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1. Introduction and overview

In this paper, we study the stabilization problem of switched
linear control systems (SLCS):

X(t + 1) = Ag(iyx(t) + Byyu(t), teZy:={0,1,...}, (1)

where x(t) € R" is the state, u(t) € RP is the continuous control
input, o(t) € M := {1,...,m} is the switching mode, and
(Ai, Bi)ieaq are the subsystem matrices in different modes. The
set of all switching sequences o = (o(0), o(1),...) is denoted
by S := M,
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1.1. Mode-conscious vs. Mode-resilient stabilization

Different from the existing work (e.g., DeCarlo, Branicky, Pet-
tersson, & Lennartson, 2000; Hu, Ma, & Lin, 2008; Lin & Antsaklis,
2008; Zhang, Abate, Hu, & Vitus, 2009) where both the control in-
put u and the switching signal o are utilized to stabilize the SLCS,
the problem studied here assumes that only u can be controlled
by the user to stabilize the SLCS, while ¢ can be arbitrary. Further,
it is assumed that, at each time t, the user when designing the
control input u(t) has the knowledge of o(t) as well as the state
x(t). Under these assumptions, a valid feedback control policy for
the user is given by u = (ug, uq, ...) where u; is the feedback
control law at time t: u(t) = u(o(t), x(t)). Denote by ¢/ the set
of all such feedback control policies u, and by x(-; o, u, x(0)) the
solution of the SLCS under u € ¢/ and the switching sequence
o € S, with the initial state x(0).

Definition 1.1. The SLCS is called mode-conscious (or
o, )-asymptotically stabilizable if there exists u € ¢/ such that, for
any o € S and any x(0), we have x(¢t; o, u, x(0)) > 0 as t — oo.

In other words, mode-conscious stabilization is the problem of
stabilizing the SLCS using continuous input u under arbitrary but
known switching modes. A related but different problem, called
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the mode-resilient stabilization problem, is treated in Hu, Shen,
and Lee (2017) where it is assumed that, at each time t, the
user decides u(t) without the knowledge of o(t); hence the user’s
control law is of the form u(t) = w.(x(t)). If a valid user control
policy exists so that x(t) — 0 ast — oo under arbitrary switching
sequence ¢ and initial state x(0), then the SLCS is called mode-
resilient stabilizable or o*-stabilizable. Two examples are given
below to illustrate the difference of these two problems.

Example 1.1. As an application, consider a networked control
system consisting of a discrete-time LTI plant x.(t+1) = A.x(t)+
Bru,(t) and a remote controller. At each time t, the controller will
first receive the state x,(t) from the plant, and then use it to cal-
culate u.(t) and send it to the plant, both over a communication
channel. Suppose such communications are subject to frequent
blackouts (due to, e.g., data loss, attacks) which can each time
last up to a maximum of m — 1 times steps, and during blackouts,
the plant will keep using the last received control command from
the controller. By denoting 0 = t; < t; < t; < --- the times at
which the communications are successful in both directions, the
sampled state and control sequences x(k) = x,(tx) and u(k) =
ur(ty) follows the SLCS x(k + 1) = Ayx(k) + Byuu(k) where
o(k) = tip1—ti+1 € Mand A; = (A), B = [(A; ) '+ - -+I]B; for
i € M. If the controller does (resp. does not) know the duration of
the current communication blackout, then designing a controller
to stabilize the plant becomes an instance of the o,- (resp. o*-
)stabilization problem. See Hu et al. (2017) and Yu, Wang, Chu,
and Xie (2004) for details on the latter case.

Example 1.2. As another example, consider a pursuer and an
evader with the respective positions x,,X. € R". Suppose the
evader has several distinctive modes of evading maneuvers of the
form x.(t + 1) = x,(t) 4 Fi[x(t) — x,(t)] for i € M and F; € R™",;
while the pursuer has the dynamics x,(t + 1) = x,(t) + Byu(t).
Then, their relative displacement x := x, —x, follows the SLCS (1)
with A; = I + F; and B; = B,. Depending on if the pursuer
knows the evader’s current evading mode, designing control u(t)
so that the pursuer can capture the evader (i.e., x, = x,) is either
a o,-stabilization problem or a ¢ *-stabilization problem.

With the knowledge of switching modes, the task of mode-
conscious stabilization is considerably easier than mode-resilient
stabilization, as illustrated by the following example. Consider the
SLCS on R with two modes: x(t + 1) = x(t) + u(t) and x(t + 1) =
x(t) — u(t), where By = 1 and B, = —1. Given any x(t) # 0
at time t, if the user does not know the current mode o (t), its
best action is to choose u(t) = 0, for otherwise the adversary
will choose whichever mode with Bgyu(t) - x(t) > 0, resulting
in |x(t +1)] > |x(t)|. Hence, the SLCS is not mode-resilient
stabilizable. On the other hand, if the user knows o(t), hence
B, (t), the SLCS can be steered to the origin in one step by the
controller u(t) = —x(t)/Bs(;). More discussions on the connection
and difference of the two problems are given in Remarks 1.1 and
3.1.

Despite this relative ease, the mode-conscious stabilization
remains a difficult problem. For one, it subsumes the stability
problem of autonomous switched linear systems (SLSs) under
arbitrary switching as a special case with B; = 0 for all i
(c.f. Remark 1.2), which by itself is well known to be an NP-hard
problem (Tsitsiklis & Blondel, 1997). Following is an example with
B; 75 0:

05 2 0 05 0 1
A1=[0 0.5]’B1=[1]A2=[2 0.5]’32=[0]'

(2)
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Suppose at each time t, the mode o (t) is chosen such that o(t) =
1if |xq(t)] < |x2(t)], and o (t) = 2 if |x((t)] > |x2(t)]. Regardless
of the user’s choice on u(t), ||x(t + 1)|lcc > %||x(t)||0o for all
t. This implies that the SLCS is not o,-stabilizable, even though
each individual subsystem (A;, B;) is stabilizable. The latter is a

necessary but not sufficient condition for o,-stabilizability.
1.2. Stabilizing rate

In this paper, instead of merely deriving stabilizability condi-
tions, we adopt a quantitative approach by studying a stabiliz-
ability metric defined as follows.

Definition 1.2. The constant p € [0, co) is called an attainable
(exponential) stabilizing rate of the SLCS if there exist u € ¢/ and
K € [0, 0o) such that for all x(0) € R" and all o € S, we have

IX(t; o, w, x(O)I| < Kp'IX(0)]l, Vt € Zy. (3)

The o,-stabilizing rate of the SLCS, denoted by p, € [0, c0), is the
infimum of all attainable stabilizing rates p.

Loosely speaking, p, is the optimal worst-case exponential
decay rate of the SLCS’ state trajectory using continuous input
under arbitrary switchings, where “worst-case” here is w.r.t. the
arbitrary choice of o. Knowing p, allows us to compare the
degree of stabilizability of different SLCSs and measure the ro-
bustness of stabilizability to perturbations to system parameters.
In particular, if p, < 1, the SLCS is o,-asymptotically stabilizable.
In Section 2 we will show that the converse is also true.

Remark 1.1. The value of p, in Definition 1.2 is independent of
the norm | - || since all norms are equivalent. If we restrict the
user control policy u to be of the form u(t) = wu.(x(t)),Vt €
Zy, a similar rate p* > 0 can be defined, which provides a
quantitative metric of the SLCS’s mode-resilient stabilizability
(see Hu et al.,, 2017). Obviously, p* > p,.. The gap represents
the information premium of the user’s knowledge of the current
mode. See Example 4.1 for an example.

Remark 1.2. An autonomous SLS x(t 4+ 1) = A )X(t) is called
absolutely stable or stable under arbitrary switching (Liberzon,
2012) if x(t) — O for any switching sequence o. By considering
the SLS as a SLCS with B; = 0 for all i, the o,-stabilizing rate
py is reduced to the joint spectral radius (JSR) of the matrix
set {Ai}ieam (Jungers, 2009; Rota & Strang, 1960) and provides a
quantitative metric of the SLS’s absolute stability.

