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In a recent paper (Zhao et al, Phys Rev X, 2022, 12: 031,021), we reported
experimental observations of “ultrastable” states in a shear-jammed granular
system subjected to small-amplitude cyclic shear. In such states, all the particle
positions and contact forces are reproduced after each shear cycle so that a
strobed image of the stresses and particle positions appears static. In the
present work, we report further analyses of data from those experiments to
characterize both global and local responses of ultrastable states within a shear
cycle, not just the strobed dynamics. We find that ultrastable states follow a
power-law relation between shear modulus and pressure with an exponent § =
0.5, reminiscent of critical scaling laws near jamming. We also examine the
evolution of contact forces measured using photoelasticimetry. We find that
there are two types of contacts: non-persistent contacts that reversibly open
and close; and persistent contacts that never open and display no measurable
sliding. We show that the non-persistent contacts make a non-negligible
contribution to the emergent shear modulus. We also analyze the spatial
correlations of the stress tensor and compare them to the predictions of a
recent theory of the emergent elasticity of granular solids, the Vector Charge
Theory of Granular mechanics and dynamics (VCTG) (Nampoothiri et al., Phys
Rev Lett, 2020, 125: 118,002). We show that our experimental results can be fit
well by VCTG, assuming uniaxial symmetry of the contact networks. The fits
reveal that the response of the ultrastable states to additional applied stress is
substantially more isotropic than that of the original shear-jammed states. Our
results provide important insight into the mechanical properties of frictional
granular solids created by shear.

KEYWORDS

reversibility, jamming, elasticity, friction, granular microstructure, cyclic shear, stress
correlation, yielding

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphy.2022.1048683/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1048683/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1048683/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1048683&domain=pdf&date_stamp=2022-11-28
mailto:yiqiuzhao@ust.hk
mailto:socolar@duke.edu
https://doi.org/10.3389/fphy.2022.1048683
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1048683

Zhao et al.

1 Introduction

Granular materials are athermal collections of particles that
interact with each other only when they form direct, frictional
contacts. These materials can jam into solid packings that
statically resist applied stresses [3-8]. Shear-induced jamming
occurs in a variety of disordered, complex systems, including
granular suspensions [9-11] and dry granular materials with
[12-17] or without friction [18-20]. The stability of shear-
jammed states, however, remains at best partially understood.
In a recent experiment [1], the stability of shear-jammed states in
a frictional granular system was systematically examined by
monitoring their evolution under small-amplitude, volume-
conserving cyclic shear. Many shear-jammed packings relaxed
to a stress-free, diffusive steady state under cyclic strain
amplitude as small as 1%. However, in some cases, the shear-
jammed system relaxed into an unexpected state in which all
microscopic degrees of freedom, including particle positions,
and contact forces, remain the same for
of These
“ultrastable” to distinguish them from originally formed

orientations,
thousands shear cycles. states were termed
shear-jammed states that would deform plastically under a
single shear cycle with same strain amplitude. They emerged
in athermal, frictional granular packings and are thus
qualitatively different from the states of glasses obtained using
vapor deposition that have also been termed ultrastable [21].
Nevertheless, the two systems are similar in that the ultrastable
shear-jammed granular packings have smaller pressure and
behave more like an elastic ordinary solid than other shear-
jammed packings, and ultrastable glasses have lower energy and
are more stable against shearing than ordinary glasses [21, 22].

In our earlier work [1], we found that a reversibility transition
and a jamming/unjamming transition coincide at the phase
boundary between the two types of nonequilibrium steady
states induced by cyclic shearing: the ultrastable states that
return to the same microscopic configuration after each cycle
and the fluid-like unjammed states in which particles undergo
diffusive displacements. Without changing the volume fraction,
the different types of steady states can be realized by changing
either the shear strain y; used to form an original shear-jammed
state or the cyclic strain amplitude dy. A stability diagram is given
in Ref. [1]. Notably, ultrastable states formed by larger y; survive
under larger §y. The transition from ultrastable states to
unjammed states with increasing §y or decreasing y; may be
viewed as a yielding transition. This transition is similar to the
oscillatory yielding of amorphous solids [23-27], which is
accompanied by a microscopic reversibility transition that can
be classified as an absorbing-state transition [25, 28, 29]. The
ultrastable states reported in Ref. [1] are both reversible and
mechanically stable and are thus similar to the absorbing states of
amorphous solids under cyclic shear with a strain amplitude
below the threshold for oscillatory yielding [25], but different

from other absorbing states that do not have a mechanically
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stable structure as in the case of dilute suspensions [30]. The
global stress-strain curves for the ultrastable states reported in
Ref. [1] appear to be highly elastic, but the internal deformation
occurring within individual shear cycles was not examined for
evidence of reversible plastic events [26] or loops in particle
trajectories [31-33].

In addition to characterizing the grain scale deformations
occurring in the ultrastable state, we study the relation between
the global elasticity features and the local stresses at the grain
scale. A recent theory, termed the Vector Charge Theory of
Granular mechanics and dynamics (VCTG) [2, 34], suggests a
promising approach for relating the global elastic behaviour to
features of the contact forces between individual particles. VCTG
is a stress-only framework for amorphous solids; it does not rely
on a unique reference structure to define strain. This theory maps
the mechanical response of granular solids to the static, dielectric
response of a tensorial electromagnetism with the electric
polarizability of the medium mapping to emergent elastic
moduli. VCTG relates the spatial correlations of the stress-
tensor to these elastic moduli, which emerge from the
underlying contact and force network. While previous
experiments confirmed some features of the stress correlation
functions predicted by the theory [2], there has not been a direct
comparison of the elastic constants obtained from fitting the
stress correlations to the elastic constants measured from stress-
strain curves in experiments. It is thus of interest to examine our
data in the framework of such a theory.

