
 1

Revisiting Analogical Reasoning in Computing Education:
Use of Similarities between Robot Programming Tasks in Debugging

ChanMin Kim
Emre Dinç
Eunseo Lee

Afaf Baabdullah
Anna Y. Zhang
Brian R. Belland

This is an author-created version of the manuscript published as:
Kim, C., Dinç, E., Lee, E., Baabdullah, A., Zhang, A. Y., & Belland, B. R. (2023). Revisiting analogical
reasoning in computing education: Use of similarities between robot programming tasks in debugging. Journal
of Educational Computing Research, 61(5), 1036–1063. https://doi.org/10.1177/07356331221142912

 2

Abstract

Analogical reasoning is considered to be a critical cognitive skill in programming. However,

it has been rarely studied in a block-based programming context, especially involving both

virtual and physical objects. In this multi-case study, we examined how novice programming

learners majoring in early childhood education used analogical reasoning while debugging

block code to make a robot perform properly. Screen recordings and scaffolding entries,

reflections, and block code were analyzed. The cross-case analysis suggested multimodal

objects enabled the novice programming learners to identify and use structural relations. The

use of a robot eased the verification process by enabling them to test their analogies

immediately after the analogy application. Noticing similar functional analogies led to

noticing similarities in the relation between block code as well as between block code and the

robot, guiding to locate bugs. Implications and directions for future educational computing

research are discussed.

Keywords: computing education, robot programming and debugging, analogical

reasoning, novice programming learners, block-based coding

 3

Revisiting Analogical Reasoning in Computing Education:

Use of Similarities between Robot Programming Tasks in Debugging

Analogical reasoning is critical in programming as it is in other design and problem-

solving contexts. Analogical reasoning is defined as a way of thinking in which similarities

between different tasks are perceived and used (Gentner & Smith, 2013; Holyoak et al.,

1984; Holyoak & Thagard, 1995). Computing research has attended to analogical reasoning

for decades. For example, work published in the Journal of Educational Computing Research

studied analogical reasoning as a way of understanding learners’ ability to program (Clement

et al., 1986) and used analogical reasoning in programming instruction (Grandgenett &

Thompson, 1991). More recent computing research engaged learners in analogical reasoning

to improve programming learning (e.g., Aggarwal et al., 2019; Cao et al., 2016; Ichinco et al.,

2017). Nonetheless, analogical reasoning in block-based programming has rarely been

studied (c.f., Ichinco et al., 2017) while the role of visual analogy could be critical in

analogical reasoning in visual programming environments. There is also little knowledge of

analogical reasoning in the context of programming learning that involves both virtual and

physical objects. Analogical mapping could be more complicated with multimodal objects

than unimodal objects because relational structures matter not only within virtual objects but

also between virtual and physical objects. For instance, when programming block-based code

(virtual object) to control a robot (physical object), finding similarities in relational structures

within block code between the previous task and current task is part of analogical reasoning

but so is in relational structures between the block code and the robot. As shown in Figure 1,

there are common relational structures between the virtual objects. That is, the relation

between the repeat # times block A and the movement blocks B is that B is repeated # times

indicated in A. There are also relational structures also between the block code (the virtual

object) and the robot (the physical object) in that the robot is moved by the block code.

 4

Figure 1

A Sample Source and Target Tasks for Relational Structures between Virtual Objects

Source Task (Tracing a triangle)

Target Task (Tracing a pentagon twice)

 Given these gaps in analogical reasoning research, we examined analogical reasoning

during robot programming using block code in the present study. We studied the analogical

reasoning processes of non-CS novice programming learners. The knowledge produced from

the present study is applicable to understanding broader learner populations, including female

students with no initial interest in majoring in CS who could be invited to computing careers.

We addressed the following research question in the present study: How do novice

programming learners use similarities between robot programming tasks in debugging?

Literature Review

Debugging is the process by which programmers identify and resolve bugs. While

research on debugging has proliferated, it has largely been on debugging text-based

languages (e.g., Katz & Anderson, 1987; McCauley et al., 2008; Spinellis, 2018). One thrust

of this research extends the research on analogical reasoning to the computer science domain.

Namely, it describes a process by which programmers faced with buggy code create a

representation of the current state of the program, and then search through their prior

knowledge of similar problems to find and adapt a solution key (i.e., analogue) to the

problem at hand (Burstein, 1983). This is akin to the idea of near and far transfer, where

people use what they learned previously in a similar or different situation (Barnett & Ceci,

 5

2002; Nokes-Malach & Mestre, 2013). In so doing, programmers create a hypothesis that

applying the analogue will resolve the bug and lead to effective execution of the code. They

then implement the solution to test the hypothesis. This idea fits with the computer science

literature, in which a hypothesis-driven approach to debugging is often considered the gold

standard (Araki et al., 1991; McCauley et al., 2008).

When it is near, or low road transfer, users simply have to remember and apply a

solution from a very similar problem (Salomon & Perkins, 1989). But success in this

endeavor relies on the creation of an accurate mental model of the current state of the buggy

program (Burstein, 1988; Gentner & Stevens, 2014; Nersessian, 2008). Such a model needs

to take into consideration not only surface features but also structural elements and how they

interact (Jonassen, 2011). Creating models of problems requires robust disciplinary

knowledge, which many novices lack (Magana et al., 2020). Ideally, a mental model

represents causal mechanisms by which different elements in the model change (Nersessian,

2008). Such representation of causal mechanisms can help users understand what is

happening and why in the program, which in turn can help to pinpoint the bug that is causing

the program to malfunction. Far too often, beginning programmers rely on surface features to

create mental models of programs, which can cause the wrong analogues to be applied, or for

potentially relevant analogues to be inaccessible as inert knowledge (Perkins & Martin,

1986).

That most debugging literature examines how people debug text-based languages is

an important limitation. Block-based coding languages involve some of the same computer

science processes (e.g., recursion, looping, variable specification) as text languages, but the

former were developed for use among student populations with lower programming

motivation and programming knowledge. As such, it is unwise to assume that learners using

block-based languages will debug in the same manner as learners using text-based languages.

 6

First, a hypothetico-deductive approach to analogical reasoning requires that the reasoner

have vast stores of relevant prior knowledge, which many novice block-based programmers

do not have. Furthermore, the way that coders create mental models of programs may differ

between those using block-based coding and those using text-based coding languages, which

can result from limited prior knowledge of coders using block-based coding (Robins et al.,

2003).

Relevant alterative perspectives on transfer include the actor-oriented view (Lobato,

2003, 2006) and preparation for future learning (Bransford & Schwartz, 1999). The actor-

oriented view holds that researchers should examine a transfer situation from the reasoners’

perspective to see what they notice and how they use what they notice to solve the problem

(Lobato, 2003, 2006). According to the preparation for future learning perspective, one

should judge the success or lack thereof in the use of an analogue according to the extent to

which the reasoner is better prepared to learn new material based on the experience applying

the learned material to the new situation (Bransford & Schwartz, 1999).

Conceptual Framework

To examine what novice programming learners notice and how they use what they

notice to solve the problem of buggy code, we constructed a conceptual framework using

literature on analogical reasoning in computer programming (Aggarwal et al., 2019;

Basawapatna, 2016; Cao et al., 2016; Clement et al., 1986; Clements, 1987; Grandgenett &

Thompson, 1991; Ichinco et al., 2017; Jang, 1992; Kurland et al., 1986; Muller & Haberman,

2008), in design (Ahmed & Christensen, 2009; Chai et al., 2015; Cheong et al., 2014), and in

general (Gentner & Smith, 2013; Holyoak et al., 1984; Holyoak & Thagard, 1995; Sternberg

& Rifkin, 1979). Such a multidisciplinary conceptual framework was necessary since there

was no single line of literature readily applicable to the unique context of the present study in

 7

which analogical reasoning involved multimodal objects (virtual and physical objects),

design (for/through debugging), and block-based programming.

