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Abstract

Analogical reasoning is considered to be a critical cognitive skill in programming. However,
it has been rarely studied in a block-based programming context, especially involving both
virtual and physical objects. In this multi-case study, we examined how novice programming
learners majoring in early childhood education used analogical reasoning while debugging
block code to make a robot perform properly. Screen recordings and scaffolding entries,
reflections, and block code were analyzed. The cross-case analysis suggested multimodal
objects enabled the novice programming learners to identify and use structural relations. The
use of a robot eased the verification process by enabling them to test their analogies
immediately after the analogy application. Noticing similar functional analogies led to
noticing similarities in the relation between block code as well as between block code and the
robot, guiding to locate bugs. Implications and directions for future educational computing
research are discussed.

Keywords: computing education, robot programming and debugging, analogical

reasoning, novice programming learners, block-based coding



Revisiting Analogical Reasoning in Computing Education:
Use of Similarities between Robot Programming Tasks in Debugging

Analogical reasoning is critical in programming as it is in other design and problem-
solving contexts. Analogical reasoning is defined as a way of thinking in which similarities
between different tasks are perceived and used (Gentner & Smith, 2013; Holyoak et al.,
1984; Holyoak & Thagard, 1995). Computing research has attended to analogical reasoning
for decades. For example, work published in the Journal of Educational Computing Research
studied analogical reasoning as a way of understanding learners’ ability to program (Clement
et al., 1986) and used analogical reasoning in programming instruction (Grandgenett &
Thompson, 1991). More recent computing research engaged learners in analogical reasoning
to improve programming learning (e.g., Aggarwal et al., 2019; Cao et al., 2016; Ichinco et al.,
2017). Nonetheless, analogical reasoning in block-based programming has rarely been
studied (c.f., Ichinco et al., 2017) while the role of visual analogy could be critical in
analogical reasoning in visual programming environments. There is also little knowledge of
analogical reasoning in the context of programming learning that involves both virtual and
physical objects. Analogical mapping could be more complicated with multimodal objects
than unimodal objects because relational structures matter not only within virtual objects but
also between virtual and physical objects. For instance, when programming block-based code
(virtual object) to control a robot (physical object), finding similarities in relational structures
within block code between the previous task and current task is part of analogical reasoning
but so is in relational structures between the block code and the robot. As shown in Figure 1,
there are common relational structures between the virtual objects. That is, the relation
between the repeat # times block A and the movement blocks B is that B is repeated # times
indicated in A. There are also relational structures also between the block code (the virtual

object) and the robot (the physical object) in that the robot is moved by the block code.



Figure 1
A Sample Source and Target Tasks for Relational Structures between Virtual Objects
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Given these gaps in analogical reasoning research, we examined analogical reasoning
during robot programming using block code in the present study. We studied the analogical
reasoning processes of non-CS novice programming learners. The knowledge produced from
the present study is applicable to understanding broader learner populations, including female
students with no initial interest in majoring in CS who could be invited to computing careers.
We addressed the following research question in the present study: How do novice
programming learners use similarities between robot programming tasks in debugging?

Literature Review

Debugging is the process by which programmers identify and resolve bugs. While
research on debugging has proliferated, it has largely been on debugging text-based
languages (e.g., Katz & Anderson, 1987; McCauley et al., 2008; Spinellis, 2018). One thrust
of this research extends the research on analogical reasoning to the computer science domain.
Namely, it describes a process by which programmers faced with buggy code create a
representation of the current state of the program, and then search through their prior
knowledge of similar problems to find and adapt a solution key (i.e., analogue) to the
problem at hand (Burstein, 1983). This is akin to the idea of near and far transfer, where

people use what they learned previously in a similar or different situation (Barnett & Ceci,



2002; Nokes-Malach & Mestre, 2013). In so doing, programmers create a hypothesis that
applying the analogue will resolve the bug and lead to effective execution of the code. They
then implement the solution to test the hypothesis. This idea fits with the computer science
literature, in which a hypothesis-driven approach to debugging is often considered the gold
standard (Araki et al., 1991; McCauley et al., 2008).

When it is near, or low road transfer, users simply have to remember and apply a
solution from a very similar problem (Salomon & Perkins, 1989). But success in this
endeavor relies on the creation of an accurate mental model of the current state of the buggy
program (Burstein, 1988; Gentner & Stevens, 2014; Nersessian, 2008). Such a model needs
to take into consideration not only surface features but also structural elements and how they
interact (Jonassen, 2011). Creating models of problems requires robust disciplinary
knowledge, which many novices lack (Magana et al., 2020). Ideally, a mental model
represents causal mechanisms by which different elements in the model change (Nersessian,
2008). Such representation of causal mechanisms can help users understand what is
happening and why in the program, which in turn can help to pinpoint the bug that is causing
the program to malfunction. Far too often, beginning programmers rely on surface features to
create mental models of programs, which can cause the wrong analogues to be applied, or for
potentially relevant analogues to be inaccessible as inert knowledge (Perkins & Martin,
1986).

That most debugging literature examines how people debug text-based languages is
an important limitation. Block-based coding languages involve some of the same computer
science processes (e.g., recursion, looping, variable specification) as text languages, but the
former were developed for use among student populations with lower programming
motivation and programming knowledge. As such, it is unwise to assume that learners using

block-based languages will debug in the same manner as learners using text-based languages.



First, a hypothetico-deductive approach to analogical reasoning requires that the reasoner
have vast stores of relevant prior knowledge, which many novice block-based programmers
do not have. Furthermore, the way that coders create mental models of programs may differ
between those using block-based coding and those using text-based coding languages, which
can result from limited prior knowledge of coders using block-based coding (Robins et al.,
2003).