1.3. Main questions
In this paper, we will address the following questions.

Question 1.1. Can the o,-stabilizing rate p, be achieved exactly
by a user control policy u € U, i.e., does (3) hold when p = p,?

We will deal with this question in Section 3. In particular,
for an SLCS with p, = 1, if the answer is yes, then the SLCS is
marginally stabilizable as the user can keep any state trajectory
bounded under arbitrary switchings.

Question 1.2. If the o,-stabilizing rate p, is achievable, can
it always be achieved by a mode-dependent linear state feedback
controller of the form u(t) = Ky(1)x(t)?

Mode-dependent linear state feedback controllers are speci-
fied by a set of feedback gain matrices {K;}ic 4. If the answer to
Question 1.2 is affirmative, then control synthesis can be greatly
simplified. The closed-loop system under such a controller is the
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autonomous SLS: x(t + 1) = (Ag(¢) + Bo(1)Ks(r))x(t). By Remark 1.2,
Question 1.2 is equivalent to whether p, is equal to the JSR of the
matrix set {A; + BiKi}ieaq for some properly chosen {Ki}icr. This
will be addressed in Section 5.

Question 1.3. For a general SLCS, is there a systematic way to
compute tight upper and lower bounds of p,?

In Sections 4 and 6, we will present a seminorms-based ap-
proach and various iterative algorithms that generate increasingly
accurate bounds of p,.

1.4. Previous work and contributions

The stabilization of SLSs and SLCSs has been extensively stud-
ied in the literature (Lin & Antsaklis, 2009; Shorten, Wirth, Ma-
son, Wulff, & King, 2007; Sun & Ge, 2005). A large portion
of the existing work (e.g., Fiacchini, Girard, & Jungers, 2016;
Geromel & Colaneri, 2006; Wicks, Peleties, & DeCarlo, 1998)
focuses on the SLS switching stabilization problem, namely, sta-
bilizing the SLS using o. For SLCSs, the stabilization using both
u and o has received considerable attention, e.g., DeCarlo et al.
(2000), Hu et al. (2008), Lin and Antsaklis (2008) and Zhang
et al. (2009). The stabilization of SLCSs using u under arbitrary
o has also been previously explored. For example, the case
when the continuous controller for u does not know the cur-
rent mode (i.e., o *-stabilization) is studied in Hu et al. (2017),
Khargonekar, Petersen, and Zhou (1990), Kothare, Balakrishnan,
and Morari (1996) and Mao (2003). When the continuous con-
troller knows the current mode (i.e., the o,-stabilization prob-
lem), stabilizability conditions are derived based on parameter-
dependent quadratic Lyapunov functions method (Daafouz &
Bernussou, 2001; Fang, Lin, & Antsaklis, 2004; Hetel, Daafouz, &
Iung, 2006; Xie, Wang, Hao, & Xie, 2003), multiple Lyapunov func-
tion method (Daafouz, Riedinger, & ITung, 2002; Philippe, Essick,
Dullerud, Jungers, et al,, 2015), piecewise quadratic Lyapunov
function method (Molchanov & Pyatnitskiy, 1989), Lyapunov-like
function method with average dwell time constraints (Zhang &
Shi, 2009), time-varying quadratic Lyapunov function method
for continuous-time SLCSs with dwell time constraints (Aller-
hand & Shaked, 2011), and for uncertain LTI sampled-data sys-
tems (Naghshtabrizi, Hespanha, & Teel, 2008), to name a few.
In these papers, the stabilizing controllers are assumed to be
static or mode-dependent linear state feedbacks. As shown in
Section 5 of the present paper, this assumption introduces con-
servativeness. Another factor that makes these existing stabilizing
conditions sufficient but not necessary is that they employ vari-
ants of quadratic Lyapunov functions, which are in general not
“optimal” (see Section 4 for definitions of optimal ones). An exact
characterization of the o,-stabilizability condition and more ac-
curate methods for computing the stabilizing rate call for further
research and new techniques.

Compared to our previous work on the o *-stabilization prob-
lem in Hu et al. (2017), this paper deals with a different prob-
lem (o,-stabilization) and contains substantial new contributions,
which will be elaborated as follows.

e Similarities: To answer Question 1.1 in Section 1.3, we will
introduce the notions of defectiveness, reducibility, and ex-
tremal/Barabanov norms. Similar but differently defined no-
tions were proposed in Hu et al. (2017). Certain results in this
paper concerning these notions (e.g., Proposition 3.1, Theo-
rem 4.1, and Proposition 4.3) have their counterparts in Hu
et al. (2017), even though the proofs are different due to the
different problems under study. These proofs are included in
the Appendix.
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o Major differences: Substantial new results of this paper include
the geometry of extremal norms, complexity of Barabanov
norms, a highly nontrivial example showing that the rate p,
may not be attained by any mode-dependent linear state feed-
back (cf. Section 5.1) as well as certain families of SLCSs when
this is possible (cf. Section 5.2), and algorithms for computing
Pr-

This paper is also significantly expanded from its conference
version in Hu, Shen, and Lee (2018). New contents include The-
orem 2.1(iii), Proposition 4.2, Theorem 4.1, the entire Section 5,
all the examples (except Example 4.1), and the proofs of all the
main technical results.

The main contributions of this paper are summarized as fol-
lows: (i) conditions are developed for marginal o,-stabilizability
using the notions of defectiveness and reducibility (c.f. Section 3);
(ii) analytical bounds on the stabilizing rate are established using
(semi)norms and conditions are given on when such bounds
are tight (c.f. Section 4); (iii) it is shown that, except for some
special cases, the optimal user control policy may not be a mode-
dependent linear state feedback controller (c.f. Section 5); and (iv)
numerical algorithms are developed for computing the stabilizing
rate (c.f. Section 6). Finally, conclusions are given in Section 7.

2. Preliminary results

We first derive some preliminary results and useful facts. A
notion related to o,-asymptotic stabilizability in Definition 1.1 is
given as follows.

Definition 2.1. The SLCS is call o,-exponentially stabilizable if
there exist u € U, p € [0,1), and K € [0, 00) such that
[X(t; o, w, x(0))|| < Kp'lIX(O)|I, Yt € Z4, VX(0) € R", Yo € 5.

By Definition 1.2, the SLCS is o.-exponentially stabilizable if
and only if p, < 1. It is obvious that o,-exponential stabilizabil-
ity implies o,-asymptotic stabilizability. The following theorem,
proved in Appendix A, shows that the converse is also true.

Theorem 2.1. The following statements are equivalent:

(i) The SLCS is o,-exponentially stabilizable;
(ii) The SLCS is o-asymptotically stabilizable;
(iii) Forany z € R", 0 € S, and ¢ > 0, there exist u, , ., € U and
T;6.e € Zy such that |X(T; o ¢: 0, Uz 0, 2)l < & - |2

Consequently, through the rest of this paper, we will refer to
either notion simply as o,-stabilizability.

The following result states that the o,-stabilizing rate p, is
positively homogeneous of degree one with respect to the collec-
tive scale of {A;}ica¢ but independent of the scale of any individual
B;. The latter is hardly surprising since p, depends on each B; only
through its range space R(B;), i.e., px = p«({Ai}icrt, {R(Bi)}ieat)-

Lemma 2.1. let p, be the o,-stabilizing rate of the SLCS
{(Ai, Bi)}iem. Given scalar constants « and B; # 0, i € M, the SLCS
{(aAi, BiBi)}ie s has the o,-stabilizing rate || ps.

Proof. It is trivial when « = 0. Suppose o # 0. If the SLCS
{(A;, Bi)}iea has the solution x(t; o, u, x(0)) under a control policy
u € U, then under the control policy & € ¢/ such that (i, x) =
(B u(i, x), Vi € M, x € R, it can be easily proved by
induction that x(t; o, U, x(0)) = «'x(t; o, u, x(0)) is the solution
to the SLCS {(«A;, BiBi)}iea starting from the initial state x(0). The
desired result then follows. O

Owing to this homogeneity property, a common technique we
will employ when studying a general SLCS with p, > 0 is to study
the scaled SLCS {(Ai/ o« Bi)}iceam- This allows us to focus on SLCSs
with p, = 1 when studying properties of SLCSs with the same
homogeneity.
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3. Defectiveness and reducibility

In this section, we will present a partial answer to Question 1.1
given in Section 1.3.