The conceptual framework was organized through three perspective angles:

analogical reasoning processes, foci, and forms. Table S1 in the supplementary documents

summarizes the literature used in constructing the perspective angles (the supplementary

tables are available in the online version of the journal; readers of the print version can access

the online supplement in the online version of the journal or request a copy from the first

author). First, analogical reasoning processes in the framework refer to phases of structuring

(encoding and inferring), mapping, applying, and verifying. Analogies share a basic set of

processes that include retrieval (i.e., access to prior analogous cases), mapping (i.e., structural

alignment between source and target tasks), and evaluation (i.e., judging quality and accuracy

of the analogy and inference) (Gentner & Smith, 2013). Elaborated processes noted in

Sternberg and Rifkin (1979) are comprised of the phases of structuring, mapping, applying,

and verifying. Encoding, inferring, mapping and applying as phases in a framework enables

more verbally expressed analogies (Grandgenett & Thompson, 1991). Execution of a

program by testing the applied code, which is verifying it, is a significant part of analogical

reasoning while programming (Gentner & Smith, 2013; Ichinco et al., 2017).

In the first phase, structuring, reasoners analyze the components of the source and

target tasks and infer the structure of the target task by comparison to structures with the

source task. Identifying analogs between domains is not an easy task (Holyoak et al., 1984)

because recognizing different analogous solutions depends on domain knowledge of the

reasoner (Cheong et al., 2014). In the mapping phase, reasoners map relationships between

source and target task elements by identifying similarities and differences between them.

Albeit similar to mapping described in Gentner and Smith (2013), dissimilarities are part of

mapping in Sternberg and Rifkin (1979). The framework of the present study covers both

 8

similarities and dissimilarities because the knowledge of how novice programming learners

discern dissimilarities between the source and target tasks could reveal the (ir)relevance or

(in)accuracy of their analogical reasoning. In the applying phase, reasoners use identified

similarities or dissimilarities to produce the desired output in the target task. Correct or

incorrect use of analogies can occur as a result of actively applying the identified and mapped

analogies (Aggarwal et al., 2019). In the last phase, verifying, reasoners evaluate and justify

the analogy used through understanding the output of the target task.

Second, analogical reasoning foci in the framework refer to visual, functional,

behavioral, and structural analogies. The present study involved design considering that

analogical reasoning was needed not only in understanding the current task in relation to the

prior task but also in programming, more specifically in debugging (Clement, 1987). The

participants were asked to redesign the given buggy code to work as expected. Thus, we

integrated the design literature also using analogical reasoning into our framework to

examine analogical reasoning with foci not only on visual and structural analogies but also on

functional and behavioral. According to Gero and colleagues (Gero & Kannengiesser, 2004;

Gero & Mc Neill, 1998), reasoners navigate through a design problem by focusing on

function, behavior, and structure of an object used in design. They solve design problems

based on understanding of the purpose of the object (i.e., function), the actions or processes

of the object (i.e., behavior), and relations between the elements of the object (i.e., structure).

Analogical reasoning also occurs with visual cues such as pictures and words, and these

visual analogies are often used by designers to solve design problems (Chai et al., 2015).

Similarly, to navigate programming tasks in the present study and find out solutions for

debugging, analogical reasoning had to have a particular focus on the visual appearance, the

function, the behavior, and the structure of objects (e.g., block-code, robots).

 9

Last, while relational structure matches are usually more important than property

(e.g., visual appearance) matches (Gentner & Smith, 2013), our framework includes all these

foci because it is to examine which ones are (un)used/useful in analogical reasoning that

uniquely involves multimodal objects in complex ways. Thus, combined with these

analogical reasoning foci, the conceptual framework also specifies forms of the objects on

which the analogical reasoning is centered. That is, the framework specifies virtual objects,

physical objects, and the relation between virtual and physical objects within the structural

analogies focus. For example, physical objects are often considered in design studies (e.g.,

Chai et al., 2015). Also, relations exist between objects and among problems, and these

relations enrich the analogical reasoning process (Muller & Haberman, 2008). When

mapping between the current and previous programming tasks focuses on similarities in

structures, the framework notes that structures within virtual objects (e.g., block-code),

structures within physical objects (e.g., robots), and structures within the relation between

virtual and physical objects (e.g., block-code controlling the robot) are compared.

Method

Research Design

To gain an in-depth understating of how novice programming learners use similarities

between robot programming tasks in debugging, we employed a multi-case study method

(Creswell, 2013). Multi-case study design was chosen to study diversity or typicality of the

phenomenon (Bogdan & Biklen, 1992), analogical reasoning in this study.

Participants and Context

This study was part of a larger research project for early childhood education majors’

learning to program and debug. Two cases were selected based on variation (e.g., race,

programming experiences) in a class of nineteen undergraduates who participated in a

robotics and play unit. Participants learned coding for children’s play and playful learning

 10

using Ozobot and Ozoblockly. Except for the last two of eight 80-minute classes, they

engaged in programming mainly as debugging tasks. They were invited to debug nine sets of

erroneous block code with increasing difficulties during the unit. No participant had prior

robot programming experience. All but one participant indicated no to little programming

knowledge prior to the unit. One participant who reported intermediate programming

knowledge was Judith. She and her partner, Anne, are one of the two cases in the study. The

other case was the pair of Arianna and Kimberly. These two cases were selected as

representative cases of the current study to best understand the studied phenomenon

(Creswell, 2013) of analogical reasoning. All were female and juniors. Anne was Asian and

the rest were Caucasian. All names in this paper are pseudonyms.

Data Collection

The data were collected while participants engaged in the debugging task called

“Cleaning the Playroom” as the target task and a task called “Color Game” as the source task

(see Table S2 in the supplementary documents for the similarities and dissimilarities between

the source and target tasks). Participants’ computer screens were recorded during debugging

and while responding to scaffolding prompts. The length of screen-recordings for the

Cleaning the Playroom task was 61 minutes for Anne and Judith and 91 minutes for Ariana

and Kimberly. Their reflections on the challenges encountered during debugging and final

code were collected during the unit and artifact-based interviews were conducted after the

unit ended. The total length of these interviews was about 1.5 hours.

Data Analysis

We developed a coding scheme based on the conceptual framework of the study

grounded in the analogical reasoning literature (Chai et al., 2015; Clement et al., 1986;

Gentner & Smith, 2013; Gero & Kannengiesser, 2004, 2014; Gero & McNeill, 1998;

Ruppert, 2013; Sternberg, 1977; Sternberg & Rifkin,1979). The highest-level nodes of the

 11

coding scheme were the four components of analogical reasoning; that is, structuring

(encoding/inferring), mapping, applying, and verifying. Example subnodes for each

component included ‘refer to the source explicitly’ (encoding/inferring), ‘identify similarity

based on the relationship between physical and virtual objects’ (mapping), ‘use similar

analogy correctly-lead to successful debugging’ (applying), and ‘test code and confirm of

meeting programming main goal and subgoals’ (verifying) (see Table S3 in the

supplementary documents for more examples of the coding scheme). We went through three

rounds of pilot coding to revise and refine the coding scheme and to address discrepancies

among coders. Then, we coded Anne and Judith’s data from their Cleaning the Playroom

debugging in NVivo. The average interrater reliability ICC score was 0.849. Next, we coded

data from Ariana and Kimberly’s Cleaning the Playroom debugging task (average ICC =

0.732). Then we aggregated preliminary findings into sense-making tables based on the

coded data. We engaged in multiple rounds of discussions on the coded data and sense-

making tables before finalizing our findings.