Relevant alterative perspectives on transfer include the actor-oriented view (Lobato,
2003, 2006) and preparation for future learning (Bransford & Schwartz, 1999). The actor-
oriented view holds that researchers should examine a transfer situation from the reasoners’
perspective to see what they notice and how they use what they notice to solve the problem
(Lobato, 2003, 2006). According to the preparation for future learning perspective, one
should judge the success or lack thereof in the use of an analogue according to the extent to
which the reasoner is better prepared to learn new material based on the experience applying
the learned material to the new situation (Bransford & Schwartz, 1999).

Conceptual Framework

To examine what novice programming learners notice and how they use what they
notice to solve the problem of buggy code, we constructed a conceptual framework using
literature on analogical reasoning in computer programming (Aggarwal et al., 2019;
Basawapatna, 2016; Cao et al., 2016; Clement et al., 1986; Clements, 1987; Grandgenett &
Thompson, 1991; Ichinco et al., 2017; Jang, 1992; Kurland et al., 1986; Muller & Haberman,
2008), in design (Ahmed & Christensen, 2009; Chai et al., 2015; Cheong et al., 2014), and in
general (Gentner & Smith, 2013; Holyoak et al., 1984; Holyoak & Thagard, 1995; Sternberg
& Ritkin, 1979). Such a multidisciplinary conceptual framework was necessary since there

was no single line of literature readily applicable to the unique context of the present study in



which analogical reasoning involved multimodal objects (virtual and physical objects),
design (for/through debugging), and block-based programming.

The conceptual framework was organized through three perspective angles:
analogical reasoning processes, foci, and forms. Table S1 in the supplementary documents
summarizes the literature used in constructing the perspective angles (the supplementary
tables are available in the online version of the journal; readers of the print version can access
the online supplement in the online version of the journal or request a copy from the first
author). First, analogical reasoning processes in the framework refer to phases of structuring
(encoding and inferring), mapping, applying, and verifying. Analogies share a basic set of
processes that include retrieval (i.e., access to prior analogous cases), mapping (i.e., structural
alignment between source and target tasks), and evaluation (i.e., judging quality and accuracy
of the analogy and inference) (Gentner & Smith, 2013). Elaborated processes noted in
Sternberg and Rifkin (1979) are comprised of the phases of structuring, mapping, applying,
and verifying. Encoding, inferring, mapping and applying as phases in a framework enables
more verbally expressed analogies (Grandgenett & Thompson, 1991). Execution of a
program by testing the applied code, which is verifying it, is a significant part of analogical
reasoning while programming (Gentner & Smith, 2013; Ichinco et al., 2017).

In the first phase, structuring, reasoners analyze the components of the source and
target tasks and infer the structure of the target task by comparison to structures with the
source task. Identifying analogs between domains is not an easy task (Holyoak et al., 1984)
because recognizing different analogous solutions depends on domain knowledge of the
reasoner (Cheong et al., 2014). In the mapping phase, reasoners map relationships between
source and target task elements by identifying similarities and differences between them.
Albeit similar to mapping described in Gentner and Smith (2013), dissimilarities are part of

mapping in Sternberg and Rifkin (1979). The framework of the present study covers both



similarities and dissimilarities because the knowledge of how novice programming learners
discern dissimilarities between the source and target tasks could reveal the (ir)relevance or
(in)accuracy of their analogical reasoning. In the applying phase, reasoners use identified
similarities or dissimilarities to produce the desired output in the target task. Correct or
incorrect use of analogies can occur as a result of actively applying the identified and mapped
analogies (Aggarwal et al., 2019). In the last phase, verifying, reasoners evaluate and justify
the analogy used through understanding the output of the target task.

Second, analogical reasoning foci in the framework refer to visual, functional,
behavioral, and structural analogies. The present study involved design considering that
analogical reasoning was needed not only in understanding the current task in relation to the
prior task but also in programming, more specifically in debugging (Clement, 1987). The
participants were asked to redesign the given buggy code to work as expected. Thus, we
integrated the design literature also using analogical reasoning into our framework to
examine analogical reasoning with foci not only on visual and structural analogies but also on
functional and behavioral. According to Gero and colleagues (Gero & Kannengiesser, 2004;
Gero & Mc Neill, 1998), reasoners navigate through a design problem by focusing on
function, behavior, and structure of an object used in design. They solve design problems
based on understanding of the purpose of the object (i.e., function), the actions or processes
of the object (i.e., behavior), and relations between the elements of the object (i.e., structure).
Analogical reasoning also occurs with visual cues such as pictures and words, and these
visual analogies are often used by designers to solve design problems (Chai et al., 2015).
Similarly, to navigate programming tasks in the present study and find out solutions for
debugging, analogical reasoning had to have a particular focus on the visual appearance, the

function, the behavior, and the structure of objects (e.g., block-code, robots).



Last, while relational structure matches are usually more important than property
(e.g., visual appearance) matches (Gentner & Smith, 2013), our framework includes all these
foci because it is to examine which ones are (un)used/useful in analogical reasoning that
uniquely involves multimodal objects in complex ways. Thus, combined with these
analogical reasoning foci, the conceptual framework also specifies forms of the objects on
which the analogical reasoning is centered. That is, the framework specifies virtual objects,
physical objects, and the relation between virtual and physical objects within the structural
analogies focus. For example, physical objects are often considered in design studies (e.g.,
Chai et al., 2015). Also, relations exist between objects and among problems, and these
relations enrich the analogical reasoning process (Muller & Haberman, 2008). When
mapping between the current and previous programming tasks focuses on similarities in
structures, the framework notes that structures within virtual objects (e.g., block-code),
structures within physical objects (e.g., robots), and structures within the relation between
virtual and physical objects (e.g., block-code controlling the robot) are compared.