In the present work, we report a detailed analysis of the elastic
properties of the previously reported ultrastable shear-jammed
states [1]. We find that the emergent shear modulus follows a
power-law relation with pressure with an exponent consistent
with some numerical models. However, the shear response
contains a special non-linear feature: there are many contacts
that reversibly open and close under low amplitude cyclic shear.
These non-persistent contacts contribute a non-negligible
portion to the global effective shear modulus. We also
examine the relation between the global elastic constants and
internal stress correlations predicted by VCTG. The analysis
leads to intriguing scalings of the emergent elastic properties of
the system and uncovers a feature that reflects how cyclic shear
modifies the elastic properties of a jammed packing. Our results
bring new insights to the elasticity of frictional granular materials
near jamming.

2 Materials and methods

The analyses in the present paper are performed on the same
set of experiments reported in Ref. [1]. In this work, we focus on
the evolution of the system within several shear cycles after an
ultrastable state is formed while Ref. [1] focused on the strobed
states. The materials and experimental protocols are briefly
summarized here. More details can be found in Ref. [1].
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FIGURE 1

Experimental protocol and the ultrastable states. (A) A schematic top view of the multi-slat shear cell. Bottom slats move together with
boundary walls to impose a uniform simple shear profile. (B) The applied strain as a function of time. An initial large forward shear is followed by
multiple periods of small-amplitude cyclic shear. The shear rate is always in the quasistatic regime. The light blue rectangle indicates the period of
interest for the present work. Open circles schematically indicate the times of data snapshots. Both (A) and (B) are adapted from Ref. [1] (C—F)
Snapshots of the force chain network for four independent runs with different y,. Each column shows images in the original configuration, the shear-
jammed configuration following the initial forward shear, and the configurations reached after 1000 and 2000 shear cycles. As indicated by the
shapes of the original configurations, the initial forward shear used to reach the rectangular configuration increases from left to right. All systems in
(C—F) have same packing fraction ¢ =0.816, and the amplitudes of the cyclic shear are the same dy =0.95%. The images are taken through a
polariscope and thus only particles that bear finite stress are visible. Two ultrastable states are formed in (E) and (F) as the system locks in jammed

states that do not change over at least a thousand shear cycles.

Our model granular system consists of a bidisperse layer of
photoelastic disc with same height, 6.8 mm, but different
diameters: d,, = 15.9 mm and d, = 12.7 mm. The static friction
coefficient between the particles is y; = 0.87 + 0.03. Under static
diametric loading, the normal contact force law is roughly
Hertzian. For a small disc squeezed between to rigid surfaces,
we measure

fo= 2(0/d)" M
where f;, is the normal contact force, 6/d; is the diametric strain, r;
is the radius of the small disc, and €, = 2.73 N-m. (This expression
slightly overestimates the weak forces. Details on contact force
law calibration are given in Appendix A of Ref. [1].) The discs are
placed in a simple shear box with a parallelogram boundary and a
multi-slat base that promotes homogeneous shear when the angle
between the boundaries changes. A schematic of the shear
apparatus is shown in Figure 1A, and more details can be
found in Refs. [35, 36]. The number of particles is fixed at
1040 for all experiments. The area of the shear box is also
kept constant throughout. The packing fraction, defined as the

Frontiers in Physics

03

total area of particles divided by the area of the shear box, is ¢ =
0.816 for all experiments, which is below the frictionless isotropic
jamming point ¢; = 0.835 estimated using the same
apparatus [35].

At the beginning of each experiment, the particles are
randomly placed in a zero-stress, unjammed configuration.
When the boundary walls impose a volume-conserving simple
shear deformation, the parallel bottom slats move accordingly to
impose a uniform internal shear strain field. Static friction causes
the particles to move with the slats in an unjammed
configuration. Such a substrate-assisted shear protocol avoids
boundary-induced density heterogeneity and leads to
homogeneous shear-jammed states [36]. The frictional forces
between particles and the slats are, however, much smaller in
magnitude than the mean contact force in the jammed states.

Starting from the unjammed initial state, each shear
experiment consists of two stages: (i) an initial shear that
forms a shear-jammed state; and (ii) a number of consecutive
shear cycles that cause the shear-jammed state to transform. The
two stages are sketched in Figure 1B. In the initial shear stage, we
apply a shear strain p; that transforms an initial chosen
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parallelogram into a rectangle. Note that the jammed states
formed by different y; have different features of the contact
and force networks [12, 14, 37]. In the cyclic shear stage, we apply
a series of N small-amplitude shear cycles with strain amplitude
0y < yr. The value of N is at least 1500, and the largest one we
used is 4800. In this stage, we only monitor states before and after
each complete shear cycle, as sketched by the small circles in
Figure 1B. In the last two or three cycles, where an ultrastable
state has been formed, we also record images of the system within
the shear cycles. The present work focuses on these cycles, as
highlighted by the light blue region in Figure 1B.

At all stages, the imposed shear can be considered quasistatic; the
system reaches mechanical equilibrium much faster than the overall
shearing rate [1]. A high-resolution camera is used to take images of
the system, and physical quantities of interest are measured using
image processing techniques. For each state of interest, we measure
all the vector contact forces between individual particles using a
nonlinear fitting algorithm [38], details of which can be found in
Appendix C of Ref. [1]. The stress tensor is calculated from the
measured contact forces as in Refs. [12, 39, 40].

1 @&
G=< D r®f; ®)
S it

where f;; is the vector force applied to partilce i particle by the
particle j, r;; is the displacement of the contact point of particles i
and j from the center of particle 7, and the summation runs over
particle indices i and j from 1 to the number of particles N,. We
exclude the particles that are in direct contact with the boundary
walls, and Sin Eq. 2 is the total Voronoi area for the particles that
do not belong to the boundary layer.

Ultrastable states are formed when y; is large and dy is small. For
smaller y; or larger dy, the system relaxes to an unjammed, fluid-like
state. Figure 1 shows snapshots illustrating the different behaviors.
Figures 1C-F shows example images obtained from typical runs with
different y;. All of the images are taken through a polariscope so that
only the discs supporting finite stress are visible. The second row
(labeled n = 0) shows the stress state after the initial shear y;, and the
third and fourth rows show the states after 1000 and 2000 shear cycles
with 8y = 0.95%. The nearly blank images in columns (C) and (D)
indicate that the system has relaxed to a steady state with nearly zero
pressure. The close similarity between images in the third and fourth
rows of columns (E) and (F) indicate that ultrastable states are
reached within 1000 cycles. Our focus in this paper is on the elastic
properties of these ultrastable states.