Findings and Discussion

Overall Flow of Noticing and Using Similarities between Debugging Tasks

First, noticing similarities in relational commonalities between block code and the

robot guided to the discovery of functional analogy. For example, Ariana and Kimberly

noticed the function of the line navigation block in tasks when they saw the relational

commonality between line navigation and the robot behaviors (see ① to ②	in Figure 2). This

in turn led to the discovery of ③ relational commonalities within block code (the line

navigation and loop blocks) between the target and source tasks. Noticing relational

structures ① between virtual and tangible objects (the line navigation block and the robot),

mediated by the function ②	of the noticed virtual object (the line navigation block), led to

 12

noticing relational structures ③	with other objects (the loop block). A similar flow was found

in Anne and Judith’s debugging where noticing similarities in the function of elements in a

virtual object guided them to the discovery of relational commonalities within block code.

Specifically, Anne and Judith went through from ① to ② and ③ in Figure 3, which depicts

that they did not begin seeing ③ the relational commonality in the structural relation

between the line navigation block and the repeat block until they noticed ① and ② the

functional commonalities of the line navigation and repeat blocks between tasks.

Figure 2
Flow of Ariana and Kimberly’s Analogical Reasoning Foci and Forms

Figure 3
Flow of Anne and Judith’s Analogical Reasoning Foci and Forms

 13

Both groups also discovered similarities in relational commonalities between the

block code and the robot after noticing similarities in relational commonalities between the

block code in target and source tasks. For example, the relation between the line navigation

and the repeat blocks ③ guided Anne and Judith to discover the relation between the line

navigation block and the robot’s movement ④ as well as the repeat block and the robot’s

movement ⑤ in Figure 3. Ariana and Kimberly first noticed the relation between line

navigation and repeat blocks ③ and then noticed the relation between the logic block and the

robot’s movement ④ in Figure 2.

 The opposite trend was also observed, where noticing similarities in relational

commonalities between the block code and the robot guided them to the discovery of

relational commonalities between the block codes between the target and source tasks. For

example, Ariana and Kimberly mapped the relational commonality between the logic block

and the robot ④ in the target and source tasks (see Figure 2). This mapping led them to

notice the relation between the logic and loop blocks ⑤. After noticing relational structure

④ between block code and the robot (the robot and logic), as in ①, mediated by relational

 14

commonalities ⑤ between block code (logic and loop blocks), Ariana and Kimberly noticed

the function ⑥ of the break out of loop. The flow starting from relational commonality

related to the logic block was mediated with a more familiar repeat block and ended with the

function of a special repeat block (i.e., break out of loop) within the logic. This flow can be

attributed to less familiarity with logic blocks compared to more familiarity with the repeat

block throughout their analogical comparison process in the target task until ⑥. The flow of

relational commonalities between visual objects indicated a high level of systematicity in

mapping. That is, a relation between visual objects triggered another relation between visual

objects while reasoning analogically in debugging.

Noticing either relevant similarities (Ariana and Kimberly) or irrelevant similarities

(Anne and Judith) in relational commonalities between block code and the robot guided the

two pairs to discover relevant similarities in relational commonalities between block codes in

target and source tasks. Ariana and Kimberly identified the relevant similarity in relational

commonality between the missing logic block and the robot’s movement and then discovered

the relational commonality between repeat and missing logic blocks. On the other hand,

Anne and Judith noticed an irrelevant similarity in relational commonality between the

terminate block and the robot’s movement. The irrelevant similarity guided the pair to

discover relevant similarity in relational commonality between repeat (while/until) and

variable blocks. This result is important because even analogies based on irrelevant similarity

in relational commonality led these novice programmers, Anne and Judith, to notice

analogies based on relevant similarity in relational commonality while debugging.

There were also cases where noticing the function of block code led to the relational

commonalities between block code and the robot between target and source tasks. For

example, Ariana and Kimberly in Figure 2 noticed the function of set blocks ⑦ between

target and source tasks. Set blocks were needed to be set to a specific number in the target

 15

task. The noticed function of set blocks guided them to structural relation between set blocks

and the robot ⑧. The part of the analogical reasoning flow starting from the function of

block code was helpful for identifying a bug in the target task. Similarly, Anne and Judith

noticed the function of block code (i.e., line navigation and repeat blocks), which led to the

discovery of ④, ⑤ relational commonalities between the block code and the robot (see

Figure 3). In both cases, functional analogy led to noticing the relational commonalities

between block code and the robot, which in turn helped to identify the bugs in the target task.

Such a productive role of functional analogy is contradictory to findings in analogical

reasoning literature in which functional comparisons were found to limit reasoners’ capacity

to identify relevant analogy (Cheong et al., 2014). The multimodal forms of objects in the

present study may have impacted this finding. That is, due to symbolic, visual, and material

forms used in debugging tasks but also relational structures embedded within and between

the multiple forms, understanding function of objects was critical to understanding objects

and structures within them and associated with other objects.

However, noticing and using relational commonalities did not always lead to

successful debugging. In Figure 2, after noticing the structural relation between set blocks

and the robot’s movement ⑧, Ariana pointed out moving set blocks into the repeat block.

This was a relational commonality between block code ⑨. They applied this analogy and

ended up with unsuccessful debugging. The directed structural relation between block codes

⑨ (i.e., set and repeat blocks) by the function ⑦ of a block code (i.e., set blocks) led Ariana

and Kimberly to unsuccessful debugging. Similarly, when Anne and Judith in Figure 3

noticed ⑩ the relational commonality between the target task and the source task in the

structural relation between the variable block and the logic block, they then fixated on ⑪

analogical comparison of the numeric value in the math block between tasks. ⑪ Judith

 16

suggested changing the numeric value within a math block from 1 to 2 in the Cleaning the

Playroom debugging task. In the Color Game task, math blocks had the number = 2 in logic

(if/do) blocks for intersection colors red and green. This was an unrelated single object

between the two tasks to debug the Cleaning the Playroom. Anne and Judith did not apply

this single object as discussed earlier, meaning they did not change the value in the math

blocks in the Cleaning the Playroom. This analogy was unrelated to bugs in the target task,

thereby leading to studying ⑫ the function of variable blocks. Anne and Judith wanted to

add the missing logic block after noticing that they need to use variables to create the

condition for the missing logic. ⑬ The function of variables to create the missing condition

led to the relation between variable blocks and logic blocks. Anne duplicated the existing

logic block to create the missing condition with variables blocks within compare and

AND/OR operations. Anne and Judith incorrectly created the condition. ⑭ Then, Anne

noticed the structural relation between variables for red and green toys (virtual objects) and

the robot’s movement (physical object) accordingly.

Cross-Case Analysis Themes

Analogical reasoning began with attending to relational similarities rather than surface

similarities

 According to prior research, novices’ similarity-based retrieval (i.e., analogical

retrieval) is usually driven by surface similarities whereas experts are more likely to retrieve

similarities in relational structure because their encoding process includes more relational

knowledge (Gentner et al., 1993, 2013; Holyoak & Koh, 1987; Ross, 1987). On the contrary,

in the present study, analogical retrievals were often driven by structural similarities.

Structural similarities were relational commonalities between the virtual object (i.e.,

terminate block in code) and physical object (i.e., the robot’s movement) as well as between

elements within the virtual object (e.g., a relation between the repeat and logic blocks). For

 17

example, when the target task, Cleaning the Playroom, was provided, both pairs referred to

the source of their analogy as they identified similarities with the source task. As Judith tried

to stop the robot in the target task, she referred to the source task regarding the terminate

block (① in Figure 4) by saying “Because it [the robot] doesn't stop, so we have to terminate

it [the program] at the end like we did with the last one.” Anne recalled the repeat while/until

and compare logic blocks in the source task (② in Figure 4) as she identified the relational

similarity between the repeat block and the compare logic block next to it, by mentioning “I

think it's like one of those times where you do like repeat until the number of red toys is like

equal six.”