Method

Research Design

To gain an in-depth understating of how novice programming learners use similarities
between robot programming tasks in debugging, we employed a multi-case study method
(Creswell, 2013). Multi-case study design was chosen to study diversity or typicality of the
phenomenon (Bogdan & Biklen, 1992), analogical reasoning in this study.
Participants and Context

This study was part of a larger research project for early childhood education majors’
learning to program and debug. Two cases were selected based on variation (e.g., race,
programming experiences) in a class of nineteen undergraduates who participated in a

robotics and play unit. Participants learned coding for children’s play and playful learning
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using Ozobot and Ozoblockly. Except for the last two of eight 80-minute classes, they
engaged in programming mainly as debugging tasks. They were invited to debug nine sets of
erroneous block code with increasing difficulties during the unit. No participant had prior
robot programming experience. All but one participant indicated no to little programming
knowledge prior to the unit. One participant who reported intermediate programming
knowledge was Judith. She and her partner, Anne, are one of the two cases in the study. The
other case was the pair of Arianna and Kimberly. These two cases were selected as
representative cases of the current study to best understand the studied phenomenon
(Creswell, 2013) of analogical reasoning. All were female and juniors. Anne was Asian and
the rest were Caucasian. All names in this paper are pseudonyms.
Data Collection

The data were collected while participants engaged in the debugging task called
“Cleaning the Playroom” as the target task and a task called “Color Game” as the source task
(see Table S2 in the supplementary documents for the similarities and dissimilarities between
the source and target tasks). Participants’ computer screens were recorded during debugging
and while responding to scaffolding prompts. The length of screen-recordings for the
Cleaning the Playroom task was 61 minutes for Anne and Judith and 91 minutes for Ariana
and Kimberly. Their reflections on the challenges encountered during debugging and final
code were collected during the unit and artifact-based interviews were conducted after the
unit ended. The total length of these interviews was about 1.5 hours.
Data Analysis

We developed a coding scheme based on the conceptual framework of the study
grounded in the analogical reasoning literature (Chai et al., 2015; Clement et al., 1986;
Gentner & Smith, 2013; Gero & Kannengiesser, 2004, 2014; Gero & McNeill, 1998;

Ruppert, 2013; Sternberg, 1977; Sternberg & Rifkin,1979). The highest-level nodes of the
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coding scheme were the four components of analogical reasoning; that is, structuring
(encoding/inferring), mapping, applying, and verifying. Example subnodes for each
component included ‘refer to the source explicitly’ (encoding/inferring), ‘identify similarity
based on the relationship between physical and virtual objects’ (mapping), ‘use similar
analogy correctly-lead to successful debugging’ (applying), and ‘test code and confirm of
meeting programming main goal and subgoals’ (verifying) (see Table S3 in the
supplementary documents for more examples of the coding scheme). We went through three
rounds of pilot coding to revise and refine the coding scheme and to address discrepancies
among coders. Then, we coded Anne and Judith’s data from their Cleaning the Playroom
debugging in NVivo. The average interrater reliability ICC score was 0.849. Next, we coded
data from Ariana and Kimberly’s Cleaning the Playroom debugging task (average ICC =
0.732). Then we aggregated preliminary findings into sense-making tables based on the
coded data. We engaged in multiple rounds of discussions on the coded data and sense-
making tables before finalizing our findings.
Findings and Discussion

Overall Flow of Noticing and Using Similarities between Debugging Tasks

First, noticing similarities in relational commonalities between block code and the
robot guided to the discovery of functional analogy. For example, Ariana and Kimberly
noticed the function of the line navigation block in tasks when they saw the relational

commonality between line navigation and the robot behaviors (see (D to (2) in Figure 2). This

in turn led to the discovery of (3) relational commonalities within block code (the line
navigation and loop blocks) between the target and source tasks. Noticing relational

structures (1 between virtual and tangible objects (the line navigation block and the robot),

mediated by the function (2) of the noticed virtual object (the line navigation block), led to
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noticing relational structures (3) with other objects (the loop block). A similar flow was found

in Anne and Judith’s debugging where noticing similarities in the function of elements in a

virtual object guided them to the discovery of relational commonalities within block code.

Specifically, Anne and Judith went through from (1) to (2) and (3) in Figure 3, which depicts

that they did not begin seeing (3) the relational commonality in the structural relation

between the line navigation block and the repeat block until they noticed (1) and (2) the

functional commonalities of the line navigation and repeat blocks between tasks.

Figure 2

Flow of Ariana and Kimberly’s Analogical Reasoning Foci and Forms
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Both groups also discovered similarities in relational commonalities between the
block code and the robot after noticing similarities in relational commonalities between the
block code in target and source tasks. For example, the relation between the line navigation

and the repeat blocks (3) guided Anne and Judith to discover the relation between the line

navigation block and the robot’s movement (4) as well as the repeat block and the robot’s
movement (5) in Figure 3. Ariana and Kimberly first noticed the relation between line
navigation and repeat blocks (3) and then noticed the relation between the logic block and the
robot’s movement (4) in Figure 2.