3 Results
3.1 Emergent shear modulus

We first examine the global shear modulus G for the
ultrastable states under cyclic shear. The insert panel of
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Figure 2A plots an example oy, evolution in a shear cycle. The
filled red circle is the ultrastable state being considered. The
behavior appears similar to a viscoelastic material in a highly
elastic regime. The finite area enclosed by the curve suggests that
there is measurable energy dissipation inside the system,
although this hysteresis in the stress-strain curve is much
smaller than that of shear-jammed states formed by initial
shear alone [1]. The microscopic mechanisms responsible for
this small dissipation could be the sliding of particles over the
base and the confining walls or the sliding at inter-particle
contacts. We have examined the distribution of the tangential
to normal contact force ratio and find that most force-carrying
contacts are far from the Coulomb threshold for sliding.
However, we cannot exclude the existence of reversible sliding
at weak contacts. In addition, the viscoelasticity of the
polyurethane photoelastic discs leads to small but measurable
hysteresis in the force-displacement curve for a single particle
under cyclic diametric loading, as shown in Appendix A in Ref.
[1]. This material effect may also contribute to the global
hysteresis in the stress-strain curve.

From numerical simulations, it is known that both the elastic
constants and the stresses of jammed granular materials follow
scaling laws in the vicinity of the jamming point [41-43]. While
the exponents associated with stresses and contact numbers have
been examined in experiments [4], the scaling of elastic moduli
remains largely unexplored, especially for frictional systems.
Previous experiments measured the scaling indirectly through
acoustic propagation [44]. Our experimental system allows us to
study the scaling of the shear modulus of the ultrastable states.

We define the shear modulus G as the slope of the curve in
the vicinity of the ultrastable state. In practice, we fit a straight
line to the rising branch of the curve and obtain the fitted slope.
The jamming point has zero pressure. Thus, the pressure p serves
as the measure of distance to the jamming point. While the excess
contact number may be a more fundamental quantity, pressure is
measured with higher accuracy than contact number in
photoelastic experiments. Thus, in this paper, we focus on the
relation between G and p. We also note that this relation is of
great engineering interest [44], as in real applications it is easier
to control the pressure in a packing than the average contact
number. Figure 2A shows the measured values of G plotted as a
function of pressure for various small values of dy. Without any
rescaling, the data falls on a single curve, suggesting that all the
ultrastable states are governed by a universal scaling relation
despite the rather special protocol used to generate them. The
independence of dy also suggests that the ultrastable states are
below the onset of softening [45]. The solid curve shows a power-
law fit of the form

G= Gopﬁ» (3)

with the fit parameters Go = (95 + 15)N/m and f3 = 0.50 + 0.06. A
log-log plot of same data is shown in Figure 2B. Interestingly, the
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The emergent shear modulus of ultrastable states formed by different y, and dy as a function of pressure. (A) Insert: an example evolution of
shear stress o, versus strain under cyclic shear for an ultrastable state. The shear modulus G is defined as the slope of the forward branch of the curve.
Main panel: Measurements of the shear modulus G for the ultrastable states created by cyclic shear with different strain amplitude dy. Each data point
corresponds to an independent packing. The brown axes show the corresponding dimensionless values for pressure and shear modulus where
rsand e are from Eq. 1. The black curve shows a power-law fit of the form G oc p# with § =0.5. (B) Log-log plot of the data as in the main panel of (A).

shear modulus measured using sound propagation exhibits
similar dependence on pressure [44]. Numerical simulations
with frictionless spherical particles near jamming interacting
through linear spring force laws also show = 0.5 for both
isotropic [41, 43, 46] and shear-jammed systems [19]. For
frictionless Hertzian contact models simulations give § = 2/3
over the range of dimensionless pressures studied in our system
[41, 47]. Simulations of 2D packings of frictional spheres with
Hertz-Mindlin forces and with friction coefficients similar to
ours show 8 between 1/2 and 2/3 [42]. As mentioned above, the
contact force law between our discs is roughly Hertzian, and our
measured f3 appears similar to those obtained in numerical
simulations. In addition, the range of dimensionless pressures
in our experiments falls in the range studied in simulations,
suggesting that our system is indeed close enough to the jamming
point to be in the scaling regime. We note that a recent
simulation of 2D frictional particles under oscillatory shear
with linear-dashpot contact model also found 8 = 1/2 for the
small-strain plateau shear modulus [45]. Another recent
simulation shows that f can be different for deformable
particles whose shape is controlled by surface tension rather
than internal bulk stresses [48].

3.2 Persistent and non-persistent contacts

The internal deformation of the system exhibits non-trivial
features. Particle displacements are non-affine, and many force-
bearing contacts are activated and deactivated reversibly during a
shear cycle. These contacts contribute to the emergent elastic
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moduli through a nonlinear process that can not be predicted by
analyzing a single contact network.

We here report experimental characterizations of the two
types of contacts that contribute to the emergent elastic modulus
of the packing in a shear cycle. The non-persistent contacts are
those that break reversibly during a shear cycle, while the
persistent contacts never break once the ultrastable state is
reached.

3.2.1 Non-persistent contacts

We first demonstrate the existence of non-persistent
contacts in an example ultrastable state formed by initial
shear y; = 14.7% and cyclic shear amplitude §y = 0.95%. After
the system has settled in the ultrastable state for thousands of
cycles, we examine the response of the system during the next
three shear cycles. Figure 3A plots the global shear strain for
these three shear cycles.