Figure 4

The Code for Source Task and the Buggy Code for Target Task with Identified Analogies

Source Task

(The Color Game)

Target Task

(The Cleaning the Playroom - buggy code)

Ariana and Kimberly also went through a similar encoding and inferring process. As

they attempted to make the robot move continuously on the map in the target task, Ariana

referred to the source task regarding the location of the line navigation block (③ in Figure 4)

by saying “I'm not sure where to put [the line navigation block]. How does it look, how did

 18

we do it in the last one? I think it's just, this [the line navigation block] needs to go up here.”

When given a new task, both pairs reminded themselves of analogous experiences from the

past debugging task and retrieved similar attributes in terms of code structure and robot

movement.

Using virtual and physical objects together seemed to have promoted the pairs’

attention to the relational structure since they needed to compare the structure of the code to

that of the robot behaviors to debug. While it has been argued that text-based programming

inherently facilitates learning of analogical reasoning (Grandgenett & Thompson, 1991; Jang,

1992), there was no discussion on whether and how block-based programming can promote

analogical reasoning based on structural similarities. Visually discernable structures in block

code and tangible outputs (robot behaviors) may have made structural similarities prominent.

Nonetheless, the pairs noticed no dissimilarities between the source and target tasks. The

pairs may have paid more attention to similarities than dissimilarities in the early phase of the

analogical reasoning process considering that similarities between the source and target tasks

are used in reducing the perceived complexity of the target task (Ahmed & Christensen,

2009) and acquiring complete knowledge of the elements in an object and their relations

(Gentner et al., 1993; Holyoak & Koh, 1987; Novick, 1988).

Analogical mapping was often centered around functional similarities between debugging

tasks

The pairs demonstrated high structural consistency within each analogical mapping in

which one element in the source task was matched with at most one element in the target

task, not with multiple elements (Gentner & Smith, 2013). As illustrated in Figure 5 below,

this also involved parallel connectivity. These findings align with the literature showing that

people tend to keep structural consistency in the mapping (e.g., Spellman & Holyoak, 1992).

The pairs’ mapping also showed high systematicity (Clement & Gentner, 1991) in which

 19

commonalities in the structure that they found also entailed a deeply connected system of

relations. For example, the same causal patterns between the code (virtual object) and the

robot’s movement (physical object) were applied in both debugging tasks.

Figure 5

Parallel Connectivity between the Code for Source Task and the Correct Code for Target

Task and Identified Analogies

Source Task
(Color Game)

Target Task

(Cleaning the Playroom - correct code)

For example, both pairs identified similarities associated with the function of the line

navigation block from the source task, Color Game, and based on its relationship with other

surrounding blocks (i.e., structural similarity in the virtual object) as well as the relationship

with the robot behaviors (i.e., structural similarity in the virtual and physical object). The

pairs recognized how the repeat block functioned in relation to the line navigation block and

the robot behaviors, as shown in the following discourse.

Ariana: (06:18) Oh, it [the robot] follows the line to the next intersection or line
end (She noticed the relation between the robot and line navigation
block). So, it [the robot] would stop at that intersection (She
noticed the function of the line navigation block, allowing the robot

 20

to move on the map until the next intersection). So, it's the first part
[of the code where] we made a mistake. So, I can choose, read all
of these.

Kimberly: (06:38) Should it be this follow line [block]?
Ariana: (06:53) I'm not sure where to put [the line navigation block]. How does it

look, how did we do it in the last one [task]? I think it’s just… This
[line navigation block] needs to go up here (She noticed the
relation between the line navigation and repeat blocks, requiring
the line navigation block to be within the repeat block. See ③ in
Figure 4).

Kimberly: (07:01) Which one? This? (She pointed out the line navigation block
located out of the repeat block)

Ariana: (07:03) Yeah. I think it [the line navigation block] needs to get moved
from the top into the repeat block, I think. (She moved the line
navigation block from out of the repeat block into the repeat block)
There we go. (They ran the robot and confirmed that the robot
moved continuously on the map)

Both pairs also noticed that the code lacked a chunk of blocks making the robot get surprised

and stop when no more red toys were left. They determined that a chunk of logic blocks was

needed. As shown below, their reasoning was based on the similarity in the function of the

logic block, the relational similarity between the logic and loop blocks, and the logic block

and robot movement used in both the source task, Color Game, and the current target task.

Ariana: (13:10) So, when Ozobot has no more green toys left, but there's no more
red toys left for some reason [the Ozobot] got surprised and
stopped. (She read the code and the task description) So it [the
robot] didn't get surprised and stop 'cause it [a chunk of logic
blocks] is not in there. (She noticed the function of the logic block
that caused the robot to get surprised and stopped in the loop
block)

Kimberly: (13:20) Yeah. So.
Ariana: (13:22) We need to go to that if [logic] one. So I can just put... (She

checked the logic block category and added if/do block to the code)
I guess it doesn't really matter. It's, because as long as it, as long as
it [a chunk of logic block] is in the loop. (She noticed the relational
commonality between the logic and loop blocks and decided to put
the if/do block within the loop block. See ⑤ in Figure 5) Let's put
it [logic block] there, and then if, I guess do the same thing. We'll
have to make, or wait, no.

Kimberly: (14:07) Oh that's not. (The pair started building blocks for the missing
chunk of the logic blocks. They added a math block but decided
that it is not the correct block here)

Ariana: (14:07) The number, if the number. This way has two seconds. If the
number of green toys is greater than one, and then we have to add

 21

on like that other part. (The pair checked the variable blocks in the
variable category to add the variables into the newly added if/do
logic block)

Ariana: (14:34) Oh it [compare logic block with ‘the number of green toys’
variable block] might have to go into that big thing [AND/OR
operation block]. Might have to put it on there [in the logic block].
(She noticed that the variable block needs to be in the compare
logic block within the newly added if/do logic block. See ⑤ in
Figure 5)

Ariana: (14:56) The number of red toys is less than one. Just don't move the
positioning. Do it, it [the robot] will get surprised and stop.

Kimberly: (15:31) Do we need this? Like this. (The pair continued to build the newly
added if/do logic block with ‘the number of red toys’ variable
block and other blocks required to be in it)

Ariana: (15:46) Let's just try putting in get surprised and stops. So, it [the robot]
can make a surprise noise and stop. I don't know if there's like a
stop. And add a break out of loop [block]. (She highlighted the
relation between the code and the robot)

The pairs also identified similarities regarding the variable blocks between the Color Game

task and the Cleaning the Playroom task. Specifically, they recognized how the variable

block functioned in relation to the other blocks (e.g., the repeat until block and the if-do logic

block) and the robot behaviors as shown in the discourse below.

Judith: (08:27) Or above here? (She noticed the missing sound block after reading
the task description and added the play happy sound block between
two logic blocks) We need it to be like in a variable. (She noticed
that there is a missing logic block consisting of a variable block to
place the sound block. See ⑤ in Figure 5)

Anne: (08:36) Exactly. That's why I thought here let's duplicate this [the existing
if/do logic block consisting of play note sound block], so I thought
it'd be like this [with the added missing logic], right? I hate that it
does this. (She commented on her relocating a block that caused
also moving other connected blocks) And then it'd be like this
because I'm putting these two (She changed the variables in the
logic block including the play happy sound block). 'Cause it's one
of [if/do logic blocks] saying (She read the code of the logic
blocks) like if there are more green toys than red toys, then it [the
robot] plays the note. And this one [the other if/do logic block] is
saying if there's more red toys and green toys, then it [the robot]
would be happy or no, it [the code of the if/do logic blocks] should
be the other way around. Because if there are green toys left. (She
noticed that the selection of variables for different colors needs to
change in the logic block based on the robot’s behaviors) Why is it
[putting correct variables into the logic blocks] so hard?

