δ2k−1+

4

15
δ2k−2

�

≤ ταBδk
�
2�

μ̃

�1/2
+ 5μ̃α

2
B

4L2
δ2k−2 = �̄Bk,x∗ .

On account of the postulated summability
�
k∈N+ δk <∞,

we can choose a proper sequence of query radius such
that

�
k≥3 �̄Bk,x∗ ≤ (1/16)�. We then move on to exam-

ine
�k
t=3 �̂Vk,x∗ ≤ |Sk| + Rk . On the event E

x∗
k , |Sk | + Rk ≤

(1/16)� and hence D(x∗,Xk+1) ≤ 11�/16 + 4/15 · �/16 +
�/8 < 7�/8. By Lemma 6, D(x∗,Xk+3/2) ≤ � and Xk+3/2 ∈
U� (x∗).

4) PROOF OF THEOREM 3
Under the condition that X1 ∈ U�/2, it ensues that {x ∈ X∗ :
D(x,X1) ≤ �/2} �= ∅, and we can select an arbitrary x∗ ∈ X∗
that satisfies X1 ∈ U�/2(x∗). In the subsequent proof, unless
otherwise stated, we will adopt the shorthand notation �̃Vk and
�̄Vk to refer to �̃

V
k,x∗ and �̄

V
k,x∗ for brevity. With this in hand,

we construct the following recurrent relation for k ≥ 3�
(Sk+1)2 + Rk+1

� · 1Ex∗k = �(Sk )2 + Rk� · 1Ex∗k
+ �2Sk�̃Vk+1 + (�̃Vk+1)2 + �̄Vk+1� · 1Ex∗k , (C.1)

where we further expand 1Ex∗k := 1Ex∗k−1 − 1Ex∗k−1\Ex∗k to pro-
cure telescoping terms. On event Ex∗k−1\Ex∗k , we can construct
a lower bound as [(Sk )2 + Rk] ≥ (( �16 − 14 ) ∨ 14 ) ∧ ( �16 )2 = �̃
since |Sk | + Rk > �/16. Computing expectation by
conditioning yields E[Sk�̃Vk+11Ex∗k ] = E[Sk1Ex∗k · E[�̃

V
k+1 |

Fk+1]] = 0. In addition, we have E[(�̃Vk+1)21Ex∗k ] ≤
τ 2E[�Vk+1�2�Xk+3/2 − x∗�2 · 1Ex∗k ] ≤

2τ 2�αV
μ̃Tk+1 , since

Xk+3/2 ∈ U� on event Ex∗k as proved in Lemma 7;

E[�̄Vk+1] ≤ 5μ̃
4 L2
· αVTk−1 . Then taking the expectation of both

sides of (C.1) gives:

E
�
[(Sk+1)2 + Rk+1] · 1Ex∗k

�
≤ E
�
[(Sk )

2 + Rk] · 1Ex∗k−1
�

− �̃ · E[1Ex∗k−1\Ex∗k ]+
2τ 2�αV
μ̃Tk+1

+ 5μ̃
4L2

· αV
Tk−1
. (C.2)

Using the results above, it can be shown that E[(S3)2 +
R3] ≤ 2τ2�αVμ̃T3

+ 5μ̃
4 L2
· αVT1 . By telescoping (C.2), we obtain

�̃ ·
K�
k=3
P
�
Ex∗k−1\Ex∗k

� ≤ E �[(S3)2 + R3] · 1Ex∗2 �

+
K�
k=4

�
2τ 2�αV
μ̃Tk

+ 5μ̃
4 L2

· αV
Tk−2

�

≤
K�
k=3

�
2τ 2�αV
μ̃Tk

+ 5μ̃
4 L2

· αV
Tk−2

�
≤
K−2�
k=1

�
2τ 2�

μ̃
+ 5μ̃
4 L2

�
αV

Tk
.
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Since (Ex∗k )k≥2 is a contracting sequence of events, we have�K
k=3 P(E

x∗
k−1\Ex∗k ) = P(�\Ex∗K ) = P((Ex∗K )c) and hence

P
�
(Ex∗K )

c� ≤ αV
�̃

�
2τ 2�

μ̃
+ 5μ̃
4L2

�
·
K−2�
k=1

1

Tk
.

Then ((Ex∗k )
c)k≥2 is an expanding sequence of events and

(Ex∗k )
c � (Ex∗∞ )c. By the continuity of probability measure,

P((Ex∗k )
c )� P((Ex∗∞ )c) and choosing proper (Tk )k∈N+ yields

P
�
(Ex∗∞ )

c� ≤ αV
�̃

�
2τ 2�

μ̃
+ 5μ̃
4L2

�
·
∞�
k=1

1

Tk
≤ p,

and hence P(Ex∗∞ ) ≥ 1− p.