We show that the contact between particles 672 and
827 shown in Figure 3C is a non-persistent contact. The
magnitude of the normal component of the contact force, f,,
on this contact is plotted in Figure 3B. It reversibly drops to zero.
To further show that the contact actually opens, we show
snapshots of the system in five typical states A to E in
Figure 3C. In state D, as shown by the snapshot in the third
column of Figure 3C, the contact is clearly opened. In state B, the
clearly visible photoelastic fringes confirm that the contact is
carrying finite forces. Thus, this contact opens and closes
reversibly in a shear cycle, and is called a non-persistent
contact in this paper. See Supplementary Video S1 for a video
of this process. Note that the evolution of f, is consistent with the
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FIGURE 3

Non-persistent and persistent contacts. All data in this figure are from a single example ultrastable state formed by y, =14.7% and 8y =0.95%. (A)

The boundary shear strain as function of shear steps during three shear cycles with same strain amplitude after the ultrastable state is formed (i.e., the
strobed states remained unchanged for at least a thousand of cycles before the three cycles shown here). Each shear cycle contains 20 shear steps.
(B) The normal force magnitude, f,,, on the contact between particles 672 and 827 (purple circles) and on the contact between particles 672 and

381 (blue stars). The horizontal dashed line marks a threshold value 0.01 N. The number of shear steps that a contact remains open is noted as topen.
(C) Snapshots of regions from five different states taken from the cycle shown in (A). Each column shows, from top to bottom, a small region of the
packing imaged without the polarizer, the same region imaged through the polarizer, a region around a single contact (particles 672 and 827) imaged
without the polarizer, and the same region imaged with the polarizer. Note that in column D, contact 672—-827 is clearly opened (see the visible gap
between particles in the third row), while in B it bears a force ~ 0.1 N. The shape at the bottom of each column shows the boundary configuration of
the shear cell. See Supplementary Video S1 for a video of this process. (D) Scatter plot of popen, the ratio between topen and the total number of shear
steps per cycle, versus fn max, the largest f,, over a shear cycle, for all contacts. The contacts in the purple region are selected as the non-persistent
contacts and are indicated by purple circles in (G). (E) Scatter plot of f, min, the smallest f,, over a shear cycle, versus f,, max for all contacts. The contacts
in the blue region are selected as the persistent contacts and are indicated by blue line segments in (G). (F) The probability density function for the
discrepancy between the measured action and reaction normal forces. The black curve shows a Guassian fit with a width near 0.03 N. (G) Image
showing the classified contacts. Purple circles mark non-persistent contacts and blue line segments indicate persistent contacts. Stressed particles
that have unclassified contacts are unmarked but visible in underlying polarized image taken at state A as shown in (A).

global shear. The branch vector pointing to contact To quantitatively classify the contacts and characterize the

672-827 from the center of particle 672 is roughly parallel to
the y' direction (see Figure 1A), along which the system is
compressed from state A to state B and is stretched from B to
D. Accordingly, f, on contact 672-827 grows from A to B and
drops from B to D, during which it opens.

Frontiers in Physics

behavior of the non-persistent contacts, we consider two
characteristic quantities: (1) the fraction of time that the
contact is open, popen, defined as the number of steps in one
complete shear cycle for which f, < 0.01 N divided by the total
number of steps in the cycle; and (2) the maximum value of f,, for
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No evidence of sliding at persistent contacts. All data in this figure are from the same ultrastable state as in Figure 3. (A) The evolution of y = f/f,,

for an example persistent contact over three consecutive shear cycles. (B) The evolution of forces on several example persistent contacts. Different
colors represent different contacts. See Supplementary Video S2 for one example. The two dashed lines mark the conditions for the onset of sliding,
where s =0.87 is the static friction coefficient. The grey regions are inaccessible. The black data corresponds to the example contact shown in

(A). The inserted schematic plots the sign convention for the tangential force components. (C) The number distribution of Ay for all persistent
contacts. The dashed line marks the value expected for a sliding contact.

this contact over the whole shear cycle, f,, max. Figure 3D shows a
scatter plot of f;, max and popen for all contacts measured over three
consecutive shear cycles.

By definition, a non-persistent contact should have a non-
Z€10 Popen AN @ NON-ZETO f;, max. FOT present purposes, we detect
the non-persistent contacts with popen > 0.1 and fj, max > 0.06 N
(the points in the purple region in Figure 3D. We intentionally
choose a large value for p.e, to ensure that the contact actually
opens and a large value for f; max to ensure that the contact
actually closes. We emphasize that the goal here is to demonstrate
the existence of non-persistent contacts and their relevance in
contributing to the elastic responses of the packing. This
conservative classification method ensures that a positive
result is meaningful.

The threshold for f,, may is chosen based on the uncertainty of
our force solving algorithm. Figure 3F plots the probability
density function of the difference between action and reaction
contact forces determined by our fitting algorithm for all contacts
detected in 61 jammed states over the three shear cycles. The
width of this distribution is an estimation of the uncertainty of
our force measurements because Newton’s third law ensures that
these differences must actually be zero. A Gaussian fit gives a
width around 0.03 N. Thus, a contact is convincingly closed at
least once in a shear cycle if f;, . > 0.06 N.

The threshold for pope, is chosen based on our sampling
frequency. For a shear cycle with strain amplitude 8y = 0.95%,
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there are 20 quasi-static data collection steps per cycle, as shown
in Figure 3A. Thus, the resolution of popen is 1/20. Therefore, we
expect that a threshold value of 1/10 probes contacts that actually
opens during a shear cycle. In Figure 3D there appear to be some
data points with pye, between 0 and 1/20 because they are
averaged values over three shear cycles.

The detected non-persistent contacts for the example
ultrastable state are plotted on top of the photoelastic fringes
in Figure 3G. These contacts are scattered in space and do not
form a percolating network. As a measure of the prevalence of
non-persistent contacts, we calculate fnpc, the number of non-
persistent contacts divided by the total number of contacts that
were ever closed during a shear cycle. Figure 5A plots fupc as a
function of the initial shear strain yy for ultrastable states formed
using same 8y = 0.95%. We find that f,,,, is larger for smaller y;
and can be as large as about 10%.

Notably, reversible plastic events observed in frictionless
systems (e.g. in two-dimensional foams [49]) also involve
reversibly activated inter-particle contacts. A distinction in our
frictional system is that there is no obvious T1 event as observed
in Ref. [49]. For example, the reversible activation of contact
672-827 in Figure 3C is not accompanied by a neighbor
switching event for the four particle 672, 827, 381 and 584. In
other words, there is no obvious local plastic event triggered by
an opening of a non-persistent contact. Thus, the particles with
non-persistent contacts are not equivalent to bucklers in isostatic
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frictionless packings [50], where breaking a contact will
immediately induce the formation of a new contact.