 22

Anne: (11:30) No, it's like six toys or something. So the number of green toys..
repeat while [block] something, like [the number of] green toys
[variable] is like six or something. This is annoying me.

Anne: (12:56) I think it's like one of those times where you do repeat until the
number of red toys is like equal six. (She noticed the relational
commonality between the repeat while/until and variable blocks.
She reminded Judith of the previous task by saying “one of those
times”. See ② in Figure 4)

Judith: (13:10) Change while, change until… (She changed the repeat
while block to repeat until block)

Among the similarities the pairs identified, some were unrelated to fixing the bugs in

the current target task. For example, Judith recognized a similarity in the use of math blocks.

This noticing was based on her mapping of a single object (i.e., the numeric value in the math

block) in the code between tasks. The high level of structural consistency without considering

systematicity led this pair to mapping on an irrelevant single object between tasks. The

mapping without considering the relation of the numeric value with other blocks or with the

robot behaviors led to proposing a change in a block without a bug as shown below.

Judith: (07:10) Less than 1... What if we make it less than or equal to …? Oh,
wouldn't really work. What if you make less than or equal to 2
instead of 1? (She noticed the similarity in the value in the math
block and offered to change the value. See ④ in Figure 4)

Anne: (07:20) This one? (She pointed out the value 1 in the if/do logic block for
‘the number of green toys’ variable)

Judith: (07:21) Yeah, 'cause they're supposed to be out of or no, red. Some red
toys are supposed to be to, yeah, maybe make that, too. (She
offered to change the value 1 in the if/do logic block for ‘the
number of red toys’ variable) I don't know. It's probably not gonna
work. It's probably a waste of time.

Anne: (07:32) You wanna try it?
Judith: (07:39) No, I don't really care. I'm pretty certain it [changing value 1 to 2

in the math blocks] won't work. So just spitting out some options.

Judith pinpointed the similarity in the terminate block based on its function and relationship

with other blocks and the robot behaviors as shown in the following debugging segment.

However, the similarity was irrelevant to the bug in the target task. Still, Judith’s mapping

based on an irrelevant similarity indicated that certain selection criteria, such as debugging

goal, was considered for generating inferences.

 23

Anne: (11:13) Wait, there’s something wrong with this code, 'cause it [the robot]
won’t stop, but it [the robot] should stop eventually. We need to
put something.

Judith: (11:30) Terminate at the end? (She noticed the similarity in the function of
the terminate block in the Cleaning the Playroom with that in the
Color Game task. See ① in Figure 4)

Anne: (11:30) No, it’s like six toys or something. So, the number of green toys…
repeat while something, like green toys is like six or something.
(She wanted to use ‘the number of green toys’ variable in the code,
and then she did not put the variable in the code)

Judith: (12:18) I don’t know what to do. Um, it [the robot] doesn’t stop. Because it
[the robot] doesn’t stop, so we have to terminate it [the program] at
the end like we did with the last one [task]. (She highlighted the
robot’s behavior and reminded Anne of the previous task, Color
Game. See ① in Figure 4)

Anne: (12:30) We have to set it [the variable] to like... (After checking the
previous task, she wanted to set the variable to a number next to
the repeat while block)

Judith: (12:31) Should we send it [the terminate block] to the end?
Anne: (12:35) Okay. But it [the code] is like repeats, and indefinitely that’s the

thing. Like it [the code] doesn’t ever say like repeat until blah,
blah, you know

Judith: (12:54) What if we still get the bottom here? (Judith offered to put the
terminate block at the end of the code) I don’t know [if] he [the
robot] [is] supposed to do this.

The pairs’ mapping also involved analogical inference in that the information they

used in their mapping was selective. The pairs made analogical inferences based on certain

selection criteria to navigate and complete the most accurate and useful mapping. According

to Gentner and Smith (2013), the most important selection criterion (i.e., constraint) for

candidate inferences is the systematicity and structural consistency as mentioned above.

Holyoak and Thagard (1989) took a more pragmatic perspective and argued that purpose/goal

relevance is also an important criterion, and all these different kinds of constraints interact to

determine the optimal set of correspondences between the source and target tasks. The

finding of the present study is aligned with Holyoak and Thagard’s (1989) perspective given

that the pairs’ mapping was driven by their goal of debugging. Despite abundant structural

and relational similarities between tasks, the pairs did not make one-to-one correspondence

on elements they saw as irrelevant to their goal. Their mapping was centered around certain

 24

blocks of the code that were only relevant to their debugging goals (i.e., the line navigation

block, logic block, set variable block) even when their view was inaccurate. This seems to

have resulted from analogical inferencing processes during their mapping based on such

criteria as structural consistency, systematicity, and debugging purpose. Still, these inferences

had to be tested in debugging.

The pairs used all possible analogies in debugging

Both pairs applied all analogical inferences that they had mapped and were relevant

to debugging in the current code. This finding is in contrast to the literature showing that

reasoners struggle applying analogs and often apply relatively adaptable analogs (Keane,

1996; Novick & Holyoak, 1991). Regardless of debugging outcomes, all relevant similarities

from analogical mapping were applied (i.e., analogies regarding the line navigation, logic,

and variable blocks) in the pairs’ debugging attempts. For example, Ariana and Kimberly

used similarities with the line navigation block (i.e., relocating the line navigation block from

outside to inside of the loop block) as well as the loop and logic blocks correctly (i.e., adding

the if/do logic block into the loop block), which were correct attempts leading to successful

debugging. They used similar analogies in debugging for the robot to continuously follow

lines on the map and get surprised and stop when no more red toys were left.

 (Discourse on using the line navigation block)
Ariana: (07:03) Yeah. I think it [the line navigation block] needs to get moved

from the top into the repeat block, I think. There we go. (The pair
had used the relevant similarity in relational commonality between
the line navigation and repeat blocks. See ③ in Figure 4)

 (Discourse on using the loop and logic blocks)

Ariana: (13:10) So, when Ozobot has no more green toys left, but there's no more
red toys left for some reason for green toys get surprised and
stopped so it [the robot] didn't get surprised and stops 'cause it [a
chunk of logic block] is not in there.

Kimberly: (13:20) Yeah. So.
Ariana: (13:22) We need to go to that if [logic] one. So, like that yeah, I can just

put... I guess it doesn't really matter. It's, because as long as it, as
long as it [a chunk of logic block] is in the loop. Let's put it [logic

 25

block] there, and then if, I guess do the same thing. we'll have to
make, or wait, no. (The pair applied the relevant similarity in
relational commonality between the repeat and logic blocks. See
⑤ in Figure 5)

Similarly, Anne and Judith used the similarity with the line navigation block and the loop

block from the source task correctly, which led them to fix one of the bugs and made the

robot continuously follow the line on the map.

Judith: (07:43) What is your solution to the problem? We will stick the line
navigation block underneath the repeat block so that it [the robot]
will follow the whole grid [on the map] and not stop after one
block [grid on the map]. (The pair used the relevant similarity in
relational commonality between the line navigation and repeat
blocks. See ③ in Figure 4)

 Ariana and Kimberly attempted to use similarity with the set variable and loop blocks.

