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Abstract 

Analogical reasoning is considered to be a critical cognitive skill in programming. However, 

it has been rarely studied in a block-based programming context, especially involving both 

virtual and physical objects. In this multi-case study, we examined how novice programming 

learners majoring in early childhood education used analogical reasoning while debugging 

block code to make a robot perform properly. Screen recordings and scaffolding entries, 

reflections, and block code were analyzed. The cross-case analysis suggested multimodal 

objects enabled the novice programming learners to identify and use structural relations. The 

use of a robot eased the verification process by enabling them to test their analogies 

immediately after the analogy application. Noticing similar functional analogies led to 

noticing similarities in the relation between block code as well as between block code and the 

robot, guiding to locate bugs. Implications and directions for future educational computing 

research are discussed.  

Keywords: computing education, robot programming and debugging, analogical 

reasoning, novice programming learners, block-based coding  
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Revisiting Analogical Reasoning in Computing Education:  

Use of Similarities between Robot Programming Tasks in Debugging 

Analogical reasoning is critical in programming as it is in other design and problem-

solving contexts. Analogical reasoning is defined as a way of thinking in which similarities 

between different tasks are perceived and used (Gentner & Smith, 2013; Holyoak et al., 

1984; Holyoak & Thagard, 1995). Computing research has attended to analogical reasoning 

for decades. For example, work published in the Journal of Educational Computing Research 

studied analogical reasoning as a way of understanding learners’ ability to program (Clement 

et al., 1986) and used analogical reasoning in programming instruction (Grandgenett & 

Thompson, 1991). More recent computing research engaged learners in analogical reasoning 

to improve programming learning (e.g., Aggarwal et al., 2019; Cao et al., 2016; Ichinco et al., 

2017). Nonetheless, analogical reasoning in block-based programming has rarely been 

studied (c.f., Ichinco et al., 2017) while the role of visual analogy could be critical in 

analogical reasoning in visual programming environments. There is also little knowledge of 

analogical reasoning in the context of programming learning that involves both virtual and 

physical objects. Analogical mapping could be more complicated with multimodal objects 

than unimodal objects because relational structures matter not only within virtual objects but 

also between virtual and physical objects. For instance, when programming block-based code 

(virtual object) to control a robot (physical object), finding similarities in relational structures 

within block code between the previous task and current task is part of analogical reasoning 

but so is in relational structures between the block code and the robot. As shown in Figure 1, 

there are common relational structures between the virtual objects. That is, the relation 

between the repeat # times block A and the movement blocks B is that B is repeated # times 

indicated in A. There are also relational structures also between the block code (the virtual 

object) and the robot (the physical object) in that the robot is moved by the block code.  
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Figure 1 

A Sample Source and Target Tasks for Relational Structures between Virtual Objects 

 
Source Task (Tracing a triangle) 

 
Target Task (Tracing a pentagon twice) 

 

 Given these gaps in analogical reasoning research, we examined analogical reasoning 

during robot programming using block code in the present study. We studied the analogical 

reasoning processes of non-CS novice programming learners. The knowledge produced from 

the present study is applicable to understanding broader learner populations, including female 

students with no initial interest in majoring in CS who could be invited to computing careers. 

We addressed the following research question in the present study: How do novice 

programming learners use similarities between robot programming tasks in debugging?  

Literature Review 

Debugging is the process by which programmers identify and resolve bugs. While 

research on debugging has proliferated, it has largely been on debugging text-based 

languages (e.g., Katz & Anderson, 1987; McCauley et al., 2008; Spinellis, 2018). One thrust 

of this research extends the research on analogical reasoning to the computer science domain. 

Namely, it describes a process by which programmers faced with buggy code create a 

representation of the current state of the program, and then search through their prior 

knowledge of similar problems to find and adapt a solution key (i.e., analogue) to the 

problem at hand (Burstein, 1983). This is akin to the idea of near and far transfer, where 

people use what they learned previously in a similar or different situation (Barnett & Ceci, 
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2002; Nokes-Malach & Mestre, 2013). In so doing, programmers create a hypothesis that 

applying the analogue will resolve the bug and lead to effective execution of the code. They 

then implement the solution to test the hypothesis. This idea fits with the computer science 

literature, in which a hypothesis-driven approach to debugging is often considered the gold 

standard (Araki et al., 1991; McCauley et al., 2008). 

When it is near, or low road transfer, users simply have to remember and apply a 

solution from a very similar problem (Salomon & Perkins, 1989). But success in this 

endeavor relies on the creation of an accurate mental model of the current state of the buggy 

program (Burstein, 1988; Gentner & Stevens, 2014; Nersessian, 2008). Such a model needs 

to take into consideration not only surface features but also structural elements and how they 

interact (Jonassen, 2011). Creating models of problems requires robust disciplinary 

knowledge, which many novices lack (Magana et al., 2020). Ideally, a mental model 

represents causal mechanisms by which different elements in the model change (Nersessian, 

2008). Such representation of causal mechanisms can help users understand what is 

happening and why in the program, which in turn can help to pinpoint the bug that is causing 

the program to malfunction. Far too often, beginning programmers rely on surface features to 

create mental models of programs, which can cause the wrong analogues to be applied, or for 

potentially relevant analogues to be inaccessible as inert knowledge (Perkins & Martin, 

1986). 

That most debugging literature examines how people debug text-based languages is 

an important limitation. Block-based coding languages involve some of the same computer 

science processes (e.g., recursion, looping, variable specification) as text languages, but the 

former were developed for use among student populations with lower programming 

motivation and programming knowledge. As such, it is unwise to assume that learners using 

block-based languages will debug in the same manner as learners using text-based languages. 
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First, a hypothetico-deductive approach to analogical reasoning requires that the reasoner 

have vast stores of relevant prior knowledge, which many novice block-based programmers 

do not have. Furthermore, the way that coders create mental models of programs may differ 

between those using block-based coding and those using text-based coding languages, which 

can result from limited prior knowledge of coders using block-based coding (Robins et al., 

2003). 

Relevant alterative perspectives on transfer include the actor-oriented view (Lobato, 

2003, 2006) and preparation for future learning (Bransford & Schwartz, 1999). The actor-

oriented view holds that researchers should examine a transfer situation from the reasoners’ 

perspective to see what they notice and how they use what they notice to solve the problem 

(Lobato, 2003, 2006). According to the preparation for future learning perspective, one 

should judge the success or lack thereof in the use of an analogue according to the extent to 

which the reasoner is better prepared to learn new material based on the experience applying 

the learned material to the new situation (Bransford & Schwartz, 1999). 