3.2.2 Persistent contacts

For an ultrastable state, most of the contacts are persistent;
they remain closed throughout the shear cycle. One example is
the contact between particles 672 and 381, shown in Figure 3C. It
always bears a finite normal force component f,, under cyclic
shear, as shown in Figure 3B. In practice, we classify a contact as
persistent if the minimum normal force during a whole cycle,
fo,min» 18 greater than 0.06 N. The threshold is chosen as twice our
force measurement uncertainty to make sure that f; ,in is
convincingly larger than 0. Figure 3E plots all the contacts for
the example ultrastable state in the f,, i and f, max plane; all the
contacts in the light blue region are classified as persistent
contacts.

Unlike the scattered non-persistent contacts, the persistent
contacts form a percolating network. Figure 3G shows the
network formed by the persistent contacts (light blue lines).
Notably, the persistent contact network formed shown in
Figure 5G features large holes reminiscent of the sponge-like
structures revealed by rigidity analysis [51].

We find that there is no measurable sliding at the persistent
contacts. The ultrastable states show the same strobed state over
thousands of shear cycles, and the particles do not rotate from
cycle to cycle, as can be seen from the supplementary videos of
Ref. [1]. The lack of rotation contrasts with recent experiments
where particles do not move much but rotate significantly
under cyclic loading, displaying contact sliding that leads to
energy dissipation [52, 53]. For an ultrastable state, there should
be only two possible cases for a given persistent contact: (1)
there is no sliding at contact; or (2) the two particles slide
against each other during a shear cycle but return to the same
position and stress states after a complete cycle. In the latter
case, the tangential to normal force ratio y = fi/f,, should reach
both + ps and — g in a cycle, where yg = 0.87 is the static friction
coefficient of the particles. The evolution of ¢ on an example
contact is shown in Figure 4A. We measure the magnitude of
variation of y, denoted as Ay in Figure 4A. The example contact
plotted in Figure 4A has the largest Ay among all persistent
contacts in the ultrastable state shown in Figure 4. In an
ultrastable state, a contact that slides must have Ay = 2u,. (If
sliding occurs in only one direction during the cycle, it would
necessarily produce relative rotations of the two particles,
which is not observed.) Figure 4C plots the number statistics
of Ay for all persistent contacts in the example ultrastable state
shown in Figure 3. Clearly, almost no persistent contact has Ay
near 24, suggesting that these is no reversible sliding. We note
that rolling without sliding is allowed and was observed at
persistent contacts, but a complete characterization of rolling is
beyond the scope of this paper. For completeness, we show the
evolution of some example persistent contacts in the (f,, f;)
space in Figure 4B. We did not perform the same analysis to
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non-persistent contacts because the measured y becomes
unreliable for weak forces due to the resolution limit of
photoelastic ~ force  measurements.  Extremely  slow
accumulation of plasticity induced by ratchet-like sliding on
weak contacts, as found in numerical simulations [54, 55],
cannot be completely ruled out.

The conditions that we used to identify persistent contacts
and non-persistent contacts give high true positive ratio and a
small true negative ratio. There are many contacts in our system
that do not satisfy either criterion. Whether these contacts are
persistent or non-persistent could conceivably be resolved in
future experiments with higher force, distance, and time
resolutions. These unclassified contacts are not plotted in

Figure 3G.

3.2.3 Contribution to the global elastic modulus

We now show that the non-persistent contacts contribute a
non-negligible amount to the emergent global elastic modulus.
We calculate the shear stress contributed from the non-persistent
contacts (npc) as

1
Tos 2

overallnpc (i, ])

4)

Tijufijy

where the summation is only over all non-persistent contacts.
Figure 5B plots the total o, and 0% for an example ultrastable
state under cyclic shear. The contribution from non-persistent
contacts to the shear modulus, Grpo 18 the slope of aﬁg’f,
sketched in Figure 5D. Figure 5C plots the ratio Gp./G for
ultrastable states formed under §y = 0.95% but different y;. We

see that the contribution to the shear modulus from the non-

as

persistent contacts can be as large as 10% for y; near the onset
value for creating ultrastable states, and the actual contribution
could be even larger because some unclassified contacts are likely
non-persistent ones. Thus, the non-persistent contacts make an
appreciable contribution to the mechanical response of our
ultrastable packings. In addition, the importance of the non-
persistent contacts suggests that grains that might be identified as
rattlers during some portion of the cycle may actually contribute
to the elastic behavior observed for finite amplitude shear
deformations. It also worth mentioning here that the scaling
relation of Eq. 3 is a global relation that contains contributions
from all contacts. A detailed discussion of the separate
contributions of persistent and non-persistent contacts to G(p)
is beyond the scope of the present paper.

3.3 Particle center trajectories

Characterizing the particle motion within a shear cycle gives
valuable insights into the nature of the mechanical responses of
the packing. If an ultrastable packing deforms like a linear elastic
continuum, all the particle displacements should define an affine
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FIGURE 5

Statistics of the non-persistent contacts and their contributions to the emergent shear modulus. (A) The fraction of non-persistent contacts,
defined as the number of non-persistent contacts divided by the total number of contacts, plotted for ultrastable states formed under same
8y =0.95% but different initial strains y,. Error bars are standard deviations computed from multiple ultrastable states with same y,. (B) The shear stress

contributed from all contacts, a,,, and the shear stress only from the non-persistent contacts, oy,

W for an ultrastable state under three

consecutive shear cycles. (C) The ratio between Gp,c and G calculated from ultrastable states with same dy =0.95% but different y,. Error bars are

standard deviations computed from multiple ultrastable states with same y,. (D) shows a zoom-in to the purple curve (oyy

deformation field. However, in our ultrastable states, the particles
display clearly detectable, spatially correlated, non-affine
displacements. In addition, some particle trajectories form
loops with measurable enclosed area.