Although they added set variable blocks first to the code with only the number of green toys

variable at the top, the pair incorrectly relocated the set blocks into the loop block. After

revisiting the source task and reviewing the blocks used in the task, the pair relocated the set

block out of the loop block in the target task, which was a correct attempt to debug the code.

Ariana: (26:23) Does it [the set blocks with value 6] have to go into the repeat
thing [block]? (The pair had noticed the relevant similarity in
relational commonality between set variable and repeat blocks.
See ⑥ in Figure 5. She relocated the set blocks into the loop
block)

Kimberly: (27:18) Okay. (She put the set blocks out of the repeat block again) Let's
see. Green toys are 6 and 6 (She read the set variable blocks)

Anne and Judith also tried to use the similarity with the variable block and the logic block

from the source task but were not able to apply it correctly to the target task, which led to

unsuccessful debugging. Anne and Judith’s attempt using analogy (i.e., adding the missing

logic block with other required blocks in it, such as math, compare logic, AND/OR operation,

play surprised, and break out of loop blocks) was close to fixing the bug in the target task.

However, their attempt did not lead to fixing the bug due to their incomplete understanding

 26

of the given problem. This finding is aligned with that of the previous studies in which the

successful application of analogy for the desired outcome depended on an accurate

understanding of the given problem (e.g., Ahmed & Christensen, 2009).

The adaptability afforded by using block code and robots seems to have facilitated the

pairs’ experiments with using all analogies. That is, these tools made analogic inferences

more adaptable to the target task, which allowed pairs to notice and apply relevant

similarities in blocks and/or the robot as needed. By clicking, dragging, and dropping in the

block code, they were able to apply the noticed analogy from the source task to the target

task. According to previous studies, even when reasoners notice correspondence between two

tasks, they often struggle to apply them to the target task and usually use analogical

inferences that are relatively adaptable to the target task (Keane, 1996; Novick & Holyoak,

1991). The findings of the present study suggest the role of block-based robot programming

in facilitating analogical reasoning.

The pairs evaluated their applied analogies

The pairs evaluated their analogy application. This finding is unique in that it is

usually hard to immediately identify whether the analogical inference is true unless the

outcome of the analogy application is immediately testable (Gentner & Smith, 2013). In the

present study, the outcome was readily observable in the robot behaviors. For example, after

applying the similarity in the line navigation block to the target task, both pairs went over the

process of verifying their analogy by testing the revised code and confirming if the robot

performed desired behaviors in relation to the line navigation block. As shown in the

following example from Anne and Judith’s excerpt, they verified the goal of making the

robot move continuously on lines on the map.

Anne: (08:56) It's okay. We're trying our best. (They loaded the revised code to the
robot and ran it on the map after they changed the location of the line
navigation block from outside to inside of the repeat block)

 27

Anne: (10:05) Success, right? (She verified the goal of making the robot move
continuously on the map)

The pairs also revised the code again when they saw that the analogy application did not lead

to the desired robot behavior. Both pairs revised the code after applying the analogy related

to missing logic blocks. Anne and Judith applied the analogy between the logic and variable

blocks and Ariana and Kimberly applied the analogy between the loop and logic blocks.

However, Anne and Judith tested their applied analogy and observed that the robot did not

move properly, but they did not refine their applied analogies for the terminate, repeat until,

and variable blocks. Ariana and Kimberly tested their applied analogy for the missing logic

and set blocks, and revised their code. Ariana and Kimberly continued to work on their code

after applying and testing the identified analogy to debug.

Ariana: (18:29) (They added a chunk of logic block for making the robot get
surprised and stop, loaded the revised code to the robot and ran it
on the map) I don’t know why it [the robot] is not picking up what
that said. (She highlighted the robot not behaving as coded in the
variable blocks in the logic block)

Kimberly: (18:48) Yeah.
Ariana: (18:49) I don’t know if that should be equal. (They changed the

mathematical operation from > 1 to = 0 for the number of green
toys in the compare logic block)

 Anne and Judith refined the code based on their evaluation of the analogy. For

example, they attached the compare logic block to the repeat while block. After testing the

revised code, they changed the mathematical symbol in the compare logic block. They also

tested the newly added logic block and deleted it after seeing that the robot did not perform

properly.

Anne: (00:03) So let’s try this bad boy [the robot]. Oh. (They applied the
similarity in relation between the variable and repeat while/until
blocks. They added compare logic blocks with variables =< 6
instead of the true block connected to the repeat while block. They
tested the revised code)

Judith: (00:55) Is that the B noise? (She commented on the sound coming from the
robot coded to play B note) Oh, that's not good. Because of the
terminate [block]? (She pointed out the terminate block at the end

 28

causing the robot not to move after the first intersection on the
map. She deleted the terminate block)

Anne: (01:02) I think there's something wrong up here. She pointed out the
compare logic blocks connected to the repeat while block) Green
toys equals six? (She changed =< 6 to = 6 in the compare logic
blocks) Oh my god. I'll calibrate again.

Evaluation of analogy application involves a process where reasoners check if their

mapping and inferences are true and thus lead to the desired outcome. It is usually hard to

immediately identify whether the inference is true unless the outcome of the analogy

application is immediately testable and confirmed in an observable way (Gentner & Smith,

2013). Immediate verification through robot behaviors does not mean that the verification

process always led to successful debugging. Although Ariana and Kimberly used the analogy

with the set variable and loop blocks correctly, they revised their code and moved the set

blocks to the loop block, as described the third theme above. Anne and Judith showed a

similar episode in terms of analogies with the variable block and two unrelated similarities in

the math block and the terminate block, as described in the second theme above. They fixated

on their initial ideas as to those blocks with a lack of verification, which led to unsuccessful

debugging. This aligns with literature indicating that fixation has a reverse effect on the

evaluation of applied analogies (Cheong et al., 2014). Anne and Judith spent most of their

time on analogical mapping and applying rather than verifying their analogy application in

comparison to Ariana and Kimberly who spent more on the verification process and refining

the code according to the verification outcome.

General Discussion

We examined how novice programming learners used analogical reasoning in

debugging that involved both code (virtual object) and robots (physical object). The two pairs

exhibited analogical reasoning using structural similarities in contrast to prior research in

which novices focused on surface similarities in non-CS design or problem solving contexts

 29

(Ahmed & Christensen, 2009; Cheong et al., 2014; Novick, 1988). This finding may be

attributed to the nature of the debugging tasks in the present study. Multimodal objects used

in debugging seemed to have made structural relations salient in that debugging inherently

asked them to map the relation of the code to the robot behaviors. In turn, such mapping may

have led to analogical comparisons of the target task to the source task. The analogical

reasoning of the pairs demonstrated structural consistency (Holyoak & Thagard, 1989) and

systematicity (Clement & Gertner, 1991). The finding may have resulted also from the

analogy applications that were immediately feasible in the code.

Use of multimodal objects during debugging engaged the pairs in the evaluation

process of analogical reasoning. Being a tangible object, the robot enabled participants to test

immediately after their analogy application. Inference made between source and target tasks

can be correct or incorrect to solve the target problem and evaluating the analogy applied in

the target task is critical for successful problem solving (Gentner & Smith, 2013). In the

present study, both pairs applied the relevant similarity in the relation between the loop and

line navigation blocks and verified the analogy application by running the robot on the map,

and there was only one case where the evaluation process was not performed after the

application of analogy. Although participants were able to engage in more evaluation

processes, the evaluation itself was not always accurate enough to verify the appropriateness

of the analogical reasoning. Sometimes, they fixated on irrelevant similarities and

inaccurately evaluated the analogy application even after testing with the robot.