Conceptual Framework  

To examine what novice programming learners notice and how they use what they 

notice to solve the problem of buggy code, we constructed a conceptual framework using 

literature on analogical reasoning in computer programming (Aggarwal et al., 2019; 

Basawapatna, 2016; Cao et al., 2016; Clement et al., 1986; Clements, 1987; Grandgenett & 

Thompson, 1991; Ichinco et al., 2017; Jang, 1992; Kurland et al., 1986; Muller & Haberman, 

2008), in design (Ahmed & Christensen, 2009; Chai et al., 2015; Cheong et al., 2014), and in 

general (Gentner & Smith, 2013; Holyoak et al., 1984; Holyoak & Thagard, 1995; Sternberg 

& Rifkin, 1979). Such a multidisciplinary conceptual framework was necessary since there 

was no single line of literature readily applicable to the unique context of the present study in 
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which analogical reasoning involved multimodal objects (virtual and physical objects), 

design (for/through debugging), and block-based programming.  

The conceptual framework was organized through three perspective angles: 

analogical reasoning processes, foci, and forms. Table S1 in the supplementary documents 

summarizes the literature used in constructing the perspective angles (the supplementary 

tables are available in the online version of the journal; readers of the print version can access 

the online supplement in the online version of the journal or request a copy from the first 

author). First, analogical reasoning processes in the framework refer to phases of structuring 

(encoding and inferring), mapping, applying, and verifying. Analogies share a basic set of 

processes that include retrieval (i.e., access to prior analogous cases), mapping (i.e., structural 

alignment between source and target tasks), and evaluation (i.e., judging quality and accuracy 

of the analogy and inference) (Gentner & Smith, 2013). Elaborated processes noted in 

Sternberg and Rifkin (1979) are comprised of the phases of structuring, mapping, applying, 

and verifying. Encoding, inferring, mapping and applying as phases in a framework enables 

more verbally expressed analogies (Grandgenett & Thompson, 1991). Execution of a 

program by testing the applied code, which is verifying it, is a significant part of analogical 

reasoning while programming (Gentner & Smith, 2013; Ichinco et al., 2017).  

In the first phase, structuring, reasoners analyze the components of the source and 

target tasks and infer the structure of the target task by comparison to structures with the 

source task. Identifying analogs between domains is not an easy task (Holyoak et al., 1984) 

because recognizing different analogous solutions depends on domain knowledge of the 

reasoner (Cheong et al., 2014). In the mapping phase, reasoners map relationships between 

source and target task elements by identifying similarities and differences between them. 

Albeit similar to mapping described in Gentner and Smith (2013), dissimilarities are part of 

mapping in Sternberg and Rifkin (1979). The framework of the present study covers both 
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similarities and dissimilarities because the knowledge of how novice programming learners 

discern dissimilarities between the source and target tasks could reveal the (ir)relevance or 

(in)accuracy of their analogical reasoning. In the applying phase, reasoners use identified 

similarities or dissimilarities to produce the desired output in the target task. Correct or 

incorrect use of analogies can occur as a result of actively applying the identified and mapped 

analogies (Aggarwal et al., 2019). In the last phase, verifying, reasoners evaluate and justify 

the analogy used through understanding the output of the target task.  

Second, analogical reasoning foci in the framework refer to visual, functional, 

behavioral, and structural analogies. The present study involved design considering that 

analogical reasoning was needed not only in understanding the current task in relation to the 

prior task but also in programming, more specifically in debugging (Clement, 1987). The 

participants were asked to redesign the given buggy code to work as expected. Thus, we 

integrated the design literature also using analogical reasoning into our framework to 

examine analogical reasoning with foci not only on visual and structural analogies but also on 

functional and behavioral. According to Gero and colleagues (Gero & Kannengiesser, 2004; 

Gero & Mc Neill, 1998), reasoners navigate through a design problem by focusing on 

function, behavior, and structure of an object used in design. They solve design problems 

based on understanding of the purpose of the object (i.e., function), the actions or processes 

of the object (i.e., behavior), and relations between the elements of the object (i.e., structure). 

Analogical reasoning also occurs with visual cues such as pictures and words, and these 

visual analogies are often used by designers to solve design problems (Chai et al., 2015). 

Similarly, to navigate programming tasks in the present study and find out solutions for 

debugging, analogical reasoning had to have a particular focus on the visual appearance, the 

function, the behavior, and the structure of objects (e.g., block-code, robots).  
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Last, while relational structure matches are usually more important than property 

(e.g., visual appearance) matches (Gentner & Smith, 2013), our framework includes all these 

foci because it is to examine which ones are (un)used/useful in analogical reasoning that 

uniquely involves multimodal objects in complex ways. Thus, combined with these 

analogical reasoning foci, the conceptual framework also specifies forms of the objects on 

which the analogical reasoning is centered. That is, the framework specifies virtual objects, 

physical objects, and the relation between virtual and physical objects within the structural 

analogies focus. For example, physical objects are often considered in design studies (e.g., 

Chai et al., 2015). Also, relations exist between objects and among problems, and these 

relations enrich the analogical reasoning process (Muller & Haberman, 2008). When 

mapping between the current and previous programming tasks focuses on similarities in 

structures, the framework notes that structures within virtual objects (e.g., block-code), 

structures within physical objects (e.g., robots), and structures within the relation between 

virtual and physical objects (e.g., block-code controlling the robot) are compared.  

Method 

Research Design 

To gain an in-depth understating of how novice programming learners use similarities 

between robot programming tasks in debugging, we employed a multi-case study method 

(Creswell, 2013). Multi-case study design was chosen to study diversity or typicality of the 

phenomenon (Bogdan & Biklen, 1992), analogical reasoning in this study.   

Participants and Context 

This study was part of a larger research project for early childhood education majors’ 

learning to program and debug. Two cases were selected based on variation (e.g., race, 

programming experiences) in a class of nineteen undergraduates who participated in a 

robotics and play unit. Participants learned coding for children’s play and playful learning 
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using Ozobot and Ozoblockly. Except for the last two of eight 80-minute classes, they 

engaged in programming mainly as debugging tasks. They were invited to debug nine sets of 

erroneous block code with increasing difficulties during the unit. No participant had prior 

robot programming experience. All but one participant indicated no to little programming 

knowledge prior to the unit. One participant who reported intermediate programming 

knowledge was Judith. She and her partner, Anne, are one of the two cases in the study. The 

other case was the pair of Arianna and Kimberly. These two cases were selected as 

representative cases of the current study to best understand the studied phenomenon 

(Creswell, 2013) of analogical reasoning. All were female and juniors. Anne was Asian and 

the rest were Caucasian. All names in this paper are pseudonyms.  