Definition 3.1. The SLCS is called nondefective if there exist u € U
and K € [0, 0o) such that ||x(t; o, u, x(0))]| < K(p,)'{|x(0)|, V¢,
for all x(0) € R" and o € S. Otherwise, it is called defective.

Recall that p, is the infimum of p for which (3) holds. Nonde-
fective SLCSs are those SLCSs where this infimum can be exactly
achieved. The SLCS is called o,-marginally stabilizable if there
exists u € U so that x(t) is bounded for all t, o and x(0).
This is the case if either (i) p. < 1; or (ii) p, = 1 and the
SLCS is nondefective. See Guglielmi and Zennaro (2001, 2003)
and Jungers (2009) for related definitions of nondefectiveness for
switched linear systems.

In the particular case p, = 0, the SLCS is nondefective if and
only if it is controllable to the origin in one time step for all o(0)
and x(0). As an example, note that the LTI system (A, B) with
A= (1) } and B = (1) has p, = O since it is controllable
to the origin in two time steps; it is defective since it cannot be
steered to the origin in one time step from x(0) = (0, 1). Here,
(0, 1) denotes a column vector in R2. In the following, we will
focus on the nontrivial case p, > 0.

As an example of defective SLCSs with p, > 0, consider the
following system:

1 0 0 1 1 0 0 -1
Ai=|1 1 0|,Bij=|0|;A=|0 1 1(,Bb=]| 0 |.
0 0 1 -1 0 0 1 1

Given the state x(t) at any time t, for any user input u(t), x;(t +
1)+x3(t+1) = x4(t)+x3(t) remains unchanged, while the increase
from x,(t) to xo(t+1) is either x4(t) if o(t) = 1 or x3(t) if o (t) = 2.
Thus, for x(0) with x1(0) + x3(0) # 0, say, x1(0) + x3(0) > O,
the growth of ||x(t)| is dictated by the growth of x,(t), since x;
and x3; are under the user’s control and their difference can be
made to zero as shown below. The slowest growth rate of x,(t)
against all possible o is achieved when the user chooses u(0) so
that x1(1) = x3(1) = [x1(0) + x3(0)]/2 > 0, and then u(t) = 0 for
t € Z,. This yields x,(t) = c+ ’ilm)%’@t for some constant c. The
linear growth rate of x,(t), hence of ||x(t)||, implies that p, = 1.
The SLCS is defective as ||x(t)|| is unbounded despite the user’s
best effort.

For general SLCSs, nondefectiveness is difficult to verify. For
a sufficient condition, we call a subspace V of R" control o,-
invariant if for each z € V and each i € M, there exists v; € RP
such that A;z+B;v; € V. Two trivial control o,-invariant subspaces
are {0} and R".

Definition 3.2. The SLCS is called irreducible if it has no nontrivial
control o,-invariant subspaces. Otherwise, it is called reducible.

When B; = 0 for all i, the notion of an irreducible SLCS
coincides with that of an irreducible SLS (Jungers, 2009). An
example of irreducible SLCS with nonzero B; is given by

S A el LR A

The only one-dimensional subspace V control invariant under
mode 2 is the eigenspace of A,, i.e., the one spanned by (1, 0).
However, such a V is not control invariant under mode 1.

In Appendix B, we prove the following sufficient condition for
nondefectiveness.

Proposition 3.1. If the SLCS with p, > 0 is irreducible, then it is
nondefective.
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As a result of Proposition 3.1, the SLCS in (4) is nondefective.
This will be verified in Example 4.2 later on.

Irreducibility is a sufficient but not necessary condition for
nondefectiveness: one can easily find examples of SLCSs that are
reducible but nondefective. For example, the SLCS given in (2) is
reducible since any 1D subspace of R? not aligned with either B;
or B; is a control o,-invariant subspace; and it is nondefective as
will be shown in Section 4. A necessary and sufficient condition
for nondefectiveness will be presented in Theorem 4.1.

Remark 3.1. In the study of mode-resilient stabilization problem,
we can similarly define the notions of nondefective and irre-
ducible SLCSs, with the control o,-invariant subspace replaced
by the control o *-invariant subspace, namely, a subspace V such
that for any x € V, there exists v € RP such that Axx + Bjv € V
for all i € M. One can also show that irreducibility implies
nondefectiveness (Hu et al,, 2017), which is a much stronger
result than Proposition 3.1 as the requirement for a subspace to
be control o *-invariant is far more stringent than it being control
o-invariant.

4. Bounds of o,-stabilizing rate

In this section, to answer Question 1.3 in Section 1.3, we
develop a systematic approach to establish bounds of the o,-
stabilizing rate p,. Recall that a seminorm on R" is a nonnegative
function £ : R" — R, that is subadditive and absolutely homoge-
neous of degree one (Rudin, 1979, Definition 1.33), i.e.,, E(x+y) <
E(x)+ &(y) for all x,y € R", and &(A - x) = |A| - &(x) for all
A € R,x € R™. A seminorm is convex, and thus continuous, on
R". If a seminorm is further positive definite, i.e., £(x) = 0 only if
x = 0, then it becomes a norm on R".

Define an operator! F so that, for any seminorm £ on R", F(&)
is the function

F(€): z e R" +— max inf £(Aiz + Biv) € Ry. (5)
ieM veRP

In the above definition, using a similar argument as in Hu et al.
(2017, Lemma 1V.2), one can show that inf, £(A;z+B;v) is attained
by (possibly many) minimizers v for any z and i € M.

It is easily verified that 7 maps the seminorm & to another
seminorm F(&), which we denote by &,. In particular, if £ = || - ||
is a norm, then &;, which we denoted by || - ||, is a seminorm but
not necessarily a norm on R".

Proposition 4.1 (Hu et al,, 2018). Let o, 8 > 0 be constants.

(i) If a nonzero seminorm & satisfies & > o, then p. > a.
(ii) If a norm || - || satisfies || - | < [l < Bl - Il, then o < p, < B.

The proof of Proposition 4.1 can be found in Hu et al. (2018);
hence it is omitted.

As an example, for the SLCS in (2), the argument right after (2)
shows that || - [lse,s > 2| - llc. Thus, in view of Proposition 4.1,
we have p, > 3.

Definition 4.1. A seminorm & on R" is called a lower extremal
seminorm of the SLCS if & > p,£. Anorm || - || on R" is called an
extremal norm if || - |4 < p«|l-|I, and a Barabanov norm (Barabanov,
1988; Jungers, 2009) if || - [ls = p«ll - II.

1 The operator F is similar to the operator 7 for mode-resilient stabilization
in Hu et al. (2017), with the crucial difference that the order of max and inf is
exchanged due to the difference in information structures.
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Proposition 4.1 implies that the task of finding tight lower and
upper bounds of p, can be reduced to finding lower extremal
seminorms and extremal norms of the SLCS, if they exist. A Bara-
banov norm is both a lower seminorm and an extreme norm and
can characterize p, precisely by itself. These notions are gener-
alizations of their counterparts for autonomous SLSs (Barabanov,
1988; Wirth, 2002).

Using Definition 4.1 and the definition of || - ||;, we obtain a
useful geometric characterization of the extremal and Barabanov
norms as follows. Toward this end, we first introduce some no-
tations. For a set X C R" and i € M, denote by A;x the image of
X under the linear transform A;, by dx and int(x') the boundary
and interior of X respectively (with respect to the topology of R"),
and by PBI_J_ the orthogonal projection operator onto the subspace
R(B;)* = ker(B]). For a closed convex set ¢/ in R", let rbd(t/)
and ri(i/) denote the relative boundary and relative interior of ¢/
respectively (Rockafellar, 1970), where rbd(&/) = ¢ \ ri(/). The
silhouette of a closed convex set C viewed along the direction of
a subspace V is defined as rbd(P,,.C).

Proposition 4.2 (Geometry of Extremal Norms). Let B .= {x € R" |
x|l < 1} and 0B = {x € R" | ||x|| = 1} be the unit ball and unit
sphere of the norm || - ||, respectively.