Another notable finding was that the functional analogies were used effectively along

with other foci such as visual or structural analogies in multiple phases of the analogical

reasoning process as well as debugging. Noticing similarities in function led to the pairs’

discovery of similarities in the relation between block codes as well as between block code

and the robot, resulting in finding the bugs in the buggy code. This finding stands in contrast

 30

to the finding in a prior study in which functional analogies prevented identifying relevant

analogies (Cheong et al., 2014).

The presence of the robot played a critical role in the overall flow of analogical

reasoning foci and forms. Noticing relevant similarities and irrelevant similarities in the

relation between the block code and the robot guided the pairs to discover relevant

similarities between block code in the target and source tasks. However, noticing a relevant

similarity in the relation between the block code and the robot led Anne and Judith to

discover an irrelevant similarity in function but Ariana and Kimberly to discover a relevant

similarity in function. The flow from relevant or irrelevant relational similarity between the

block code and the robot guided to relevant relational similarity but not always to the relevant

similarity in function. Since analogy enables reasoners to focus more on relations than

objects (Gentner & Smith, 2013), use of the robot with block code enriched the analogical

reasoning flow from relational similarity to relational similarity rather than to the objects’

functions.

Despite the benefits of block-based coding using multimodal objects for novices’

analogical reasoning, the difficulty that the pairs experienced with the role of variables

negatively affected their use of related analogies. This finding aligns with a previous finding

that successful use of analogy is influenced by relevant domain knowledge (Ahmed &

Christensen, 2009). In addition, both pairs did not notice and use any dissimilarity between

the source and target tasks, and their analogical reasoning process was based on the

similarities. A possible reason is that similar attributes can be perceived without creating

additional cognitive load and readily used in reducing the perceived complexity of the target

task (Ahmed & Christensen, 2009). Noticing only dissimilarities rarely helps to reduce

perceived complexity of the target task, and using dissimilar attributes requires reasoners to

integrate new information presented in the target task and to create or modify their schema

 31

accordingly, increasing cognitive load. Reasoners are also required to have concrete

knowledge of elements involved in the task and their relations to use the dissimilarities

properly in problem solving.

Table S4 in the supplementary highlights the study findings in relation to the existing

literature and also implications for computing education research.

Limitations and Suggestions for Future Research

Only two pairs of participants were presented in the paper. However, generalizability

was not the purpose of the paper. The qualitative method was the most suitable for our

research goal: to uncover novice programming learners’ analogical reasoning process in a

naturalistic setting. A qualitative approach is suitable when a straight-forward description of

the phenomenon is desired (Lambert & Lambert, 2012). Such an approach can also generate

new insights and generate conceptual frameworks, theories, and hypotheses (Kramer, 1985).

Our approach was designed to study participants in their natural state to the extent possible

within the context of the research area (Lambert & Lambert, 2012). Moreover, descriptive

research should be viewed as an initial stage leading to development of new knowledge

(Kramer, 1985). As the study of analogical reasoning in block-based programming is still in

its infancy, this article sets the foundation for more future research on analogical reasoning in

block-based programming.

Further research needs to examine strategies to help novice programming learners

leverage analogical reasoning in block-based programming. For example, providing relevant

retrieval cues could facilitate the phase of structuring (Mozzer & Justi, 2012). Offering

scaffolding tools to help them evaluate their analogy application could be studied in future

studies. The ultimate goal is to create a safe learning environment that encourages students to

generate and explain their analogical reasoning processes.

Implications for Educational Computing Research

 32

Though this study is not meant to be generalizable, it does indicate that novice

programmers have the potential to engage in analogical reasoning focusing on structural

similarities between the source and the target task. Doing so has the potential to help novice

programmers learn to debug effectively. Some conditions that helped the current participants

do so include the multimodal nature of the objects with which they interacted. Specifically, it

helped them to notice structural elements in the code and link such to robot behaviors. Next,

robot behavior lent a concrete manifestation of the code that allowed participants to link code

fragments to robot behavior and to immediately test revisions to the code. These findings call

for further research in computing education toward culturally responsive design that enables

multimodal analogical reasoning and debugging (see Table S4 in the supplementary for

related implications).

The findings of this study may be applied to debugging within other block-based

programming platforms, such as Scratch. There are many commonalities among block-based

coding languages, but also some important differences such as the inclusion of functions and

Boolean operators (Kraleva et al., 2019). Still, the existence of a physical robot in this study

compared to other block-based platforms that have virtual agents may be critical to fostering

effective analogical reasoning.

This study also points to the potential of the inclusion of robots within early

childhood education. If preservice early childhood teachers can program and debug, then they

have the potential to teach with robots. Of course, skill is only one part of the equation, and

much work needs to examine the dispositions and motivation to teach with robots among

preservice, early childhood teachers.

Acknowledgments

 33

This research is supported by grants 1927595 and 1906059 from the National Science

Foundation. Any opinions, findings, or conclusions are those of the authors and do not

necessarily represent official positions of the National Science Foundation.

References

Aggarwal, A., Gardner-McCune, C., & Touretzky, D. S. (2019). Evaluating the effectiveness

of explicit instruction in reducing program reasoning fallacies in elementary level

students. Proceedings of the 2019 ACM Conference on Innovation and Technology in

Computer Science Education, 292. https://doi.org/10.1145/3304221.3325588

Ahmed, S., & Christensen, B. T. (2009). An in situ study of analogical reasoning in novice

and experienced design engineers. Journal of Mechanical Design, 131(11).

https://doi.org/10.1115/1.3184693

Araki, K., Furukawa, Z., & Cheng, J. (1991). A general framework for debugging. IEEE

Software, 8(3), Article 3. https://doi.org/10.1109/52.88939

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A

taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.

https://doi.org/10.1037//0033-2909.128.4.612

Basawapatna, A. (2016). Alexander meets Michotte: A simulation tool based on pattern

programming and phenomenology. Journal of Educational Technology & Society,

19(1), 277–291.

Bogdan, R.C., & Biklen, S. K. (1992). Qualitative research for education: An introduction to

theory and methods. Allyn & Bacon.

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with

multiple implications. Review of Research in Education, 24, 61–100.

https://doi.org/10.2307/1167267

Burstein, M. H. (1983). Concept formation by incremental analogical reasoning and

debugging. Proceedings of the International Machine Learning Workshop, 19–25.

Burstein, M. H. (1988). Combining Analogies in Mental Models. In D. H. Helman (Ed.),

Analogical Reasoning: Perspectives of Artificial Intelligence, Cognitive Science, and

Philosophy (pp. 179–203). Springer Netherlands. https://doi.org/10.1007/978-94-015-

7811-0_9

 34

Cao, Y., Porter, L., & Zingaro, D. (2016). Examining the value of analogies in introductory

computing. Proceedings of the 2016 ACM Conference on International Computing

Education Research, 231–239. https://doi.org/10.1145/2960310.2960313

Chai, C., Cen, F., Ruan, W., Yang, C., & Li, H. (2015). Behavioral analysis of analogical

reasoning in design: Differences among designers with different expertise levels.

Design Studies, 36, 3–30. https://doi.org/10.1016/j.destud.2014.07.001

Cheong, H., Hallihan, G., & Shu, L. H. (2014). Understanding analogical reasoning in

biomimetic design: An inductive approach. In J. S. Gero (Ed.), Design Computing

and Cognition ’12 (pp. 21–39). Springer Netherlands. https://doi.org/10.1007/978-94-

017-9112-0_2

Clement, C. A., & Gentner, D. (1991). Systematicity as a selection constraint in analogical

mapping. Cognitive Science, 15(1), 89–132. https://doi.org/10.1016/0364-

0213(91)80014-V

Clement, C. A., Kurland, D. M., Mawby, R., & Pea, R. D. (1986). Analogical reasoning and

computer programming. Journal of Educational Computing Research, 2(4), 473–486.

https://doi.org/10.2190/DFH5-E0PG-1ML4-M34J

Clements, D. H. (1987). Longitudinal study of the effects of Logo programming on cognitive

abilities and achievement. Journal of Educational Computing Research, 3(1), 73–94.

https://doi.org/10.2190/RCNV-2HYF-60CM-K7K7

Creswell, J. W. (2013). Qualitative inquiry research design: Choosing among five

appraoches (3rd ed.). SAGE Publications, Inc.