Data Collection 

The data were collected while participants engaged in the debugging task called 

“Cleaning the Playroom” as the target task and a task called “Color Game” as the source task 

(see Table S2 in the supplementary documents for the similarities and dissimilarities between 

the source and target tasks). Participants’ computer screens were recorded during debugging 

and while responding to scaffolding prompts. The length of screen-recordings for the 

Cleaning the Playroom task was 61 minutes for Anne and Judith and 91 minutes for Ariana 

and Kimberly. Their reflections on the challenges encountered during debugging and final 

code were collected during the unit and artifact-based interviews were conducted after the 

unit ended. The total length of these interviews was about 1.5 hours.  

Data Analysis 

We developed a coding scheme based on the conceptual framework of the study 

grounded in the analogical reasoning literature (Chai et al., 2015; Clement et al., 1986; 

Gentner & Smith, 2013; Gero & Kannengiesser, 2004, 2014; Gero & McNeill, 1998; 

Ruppert, 2013; Sternberg, 1977; Sternberg & Rifkin,1979). The highest-level nodes of the 
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coding scheme were the four components of analogical reasoning; that is, structuring 

(encoding/inferring), mapping, applying, and verifying. Example subnodes for each 

component included ‘refer to the source explicitly’ (encoding/inferring), ‘identify similarity 

based on the relationship between physical and virtual objects’ (mapping), ‘use similar 

analogy correctly-lead to successful debugging’ (applying), and ‘test code and confirm of 

meeting programming main goal and subgoals’ (verifying) (see Table S3 in the 

supplementary documents for more examples of the coding scheme). We went through three 

rounds of pilot coding to revise and refine the coding scheme and to address discrepancies 

among coders. Then, we coded Anne and Judith’s data from their Cleaning the Playroom 

debugging in NVivo. The average interrater reliability ICC score was 0.849. Next, we coded 

data from Ariana and Kimberly’s Cleaning the Playroom debugging task (average ICC = 

0.732). Then we aggregated preliminary findings into sense-making tables based on the 

coded data. We engaged in multiple rounds of discussions on the coded data and sense-

making tables before finalizing our findings.  

Findings and Discussion 

Overall Flow of Noticing and Using Similarities between Debugging Tasks 

First, noticing similarities in relational commonalities between block code and the 

robot guided to the discovery of functional analogy. For example, Ariana and Kimberly 

noticed the function of the line navigation block in tasks when they saw the relational 

commonality between line navigation and the robot behaviors (see ① to ②	in Figure 2). This 

in turn led to the discovery of ③ relational commonalities within block code (the line 

navigation and loop blocks) between the target and source tasks. Noticing relational 

structures ① between virtual and tangible objects (the line navigation block and the robot), 

mediated by the function ②	of the noticed virtual object (the line navigation block), led to 
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noticing relational structures ③	with other objects (the loop block). A similar flow was found 

in Anne and Judith’s debugging where noticing similarities in the function of elements in a 

virtual object guided them to the discovery of relational commonalities within block code. 

Specifically, Anne and Judith went through from ① to ② and ③ in Figure 3, which depicts 

that they did not begin seeing ③ the relational commonality in the structural relation 

between the line navigation block and the repeat block until they noticed ① and ② the 

functional commonalities of the line navigation and repeat blocks between tasks. 

Figure 2 
Flow of Ariana and Kimberly’s Analogical Reasoning Foci and Forms 

 

Figure 3 
Flow of Anne and Judith’s Analogical Reasoning Foci and Forms 
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Both groups also discovered similarities in relational commonalities between the 

block code and the robot after noticing similarities in relational commonalities between the 

block code in target and source tasks. For example, the relation between the line navigation 

and the repeat blocks ③ guided Anne and Judith to discover the relation between the line 

navigation block and the robot’s movement ④ as well as the repeat block and the robot’s 

movement ⑤ in Figure 3. Ariana and Kimberly first noticed the relation between line 

navigation and repeat blocks ③ and then noticed the relation between the logic block and the 

robot’s movement ④ in Figure 2.  

 The opposite trend was also observed, where noticing similarities in relational 

commonalities between the block code and the robot guided them to the discovery of 

relational commonalities between the block codes between the target and source tasks. For 

example, Ariana and Kimberly mapped the relational commonality between the logic block 

and the robot ④ in the target and source tasks (see Figure 2). This mapping led them to 

notice the relation between the logic and loop blocks ⑤. After noticing relational structure 

④ between block code and the robot (the robot and logic), as in ①, mediated by relational 
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commonalities ⑤ between block code (logic and loop blocks), Ariana and Kimberly noticed 

the function ⑥ of the break out of loop. The flow starting from relational commonality 

related to the logic block was mediated with a more familiar repeat block and ended with the 

function of a special repeat block (i.e., break out of loop) within the logic. This flow can be 

attributed to less familiarity with logic blocks compared to more familiarity with the repeat 

block throughout their analogical comparison process in the target task until ⑥. The flow of 

relational commonalities between visual objects indicated a high level of systematicity in 

mapping. That is, a relation between visual objects triggered another relation between visual 

objects while reasoning analogically in debugging. 

Noticing either relevant similarities (Ariana and Kimberly) or irrelevant similarities 

(Anne and Judith) in relational commonalities between block code and the robot guided the 

two pairs to discover relevant similarities in relational commonalities between block codes in 

target and source tasks. Ariana and Kimberly identified the relevant similarity in relational 

commonality between the missing logic block and the robot’s movement and then discovered 

the relational commonality between repeat and missing logic blocks. On the other hand, 

Anne and Judith noticed an irrelevant similarity in relational commonality between the 

terminate block and the robot’s movement. The irrelevant similarity guided the pair to 

discover relevant similarity in relational commonality between repeat (while/until) and 

variable blocks. This result is important because even analogies based on irrelevant similarity 

in relational commonality led these novice programmers, Anne and Judith, to notice 

analogies based on relevant similarity in relational commonality while debugging. 