(1) |- || is an extremal norm if and only lfPBL(A B) € PBL(/)*B)fOT
eachie M;

(2) |l - || is a Barabanov norm if and only if Py (A;B) € PBl(p* ),
Vie M and 0B = Ujcp X, Where X; == fx € 0B | PBJ_(A X) €
rbd(PBL(p*B))} consists of all x € 9B so that Aix lies on the
silhouette of p.B when viewed along the direction of R(B;).

Proof. (1) By homogeneity, || - || is an extremal norm if and only
if |z]l; < py for all z € B. “Only if”’: suppose | - || is an extremal
norm. Then for any z € B and each i € M, inf,crr ||Aiz + Biv| <
px. It follows from the comment after (5) that there exists v, € RP
such that ||Aiz + Bjv.|| = inf,ere |Aiz + Biv| < p.. Hence,
Aiz 4+ Bjv, € p.B. This 1mplles that PBJ_(A zZ) = BL(A Z + Biv,) €
Py (p«B). Therefore, PBJ_(A B) € PBL(,O*B) Vie M.

“If: suppose for any z € B and any ieM, PBJ_(A z) € Ppi(psB).
Then there exists Z € p,B such that PBL(A z) = BL(A) Thus
w =7 — Az € R(B)), i.e., w = By, for some vy € RP. Therefore
Izl = inf, [|Aiz + Biv|l < [|Aiz + Bivill = IIZ]] < ps L€, || - || is an
extremal norm.

(2) “Only if’: suppose || - || is a Barabanov norm. By Part (1),
BJ_(A B) C PBJ_([)* ) for each i € M. It suffices to show
that 98 = U,eMX,, or equivalently, 98 C Ujcaq&;. Since || -
I+ = psll - |, for any z € 9B, there exists i € M such that
inf, ||Aiz 4+ Bjv|| = ps. This implies that ||A;z + Bjv| > p, for all
v. Further, Part (1) implies that Py1 (A;z) € Py (p.8), where it can
be shown that PBL(p* )isa convex and cof]]pact set. We claim
that P;1(Aiz) € rbd( BL(,O* )). Suppose otherwise. Then noting
that rl( BL(,O*B)) = BL(]’](,O* ) = PBi(mt(p* )) (Rockafellar,
1970, Theorem 6. 6), there exists v’ such that A; iZz+Bijv' € int(p,B)
or equivalently ||Aiz + Biv'|| < p.. This yields a contradiction.
Therefore, PBL(A z) € rbd( BL(,O* )), and thus z € X;.
“If": By Part( ), the first condition implies ||-[l; < p«-|. It suffices
to show that for any z € 95, ||z||; = maXerq infy [|Aiz4+Biv| > ps.
Since 0B = Ujca A, there exists i € M such that PBL(A, ) €
rbd( BJ_(,O* ))- We claim that ||Aiz + Bjv|| > p, for all v. Suppose
0therw1se then there exists v’ such that Az + Bjv’ € int(p.B).
Hence, PBL(A, z) = BJ_(AZ + Biv') € PBL(mt(p*B)) = ri( Bl(p* )
contradiction. Thus ||z||u > ps,VZ € B. O

The following result describes exactly the class of SLCSs for
which an extremal norm exists. Its proof is given in Appendix C.
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Theorem 4.1. The SLCS has an extremal norm if and only if it is
nondefective.

Stronger conditions than nondefectiveness are in general
needed to ensure the existence of a Barabanov norm. For illus-
tration, consider the following family of SLCSs:

A O R R A O

where |a;] < 1, |az] < 1, and * denotes any value in R. For such
a SLCS, p, = 1 as the adversary will always choose mode 1 for
x(0) with x,(0) # 0. Moreover, p, can be achieved by the user
control policy u(t) = —Ky()x(t) with K; the first row of A; and K;
the second row of A,; hence the SLCS is nondefective. However,
if a Barabanov norm | - || exists, then p.||(1, 0)|| = ||(1, 0)|l is
given by

max(inf (a; + v, )l inf (@, v +#)]) = inf (e, wll,

where * in the above equation corresponds to the (2, 1)-element
of A,. However, this is impossible since inf, ||(ay, u)|| < ||(az, 0)]|
= Jaz| - I(1,0)]| < |I(1,0)|]. Thus, such a SLCS does not attain
Barabanov norms.

The following result, proved in Appendix D, gives a sufficient
condition for the existence of Barabanov norms.

Proposition 4.3. If the SLCS is irreducible, then it has a Barabanov
norm.

By Theorem 4.1 and Proposition 4.3, Question 1.1 raised in
Section 1 can be answered affirmatively via the construction
of extremal and Barabanov norms, with the latter providing a
sufficient test by Proposition 3.1.

We next present several examples of SLCSs whose Barabanov
norms can be explicitly constructed.

Example 4.1. Consider the following SLCS:

nlt e[ e §oef]

Let y = (v/5 + 1)/2 ~ 1.6180, which satisfies y(y — 1) = 1.
Define the norm on R? as

lzll == max{lz1|, ylz1 + 2|}, Vz = (21,22) € R%. (7)

We now use the conditions in the second part of Proposi-
tion 4.2 to verify geometrically that the above defined norm ||-|| is
indeed a Barabanov norm. The unit sphere of || - || is shown in the
top figure of Fig. 1. The images of the unit ball B after a scaling
by y~! and after the linear transforms by A; and A, are shown
in the bottom figure. Note that A;8 and '8 have the same
projection onto the x;-axis; while A8 and y~'8 have the same
projection onto the x,-axis. This verifies that PBIL (A1B) € PBIL( P«BB)
and Py1(A2B) € PBL(/)* ), respectively. Furthermore, among the
four edges of B, the two slanted ones after the linear transform
of A; becomes the two vertical edges of A;B which, when viewed
in the B; direction (i.e. top down), are in the silhouette of y ~!5.
Similarly, the images of the two vertical edges of the unit sphere
under A, are in the silhouette of y ~'5 in the left-right view. This
verifies the remaining conditions in Proposition 4.2 and shows
that the norm || - || in (7) is indeed a Barabanov norm and p, =
y~! 2 0.6180. In contrast, it is found via numerical computation
in Hu et al. (2017) that the o*-stabilizing rate p* of the SLCS
satisfies p* € [1.2183, 1.2239]. The gap between p* and p, is due
to information premium of the user’s knowledge of the current
mode. In this case, stabilization is possible with this knowledge
but impossible without it.



J. Hu, J. Shen and D. Lee

15 17

(-1,2-7)

(1,7-2)

'
-

| (19149)

3 1 1 1 1 I I I )
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Fig. 1. Top: unit sphere of the Barabanov norm of the SLCS in Example 4.2;
Bottom: unit ball after scaling by y~! and the linear transforms A; and A,.

To find the optimal control policy, we first consider x(t) =
(z1,1). If o(t) = 1, then u*(t) € argmin, max{|z; + 1|,
y|2z1 + vl}, which is the interval between the two values —2z; £
(zy + 1)/y. If o(t) = 2, then u*(t) = argmin, max{|v+ 1|,
ylv—2z1+ 1]} = (y — 1)z — 1. We next consider z = (1, 0).
In this case, u*(t) can be of arbitrary values between —2 4 y !
if o(t) = 1; and u*(t) = y — 1 if o*(t) = 2. By homogeneity,
the above control policy can be extended to arbitrary z € R2. In
particular, the following mode-dependent linear state feedback
controller achieves the o,-stabilizing rate p,: u(t) = Ky)X(t),
where

Ki=[-2 0], K=[y-1) 1]. (8)

Example 4.2. We now revisit the SLCS given in (2). Define the

norm ||z|| := max{|4z; + 2|, |z1 + 42|} for z = (z1,2,) € R
Similar to the previous example, one can verify that |- ||y = %|| -
Thus, | - || is a Barabanov norm of the SLCS and p, = % In Fig. 2,

we plot the unit ball of the norm ||| after a scaling by p, and after
the linear transforms by A; and A,. As in the previous example,
px can be achieved by a mode-dependent linear state feedback
controller (details are omitted). The argument in the paragraph
right after (2) in Section 1 shows that || - [|oc.s > %|| Noos 14 [ “ oo
is a lower extremal (semi)norm.
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Fig. 2. Unit ball B of the Barabanov norm of the SLCS given by (2) after scaling
by 2 and the linear transforms by Ay, A,.