Figure 6A shows all the particle center trajectories in a shear
cycle for the example ultrastable state shown in Figure 3. The
trajectories are nearly vertical lines that appear roughly
consistent with an affine simple shear deformation field,
suggesting that both the non-affine displacements and the
enclosed loop areas are small. Figure 6B plots the non-affine
displacements of particles measured in the strain interval
between state B to state D in Figure 3A. Here, the non-affine
displacement of particle i, dry,,, is defined as

Zi"l@(l.Srs —|x; — le)(?rj

Z?i’;@(l.Srs —|xi - xj|) ®

5rna,i = 61',‘ -

where ©(x) is the Heaviside step function, x; is the x coordinate of
particle i, dr; is the real displacement of particle i, 7 is the radius
of the small particle, and N, is the total number of particles. In
Figure 6B, the arrows are colored according to the magnitude of
the non-affine displacements |0r,,,|, and the lengths of the arrows
are 20 times |Jr,,,|. While the particles go back exactly to the same
position after a full cycle, it is clear that their displacements
within a shear cycle often contain significant non-affine
components. In the future, it could be interesting to compare
our results to a recent theory which considers non-affine
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npc

) in (B).

deformations while assuming no sliding at frictional
contacts [56].

We further show that there are measurable loops formed by
particle center trajectories, and also by the non-affine center
trajectories. Figure 6 shows center trajectories (C-E) and their
corresponding non-affine center trajectories (F-H) calculated from
Eq. 5 for three example particles over three consecutive shear cycles.
Note that the non-affine displacements appear noisier because they
are near the accuracy of our particle center detection (about 0.01d).
The trajectory in (C) clearly is a loop and the one in (E) does not
show measurable area. For the non-affine trajectories, only (G) shows
a noticeable loop above the noise level. In numerical simulations of
frictional granular systems, loops in particle trajectories [31] and in
non-affine trajectories [32] were observed. In particular, the areas of
these loops were found to obey a scaling relation with the elastic
moduli of the system [32]. While relating these loops to global elastic
responses is beyond the scope of the present paper, our work
establishes their existence in this experimental frictional granular

system.

3.4 Stress correlations and emergent
properties

To obtain more insight on the stress responses of the
ultrastable states, we consider the Vector Charge Theory of
Granular mechanics and dynamics (VCTG) [2, 34]. VCTG
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Particle center trajectories display non-affine components and loops. All data in this figure are from the same example ultrastable state as in
Figure 3. (A) Particle center trajectories averaged over three complete shear cycles plotted on top of an unpolarized image taken at the start of a cycle
(state A in Figure 3A). The color of trajectories indicates the normalized enclosed area of the trajectory A/As, where A is the area of the small disc.
Particle outlines are also colored as a guide to the eye. (B) The non-affine displacement field from state B to state D in Figure 3A superimposed

on the same unpolarized image as in (A). The arrow lengths are 20 times larger than the actual displacements, and colors indicate the displacement
magnitudes |8r,a|/ds, where d is the diameter of the small disc (C—H) Three example particle center trajectories (C—E) and their corresponding non-
affine trajectories (F=H) calculated using Eq. 5. In (C=H), each data point on the black curve represents an average over three consecutive shear
cycles in the ultrastable state. The trajectories for each of these cycles are also plotted.

relates features of the stress correlations in the continuum limit to
emergent elastic properties of the packing. We show that such a
theory predicts forms of stress correlations that reasonably match
our data. Notably, the results obtained from fitting the data to
VCTG predictions uncover a feature that distinguishes the
ultrastable states from the original shear-jammed states
formed by initial shear alone.

3.4.1 Defining ensembles with similar stress
states

To obtain the correlation functions, we group ultrastable
states with similar stress fields to form ensembles and calculate
the averaged correlation functions over these ensembles. As
shown in Figures 7A,B, we show that all ultrastable states fall
roughly on a same curve when plotting the non-rattler contact
number Z,, versus pressure p or when plotting the shear stress
oy, versus p. This observation suggests that we group states
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according to p, and the states with similar p will have similar
0y, and Z,,. Specifically, we group states with a pressure
interval of 3N/m, and the averaged state variables for
ultrastable states in these intervals are plotted using purple
circles in Figures 7A,B. The error bars mark the standard
deviations.

For completeness, we also plot data from the original
shear-jammed states that are formed by initial shear only in
Figures 7A,B. Comparing ultrastable states and original states
provides additional insights into how cyclic shear modifies
the mechanical properties of a jammed granular packing.
Notably, for packings with similar p, ultrastable states
usually contain more contacts and exhibit lower shear
stress, suggesting that they are more stable and less
anisotropic. We also group the original states according to
intervals of pressure and apply the same stress correlation
analysis below.
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Group ultrastable states and original states into ensembles according to their stress states. (A) The pressure of the original shear-jammed states
formed by initial shear alone (gray dots) and of the ultrastable states (purple dots) plotted versus the non-rattler contact number. The averaged values
for states used in calculating stress correlations are also plotted. (B) The shear stress of the original shear-jammed states formed by initial shear alone

(gray dots) and of the ultrastable states (purple dots)
correlations are also plotted.

3.4.2 Stress correlation functions

We calculate the correlation functions between components of
the stress tensor following the procedure detailed in Ref. [2] and Ref.
[34]. We note that it is more convenient to examine the stress
correlation functions in a reference frame x'y’ that is rotated 45° from
the original reference frame xy (see Figure 1). After the rotation, x’ is
the principal dilation direction and y’ is the principal compression
direction of the initial shear. The force chains in Figure 3G mostly
align with direction y’. We consider below correlation functions and
stress tensor expressions in this rotated frame.

The correlation functions in Fourier space are calculated as
follows [2].

Cirjer (‘1) = <6~0i’j’ (q)&fk'l' (—q)>, (6)

where 807y = 0y — {oyy) and {oy;) is the spatially averaged
value in a packing and the () in Eq. 6 refers to average over

different packings in an ensemble, and

8~0,-r]-r (9 =— J oy (r)e"9*dr. (7)

We have used primed indices to emphasize that all the
calculations are done in the rotated frame x'y’. More details
on the calculation of the stress correlation functions are provided
in the Supplementary Material S1.