There were also cases where noticing the function of block code led to the relational 

commonalities between block code and the robot between target and source tasks. For 

example, Ariana and Kimberly in Figure 2 noticed the function of set blocks ⑦ between 

target and source tasks. Set blocks were needed to be set to a specific number in the target 
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task. The noticed function of set blocks guided them to structural relation between set blocks 

and the robot ⑧. The part of the analogical reasoning flow starting from the function of 

block code was helpful for identifying a bug in the target task. Similarly, Anne and Judith 

noticed the function of block code (i.e., line navigation and repeat blocks), which led to the 

discovery of ④, ⑤ relational commonalities between the block code and the robot (see 

Figure 3). In both cases, functional analogy led to noticing the relational commonalities 

between block code and the robot, which in turn helped to identify the bugs in the target task. 

Such a productive role of functional analogy is contradictory to findings in analogical 

reasoning literature in which functional comparisons were found to limit reasoners’ capacity 

to identify relevant analogy (Cheong et al., 2014). The multimodal forms of objects in the 

present study may have impacted this finding. That is, due to symbolic, visual, and material 

forms used in debugging tasks but also relational structures embedded within and between 

the multiple forms, understanding function of objects was critical to understanding objects 

and structures within them and associated with other objects. 

However, noticing and using relational commonalities did not always lead to 

successful debugging. In Figure 2, after noticing the structural relation between set blocks 

and the robot’s movement ⑧, Ariana pointed out moving set blocks into the repeat block. 

This was a relational commonality between block code ⑨. They applied this analogy and 

ended up with unsuccessful debugging. The directed structural relation between block codes 

⑨ (i.e., set and repeat blocks) by the function ⑦ of a block code (i.e., set blocks) led Ariana 

and Kimberly to unsuccessful debugging. Similarly, when Anne and Judith in Figure 3 

noticed ⑩ the relational commonality between the target task and the source task in the 

structural relation between the variable block and the logic block, they then fixated on ⑪ 

analogical comparison of the numeric value in the math block between tasks. ⑪ Judith 
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suggested changing the numeric value within a math block from 1 to 2 in the Cleaning the 

Playroom debugging task. In the Color Game task, math blocks had the number = 2 in logic 

(if/do) blocks for intersection colors red and green. This was an unrelated single object 

between the two tasks to debug the Cleaning the Playroom. Anne and Judith did not apply 

this single object as discussed earlier, meaning they did not change the value in the math 

blocks in the Cleaning the Playroom. This analogy was unrelated to bugs in the target task, 

thereby leading to studying ⑫ the function of variable blocks. Anne and Judith wanted to 

add the missing logic block after noticing that they need to use variables to create the 

condition for the missing logic. ⑬ The function of variables to create the missing condition 

led to the relation between variable blocks and logic blocks. Anne duplicated the existing 

logic block to create the missing condition with variables blocks within compare and 

AND/OR operations. Anne and Judith incorrectly created the condition. ⑭ Then, Anne 

noticed the structural relation between variables for red and green toys (virtual objects) and 

the robot’s movement (physical object) accordingly.  

Cross-Case Analysis Themes 

Analogical reasoning began with attending to relational similarities rather than surface 

similarities  

 According to prior research, novices’ similarity-based retrieval (i.e., analogical 

retrieval) is usually driven by surface similarities whereas experts are more likely to retrieve 

similarities in relational structure because their encoding process includes more relational 

knowledge (Gentner et al., 1993, 2013; Holyoak & Koh, 1987; Ross, 1987). On the contrary, 

in the present study, analogical retrievals were often driven by structural similarities. 

Structural similarities were relational commonalities between the virtual object (i.e., 

terminate block in code) and physical object (i.e., the robot’s movement) as well as between 

elements within the virtual object (e.g., a relation between the repeat and logic blocks). For 
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example, when the target task, Cleaning the Playroom, was provided, both pairs referred to 

the source of their analogy as they identified similarities with the source task. As Judith tried 

to stop the robot in the target task, she referred to the source task regarding the terminate 

block (① in Figure 4) by saying “Because it [the robot] doesn't stop, so we have to terminate 

it [the program] at the end like we did with the last one.” Anne recalled the repeat while/until 

and compare logic blocks in the source task (② in Figure 4) as she identified the relational 

similarity between the repeat block and the compare logic block next to it, by mentioning “I 

think it's like one of those times where you do like repeat until the number of red toys is like 

equal six.” 

Figure 4 

The Code for Source Task and the Buggy Code for Target Task with Identified Analogies 

 
Source Task  

(The Color Game) 

 
Target Task  

(The Cleaning the Playroom - buggy code) 
   

Ariana and Kimberly also went through a similar encoding and inferring process. As 

they attempted to make the robot move continuously on the map in the target task, Ariana 

referred to the source task regarding the location of the line navigation block (③ in Figure 4) 

by saying “I'm not sure where to put [the line navigation block]. How does it look, how did 
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we do it in the last one? I think it's just, this [the line navigation block] needs to go up here.” 

When given a new task, both pairs reminded themselves of analogous experiences from the 

past debugging task and retrieved similar attributes in terms of code structure and robot 

movement.  

Using virtual and physical objects together seemed to have promoted the pairs’ 

attention to the relational structure since they needed to compare the structure of the code to 

that of the robot behaviors to debug. While it has been argued that text-based programming 

inherently facilitates learning of analogical reasoning (Grandgenett & Thompson, 1991; Jang, 

1992), there was no discussion on whether and how block-based programming can promote 

analogical reasoning based on structural similarities. Visually discernable structures in block 

code and tangible outputs (robot behaviors) may have made structural similarities prominent. 

Nonetheless, the pairs noticed no dissimilarities between the source and target tasks. The 

pairs may have paid more attention to similarities than dissimilarities in the early phase of the 

analogical reasoning process considering that similarities between the source and target tasks 

are used in reducing the perceived complexity of the target task (Ahmed & Christensen, 

2009) and acquiring complete knowledge of the elements in an object and their relations 

(Gentner et al., 1993; Holyoak & Koh, 1987; Novick, 1988).   

Analogical mapping was often centered around functional similarities between debugging 

tasks  

The pairs demonstrated high structural consistency within each analogical mapping in 

which one element in the source task was matched with at most one element in the target 

task, not with multiple elements (Gentner & Smith, 2013). As illustrated in Figure 5 below, 

this also involved parallel connectivity. These findings align with the literature showing that 

people tend to keep structural consistency in the mapping (e.g., Spellman & Holyoak, 1992). 

The pairs’ mapping also showed high systematicity (Clement & Gentner, 1991) in which 
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commonalities in the structure that they found also entailed a deeply connected system of 

relations. For example, the same causal patterns between the code (virtual object) and the 

robot’s movement (physical object) were applied in both debugging tasks. 