In general, the unit ball of a Barabanov norm (if it exists) may
have a high complexity, even for a bimodal (i.e., two-mode) SLCS
on RR?, as shown by the following example.

Example 4.3. Consider the bimodal SLCS in (4), which is recapped
here for convenience:

I

As shown in Section 3, this SLCS is irreducible; hence it has a
Barabanov norm by Proposition 4.3. We construct the unit ball
B of this norm as follows. Let p € (1,2) be a constant whose
value is to be determined later. Set t == (p — 1)"! — 1 > 0.
Define a sequence z,_ = ((t — k)/p' %, 1/p'%) € R? for each
k € Z,, which satisfies Ay z;__1 = pz_x. Denote by z;__1z;_¢
the line segment between z;_;_1 and z;_. Then Ay z;_ 1z =
0 -Zt_kZt—kt1 for k > 1 and A, z;_1z; is along the direction (1, —1).
In the top figure of Fig. 3, we plot the line segments z;_y_1z;_
together with their symmetric images across the origin.

From the point —z;, we plot a line L, along the direction of
(=1, 1), which intersects a certain line segment z,_,_1z;_, for
some £ € Z, at the point y. Then half of the boundary 93 of
the unit ball B is given by (—z;)y, the line segment between —z;
and y, followed by the line segments Yz;_y, Zt—¢Zt—¢11r+-» Zt—1Zt»
whose symmetric images across the origin form the other half
of 9B (see the top of Fig. 3). It is easy to see that A, 98B C p B.
In fact, each of the line segments yz;_y, Zt—¢Zt—¢ 4 1..-.» Zt—12¢ after
the transform of A, becomes part (or all) of the next line segment
(clockwise direction) on 98 scaled by p; while Ay (—z )y C pB
as Ay(—z;) € p(—z)y and Ayy € pZi_¢zi_¢+1. Furthermore, note
that the images of (—z;)y and z,(—y) under A; are two horizontal
line segments. We can choose p so that one of them has the
same height (i.e., x,-coordinate) as that of py, which would imply
that A;B and pB has the same silhouette along the By direction.
Numerical solution yields the value of such a p as 1.2493. Thus,
the norm whose unit ball is the corresponding 3 is a Barabanov
norm of the SLCS and p, ~ 1.2493. Fig. 3 plots the unit ball B and
its images under the scaling by p, and the linear transforms A;
and A;. For this bimodal SLCS, its Barabanov norm has a polytopic
unit ball with 14 faces. Following similar steps, we can show that
if the (2, 1)-element of A; is changed from 1 to an arbitrarily small
& > 0, then the resulting SLCS attains a Barabanov norm whose
polytopic unit ball has arbitrarily many faces.




J. Hu, J. Shen and D. Lee

0.5

05

15

25 ! 1 1 L 1 ! 1 1 L |

Fig. 3. Top: unit ball B of the Barabanov norm of the SLCS (4); Bottom: B after
scaling by p, and after the linear transforms by Ay, A;.

Example 4.4. A Barabanov norm may not always attain a poly-
topic unit ball. Consider the following bimodal SLCS:

cos(amr) —sin(amr) 0
A= |:sin(om) cos(am) 0:| , Bi=0,

0 0 1

1 0 O 1
A,=|0 0 1|, B,=|0{,
0 -1 0 0

where @ > 0 is an irrational number. Due to subsystem (Ay, By),
the unit ball of any Barabanov norm (if exists) must be invariant
to all rotations around the x3-axis; hence such a unit ball cannot
be a polytope. It is easy to check that the Euclidean norm is a
Barabanov norm. Another Barabanov norm is given by the one
whose unit ball is the cylindrical set {(z, 22, 23) € R® | 23 4+ 22 <
1 and |z3] < 1}. Thus, Barabanov norms when exist may not be
unique.

5. Mode-dependent linear state feedback controllers

Denote by £ the set of all mode-dependent linear state feed-
back control policies for the user, i.e., the policies of the form
u(o(t), x(t)) = Ko e)x(t), Vt, for a finite set of feedback gain ma-
trices {Ki}ica4. Under such a policy, the closed-loop SLCS becomes

Automatica 159 (2024) 111331

an autonomous SLS with the subsystem matrices A; 4+ BiKj, i € M,
and the o,-stabilizing rate is reduced to the JSR of the matrix set
{Ai+BiKi}ic A (see Remark 1.2). Denote by p, the smallest possible
JSR achieved by different choices of {K;}ic4. Since £ C U, we have

Px = s
5.1. Example of suboptimality

We now present an example where the optimal o,-stabilizing
rate p, can be attained by some control policy in &/ but not by
any control policy in L.

A regular icosahedron, one of the five Platonic solids, is a
convex polyhedron with 12 vertices denoted by v;, 20 faces, and
30 edges. In Fig. 4, a regular icosahedron Bic,s, with all its edges of
length 2 is plotted. The cartesian coordinates of its 12 vertices are
all the cyclic permutations of (0, 1, £y ), where y = (v5+ 1)/2
is the golden ratio (Coxeter, 1973). Being a symmetric convex
body with nonempty interior, Bjcsa iS the unit ball of a norm
on R3, which we denote by | - [licosa- We will next construct an
SLCS whose Barabanov norm is exactly || - ||jcosa- Important for our
construction are the following facts. First, when viewed along a
direction that passes through the origin and the center of a face
(e.g., as in Fig. 4(a)), the silhouette of Bics, is the relative bound-
ary of a regular hexagon, each edge of which is generic, i.e., being
the projection image of a single edge of Bic,sa. On the other hand,
when viewed along a direction that passes through the origin
and the center of an edge, e.g., from top down as in Fig. 4(b),
the silhouette of Bjcsa is the relative boundary of an irregular
hexagon with four “singular” edges being the projection images
of four faces of Bjcsa. Specifically, the four non-horizontal edges
of the irregular hexagon in Fig. 4(b) are the top down projection
images of the triangular faces v1vgv7, UsvUgU7, V20809, and UygUgvg.
Furthermore, as shown in Fig. 4(c), a linear transformation exists
that transforms the irregular hexagon silhouette in Fig. 4(b) to fit
tightly inside the regular hexagonal silhouette in Fig. 4(a), with
the four singular edges of the former on the boundary of the
latter.

We now construct the first subsystem (A;, B;). Let w € R3
be the unit (outward) normal of the face wvyvgvg, ie, w =
(w1, wy, w3) = ﬁ 2y + 1, —y, 0). Define

— Wy 0 w1 2 2

A= w 0 wy|-diag|—=,—,1), B =w. 9

1|:01102:| g(ﬁ)ﬂ)] 9)
The linear transform represented by A, is the composition of two
transforms. The first scales the x; and x, coordinates so that the
scaled icosahedron has a top-down view as in Fig. 4(c). This is
followed by a rotation that rotates the x3-axis to w and the x,-
axis to the x3-axis so that the top-down silhouette of the scaled
icosahedron in Fig. 4(c) becomes the silhouette of A;Bicsa Viewed
from the w direction. This is shown in Fig. 5, where the original
icosahedron Bicsa (dashed lines) and the transformed icosahe-
dron A{Bicsa (solid lines) are shown together and viewed from
the w direction in (a) and a generic direction in (b). As verified
by Fig. 5(a), viewed from the w direction, the four singular edges
of the silhouette of A;Bjcos, are on the silhouette of Bjcys,. This can
also be seen in Fig. 5(b): the line segment vyvs3 (resp. v1v4) is on
the same plane as the face vivgv; (resp. vivgvs), where v] == Aq;
for all vertices v; of Bicosa.