Gentner, D., Özyürek, A., Gürcanli, Ö., & Goldin-Meadow, S. (2013). Spatial language

facilitates spatial cognition: Evidence from children who lack language input.

Cognition, 127(3), 318–330. https://doi.org/10.1016/j.cognition.2013.01.003

Gentner, D., Rattermann, M. J., & Forbus, K. D. (1993). The roles of similarity in transfer:

Separating retrievability from inferential soundness. Cognitive Psychology, 25(4),

524–575.

Gentner, D., & Smith, L. A. (2013). Analogical learning and reasoning. Oxford University

Press. https://doi.org/10.1093/oxfordhb/9780195376746.013.0042

Gentner, D., & Stevens, A. L. (Eds.). (2014). Mental models. Psychology Press.

Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure

framework. Design Studies, 25(4), 373–391.

https://doi.org/10.1016/j.destud.2003.10.010

 35

Gero, J. S., & Kannengiesser, U. (2014). The function-behaviour-structure ontology of

design. In A. Chakrabarti & L. T. M. Blessing (Eds.), An Anthology of Theories and

Models of Design (pp. 263–283). Springer London. https://doi.org/10.1007/978-1-

4471-6338-1_13

Gero, J. S., & Mc Neill, T. (1998). An approach to the analysis of design protocols. Design

Studies, 19(1), 21–61. https://doi.org/10.1016/S0142-694X(97)00015-X

Grandgenett, N., & Thompson, A. (1991). Effects of guided programming instruction on the

transfer of analogical reasoning. Journal of Educational Computing Research, 7(3),

293–308. https://doi.org/10.2190/CKGG-EKP5-34YW-YKHB

Holyoak, K. J., Junn, E. N., & Billman, D. O. (1984). Development of analogical problem-

solving skill. Child Development, 55(6), 2042–2055. https://doi.org/10.2307/1129778

Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer.

Memory & Cognition, 15(4), 332–340. https://doi.org/10.3758/BF03197035

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constraint satisfaction.

Cognitive Science, 13, 295–355.

Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought (pp. xiii,

320). The MIT Press.

Ichinco, M., Harms, K., & Kelleher, C. (2017). Towards understanding successful novice

example use in blocks-based programming. Journal of Visual Languages and Sentient

Systems, 3(1), 101–118. https://doi.org/10.18293/VLSS2017-012

Jang, Y. (1992, April). Cognitive transfer of computer programming skills and analogous

problem solving. The American Educational Research Association Annual Meeting,

San Francisco, California, USA. https://eric.ed.gov/?id=ED350981

Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-

solving learning environments. Routledge.

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies.

Human-Computer Interaction, 3(4), 351.

Keane, M. T. (1996). On adaptation in analogy: Tests of pragmatic importance and

adaptability in analogical problem solving. The Quarterly Journal of Experimental

Psychology, 49(4), 1062–1085.

Kraleva, R., Kralev, V., & Kostadinova, D. (2019). A methodology for the analysis of block-

based programming languages appropriate for children. Journal of Computing

Science and Engineering, 13(1), 1–10. https://doi.org/10.5626/JCSE.2019.13.1.1

 36

Kramer, R. F. (1985). A overview of descriptive research. Journal of the Association of

Pediatric Oncology Nurses, 2(2), 41–45.

https://doi.org/10.1177/104345428500200208

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development

of programming ability and thinking skills in high school students. Journal of

Educational Computing Research, 2(4), 429–458. https://doi.org/10.2190/BKML-

B1QV-KDN4-8ULH

Lambert, V. A., & Lambert, C. E. (2012). Qualitative descriptive research: An acceptable

design. Pacific Rim International Journal of Nursing Research, 16(4), 255–256.

Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice

versa. Educational Researcher, 32(1), 17–20.

https://doi.org/10.3102/0013189X032001017

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and

challenges for future research. Journal of the Learning Sciences, 15, 431–449.

https://doi.org/10.1207/s15327809jls1504_1

Magana, A. J., Vieira, C., Fennell, H. W., Roy, A., & Falk, M. L. (2020). Undergraduate

engineering students’ types and quality of knowledge used in synthetic modeling.

Cognition and Instruction, 38(4), 503–537.

https://doi.org/10.1080/07370008.2020.1792912

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: A review of the literature from an educational

perspective. Computer Science Education, 18(2), 67–92.

https://doi.org/10.1080/08993400802114581

Mozzer, N. B., & Justi, R. (2012). Students’ Pre- and Post-Teaching Analogical Reasoning

When They Draw their Analogies. International Journal of Science Education, 34(3),

429–458. https://doi.org/10.1080/09500693.2011.593202

Muller, O., & Haberman, B. (2008). Supporting abstraction processes in problem solving

through pattern-oriented instruction. Computer Science Education, 18(3), 187–212.

https://doi.org/10.1080/08993400802332548

Nersessian, N. (2008). Creating scientific concepts. MIT Press.

Nokes-Malach, T. J., & Mestre, J. P. (2013). Toward a model of transfer as sense-making.

Educational Psychologist, 48, 184–207.

https://doi.org/10.1080/00461520.2013.807556

 37

Novick, L. R. (1988). Analogical transfer, problem similarity, and expertise. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 14(3), 510–520.

https://doi.org/10.1037/0278-7393.14.3.510

Novick, L. R., & Holyoak, K. J. (1991). Mathematical problem solving by analogy. Journal

of Experimental Psychology, 17(3), 398–415. https://doi.org/10.1037/0278-

7393.17.3.398

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice

programmers. Papers Presented at the First Workshop on Empirical Studies of

Programmers on Empirical Studies of Programmers, 213–229.

http://dl.acm.org/citation.cfm?id=21842.28896

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A

review and discussion. Computer Science Education, 13(2), 137–172.

https://doi.org/10.1076/csed.13.2.137.14200

Ross, B. H. (1987). This is like that: The use of earlier problems and the separation of

similarity effects. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 13(4), 629–639.

Ruppert, M. (2013). Ways of analogical reasoning—Thought processes in an example based

learning environment. Eighth Congress of European Research in Mathematics

Education, 6–10.

Salomon, G., & Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanism of a

neglected phenomenon. Educational Psychologist, 24, 113–142.

https://doi.org/10.1207/s15326985ep2402_1

Spellman, B. A., & Holyoak, K. J. (1992). If Saddam is Hitler then who is George Bush?

Analogical mapping between systems of social roles. Journal of Personality and

Social Psychology, 62(6), 913–933. https://doi.org/10.1037/0022-3514.62.6.913

Spinellis, D. (2018). Modern debugging: The art of finding a needle in a haystack. Commun.

ACM, 61(11), 124–134. https://doi.org/10.1145/3186278

Sternberg, R. J. (1977). Component processes in analogical reasoning. Psychological Review,

84(4), 353–378. https://doi.org/10.1037/0033-295X.84.4.353

Sternberg, R. J., & Rifkin, B. (1979). The development of analogical reasoning processes.

Journal of Experimental Child Psychology, 27(2), 195–232.

https://doi.org/10.1016/0022-0965(79)90044-4