Figure 5    

Parallel Connectivity between the Code for Source Task and the Correct Code for Target 

Task and Identified Analogies 

 
Source Task  
(Color Game) 

 
Target Task  

(Cleaning the Playroom - correct code) 
 

For example, both pairs identified similarities associated with the function of the line 

navigation block from the source task, Color Game, and based on its relationship with other 

surrounding blocks (i.e., structural similarity in the virtual object) as well as the relationship 

with the robot behaviors (i.e., structural similarity in the virtual and physical object). The 

pairs recognized how the repeat block functioned in relation to the line navigation block and 

the robot behaviors, as shown in the following discourse.  

Ariana: (06:18)  Oh, it [the robot] follows the line to the next intersection or line 
end (She noticed the relation between the robot and line navigation 
block). So, it [the robot] would stop at that intersection (She 
noticed the function of the line navigation block, allowing the robot 
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to move on the map until the next intersection). So, it's the first part 
[of the code where] we made a mistake. So, I can choose, read all 
of these.  

Kimberly: (06:38) Should it be this follow line [block]?  
Ariana: (06:53)  I'm not sure where to put [the line navigation block]. How does it 

look, how did we do it in the last one [task]? I think it’s just… This 
[line navigation block] needs to go up here (She noticed the 
relation between the line navigation and repeat blocks, requiring 
the line navigation block to be within the repeat block. See ③ in 
Figure 4).  

Kimberly: (07:01) Which one? This? (She pointed out the line navigation block 
located out of the repeat block) 

Ariana: (07:03)  Yeah. I think it [the line navigation block] needs to get moved 
from the top into the repeat block, I think. (She moved the line 
navigation block from out of the repeat block into the repeat block) 
There we go. (They ran the robot and confirmed that the robot 
moved continuously on the map) 

 
Both pairs also noticed that the code lacked a chunk of blocks making the robot get surprised 

and stop when no more red toys were left. They determined that a chunk of logic blocks was 

needed. As shown below, their reasoning was based on the similarity in the function of the 

logic block, the relational similarity between the logic and loop blocks, and the logic block 

and robot movement used in both the source task, Color Game, and the current target task.  

Ariana: (13:10)  So, when Ozobot has no more green toys left, but there's no more 
red toys left for some reason [the Ozobot] got surprised and 
stopped. (She read the code and the task description) So it [the 
robot] didn't get surprised and stop 'cause it [a chunk of logic 
blocks] is not in there. (She noticed the function of the logic block 
that caused the robot to get surprised and stopped in the loop 
block)  

Kimberly: (13:20) Yeah. So.  
Ariana: (13:22)  We need to go to that if [logic] one. So I can just put... (She 

checked the logic block category and added if/do block to the code) 
I guess it doesn't really matter. It's, because as long as it, as long as 
it [a chunk of logic block] is in the loop. (She noticed the relational 
commonality between the logic and loop blocks and decided to put 
the if/do block within the loop block. See ⑤ in Figure 5) Let's put 
it [logic block] there, and then if, I guess do the same thing. We'll 
have to make, or wait, no.  

Kimberly: (14:07) Oh that's not. (The pair started building blocks for the missing 
chunk of the logic blocks. They added a math block but decided 
that it is not the correct block here) 

Ariana: (14:07)  The number, if the number. This way has two seconds. If the 
number of green toys is greater than one, and then we have to add 
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on like that other part. (The pair checked the variable blocks in the 
variable category to add the variables into the newly added if/do 
logic block) 

Ariana: (14:34)  Oh it [compare logic block with ‘the number of green toys’ 
variable block] might have to go into that big thing [AND/OR 
operation block]. Might have to put it on there [in the logic block]. 
(She noticed that the variable block needs to be in the compare 
logic block within the newly added if/do logic block. See ⑤ in 
Figure 5)  

Ariana: (14:56)  The number of red toys is less than one. Just don't move the 
positioning. Do it, it [the robot] will get surprised and stop.  

Kimberly: (15:31) Do we need this? Like this. (The pair continued to build the newly 
added if/do logic block with ‘the number of red toys’ variable 
block and other blocks required to be in it) 

Ariana: (15:46)  Let's just try putting in get surprised and stops. So, it [the robot] 
can make a surprise noise and stop. I don't know if there's like a 
stop. And add a break out of loop [block]. (She highlighted the 
relation between the code and the robot) 

 
The pairs also identified similarities regarding the variable blocks between the Color Game 

task and the Cleaning the Playroom task. Specifically, they recognized how the variable 

block functioned in relation to the other blocks (e.g., the repeat until block and the if-do logic 

block) and the robot behaviors as shown in the discourse below.   

Judith: (08:27)  Or above here? (She noticed the missing sound block after reading 
the task description and added the play happy sound block between 
two logic blocks) We need it to be like in a variable. (She noticed 
that there is a missing logic block consisting of a variable block to 
place the sound block. See ⑤ in Figure 5) 

Anne: (08:36)  Exactly. That's why I thought here let's duplicate this [the existing 
if/do logic block consisting of play note sound block], so I thought 
it'd be like this [with the added missing logic], right? I hate that it 
does this. (She commented on her relocating a block that caused 
also moving other connected blocks) And then it'd be like this 
because I'm putting these two (She changed the variables in the 
logic block including the play happy sound block). 'Cause it's one 
of [if/do logic blocks] saying (She read the code of the logic 
blocks) like if there are more green toys than red toys, then it [the 
robot] plays the note. And this one [the other if/do logic block] is 
saying if there's more red toys and green toys, then it [the robot] 
would be happy or no, it [the code of the if/do logic blocks] should 
be the other way around. Because if there are green toys left. (She 
noticed that the selection of variables for different colors needs to 
change in the logic block based on the robot’s behaviors) Why is it 
[putting correct variables into the logic blocks] so hard?  
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Anne: (11:30) No, it's like six toys or something. So the number of green toys.. 
repeat while [block] something, like [the number of] green toys 
[variable] is like six or something. This is annoying me. 

Anne: (12:56) I think it's like one of those times where you do repeat until the 
number of red toys is like equal six. (She noticed the relational 
commonality between the repeat while/until and variable blocks. 
She reminded Judith of the previous task by saying “one of those 
times”. See ② in Figure 4)  

Judith: (13:10) Change while, change until… (She changed the repeat 
while block to repeat until block) 

 
Among the similarities the pairs identified, some were unrelated to fixing the bugs in 

the current target task. For example, Judith recognized a similarity in the use of math blocks. 