The opposite trend was also observed, where noticing similarities in relational
commonalities between the block code and the robot guided them to the discovery of
relational commonalities between the block codes between the target and source tasks. For
example, Ariana and Kimberly mapped the relational commonality between the logic block

and the robot @) in the target and source tasks (see Figure 2). This mapping led them to

notice the relation between the logic and loop blocks (5). After noticing relational structure

(4) between block code and the robot (the robot and logic), as in (1), mediated by relational
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commonalities (5) between block code (logic and loop blocks), Ariana and Kimberly noticed
the function (6) of the break out of loop. The flow starting from relational commonality
related to the logic block was mediated with a more familiar repeat block and ended with the
function of a special repeat block (i.e., break out of loop) within the logic. This flow can be
attributed to less familiarity with logic blocks compared to more familiarity with the repeat
block throughout their analogical comparison process in the target task until (6). The flow of
relational commonalities between visual objects indicated a high level of systematicity in
mapping. That is, a relation between visual objects triggered another relation between visual
objects while reasoning analogically in debugging.

Noticing either relevant similarities (Ariana and Kimberly) or irrelevant similarities
(Anne and Judith) in relational commonalities between block code and the robot guided the
two pairs to discover relevant similarities in relational commonalities between block codes in
target and source tasks. Ariana and Kimberly identified the relevant similarity in relational
commonality between the missing logic block and the robot’s movement and then discovered
the relational commonality between repeat and missing logic blocks. On the other hand,
Anne and Judith noticed an irrelevant similarity in relational commonality between the
terminate block and the robot’s movement. The irrelevant similarity guided the pair to
discover relevant similarity in relational commonality between repeat (while/until) and
variable blocks. This result is important because even analogies based on irrelevant similarity
in relational commonality led these novice programmers, Anne and Judith, to notice
analogies based on relevant similarity in relational commonality while debugging.

There were also cases where noticing the function of block code led to the relational
commonalities between block code and the robot between target and source tasks. For
example, Ariana and Kimberly in Figure 2 noticed the function of set blocks (7) between

target and source tasks. Set blocks were needed to be set to a specific number in the target
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task. The noticed function of set blocks guided them to structural relation between set blocks
and the robot (8). The part of the analogical reasoning flow starting from the function of
block code was helpful for identifying a bug in the target task. Similarly, Anne and Judith
noticed the function of block code (i.e., line navigation and repeat blocks), which led to the
discovery of (&), (5) relational commonalities between the block code and the robot (see
Figure 3). In both cases, functional analogy led to noticing the relational commonalities
between block code and the robot, which in turn helped to identify the bugs in the target task.
Such a productive role of functional analogy is contradictory to findings in analogical
reasoning literature in which functional comparisons were found to limit reasoners’ capacity
to identify relevant analogy (Cheong et al., 2014). The multimodal forms of objects in the
present study may have impacted this finding. That is, due to symbolic, visual, and material
forms used in debugging tasks but also relational structures embedded within and between
the multiple forms, understanding function of objects was critical to understanding objects
and structures within them and associated with other objects.

However, noticing and using relational commonalities did not always lead to
successful debugging. In Figure 2, after noticing the structural relation between set blocks
and the robot’s movement (8), Ariana pointed out moving set blocks into the repeat block.
This was a relational commonality between block code (9). They applied this analogy and
ended up with unsuccessful debugging. The directed structural relation between block codes
(9) (i.e., set and repeat blocks) by the function (7) of a block code (i.e., set blocks) led Ariana
and Kimberly to unsuccessful debugging. Similarly, when Anne and Judith in Figure 3
noticed (10) the relational commonality between the target task and the source task in the
structural relation between the variable block and the logic block, they then fixated on (1)

analogical comparison of the numeric value in the math block between tasks. (11) Judith
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suggested changing the numeric value within a math block from 1 to 2 in the Cleaning the
Playroom debugging task. In the Color Game task, math blocks had the number = 2 in logic
(if/do) blocks for intersection colors red and green. This was an unrelated single object
between the two tasks to debug the Cleaning the Playroom. Anne and Judith did not apply
this single object as discussed earlier, meaning they did not change the value in the math
blocks in the Cleaning the Playroom. This analogy was unrelated to bugs in the target task,
thereby leading to studying (12) the function of variable blocks. Anne and Judith wanted to
add the missing logic block after noticing that they need to use variables to create the
condition for the missing logic. 13) The function of variables to create the missing condition
led to the relation between variable blocks and logic blocks. Anne duplicated the existing
logic block to create the missing condition with variables blocks within compare and
AND/OR operations. Anne and Judith incorrectly created the condition. (14) Then, Anne
noticed the structural relation between variables for red and green toys (virtual objects) and
the robot’s movement (physical object) accordingly.
Cross-Case Analysis Themes
Analogical reasoning began with attending to relational similarities rather than surface
similarities

According to prior research, novices’ similarity-based retrieval (i.e., analogical
retrieval) is usually driven by surface similarities whereas experts are more likely to retrieve
similarities in relational structure because their encoding process includes more relational
knowledge (Gentner et al., 1993, 2013; Holyoak & Koh, 1987; Ross, 1987). On the contrary,
in the present study, analogical retrievals were often driven by structural similarities.
Structural similarities were relational commonalities between the virtual object (i.e.,
terminate block in code) and physical object (i.e., the robot’s movement) as well as between

elements within the virtual object (e.g., a relation between the repeat and logic blocks). For
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example, when the target task, Cleaning the Playroom, was provided, both pairs referred to
the source of their analogy as they identified similarities with the source task. As Judith tried
to stop the robot in the target task, she referred to the source task regarding the terminate
block ((1) in Figure 4) by saying “Because it [the robot] doesn't stop, so we have to terminate
it [the program] at the end like we did with the last one.” Anne recalled the repeat while/until
and compare logic blocks in the source task ((2) in Figure 4) as she identified the relational
similarity between the repeat block and the compare logic block next to it, by mentioning “I
think it's like one of those times where you do like repeat until the number of red toys is like
equal six.”