As an example, Figure 8 shows the six stress-stress
correlation functions in Fourier space obtained from an
ensemble that contains 6 packings with a averaged pressure
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plotted versus pressure. The averaged values for states used in calculating stress

p = 8.6 + 0.7 N/m. We note that the general features of the
correlation functions are consistent with those reported in Refs.
[2, 34], including the pinch-point singularities at |q| — 0 and the
obvious radial variation for wavelengths shorter than about 44,
where the continuuum theory is affected by the granularity of the
medium. In Figure 8 all correlation functions are normalized by
B, a parameter in the VCTG fitting form, which is presented
below (Eq. 17). Correlation functions for ultrastable states with
other stress states share similar features.

3.4.3 Elastic moduli from stress correlations

The emergent elastic moduli appear in the VCTG predictions
of stress correlations, and we compute these by fitting the data.
We first extract the angular dependence of the correlation
functions in the long-wavelength limit and compare them to
the VCTG predictions. Specifically, for each correlation function,
we average the data in a radial range between 277/6d, and 271/16d,
and plot the radially averaged data versus the azimuthal angle 6.
Note that 164 is the size of the region of interest that we used to
calculate these correlation functions, and 4d; is the length below
which the correlation functions clearly deviates from the values at
smaller |q|. The radially averaged correlation functions are
plotted in Figure 9 for ultrastable states with different stress
states as labeled by color. Note that each curve is averaged over
several independent experimental realizations. We believe the
scattering of data originates from that the number of packings
used in the averaging process is rather small, and our system is
not large enough. Nonetheless, we find that these curves can be
reasonably characterized by the VCTG predictions.
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Stress correlation functions in the Fourier space averaged over 6 ultrastable states with similar stress states. The mean pressure for the 6 states
used in the averaging process is p =8.6+0.7 N/m. All the correlation functions are normalized by B from the VCTG fitting (Eq. 17). Note that
Cijier (@) = S0y (q)dayp (-q)) by definition, and x" and y' are the principal dilation and compression directions of the initial simple shear strain field

(Figure 1A)

A key prediction from the VCTG theory is the form of the
stress correlation functions in the long-wavelength limit [2].

Cirpwr (Q) = €ra€jp€rc€raqaqvdcqda<v (Q)v (—q))> ®)
where
-1
W@y (-a) = (4 @Arprdir (@) s ©)
and
Ay = q26i’j’ - q/q;- (10)

Einstein notation applies to Eqs. 8-9, where € and &y
denote the Levi-Civita symbol and Kronecker delta. Detailed
derivations of Eq. 8 can be found in Refs. [2, 34]. Here, the only
unknown variables are the elements of the 4-rank tensor A. These
elements will be obtained by fitting the experimentally calculated
stress correlation functions to Eq. 8. In the VCTG framework, A
maps to the inverse elastic constant tensor. Using the symmetries

of the elastic constant tensor Ay = Ajixy and Ay = Ay, there is

-1
W (Qy(-q) = (gyA+qiB+qq,C - q.q,D - 40q,€)
1y
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where

A= A

B = Agn

C = Anxn +4Ap1n + Apyy
D =2M0 +2A01

& =2An1, +2A 0

(12)

For subscripts of A we have used 1 and 2 to represent x’ and y’
for simplicity. Considerations of additional symmetries of the system
may lead to particular forms of the elastic constant tensor that
simplify the analysis [2, 34]. In shear-jammed systems, it is reasonable
to assume that the elastic moduli have uniaxial symmetry [57]. Note
that in these jammed states created by external stresses, the elastic
moduli are determined by the geometry and topology of the force-
bearing network that emerges from the jamming process [34]. In the
Voigt form [57], such an elastic modulus tensor reads:

. Eo vyEy 0
E= T vwEy Ey 0 (13)
— V' Vy 0 0 (1 _ 'Vx"Vy’)G/

where E, and E,; are the Young’s moduli along x', y’ directions,
while v,» and 7, stand for the Poisson’s ratios along x" and y'
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FIGURE 9
Angular variation of the stress correlations for ultrastable states in the long-wave-length limit and the fitted results from VCTG assuming an

uniaxial symmetry. Correlation functions are normalized by the VCTG fitting parameter B, whose variation with p are shown in Figure 10A. The long-
wavelength limit values are estimated by averaging data with q between 27/6d; and 27/16d, where d is the diameter of the smaller disc particle in our
packings.

directions. G’ is a shear modulus such that in the x'y’ coordinate
system there is 0,y = G'e,). G is not the shear modulus G which
follows o, = Gy. In addition, our imposed simple shear strain
field has &y = 0. Thus, G’ can not be extracted from our
measured stress-strain curves.

The inverse elastic tensor then reads

1/E. -vy[E, 0
~ve[Ew 1/E, 0
0 0o 1/G¢

E'= (14)

Note that this tensor maps to the A tensor in the VCTG
framework as following,

Allll A1122 21\1112
A2211 AZZZZ 2A2212
A1211 A1222 21\1212

E'o A= (15)

Comparing Eq. 14 and Eq. 15 we get A1p11 = Ajazn = A1z =
Ap12 = 0. Thus, according to Eq. 12, we expect D = £ = 0 and

1
A=A1111=Ex’
1
B=App = —
2222 E, (16)
2 vy Yy
C=4App+App + Ay = —— 2 - =
1212 uz2 t Ao = = E, E,

Thus, we fit the correlation functions Cjy(6) to the
following form.
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€1/a€ b€k c€1'd9agbgcqd

gy A+quB+quq,C

Cirj/krl/ (6) = (17)

Note that, we fit all six correlation functions together with
three parameters A, B, and C. In Figure 9 we plot both the raw
data and the fitted curves. All data and fitted curves are
normalized by the fitting parameter 5 which depends on p.
Notably, the fitted curves matches with the experimental data
reasonably well. In addition, it also appears that most of the
data collapse after the normalization by B, suggesting
roughly constant A/B and C/B for ultrastable states with
different p.