Suppose at an arbitrary t the state of the SLCS is at x(t) # 0
which, due to homogeneity, can be assumed to lie on the bound-
ary of Bjcsa, and the adversary chooses o(t) = 1, i.e,, the above
constructed subsystem (A1, By), to evolve the system. We now
find the optimal user control u(t) so that x(t +1) = A1x(t)+Bu(t)
has the smallest || - ||jcosa NOTM.
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Fig. 4. (a) Icosahedron Bjs, viewed from an angle through the origin and the
center of an face; (b) Bicsa viewed from the top down; (c) Top down view
of Bicsa after the linear transform by diag(%, y%, 1), with the dashed line

representing the regular hexagonal silhouette in (a) after a proper rotation.

e Case 1: If x(t) is on the face vsvgv7, then A1x(t) is on the face

vLvg, of AiBicosa. In this case, the smallest possible |[x(t +

1)|licosa i 1, which is achieved when x(t + 1) is placed on the
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(b)

Fig. 5. The original icosahedron Bijcs, (dashed lines) and the transformed

A1Bicosa (bold lines) viewed from: (a) the direction of w; (b) a generic direction.

line segment vyv3 by the following unique choice of u(t):
w(e) = [ 2575 —1]xe). (10)

6
By symmetry, the same conclusion holds if x(t) is on the
opposite face v;vgvg.

e Case 2: If x(t) is on the face vivgv7, then A1x(t) is on the face
V]V Of A1 Bicosa. The smallest possible [|x(t + 1)[licosa (Which is
also 1) is achieved when x(t + 1) is placed on the line segment
vyvg by the following unique choice of u(t):

() = [3ﬁg«/ﬁ _7«/5—23\/E —]]x(t). (11)

7+/3-3V15
2

The same conclusion holds if x(t) is on the opposite face
VgUgU10. Note that the gain matrices in (10) and (11) are differ-
ent due to the fact that the two line segments, v{v3 and vyvg,
and the origin are not on the same plane.

e Case 3: If x(t) is not on the faces vsvgv7, V,Ugvg, V1UGU7, OF
VgUgV1g, then A;x(t) when viewed along the w direction is not
on the silhouette in Fig. 5(a). In this case, by a proper choice of
u(t), we can make ||x(t 4+ 1)||icosa Strictly less than 1.

Denote by C; = {ajvs + ayvs + azv; | ay,az, a3 > 0} the
convex cone spanned by the face vsvgv7. Similarly, denote by G,
the convex cone spanned by the face vivgv;. Then, —C; and —G,
are the convex cones spanned by the faces v;vgvg and vgvguyg,
respectively. Define £2; = C;U(—C;)UCU(—C;). By homogeneity,
the conclusions in the above three cases can be extended to
arbitrary x(t) € R3:
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(i) If x(t) € C; U (=Cy), then miny) IX(¢t + Dllicosa = IX(E)llicosa-
The minimum is achieved by u*(t) in (10), under which x(t + 1)
is on the plane spanned by vjvs and the origin;

(i) If X(t) € C; U (=C), then minygy IX(t + Dllicosa = IX(E)llicosa-
The minimum is achieved by u*(t) in (11), under which x(t + 1)
is on the plane spanned by vyvy and the origin;

(iii) If X(t) ¢ £21, then minu(t) ||X(t + 1)”icosa < “X(t)“icosa-

The optimal controllers in Cases 1-2 have the form:

. 3v/3 - /15 74/3 =315
ur(t) = TX1(U+ fl&(t)l —x3(0).  (12)
Let §2,, ..., £25 be such that each £2; is a cone spanned by two

adjacent faces of Bicsa together with their opposite faces and
U?_,2; = R3. For each £;,i = 2, ..., 5, similar to (A, B), we can
construct a subsystem (A;, B;) under which miny) [[X(t4+1)llicosa <
”x(t)”icosa if X(t) ¢ £2;; and minu(t) ||X(l' + 1)”icosa = ”X(t)”icosa
if x(t) € £2; with the minimum achieved by a unique optimal
controller u*(t) of a form similar to (12). Furthermore, we can
choose £2; and the corresponding rotation matrix in A; carefully
so that the SLCS {(Aj, Bi)}i=1,..5 is ergodic under the optimal
controller: starting from any x(0), the state trajectory x(t) will
visit each half of £2; (as spanned by one face and its opposite face)
periodically with the period 10. As Bijcsa satisfies the geometric
conditions in Proposition 4.2, || - ||icosa iS @ Barabanov norm of the
SLCS with p, = 1. Indeed, for any x(t) # 0, we have x(t) € £2;
for some i € {1,...,5}. Then the worst-case mode choice would
be o(t) = i, against which the user can at best maintain the
same || - ||icosa Norm of x(t + 1) as x(t) using a nonlinear feedback
controller.

Suppose the user adopts a control policy in £ and the state at
time t is at, e.g., X(t) € £2;. Then under o(t) = 1 and the linear
feedback controller u(t) = Kix(t), the user can ensure |x(t +
Dllicosa = 1%(t)|licosa for x(t) in at most half of £2; by choosing
K7 according to either (10) or (11). The ergodicity property of
the SLCS under the optimal control policy then implies that there
exists T < 10 such that [|x(t + 7)|licosa > |IX(t)]licosa- AS a result,
the exponential growth rate of ||x(t)|ljcosa Under any u € L is
uniformly bounded from below away from 1. This implies that
Pv > py = 1. After a scaling by a € (1/p,, 1), the a-scaled
SLCS can be o,-stabilized by some u* € ¢/ but not by any u € L.
Consequently, the answer to Question 1.2 in Section 1 is negative.

5.2. Cases of optimality

It is worth mentioning that for some SLCSs, their optimal
control policy can indeed be found in £. An example has been
given in Example 4.1 where, among the many possible optimal
controllers, one of them as given in (8) is in £. In this section, we
will study some families of SLCSs which attain optimal controllers
in L.

Proposition 5.1. For a nondefective SLCS {(A;, B;)}, there exist a
user control policy u € L and some K € [0,00) such that
Ix(t; 0, w, x(0))| < K(ps)[IX(0)|, ¥t, Yo € S, ¥x(0), if one of
the following holds:

(a) The state space is R?, i.e., A; € R**2, B; € R¥P, Vi e M.
(b) The state space is R" and, for each i € M, the dimension of the
range space of B; is either 0, n — 1, or n.

Proof. We first prove for case (a). If p, = 0, then the SLCS is
stabilizable to the origin in one step, i.e, A; = B;iK; for some K;,
Vi. We can then choose u € £ with u(t) = —K,x(t). In what
follows, we assume that p, > 0. After a proper scaling, we further
assume p, = 1.

By Theorem 4.1, the nondefectiveness assumption implies the
existence of an extreme norm ||-||, which satisfies max; inf, ||A;z+
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Biv|| =< |zll, Yz. Thus, with the control policy u such that
u(t) € argmin, | Aox(t) + Boyvl, we have [x(t + )]l < [X(0)),
Vt, Yo(t). It remains to prove that there is one such u in £,
i.e.,, for each o(t) = i, there exists K; € RP*? such that Kiz €
argmin, ||Aiz + Byvl|, Vx(t) = z. If R(B;) = {0}, i.e, B; = 0, the
choice of K; = 0 is trivial. If R(B;) = R?, then there is some K;
such that A; + BiK; = 0, e.g., K; = —Bl.TAi where Bl.T is the pseudo-
inverse of B;. Suppose B; is rank one. Without loss of generality,
we assume the first column of B; is a nonzero vector w; € R?;
hence R(B;) =span {w;}. For the unit ball B of || - ||, there exists
some y; € 083 that is on the silhouette of B when viewed along
the w; direction, or more precisely, P;.(y;) € rbd(P;.(5)). Note
that w; and y; cannot be of the same direction as 5 has nonempty
interior. Consider a control input v* with vj = .- = v; =0
and v} € R such that y; == Az + viw; = ay; for some o € R,
Le, vi = kiz = —(y")'Ai/ () wi) - z. A consequence of such
a choice is that the line passing through A;z along the direction
of w; is a supporting plane (line) of the scaled unit ball «B at
the supporting point y; € d(«aB). This implies that ||A;z + Biv||
achieves its minimum value o at v = v*. As v* = Kjz where
the first row of K; is k; and the rest of the rows are zero, we
have proved the statement (a). The proof of statement (b) is an
immediate extension of the above proof and thus omitted. O

6. Computation algorithms

In this section, numerical algorithms for computing the o,-
stabilizing rate p, of SLCS will be developed based on the results
in Section 4.