Figure 4

The Code for Source Task and the Buggy Code for Target Task with Identified Analogies
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Ariana and Kimberly also went through a similar encoding and inferring process. As
they attempted to make the robot move continuously on the map in the target task, Ariana
referred to the source task regarding the location of the line navigation block ((3) in Figure 4)

by saying “I'm not sure where to put [the line navigation block]. How does it look, how did
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we do it in the last one? I think it's just, this [the line navigation block] needs to go up here.”
When given a new task, both pairs reminded themselves of analogous experiences from the
past debugging task and retrieved similar attributes in terms of code structure and robot
movement.

Using virtual and physical objects together seemed to have promoted the pairs’
attention to the relational structure since they needed to compare the structure of the code to
that of the robot behaviors to debug. While it has been argued that text-based programming
inherently facilitates learning of analogical reasoning (Grandgenett & Thompson, 1991; Jang,
1992), there was no discussion on whether and how block-based programming can promote
analogical reasoning based on structural similarities. Visually discernable structures in block
code and tangible outputs (robot behaviors) may have made structural similarities prominent.
Nonetheless, the pairs noticed no dissimilarities between the source and target tasks. The
pairs may have paid more attention to similarities than dissimilarities in the early phase of the
analogical reasoning process considering that similarities between the source and target tasks
are used in reducing the perceived complexity of the target task (Ahmed & Christensen,
2009) and acquiring complete knowledge of the elements in an object and their relations
(Gentner et al., 1993; Holyoak & Koh, 1987; Novick, 1988).

Analogical mapping was often centered around functional similarities between debugging
tasks

The pairs demonstrated high structural consistency within each analogical mapping in
which one element in the source task was matched with at most one element in the target
task, not with multiple elements (Gentner & Smith, 2013). As illustrated in Figure 5 below,
this also involved parallel connectivity. These findings align with the literature showing that
people tend to keep structural consistency in the mapping (e.g., Spellman & Holyoak, 1992).

The pairs’ mapping also showed high systematicity (Clement & Gentner, 1991) in which



commonalities in the structure that they found also entailed a deeply connected system of

relations. For example, the same causal patterns between the code (virtual object) and the

robot’s movement (physical object) were applied in both debugging tasks.

Figure 5

Parallel Connectivity between the Code for Source Task and the Correct Code for Target

Task and Identified Analogies
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For example, both pairs identified similarities associated with the function of the line
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navigation block from the source task, Color Game, and based on its relationship with other

surrounding blocks (i.e., structural similarity in the virtual object) as well as the relationship

with the robot behaviors (i.e., structural similarity in the virtual and physical object). The

pairs recognized how the repeat block functioned in relation to the line navigation block and

the robot behaviors, as shown in the following discourse.

Ariana: (06:18)  Oh, it [the robot] follows the line to the next intersection or line

end (She noticed the relation between the robot and line navigation
block). So, it [the robot] would stop at that intersection (She
noticed the function of the line navigation block, allowing the robot
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to move on the map until the next intersection). So, it's the first part
[of the code where] we made a mistake. So, I can choose, read all
of these.

Kimberly: (06:38) Should it be this follow line [block]?

Ariana: (06:53)

I'm not sure where to put [the line navigation block]. How does it
look, how did we do it in the last one [task]? I think it’s just... This
[line navigation block] needs to go up here (She noticed the
relation between the line navigation and repeat blocks, requiring
the line navigation block to be within the repeat block. See (3) in
Figure 4).

Kimberly: (07:01) Which one? This? (She pointed out the line navigation block

Ariana: (07:03)

located out of the repeat block)

Yeah. I think it [the line navigation block] needs to get moved
from the top into the repeat block, I think. (She moved the line
navigation block from out of the repeat block into the repeat block)
There we go. (They ran the robot and confirmed that the robot
moved continuously on the map)

Both pairs also noticed that the code lacked a chunk of blocks making the robot get surprised

and stop when no more red toys were left. They determined that a chunk of logic blocks was

needed. As shown below, their reasoning was based on the similarity in the function of the

logic block, the relational similarity between the logic and loop blocks, and the logic block

and robot movement used in both the source task, Color Game, and the current target task.

Ariana: (13:10)

So, when Ozobot has no more green toys left, but there's no more
red toys left for some reason [the Ozobot] got surprised and
stopped. (She read the code and the task description) So it [the
robot] didn't get surprised and stop 'cause it [a chunk of logic
blocks] is not in there. (She noticed the function of the logic block
that caused the robot to get surprised and stopped in the loop
block)

Kimberly: (13:20) Yeah. So.

Ariana: (13:22)

We need to go to that if [logic] one. So I can just put... (She
checked the logic block category and added if/do block to the code)
I guess it doesn't really matter. It's, because as long as it, as long as
it [a chunk of logic block] is in the loop. (She noticed the relational
commonality between the logic and loop blocks and decided to put
the if/do block within the loop block. See (5) in Figure 5) Let's put
it [logic block] there, and then if, I guess do the same thing. We'll
have to make, or wait, no.

Kimberly: (14:07) Oh that's not. (The pair started building blocks for the missing

Ariana: (14:07)

chunk of the logic blocks. They added a math block but decided
that it is not the correct block here)

The number, if the number. This way has two seconds. If the
number of green toys is greater than one, and then we have to add
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on like that other part. (The pair checked the variable blocks in the
variable category to add the variables into the newly added if/do
logic block)

Oh it [compare logic block with ‘the number of green toys’
variable block] might have to go into that big thing [AND/OR
operation block]. Might have to put it on there [in the logic block].
(She noticed that the variable block needs to be in the compare
logic block within the newly added if/do logic block. See (5) in
Figure 5)

The number of red toys is less than one. Just don't move the
positioning. Do it, it [the robot] will get surprised and stop.