3.4.4 Emergent elastic response

The emergent elastic moduli, determined from fitting the
measured stress-stress correlations to the VCTG predictions,
depend on preparation protocols and the average stress state
of a shaer-jammed solid. Here, we analyze the dependence of
the three fitting parameters, A, 55, and C, on the pressure p of
the ultrastable states. We note that as the system unjams at
p = 0, what we are considering is scaling of the emergent
properties near jamming. However, according to Eq. 16,
while A and B can be directly related to the two Young’s
moduli, we can not extract the shear modulus and the
Poisson’s ratios from just the three fitting parameters.
There are 5 unknowns but only three equations in Eq. 16.
Reference [34] demonstrates that additional equations can be
obtained by considering material responses to additionally
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anisotropic system along the principal dilation and compression directions of the initial shear respectively. (B) The ratios of the VCTG fit results .A/B
and C/B plotted versus pressure for original and ultrastable states. The ratio A/B is clearly much larger for original states, constituting a feature to

distinguish these two types of states.

applied forces. In the present work, we report only scalings
for the fitting parameters, and we leave the actual solutions
for the shear modulus and Poisson’s ratios to future
investigations.

We plot A and B as functions of p in Figure 10A. While
A> B for all p, they both decay with increasing p. Notably,
they appear to follow power laws with same exponent ~ — 1.6.
The divergence of these parameters suggest the Young’s
moduli vanish at the jamming point. We plot the ratios
A/B and C/B in Figure 10B. Both ratios appear to be
roughly constant. Notably, A/B =4, meaning that the
system is always stiffer along the y' direction. It is
interesting that C/B=0. We do not yet have a clear
understanding of this feature.

3.4.5 A feature that distinguish ultrastable states
from original shear-jammed states

We show that the ratio A/B can be used as a indicator to
distinguish ultrastable states and the original shear-jammed
states that are formed by initial shear alone. Figures 10A,B
also show fit results obtained by performing same analysis on
ensembles of the original shear-jammed states. Interestingly
A and B follow power law scaling versus p with same
exponent as the ultrastable states. We find, however, that
the ratio A/B>10 for original shear-jammed states, which is
much larger than for the ultrastable states. This means the
original states have much more anisotropic elastic properties
compared to the ultrastable states. We thus show that small-
amplitude cyclic shearing changes the elastic response of a
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jammed packing. We emphasize that this observation is not
equivalent to the changes of stress states as can be evidenced
in Figure 7B. Instead, it highlights that elasticity of these
shear-jammed solids is truly an emergent phenomenon
reflecting a rigidity that emerges from the complex
interplay of local and global force and torque balance
contstraints [2, 34].

4 Concluding discussion

In summary, we report a set of analyses on both global
and local features of ultrastable shear-jammed granular
materials in response to cyclic shear. We present three
major findings.

First, we show that the emergent shear modulus G for
ultrastable states formed by different y; and Jy falls on a
single curve when plotted versus pressure p. A critical scaling
near jamming between G and p is examined extensively in
numerical simulations [41, 42, 45, 46, 58, 59], and is of key
interests in the scaling theories of jamming [43]. Notably, the
ultrastable states follow G ~ pﬁ with = 0.5, consistent with a
numerical simulation with particles having similar friction
coefficient and contact force law [42]. To our knowledge, the
range of boundary strain within which a frictional system
behaves elastically is usually very small because boundary
strain may induce sliding at contacts [60-63]. Thus the shear
modulus has typically been determined from measurements
of sound speeds [44] rather than from stress-strain curves.
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Consistent with this picture, the original shear-jammed states
in our experiments were observed to deform plastically under
any given cyclic strain amplitude [1]. As previously reported,
highly elastic ultrastable states emerged under cyclic
shearing, which induces changes in the distribution of
friction forces at contacts [1]. We have now found that
there is no measurable sliding for the persistent contacts
that carry the majority of the forces in these ultrastable states.

Second, we find nontrivial grain scale motions within a shear
cycle in an ultrastable state. A measurable fraction of contacts open
and close reversibly during a cycle, and these contacts make a non-
negligible contribution to the emergent elastic modulus. Thus
predictions based on a contact network with a fixed geometry
presumably cannot completely account for the macroscopic
elasticity of these states. It is known that the distribution of
small inter-particle gaps and weak contact forces are intimately
connected to packing stability [50, 64, 65]. Our work demonstrates
that reversible activation of these gaps may lead to non-trivial
dynamical phases in a frictional, shear-jammed system. We also
observe non-affine particle displacements, with some particles
moving around loops with finite enclosed area. It would be
interesting to compare the observed particle displacement fields
to the low-frequency vibrational modes that can be calculated from
the experimental data [66], where one may find analogies to features
found in model glasses, such as string-like dynamical defects [67].

Third, we examine the relation between the spatial stress
fluctuations and the emergent elastic constants of the
ultrastable states from the perspective of the Vector
Charge Theory of Granular mechanics and dynamics
(VCTG) [2, 34]. In the long-wavelength limit, the stress-
stress correlation functions measured from ultrastable and
original shear-jammed states matches well with the
predictions by VCTG for an anisotropic system with
uniaxial symmetry. Fitting our data to the theory, we
extract the values of three parameters. Two of these are
the Young’s moduli E,» and Ey, and the third is a linear
combination of the Poisson ratios v, Vyr and a shear
modulus G'. Note that x' and ' are the principal dilation
and compression directions of the initial shear. We find that,
for both original shear-jammed states and the ultrastable
states, Eyand E, scale as power-laws with pressure p, sharing
same exponent « = 1.6. The vanishing of the Young’s moduli
as p — 0 is consistent qualitatively with the vanishing of the
shear modulus G measured independently from the stress-
strain curves. The relation between the exponent « and the
exponent f3 that links G and p is an interesting topic for
further investigation. We note that the elastic moduli
obtained from VCTG fittings are linear elastic constants,
while stress-strain curves contain contributions from non-
linear features like the non-persistent contacts. The ratio E,/
E,/ is always at least twice as large for original shear-jammed
states as for the ultrastable states, suggesting that small-
amplitude cyclic shearing significantly alters the elastic
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properties of a jammed packing. In addition, the ratio E./
E,s does not approach 1 as p — 0, suggesting that the system
remains anisotropic at jamming point, which is a feature of
the shear jamming transition [12, 19, 68, 69]. Additional
experiments and analysis probing the system response to a
point force [34] may help to determine the Poisson ratios and
the shear modulus G'.
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