This noticing was based on her mapping of a single object (i.e., the numeric value in the math 

block) in the code between tasks. The high level of structural consistency without considering 

systematicity led this pair to mapping on an irrelevant single object between tasks. The 

mapping without considering the relation of the numeric value with other blocks or with the 

robot behaviors led to proposing a change in a block without a bug as shown below.  

Judith: (07:10) Less than 1... What if we make it less than or equal to …? Oh, 
wouldn't really work. What if you make less than or equal to 2 
instead of 1? (She noticed the similarity in the value in the math 
block and offered to change the value. See ④ in Figure 4)  

Anne: (07:20) This one? (She pointed out the value 1 in the if/do logic block for 
‘the number of green toys’ variable) 

Judith: (07:21) Yeah, 'cause they're supposed to be out of or no, red. Some red 
toys are supposed to be to, yeah, maybe make that, too. (She 
offered to change the value 1 in the if/do logic block for ‘the 
number of red toys’ variable) I don't know. It's probably not gonna 
work. It's probably a waste of time. 

Anne: (07:32) You wanna try it? 
Judith: (07:39) No, I don't really care. I'm pretty certain it [changing value 1 to 2 

in the math blocks] won't work. So just spitting out some options.  
 

Judith pinpointed the similarity in the terminate block based on its function and relationship 

with other blocks and the robot behaviors as shown in the following debugging segment. 

However, the similarity was irrelevant to the bug in the target task. Still, Judith’s mapping 

based on an irrelevant similarity indicated that certain selection criteria, such as debugging 

goal, was considered for generating inferences.  
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Anne: (11:13)  Wait, there’s something wrong with this code, 'cause it [the robot] 
won’t stop, but it [the robot] should stop eventually. We need to 
put something. 

Judith: (11:30)  Terminate at the end? (She noticed the similarity in the function of 
the terminate block in the Cleaning the Playroom with that in the 
Color Game task. See ① in Figure 4) 

Anne: (11:30)  No, it’s like six toys or something. So, the number of green toys… 
repeat while something, like green toys is like six or something. 
(She wanted to use ‘the number of green toys’ variable in the code, 
and then she did not put the variable in the code) 

Judith: (12:18)  I don’t know what to do. Um, it [the robot] doesn’t stop. Because it 
[the robot] doesn’t stop, so we have to terminate it [the program] at 
the end like we did with the last one [task]. (She highlighted the 
robot’s behavior and reminded Anne of the previous task, Color 
Game. See ① in Figure 4) 

Anne: (12:30)  We have to set it [the variable] to like... (After checking the 
previous task, she wanted to set the variable to a number next to 
the repeat while block) 

Judith: (12:31)  Should we send it [the terminate block] to the end? 
Anne: (12:35)  Okay. But it [the code] is like repeats, and indefinitely that’s the 

thing. Like it [the code] doesn’t ever say like repeat until blah, 
blah, you know 

Judith: (12:54)  What if we still get the bottom here? (Judith offered to put the 
terminate block at the end of the code) I don’t know [if] he [the 
robot] [is] supposed to do this. 

 
The pairs’ mapping also involved analogical inference in that the information they 

used in their mapping was selective. The pairs made analogical inferences based on certain 

selection criteria to navigate and complete the most accurate and useful mapping. According 

to Gentner and Smith (2013), the most important selection criterion (i.e., constraint) for 

candidate inferences is the systematicity and structural consistency as mentioned above. 

Holyoak and Thagard (1989) took a more pragmatic perspective and argued that purpose/goal 

relevance is also an important criterion, and all these different kinds of constraints interact to 

determine the optimal set of correspondences between the source and target tasks. The 

finding of the present study is aligned with Holyoak and Thagard’s (1989) perspective given 

that the pairs’ mapping was driven by their goal of debugging. Despite abundant structural 

and relational similarities between tasks, the pairs did not make one-to-one correspondence 

on elements they saw as irrelevant to their goal. Their mapping was centered around certain 
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blocks of the code that were only relevant to their debugging goals (i.e., the line navigation 

block, logic block, set variable block) even when their view was inaccurate. This seems to 

have resulted from analogical inferencing processes during their mapping based on such 

criteria as structural consistency, systematicity, and debugging purpose. Still, these inferences 

had to be tested in debugging. 

The pairs used all possible analogies in debugging 

Both pairs applied all analogical inferences that they had mapped and were relevant 

to debugging in the current code. This finding is in contrast to the literature showing that 

reasoners struggle applying analogs and often apply relatively adaptable analogs (Keane, 

1996; Novick & Holyoak, 1991). Regardless of debugging outcomes, all relevant similarities 

from analogical mapping were applied (i.e., analogies regarding the line navigation, logic, 

and variable blocks) in the pairs’ debugging attempts. For example, Ariana and Kimberly 

used similarities with the line navigation block (i.e., relocating the line navigation block from 

outside to inside of the loop block) as well as the loop and logic blocks correctly (i.e., adding 

the if/do logic block into the loop block), which were correct attempts leading to successful 

debugging. They used similar analogies in debugging for the robot to continuously follow 

lines on the map and get surprised and stop when no more red toys were left. 

 (Discourse on using the line navigation block) 
Ariana: (07:03)  Yeah. I think it [the line navigation block] needs to get moved 

from the top into the repeat block, I think. There we go. (The pair 
had used the relevant similarity in relational commonality between 
the line navigation and repeat blocks. See ③ in Figure 4) 

 
 (Discourse on using the loop and logic blocks) 

Ariana: (13:10)  So, when Ozobot has no more green toys left, but there's no more 
red toys left for some reason for green toys get surprised and 
stopped so it [the robot] didn't get surprised and stops 'cause it [a 
chunk of logic block] is not in there.  

Kimberly: (13:20) Yeah. So.  
Ariana: (13:22)  We need to go to that if [logic] one. So, like that yeah, I can just 

put... I guess it doesn't really matter. It's, because as long as it, as 
long as it [a chunk of logic block] is in the loop. Let's put it [logic 
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block] there, and then if, I guess do the same thing. we'll have to 
make, or wait, no. (The pair applied the relevant similarity in 
relational commonality between the repeat and logic blocks. See 
⑤ in Figure 5) 

 
Similarly, Anne and Judith used the similarity with the line navigation block and the loop 

block from the source task correctly, which led them to fix one of the bugs and made the 

robot continuously follow the line on the map.  

Judith: (07:43)  What is your solution to the problem? We will stick the line 
navigation block underneath the repeat block so that it [the robot] 
will follow the whole grid [on the map] and not stop after one 
block [grid on the map]. (The pair used the relevant similarity in 
relational commonality between the line navigation and repeat 
blocks. See ③ in Figure 4) 

 
 Ariana and Kimberly attempted to use similarity with the set variable and loop blocks. 