Kimberly: (15:31) Do we need this? Like this. (The pair continued to build the newly

Ariana: (15:46)

added if/do logic block with ‘the number of red toys’ variable
block and other blocks required to be in it)

Let's just try putting in get surprised and stops. So, it [the robot]
can make a surprise noise and stop. I don't know if there's like a
stop. And add a break out of loop [block]. (She highlighted the
relation between the code and the robot)

The pairs also identified similarities regarding the variable blocks between the Color Game

task and the Cleaning the Playroom task. Specifically, they recognized how the variable

block functioned in relation to the other blocks (e.g., the repeat until block and the if-do logic

block) and the robot behaviors as shown in the discourse below.

Judith: (08:27)

Anne: (08:36)

Or above here? (She noticed the missing sound block after reading
the task description and added the play happy sound block between
two logic blocks) We need it to be like in a variable. (She noticed
that there is a missing logic block consisting of a variable block to
place the sound block. See (5) in Figure 5)

Exactly. That's why I thought here let's duplicate this [the existing
if/do logic block consisting of play note sound block], so I thought
it'd be like this [with the added missing logic], right? I hate that it
does this. (She commented on her relocating a block that caused
also moving other connected blocks) And then it'd be like this
because I'm putting these two (She changed the variables in the
logic block including the play happy sound block). 'Cause it's one
of [if/do logic blocks] saying (She read the code of the logic
blocks) like if there are more green toys than red toys, then it [the
robot] plays the note. And this one [the other if/do logic block] is
saying if there's more red toys and green toys, then it [the robot]
would be happy or no, it [the code of the if/do logic blocks] should
be the other way around. Because if there are green toys left. (She
noticed that the selection of variables for different colors needs to
change in the logic block based on the robot’s behaviors) Why is it
[putting correct variables into the logic blocks] so hard?
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Anne: (11:30) No, it's like six toys or something. So the number of green toys..
repeat while [block] something, like [the number of] green toys
[variable] is like six or something. This is annoying me.

Anne: (12:56) I think it's like one of those times where you do repeat until the
number of red toys is like equal six. (She noticed the relational
commonality between the repeat while/until and variable blocks.
She reminded Judith of the previous task by saying “one of those
times”. See (2) in Figure 4)

Judith: (13:10) Change while, change until... (She changed the repeat
while block to repeat until block)

Among the similarities the pairs identified, some were unrelated to fixing the bugs in
the current target task. For example, Judith recognized a similarity in the use of math blocks.
This noticing was based on her mapping of a single object (i.e., the numeric value in the math
block) in the code between tasks. The high level of structural consistency without considering
systematicity led this pair to mapping on an irrelevant single object between tasks. The
mapping without considering the relation of the numeric value with other blocks or with the
robot behaviors led to proposing a change in a block without a bug as shown below.

Judith: (07:10)  Less than 1... What if we make it less than or equal to ...? Oh,
wouldn't really work. What if you make less than or equal to 2
instead of 1? (She noticed the similarity in the value in the math
block and offered to change the value. See (4) in Figure 4)

Anne: (07:20) This one? (She pointed out the value 1 in the if/do logic block for
‘the number of green toys’ variable)

Judith: (07:21)  Yeah, 'cause they're supposed to be out of or no, red. Some red
toys are supposed to be to, yeah, maybe make that, too. (She
offered to change the value 1 in the if/do logic block for ‘the
number of red toys’ variable) 1 don't know. It's probably not gonna
work. It's probably a waste of time.

Anne: (07:32) You wanna try it?

Judith: (07:39)  No, I don't really care. I'm pretty certain it [changing value 1 to 2
in the math blocks] won't work. So just spitting out some options.

Judith pinpointed the similarity in the terminate block based on its function and relationship
with other blocks and the robot behaviors as shown in the following debugging segment.
However, the similarity was irrelevant to the bug in the target task. Still, Judith’s mapping

based on an irrelevant similarity indicated that certain selection criteria, such as debugging

goal, was considered for generating inferences.



23

Anne: (11:13) Wait, there’s something wrong with this code, 'cause it [the robot]
won’t stop, but it [the robot] should stop eventually. We need to
put something.

Judith: (11:30)  Terminate at the end? (She noticed the similarity in the function of
the terminate block in the Cleaning the Playroom with that in the
Color Game task. See (1) in Figure 4)

Anne: (11:30) No, it’s like six toys or something. So, the number of green toys...
repeat while something, like green toys is like six or something.
(She wanted to use ‘the number of green toys’ variable in the code,
and then she did not put the variable in the code)

Judith: (12:18) I don’t know what to do. Um, it [the robot] doesn’t stop. Because it
[the robot] doesn’t stop, so we have to terminate it [the program] at
the end like we did with the last one [task]. (She highlighted the
robot’s behavior and reminded Anne of the previous task, Color
Game. See (1) in Figure 4)

Anne: (12:30) We have to set it [the variable] to like... (After checking the
previous task, she wanted to set the variable to a number next to
the repeat while block)

Judith: (12:31)  Should we send it [the terminate block] to the end?

Anne: (12:35) Okay. But it [the code] is like repeats, and indefinitely that’s the
thing. Like it [the code] doesn’t ever say like repeat until blah,
blah, you know

Judith: (12:54)  What if we still get the bottom here? (Judith offered to put the
terminate block at the end of the code) 1 don’t know [if] he [the
robot] [is] supposed to do this.