6.1. Ellipsoid norms

A positive semidefinite matrix P > 0 defines a seminorm
lzllp == (z"Pz)Y2. If P > 0 is positive definite, then |z|p is a
norm, called an ellipsoid norm. Simple computation shows

lzllpy = r_nj;a(zT (AT PA; — ATPB(B{ PB;)'B[ PA;) z.

1€
The condition that || - [[ps < Bl - |I» is equivalent to
A!PA; — Al PB;(B! PB;)'BI PA; < B*P, Vie M.

The smallest g* for the above to hold can be obtained by solving
the above (nonconvex) problem. For an easier bound, consider
control policies in £, i.e., u.(i, x) = Kjx, and write

lzllp; = maxinf(Aiz + Biv)' P(Aiz + Bjv)
1 v
< max i’r(lsz(Ai + BiK))TP(A; + BiK;)z.
1 i

Thus, a sufficient condition for | - |[py < BI| - Ilp is
3K; such that (A; + BiK;))" P(A; + BiK;) < B°P, Vi.

By letting Q = P~', F; = K;P~!, and using Schur complement, we
can rewrite the above as:

BQ AiQ + BiF;
QAT + FTB! BQ

By solving the LMI feasibility problem (13) with decreasing 8, we
obtain an upper bound of p,. This bound is conservative since
extremal or Barabanov norms are generally not ellipsoid norms
and the optimal user control policy may not be in £.

3Q and F; s.t. |: i| >0, Vi. (13)

6.2. Polytope norms

A less conservative but more computationally intensive ap-
proach is based on polytope norms. Let C = {cq,...,¢c;} C R"
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be such that ¢y, ..., c, span R". Then |z|c = maxj_,..,
defines a (polytope) norm on R". Applying the operator (5) we
have

Izllc; = max infmax |c] (Aiz + Biv)| .

i v
For each fixed i € M, inf, max; |ch(A,~z + Bv)| is the optimal value
of the linear program:

min y st. £¢/(Az+Bv) <y, j=1,....L (14)
v,y

By strong duality, the optimal value of (14) is equal to that of

its dual problem, maxceg, c"z, where £; is the bounded, centrally
symmetric polytope in R" given by

l
> OF -4l Z(e* +6;7)
j=1
4
P

i=1

—\Tp _ + —
—6;)/B=0,6 20,6 =0
Then, |z|lc; = mMax; MaXceq, €'z = MaxXccq €'z, where

2= S0 -0 ulo| S o=t

ij ij

—\aT
—0;)Ai G

20 =
J
is the convex hull of Ujcx82; (denoted by 2 = Co (Ui $2))).
Here,ie Mandj=1,...,¢.

The condition that || ||cy > «||- ||c is equivalent to Co (ecy, . ..,
acy) C £2,i.e., acy € §2 for each k = 1,...,¢. The largest o
for this to hold provides a lower bound of p,, which is given by
a* = ming o where o sup{e > 0 | acy € £2} can be
computed by solving a linear program. In the ideal case, || - ||c
resembles a Barabanov norm (if exists), i.e.,, Co(cy, ..., c/) and 2
have similar shape. This would imply that «;; have similar values
(i.e., low eccentricity).

Based on the above discussions, we present Algorithm 1 below
as an answer to Question 1.3 in Section 1. The algorithm adap-
tively changes the polytope norm | - ||c to achieve increasingly
tight lower bounds of p,. Using the polytope norm | - ||c estab-
lished by Algorithm 1, one can solve a set of linear programs
to find the smallest 8 such that || - |lc; < B]| - || holds, which
yields an upper bound of p,. By increasing the number ¢ of
vectors in the set C, the obtained bounds can be made arbitrarily
tight. However, the computational complexity will also increase
exponentially fast with £.

6;)c/Bi=0, Vi, 67 >0,6; >0

Algorithm 1

1: Initialize C € R™¢ with columns ¢, k=1, ..., ¢
2: repeat

3: fork=1,...,¢do

4: Compute o = supf{o > 0]acy € 2}

5. end for

6 @ <« J[ley o

7. fork=1,...,¢do

8: Cx < (o /a*) - ck

9: end for

—_
o

: until (maxy «)/(ming o) < 14 ¢ or maximum number of
iterations is reached
: return o = ming o]

—_
—_
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We now test the algorithms on the SLCS (4), whose o,-
stabilizing rate has been found in Example 4.3 to be p, ~ 1.2493.
By using Algorithm 1 with C initialized to have 72 unit vectors
equally dividing half of the unit circle, we obtain a polytopic norm
Il - llc whose unit ball is very close to the one depicted in Fig. 3.
It produces the bounds 1.2474 < p, < 1.2638. In comparison,
we obtain the upper bound p, < 1.4143 by solving the LMI
problem (13), and the upper bound p, < 1.3305 when using the
algorithm in Daafouz and Bernussou (2001, Theorem 4).

7. Conclusions

The optimal stabilizing rate is proposed as a quantitative met-
ric of the stabilizability of SLCSs using continuous input under
arbitrary but known mode switchings. It is shown that the op-
timal stabilizing rate may not always be attainable and, even if it
is attainable, it may not be achieved by a mode-dependent linear
state feedback controller. Theoretical and numerical techniques
based on (semi)norms are proposed to compute bounds of the
optimal stabilizing rate. Future research includes, e.g., finding
larger families of SLCS for which the optimal stabilizing rate can
be achieved by mode-dependent linear state feedback controller.

Appendix A. Proof of Theorem 2.1

Obviously, (i) implies (ii), and (ii) implies (iii); we only need
to show that (iii) implies (i). Suppose (iii) holds. Consider a fixed
z € S™!, where S"! is the unit sphere in R", and set ¢
0.5. Then for any o, there exists u,, € U such that T,
min{t | [x(t; o,u;,,2)|| < 0.5} is finite. We claim that T, ,
uniformly bounded in o, i.e.,

is

Claim: there exists T, € Z. such that for any o € S,
we can find w,, e Y so that T, , < T,.

Suppose the claim fails. Then there exist a sequence of switching
sequences (X)) and a strictly increasing time sequence (T;) such
that for each k, ||x(t; o®,u,z)|| > 05 forallt = 0,1,..., Ty
under any u € . At each t, since o¥(t), k € Z,, take val-
ues in the finite set M, at least one value, denoted by o(*)(t),
appears infinitely often. Denote by o(*) e S the switching se-
quence (o(®)(0), 6(*®)(1), .. .). By repeatedly taking subsequences
of (¢®) and induction on t, we have ||x(t; ¢®), u,z)|| > 0.5, Vt
under any u € U, a contradiction to (iii). Hence, the claim holds.
For a fixed z € S*! and a given switching sequence o, let
u, , be a control policy such that T, , is the first time satisfying
|x(t;0,u,45,2)] < 05 with T,, < T, and u,.(t) be the
control input value produced by this control policy at t. Define the
admissible control policy U, = (uz(,(O) Uz 4(1),...). Clearly,
under the given o and U, ,, ||x(t; o, U, v)|| is contmuous inv
at each t. Therefore, there exists a neighborhood i/, , of z such
that for any v € U,,, ||x(t; o, U, 4, V)| < 0.5 for some t < T,.
Since there are only finitely many o’s up to the time T,, this
neighborhood can be chosen uniformly with respect to o, i.e., we
can find a neighborhood ¢4, of z and a control policy W, (which
is the ensemble of all the W, ,'s defined above) such that for any
o € Sand any v € U, ||X(t; o, U,, v)|| < 0.5 for some t < T,.
Since S™! is compact, there exist finitely many z(, ... zP) e
S"™1 for some p € N such that the corresponding neighborhoods
Uy, ..., Uy cover S Define T, := maxj_;_,T,p. Let u*
be the control policy obtained by piecing together u,), i.e., if
Z € Uy, then U, is invoked, Yj = 1, ..., p. Therefore, for any z €
S"1land any o € S, ||x(t; o, u*, z)|| < 0.5 for some t < T,. It can
be verified that sup,¢o 1,1 ,esn-1,5es 1X(t; 0, 0%, 2)|| < oc. Using
this result and a standard argument for switching systems (Shen
& Hu, 2012, Proposition 2.1), it can be shown that by repeating u*
whenever the state solution’s norm is reduced by at least half for
the first time (which takes no more than T, time), we obtain an
admissible control policy that exponentially stabilizes the SLCS.
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Appendix B. Proof of Proposition 3.1