Although they added set variable blocks first to the code with only the number of green toys 

variable at the top, the pair incorrectly relocated the set blocks into the loop block. After 

revisiting the source task and reviewing the blocks used in the task, the pair relocated the set 

block out of the loop block in the target task, which was a correct attempt to debug the code.  

Ariana: (26:23)  Does it [the set blocks with value 6] have to go into the repeat 
thing [block]?  (The pair had noticed the relevant similarity in 
relational commonality between set variable and repeat blocks. 
See ⑥ in Figure 5. She relocated the set blocks into the loop 
block) 

Kimberly: (27:18) Okay. (She put the set blocks out of the repeat block again) Let's 
see. Green toys are 6 and 6 (She read the set variable blocks)  

 
Anne and Judith also tried to use the similarity with the variable block and the logic block 

from the source task but were not able to apply it correctly to the target task, which led to 

unsuccessful debugging. Anne and Judith’s attempt using analogy (i.e., adding the missing 

logic block with other required blocks in it, such as math, compare logic, AND/OR operation, 

play surprised, and break out of loop blocks) was close to fixing the bug in the target task. 

However, their attempt did not lead to fixing the bug due to their incomplete understanding 
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of the given problem. This finding is aligned with that of the previous studies in which the 

successful application of analogy for the desired outcome depended on an accurate 

understanding of the given problem (e.g., Ahmed & Christensen, 2009).  

The adaptability afforded by using block code and robots seems to have facilitated the 

pairs’ experiments with using all analogies. That is, these tools made analogic inferences 

more adaptable to the target task, which allowed pairs to notice and apply relevant 

similarities in blocks and/or the robot as needed. By clicking, dragging, and dropping in the 

block code, they were able to apply the noticed analogy from the source task to the target 

task. According to previous studies, even when reasoners notice correspondence between two 

tasks, they often struggle to apply them to the target task and usually use analogical 

inferences that are relatively adaptable to the target task (Keane, 1996; Novick & Holyoak, 

1991). The findings of the present study suggest the role of block-based robot programming 

in facilitating analogical reasoning. 

The pairs evaluated their applied analogies   

The pairs evaluated their analogy application. This finding is unique in that it is 

usually hard to immediately identify whether the analogical inference is true unless the 

outcome of the analogy application is immediately testable (Gentner & Smith, 2013). In the 

present study, the outcome was readily observable in the robot behaviors. For example, after 

applying the similarity in the line navigation block to the target task, both pairs went over the 

process of verifying their analogy by testing the revised code and confirming if the robot 

performed desired behaviors in relation to the line navigation block. As shown in the 

following example from Anne and Judith’s excerpt, they verified the goal of making the 

robot move continuously on lines on the map.  

Anne: (08:56) It's okay. We're trying our best. (They loaded the revised code to the 
robot and ran it on the map after they changed the location of the line 
navigation block from outside to inside of the repeat block)  
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Anne: (10:05) Success, right? (She verified the goal of making the robot move 
continuously on the map) 

 
The pairs also revised the code again when they saw that the analogy application did not lead 

to the desired robot behavior. Both pairs revised the code after applying the analogy related 

to missing logic blocks. Anne and Judith applied the analogy between the logic and variable 

blocks and Ariana and Kimberly applied the analogy between the loop and logic blocks. 

However, Anne and Judith tested their applied analogy and observed that the robot did not 

move properly, but they did not refine their applied analogies for the terminate, repeat until, 

and variable blocks. Ariana and Kimberly tested their applied analogy for the missing logic 

and set blocks, and revised their code. Ariana and Kimberly continued to work on their code 

after applying and testing the identified analogy to debug. 

Ariana: (18:29)  (They added a chunk of logic block for making the robot get 
surprised and stop, loaded the revised code to the robot and ran it 
on the map) I don’t know why it [the robot] is not picking up what 
that said. (She highlighted the robot not behaving as coded in the 
variable blocks in the logic block)  

Kimberly: (18:48) Yeah. 
Ariana: (18:49)  I don’t know if that should be equal. (They changed the 

mathematical operation from > 1 to = 0 for the number of green 
toys in the compare logic block) 

  
 Anne and Judith refined the code based on their evaluation of the analogy. For 

example, they attached the compare logic block to the repeat while block. After testing the 

revised code, they changed the mathematical symbol in the compare logic block. They also 

tested the newly added logic block and deleted it after seeing that the robot did not perform 

properly.  

Anne: (00:03)  So let’s try this bad boy [the robot]. Oh. (They applied the 
similarity in relation between the variable and repeat while/until 
blocks. They added compare logic blocks with variables =< 6 
instead of the true block connected to the repeat while block. They 
tested the revised code)  

Judith: (00:55)  Is that the B noise? (She commented on the sound coming from the 
robot coded to play B note) Oh, that's not good. Because of the 
terminate [block]? (She pointed out the terminate block at the end 
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causing the robot not to move after the first intersection on the 
map. She deleted the terminate block) 

Anne: (01:02)  I think there's something wrong up here. She pointed out the 
compare logic blocks connected to the repeat while block) Green 
toys equals six? (She changed =< 6 to = 6 in the compare logic 
blocks) Oh my god. I'll calibrate again. 

 

Evaluation of analogy application involves a process where reasoners check if their 

mapping and inferences are true and thus lead to the desired outcome. It is usually hard to 

immediately identify whether the inference is true unless the outcome of the analogy 

application is immediately testable and confirmed in an observable way (Gentner & Smith, 

2013). Immediate verification through robot behaviors does not mean that the verification 

process always led to successful debugging. Although Ariana and Kimberly used the analogy 

with the set variable and loop blocks correctly, they revised their code and moved the set 

blocks to the loop block, as described the third theme above. Anne and Judith showed a 

similar episode in terms of analogies with the variable block and two unrelated similarities in 

the math block and the terminate block, as described in the second theme above. They fixated 

on their initial ideas as to those blocks with a lack of verification, which led to unsuccessful 

debugging. This aligns with literature indicating that fixation has a reverse effect on the 

evaluation of applied analogies (Cheong et al., 2014). Anne and Judith spent most of their 

time on analogical mapping and applying rather than verifying their analogy application in 

comparison to Ariana and Kimberly who spent more on the verification process and refining 

the code according to the verification outcome.  