The pairs’ mapping also involved analogical inference in that the information they
used in their mapping was selective. The pairs made analogical inferences based on certain
selection criteria to navigate and complete the most accurate and useful mapping. According
to Gentner and Smith (2013), the most important selection criterion (i.e., constraint) for
candidate inferences is the systematicity and structural consistency as mentioned above.
Holyoak and Thagard (1989) took a more pragmatic perspective and argued that purpose/goal
relevance is also an important criterion, and all these different kinds of constraints interact to
determine the optimal set of correspondences between the source and target tasks. The
finding of the present study is aligned with Holyoak and Thagard’s (1989) perspective given
that the pairs’ mapping was driven by their goal of debugging. Despite abundant structural
and relational similarities between tasks, the pairs did not make one-to-one correspondence

on elements they saw as irrelevant to their goal. Their mapping was centered around certain
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blocks of the code that were only relevant to their debugging goals (i.e., the line navigation
block, logic block, set variable block) even when their view was inaccurate. This seems to
have resulted from analogical inferencing processes during their mapping based on such
criteria as structural consistency, systematicity, and debugging purpose. Still, these inferences
had to be tested in debugging.
The pairs used all possible analogies in debugging

Both pairs applied al/l analogical inferences that they had mapped and were relevant
to debugging in the current code. This finding is in contrast to the literature showing that
reasoners struggle applying analogs and often apply relatively adaptable analogs (Keane,
1996; Novick & Holyoak, 1991). Regardless of debugging outcomes, all relevant similarities
from analogical mapping were applied (i.e., analogies regarding the line navigation, logic,
and variable blocks) in the pairs’ debugging attempts. For example, Ariana and Kimberly
used similarities with the line navigation block (i.e., relocating the line navigation block from
outside to inside of the loop block) as well as the loop and logic blocks correctly (i.e., adding
the if/do logic block into the loop block), which were correct attempts leading to successful
debugging. They used similar analogies in debugging for the robot to continuously follow
lines on the map and get surprised and stop when no more red toys were left.

(Discourse on using the line navigation block)

Ariana: (07:03)  Yeabh. I think it [the line navigation block] needs to get moved
from the top into the repeat block, I think. There we go. (The pair
had used the relevant similarity in relational commonality between
the line navigation and repeat blocks. See (3) in Figure 4)

(Discourse on using the loop and logic blocks)

Ariana: (13:10)  So, when Ozobot has no more green toys left, but there's no more
red toys left for some reason for green toys get surprised and
stopped so it [the robot] didn't get surprised and stops 'cause it [a
chunk of logic block] is not in there.

Kimberly: (13:20) Yeah. So.

Ariana: (13:22) We need to go to that if [logic] one. So, like that yeah, I can just

put... I guess it doesn't really matter. It's, because as long as it, as
long as it [a chunk of logic block] is in the loop. Let's put it [logic
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block] there, and then if, I guess do the same thing. we'll have to
make, or wait, no. (The pair applied the relevant similarity in
relational commonality between the repeat and logic blocks. See

(5) in Figure 5)
Similarly, Anne and Judith used the similarity with the line navigation block and the loop
block from the source task correctly, which led them to fix one of the bugs and made the
robot continuously follow the line on the map.

Judith: (07:43)  What is your solution to the problem? We will stick the line
navigation block underneath the repeat block so that it [the robot]
will follow the whole grid [on the map] and not stop after one
block [grid on the map]. (The pair used the relevant similarity in

relational commonality between the line navigation and repeat
blocks. See 3 in Figure 4)

Ariana and Kimberly attempted to use similarity with the set variable and loop blocks.
Although they added set variable blocks first to the code with only the number of green toys
variable at the top, the pair incorrectly relocated the set blocks into the loop block. After
revisiting the source task and reviewing the blocks used in the task, the pair relocated the set
block out of the loop block in the target task, which was a correct attempt to debug the code.

Ariana: (26:23)  Does it [the set blocks with value 6] have to go into the repeat

thing [block]? (The pair had noticed the relevant similarity in
relational commonality between set variable and repeat blocks.
See (6)in Figure 5. She relocated the set blocks into the loop
block)

Kimberly: (27:18) Okay. (She put the set blocks out of the repeat block again) Let's

see. Green toys are 6 and 6 (She read the set variable blocks)
Anne and Judith also tried to use the similarity with the variable block and the logic block
from the source task but were not able to apply it correctly to the target task, which led to
unsuccessful debugging. Anne and Judith’s attempt using analogy (i.e., adding the missing
logic block with other required blocks in it, such as math, compare logic, AND/OR operation,

play surprised, and break out of loop blocks) was close to fixing the bug in the target task.

However, their attempt did not lead to fixing the bug due to their incomplete understanding
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of the given problem. This finding is aligned with that of the previous studies in which the
successful application of analogy for the desired outcome depended on an accurate
understanding of the given problem (e.g., Ahmed & Christensen, 2009).

The adaptability afforded by using block code and robots seems to have facilitated the
pairs’ experiments with using all analogies. That is, these tools made analogic inferences
more adaptable to the target task, which allowed pairs to notice and apply relevant
similarities in blocks and/or the robot as needed. By clicking, dragging, and dropping in the
block code, they were able to apply the noticed analogy from the source task to the target
task. According to previous studies, even when reasoners notice correspondence between two
tasks, they often struggle to apply them to the target task and usually use analogical
inferences that are relatively adaptable to the target task (Keane, 1996; Novick & Holyoak,
1991). The findings of the present study suggest the role of block-based robot programming
in facilitating analogical reasoning.