By scaling all of the A;’s matrices by 1/p,, we can assume
without loss of generality that p, = 1. Define the extended real
valued function

£(z) ;= sup inf sup ||x(t;o,u,z)||, VYzeR"

ces Vel tez,

(B.1)

It is easily seen that ¢ is subadditive, absolutely homogeneous of
degree one, and positive definite (since {(-) > || - ||). Hence, W :=
{z | ¢(z) < oo} is a subspace of R™. We claim that it is control o,-
invariant. In fact, for any z € W, there exist K € [0, oo) and u € U
such that for any o € S, ||x(t;0,u,2)]| < K, Vt. Let 6(0) = i
be arbitrary, and let v ug(z, i) be the corresponding control
produced by the policy u at time 0. Denote o, = (o(1), 0(2),...)
and uy = (uq, uy, ...). Then x(1) = A;z + Bjv is such that for any
op € S, |x(t; o, up, x(1))| = |Ix(t + 1; 0,u,%(0))]| < K. This
shows that x(1) € W, i.e.,, W is control o,-invariant.

By the irreducibility assumption, W is either {0} or R". In
this and the next paragraph we will prove by contradiction
that the former is impossible. Suppose otherwise, i.e., W
{0}. Then for an arbitrary z € S"!, there exists o, such that
infycy SUP;ez, [1X(t; 07, W, )| > 2, which implies that for any
u € U, there exists S; 4, u € Z4 such that [|X(s;,4,,u; 07, W, Z)| > 2.
We claim that s, ,, 4 is uniformly bounded in z € S"7!, oy,
and u € U, namely, there exists N € Z, such that for any
z € S"1, there exists o, such that for any u € U, there exists
t < N so that ||x(t; 07, u, z)|| > 2. Suppose not, then there exist
a strictly increasing sequence of times (s), a sequence (z) in
S"™ 1, and a sequence of control policies (u*) such that for each k,
IIx(t; o, uk, z)|| <2 forall o and all t € {0, 1, ..., si}. It follows
from the similar argument for (Hu et al., 2017, Theorem IIL.1)
that there exist z, € S"™! and a control policy u* such that
SUPiez, lIX(t;0,u%, z,)| < 2 for all o € S. This implies that
¢(z¢) < 2 such that z, € W, a contradiction. Therefore, the claim
holds. Hence, starting from any initial state z € S"~, there exists
a switching sequence under which the state norm will be more
than doubled at some time t < N regardless of u € «. When
this occurs at time ¢, the adversary can start a new switching
sequence oy )/|x¢)|- Repeated indefinitely, this process leads to a
switching sequence ¢ € S under which the state solution grows
exponentially fast to infinity regardless of u € /, contradicting
the assumption that p, = 1. Therefore, W # {0}.

Since the SLCS is irreducible, we have W = R", ie, ¢ is
pointwise finite on R". Together with the properties established
at the beginning of the proof, we conclude that ¢ is a norm.
Hence, ¢(-) < K|| - || for a constant K € [0, co), or equivalently,
the SLCS is nondefective.

Appendix C. Proof of Theorem 4.1

Suppose the SLCS has an extremal norm | - ||, ie., ||zl =
max; inf, ||Aiz + Biv|| < psllz| for all z. Then under the user
control policy u:(o(t), x(t)) = argmin, ||A;)x(t) + Boyvll, we
have ||x(t + 1)l < p«[Ix(0)], hence [[x(6)] < (p«) IX(0)|| for all ¢,
i.e., the SLCS is nondefective.

For the other direction, we only prove for the case of p, > 0
since the case of p, = 0 is straightforward. By replacing each
A; with A;/p,, we further assume without loss of generality that
0« = 1. Since the SLCS is nondefective, there exist a constant K €
[0, 0o) and a user control policy u € U such that ||x(t; o, u, z)|| <
K|z||,Vt,Vo € S,Vz where ||-| is a generic (but not necessarily
extremal) norm. This implies that the function ¢ defined in (B.1)
is bounded, i.e., {(-) < K| - ||, and thus is pointwise finite on
R". Since ¢ is subadditive, absolutely homogeneous of degree
one, and positive definite, it is a norm. We claim that ¢ is an
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extremal norm. Indeed, any ¢ € S and u € ¢/ can be written as
o = (0(0),04) and u = (up, u;) where 6(0) =i € M, 04 € S,
ug(i,z) = v € R?, and u, € U. For any z € R", we have

¢(z) = supsupinfinf max

{IIZII, sup |x(t; o, u, Z)II}
t>1

o(0) oy Yo U+
= max { llz|l, sup inf sup inf sup [|x(t; (C.1)
ieM VU opeSU+EU >0
04, Uy, Aiz + Bl }
= max :||z||, max inf¢(Aiz + Biv)}
ieM v
= max {|zll, &;(2)} = &(2). (C2)

Note that in deriving the second equality, we switch the order of
sup,, and infy, as the feedback control law uy is based on z and
0(0) but not on o. This shows that ¢ is an extremal norm.

Appendix D. Proof of Proposition 4.3

Suppose the SLCS is irreducible, and we consider p, > 0 first.
By scaling the matrices A;’s by 1/p0., we assume without loss of
generality that p, = 1. Define

x(z) := sup inf limsup ||x(t; o, u,2)||, VYzeR",
ceS UEU  t 500

which is pointwise finite, since the irreducibility of the SLCS
implies the nondefectiveness as shown in Proposition 3.1. Clearly,
x is a seminorm on R". By a similar argument for the derivation
of (C.2), we obtain, for any z € R", 0 = (0(0),04) € S, and
u=(ug,uy) €,

x(z) = sup supinfinflimsup [|x(t + 1; o', u, 2)||
o(0) o4 W0 U+ (oo

= supinfsupinflimsup |x(t; oy, uy, Az + Bv) |
i UV ooy W tooo

(i=0(0), v=uy(i, 2))

= max inf x(Aiz + Biv) = x4(2).
ie M veRP

We next show that x is a norm, or equivalently, the subspace
Ny = {z | x(z) = 0} is {0}. First, we claim that \V, is a control o-
invariant subspace. To see this, let z € \,, be arbitrary. Then (D.1)
implies that, for each i € M, inf, x(Aiz + Bjv) = 0. Since yx
is a seminorm, it follows from the comment after (5) that for
each i € M, there exists v} € RP such that x(Aizz + Bjv})
inf, x(Aiz + Bjv) = 0. This shows that A, is control o,-invariant.

Since the SLCS is irreducible, \,, is either {0} or R". We show
that N, # R". Suppose not, i.e.,, x = 0 on R". Fix an arbitrary
z € S" . Then for any o, inf, limsup,_ ., [|X(t; o, u,z)| = O.
Hence, for any o and ¢ > O, there exists u,, . such that
limsup;_, o, 1X(¢; 0, U, 5 ¢, 2)|| < e. This implies that
1X(T;.5.65 0, U656, 2)|| < ¢ for some T, , . € Zy. By Theorem 2.1,
the SLCS is o,-exponentially stabilizable, i.e., p, < 1. This
contradicts the assumption that p, = 1. Hence, N, = {0} so
that x is a norm on R". Along with (D.1), this shows that yx is a
Barabanov norm.

Finally, we consider the case of p, = 0. Since the SLCS is
irreducible and hence nondefective, each subsystem (A;, B;) is
stabilizable to the origin in one time step, i.e., A; = BiK; for a
matrix K;, Vi € M. Any norm || - || on R" satisfies || - ||y = 0 and
is thus a Barabanov norm.

(D.1)
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