General Discussion 

We examined how novice programming learners used analogical reasoning in 

debugging that involved both code (virtual object) and robots (physical object). The two pairs 

exhibited analogical reasoning using structural similarities in contrast to prior research in 

which novices focused on surface similarities in non-CS design or problem solving contexts 
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(Ahmed & Christensen, 2009; Cheong et al., 2014; Novick, 1988). This finding may be 

attributed to the nature of the debugging tasks in the present study. Multimodal objects used 

in debugging seemed to have made structural relations salient in that debugging inherently 

asked them to map the relation of the code to the robot behaviors. In turn, such mapping may 

have led to analogical comparisons of the target task to the source task. The analogical 

reasoning of the pairs demonstrated structural consistency (Holyoak & Thagard, 1989) and 

systematicity (Clement & Gertner, 1991). The finding may have resulted also from the 

analogy applications that were immediately feasible in the code.  

Use of multimodal objects during debugging engaged the pairs in the evaluation 

process of analogical reasoning. Being a tangible object, the robot enabled participants to test 

immediately after their analogy application. Inference made between source and target tasks 

can be correct or incorrect to solve the target problem and evaluating the analogy applied in 

the target task is critical for successful problem solving (Gentner & Smith, 2013). In the 

present study, both pairs applied the relevant similarity in the relation between the loop and 

line navigation blocks and verified the analogy application by running the robot on the map, 

and there was only one case where the evaluation process was not performed after the 

application of analogy. Although participants were able to engage in more evaluation 

processes, the evaluation itself was not always accurate enough to verify the appropriateness 

of the analogical reasoning. Sometimes, they fixated on irrelevant similarities and 

inaccurately evaluated the analogy application even after testing with the robot.  

Another notable finding was that the functional analogies were used effectively along 

with other foci such as visual or structural analogies in multiple phases of the analogical 

reasoning process as well as debugging. Noticing similarities in function led to the pairs’ 

discovery of similarities in the relation between block codes as well as between block code 

and the robot, resulting in finding the bugs in the buggy code. This finding stands in contrast 
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to the finding in a prior study in which functional analogies prevented identifying relevant 

analogies (Cheong et al., 2014).   

The presence of the robot played a critical role in the overall flow of analogical 

reasoning foci and forms. Noticing relevant similarities and irrelevant similarities in the 

relation between the block code and the robot guided the pairs to discover relevant 

similarities between block code in the target and source tasks. However, noticing a relevant 

similarity in the relation between the block code and the robot led Anne and Judith to 

discover an irrelevant similarity in function but Ariana and Kimberly to discover a relevant 

similarity in function. The flow from relevant or irrelevant relational similarity between the 

block code and the robot guided to relevant relational similarity but not always to the relevant 

similarity in function. Since analogy enables reasoners to focus more on relations than 

objects (Gentner & Smith, 2013), use of the robot with block code enriched the analogical 

reasoning flow from relational similarity to relational similarity rather than to the objects’ 

functions.  

Despite the benefits of block-based coding using multimodal objects for novices’ 

analogical reasoning, the difficulty that the pairs experienced with the role of variables 

negatively affected their use of related analogies. This finding aligns with a previous finding 

that successful use of analogy is influenced by relevant domain knowledge (Ahmed & 

Christensen, 2009). In addition, both pairs did not notice and use any dissimilarity between 

the source and target tasks, and their analogical reasoning process was based on the 

similarities. A possible reason is that similar attributes can be perceived without creating 

additional cognitive load and readily used in reducing the perceived complexity of the target 

task (Ahmed & Christensen, 2009). Noticing only dissimilarities rarely helps to reduce 

perceived complexity of the target task, and using dissimilar attributes requires reasoners to 

integrate new information presented in the target task and to create or modify their schema 
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accordingly, increasing cognitive load. Reasoners are also required to have concrete 

knowledge of elements involved in the task and their relations to use the dissimilarities 

properly in problem solving.  

Table S4 in the supplementary highlights the study findings in relation to the existing 

literature and also implications for computing education research.  

Limitations and Suggestions for Future Research 

Only two pairs of participants were presented in the paper. However, generalizability 

was not the purpose of the paper. The qualitative method was the most suitable for our 

research goal: to uncover novice programming learners’ analogical reasoning process in a 

naturalistic setting. A qualitative approach is suitable when a straight-forward description of 

the phenomenon is desired (Lambert & Lambert, 2012). Such an approach can also generate 

new insights and generate conceptual frameworks, theories, and hypotheses (Kramer, 1985). 

Our approach was designed to study participants in their natural state to the extent possible 

within the context of the research area (Lambert & Lambert, 2012). Moreover, descriptive 

research should be viewed as an initial stage leading to development of new knowledge 

(Kramer, 1985). As the study of analogical reasoning in block-based programming is still in 

its infancy, this article sets the foundation for more future research on analogical reasoning in 

block-based programming.  

Further research needs to examine strategies to help novice programming learners 

leverage analogical reasoning in block-based programming. For example, providing relevant 

retrieval cues could facilitate the phase of structuring (Mozzer & Justi, 2012). Offering 

scaffolding tools to help them evaluate their analogy application could be studied in future 

studies. The ultimate goal is to create a safe learning environment that encourages students to 

generate and explain their analogical reasoning processes.  

Implications for Educational Computing Research 
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Though this study is not meant to be generalizable, it does indicate that novice 

programmers have the potential to engage in analogical reasoning focusing on structural 

similarities between the source and the target task. Doing so has the potential to help novice 

programmers learn to debug effectively. Some conditions that helped the current participants 

do so include the multimodal nature of the objects with which they interacted. Specifically, it 

helped them to notice structural elements in the code and link such to robot behaviors. Next, 

robot behavior lent a concrete manifestation of the code that allowed participants to link code 

fragments to robot behavior and to immediately test revisions to the code. These findings call 

for further research in computing education toward culturally responsive design that enables 

multimodal analogical reasoning and debugging (see Table S4 in the supplementary for 

related implications).   

The findings of this study may be applied to debugging within other block-based 

programming platforms, such as Scratch. There are many commonalities among block-based 

coding languages, but also some important differences such as the inclusion of functions and 

Boolean operators (Kraleva et al., 2019). Still, the existence of a physical robot in this study 

compared to other block-based platforms that have virtual agents may be critical to fostering 

effective analogical reasoning. 

This study also points to the potential of the inclusion of robots within early 

childhood education. If preservice early childhood teachers can program and debug, then they 

have the potential to teach with robots. Of course, skill is only one part of the equation, and 

much work needs to examine the dispositions and motivation to teach with robots among 

preservice, early childhood teachers.  
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