5) PROOF OF THEOREM 4
We start by fixing an arbitrary x∗ ∈ X∗ such that X1 ∈
U�/2(x∗). Applying the standing inequality from Lemma 4
regarding x� ∈ X∗ that can be different from x∗ and taking the
indicator function 1Ex∗k−1 ∈ Fk and the inequality 1Ex∗k ≤ 1Ex∗k−1
into account, we have

E

�
D(x�,Xk+1)1Ex∗k +

μ̃

15
�Xk+1/2 − Xk−1/2�21Ex∗k | Fk

�
≤ D(x�,Xk )1Ex∗k−1 +

μ̃

15
�Xk−1/2 − Xk−3/2�21Ex∗k−1

−
�
μ̃

30
�Xk+1/2 − Xk−1/2�2 + μ̃30 �Xk − Xk+1/2�

2

+ μ̃
40
ε(Xk )

�
1Ex∗k−1

− τ �F (Xk+1/2),Xk+1/2 − x��1Ex∗k−1

+ E
�
�̂k1Ex∗k−1

| Fk
�
, (C.3)

where on the event Ex∗k−1, we immediately have Xk+1/2 ∈
U� (x∗) ⊆ U� and �F (Xk+1/2),Xk+1/2 − x�� ≥ 0. Since
E[�Vk,Xk+1/2 − x��1Ex∗k−1 | Fk] = �E[Vk | Fk],Xk+1/2 −
x��1Ex∗k−1 = 0,

�
k∈N+ δk <∞, and

�
k∈N+ 1/Tk <∞,

we can conclude that
�
k∈N+ E[E[�̂k1Ex∗k−1 | Fk]] <∞,

regardless of the specific choice of x∗. By applying the
extended version of the R-S theorem (Theorem 1), we arrive
at the following claims:
i)
�
k≥3

μ̃
40 ε(Xk )1Ex∗k−1 <∞ a.s.;

ii)
�
k≥3

μ̃
30�Xk+1/2 − Xk−1/2�21Ex∗k−1 <∞ a.s.;

iii)
�
k≥3

μ̃
30�Xk − Xk+1/2�21Ex∗k−1 <∞ a.s.;

iv) D(x�,Xk )1Ex∗k−1 +
μ̃
15�Xk−1/2 − Xk−3/2�21Ex∗k−1

converges a.s. to some L1 random variable.
These results entail that there exists a sample set �̂ ⊆
� and P(�̂) = 1 such that for any ω ∈ �̂ ∩ Ex∗∞ , the above
statements i)− iv) hold true for the deterministic sequences
(Xk (ω))k∈N+ ⊆ U7�/8(x∗) and (Xk+1/2(ω))k∈N+ ⊆ U� (x∗) and
all the indicator functions admit the constant value 1.
On account of the continuity of Px,X(−τF (x)) in x, there
exists a subsequence (km)m∈N+ such that Xkm (ω)

m→∞→ x#

and limm→∞ ε(Xkm (ω)) = ε(x#) = 0, i.e., x# is a CP of G.
We can then substitute x# for x� in iv). Since ii) suggests

that �Xk+1/2 − Xk−1/2�2(ω) k→∞→ 0, we can assert from iv)
that D(x#,Xk (ω)) admits a finite limit. In conjunction with

Assumption 4, it follows that D(x#,Xkm (ω))
m→∞→ 0 and

hence D(x#,Xk (ω))
k→∞→ 0, i.e., the base states (Xk (ω))k∈N+

converge to x#. Combining this result with (iii) yields that
the leading states (Xk+1/2(ω))k∈N+ converge to x#, and the
convergence of the actual sequence of play (X̂k+1/2,t (ω))k∈N+
to x# is directly derived from (9) and δk

k→∞→ 0.

REFERENCES
[1] Z. Jiang and J. Cai, “Game theoretic control of thermal loads in
demand response aggregators,” in Proc. Amer. Control Conf., 2021,
pp. 4141–4147.

[2] E. Campos-Nanez, A. Garcia, and C. Li, “A game-theoretic approach
to efficient power management in sensor networks,” Operations Res.,
vol. 56, no. 3, pp. 552–561, 2008.

[3] A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEE Trans. Control Syst. Technol., vol. 28, no. 3,
pp. 884–897, May 2020.

[4] Y. Wu, M. Zhang, J. Wu, X. Zhao, and L. Xia, “Evolutionary game the-
oretic strategy for optimal drug delivery to influence selection pressure
in treatment of HIV-1,” J. Math. Biol., vol. 64, pp. 495–512, 2012.

[5] S. Du, F. Ma, Z. Fu, L. Zhu, and J. Zhang, “Game-theoretic analysis for
an emission-dependent supply chain in a ‘cap-and-trade’ system,” Ann.
Operations Res., vol. 228, pp. 135–149, 2015.

[6] N. Li and J. R. Marden, “Designing games for distributed optimiza-
tion,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2, pp. 230–242,
Apr. 2013.

[7] J. F. Nash Jr., “Equilibrium points in n-person games,” Proc. Nat. Acad.
Sci., vol. 36, no. 1, pp. 48–49, 1950.

[8] P. Mertikopoulos and Z. Zhou, “Learning in games with continuous
action sets and unknown payoff functions,” Math. Program., vol. 173,
no. 1, pp. 465–507, 2019.

[9] P. Yi and L. Pavel, “An operator splitting approach for distributed
generalized Nash equilibria computation,” Automatica, vol. 102,
pp. 111–121, 2019.

[10] T. Tatarenko,W. Shi, and A. Nedić, “Geometric convergence of gradient
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