The pairs evaluated their applied analogies

The pairs evaluated their analogy application. This finding is unique in that it is
usually hard to immediately identify whether the analogical inference is true unless the
outcome of the analogy application is immediately testable (Gentner & Smith, 2013). In the
present study, the outcome was readily observable in the robot behaviors. For example, after
applying the similarity in the line navigation block to the target task, both pairs went over the
process of verifying their analogy by testing the revised code and confirming if the robot
performed desired behaviors in relation to the line navigation block. As shown in the
following example from Anne and Judith’s excerpt, they verified the goal of making the
robot move continuously on lines on the map.

Anne: (08:56)It's okay. We're trying our best. (They loaded the revised code to the

robot and ran it on the map after they changed the location of the line
navigation block from outside to inside of the repeat block)
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Anne: (10:05)Success, right? (She verified the goal of making the robot move
continuously on the map)

The pairs also revised the code again when they saw that the analogy application did not lead
to the desired robot behavior. Both pairs revised the code after applying the analogy related
to missing logic blocks. Anne and Judith applied the analogy between the logic and variable
blocks and Ariana and Kimberly applied the analogy between the loop and logic blocks.
However, Anne and Judith tested their applied analogy and observed that the robot did not
move properly, but they did not refine their applied analogies for the terminate, repeat until,
and variable blocks. Ariana and Kimberly tested their applied analogy for the missing logic
and set blocks, and revised their code. Ariana and Kimberly continued to work on their code
after applying and testing the identified analogy to debug.

Ariana: (18:29)  (They added a chunk of logic block for making the robot get
surprised and stop, loaded the revised code to the robot and ran it
on the map) 1 don’t know why it [the robot] is not picking up what
that said. (She highlighted the robot not behaving as coded in the
variable blocks in the logic block)

Kimberly: (18:48) Yeah.

Ariana: (18:49) I don’t know if that should be equal. (They changed the
mathematical operation from > 1 to = 0 for the number of green
toys in the compare logic block)

Anne and Judith refined the code based on their evaluation of the analogy. For
example, they attached the compare logic block to the repeat while block. After testing the
revised code, they changed the mathematical symbol in the compare logic block. They also

tested the newly added logic block and deleted it after seeing that the robot did not perform

properly.

Anne: (00:03) So let’s try this bad boy [the robot]. Oh. (They applied the
similarity in relation between the variable and repeat while/until
blocks. They added compare logic blocks with variables =< 6
instead of the true block connected to the repeat while block. They
tested the revised code)

Judith: (00:55)  Is that the B noise? (She commented on the sound coming from the
robot coded to play B note) Oh, that's not good. Because of the
terminate [block]? (She pointed out the terminate block at the end
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causing the robot not to move after the first intersection on the
map. She deleted the terminate block)

Anne: (01:02) I think there's something wrong up here. She pointed out the
compare logic blocks connected to the repeat while block) Green
toys equals six? (She changed =< 6 to = 6 in the compare logic
blocks) Oh my god. I'll calibrate again.

Evaluation of analogy application involves a process where reasoners check if their
mapping and inferences are true and thus lead to the desired outcome. It is usually hard to
immediately identify whether the inference is true unless the outcome of the analogy
application is immediately testable and confirmed in an observable way (Gentner & Smith,
2013). Immediate verification through robot behaviors does not mean that the verification
process always led to successful debugging. Although Ariana and Kimberly used the analogy
with the set variable and loop blocks correctly, they revised their code and moved the set
blocks to the loop block, as described the third theme above. Anne and Judith showed a
similar episode in terms of analogies with the variable block and two unrelated similarities in
the math block and the terminate block, as described in the second theme above. They fixated
on their initial ideas as to those blocks with a lack of verification, which led to unsuccessful
debugging. This aligns with literature indicating that fixation has a reverse effect on the
evaluation of applied analogies (Cheong et al., 2014). Anne and Judith spent most of their
time on analogical mapping and applying rather than verifying their analogy application in
comparison to Ariana and Kimberly who spent more on the verification process and refining
the code according to the verification outcome.

General Discussion

We examined how novice programming learners used analogical reasoning in

debugging that involved both code (virtual object) and robots (physical object). The two pairs

exhibited analogical reasoning using structural similarities in contrast to prior research in

which novices focused on surface similarities in non-CS design or problem solving contexts
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(Ahmed & Christensen, 2009; Cheong et al., 2014; Novick, 1988). This finding may be
attributed to the nature of the debugging tasks in the present study. Multimodal objects used
in debugging seemed to have made structural relations salient in that debugging inherently
asked them to map the relation of the code to the robot behaviors. In turn, such mapping may
have led to analogical comparisons of the target task to the source task. The analogical
reasoning of the pairs demonstrated structural consistency (Holyoak & Thagard, 1989) and
systematicity (Clement & Gertner, 1991). The finding may have resulted also from the
analogy applications that were immediately feasible in the code.

Use of multimodal objects during debugging engaged the pairs in the evaluation
process of analogical reasoning. Being a tangible object, the robot enabled participants to test
immediately after their analogy application. Inference made between source and target tasks
can be correct or incorrect to solve the target problem and evaluating the analogy applied in
the target task is critical for successful problem solving (Gentner & Smith, 2013). In the
present study, both pairs applied the relevant similarity in the relation between the loop and
line navigation blocks and verified the analogy application by running the robot on the map,
and there was only one case where the evaluation process was not performed after the
application of analogy. Although participants were able to engage in more evaluation
processes, the evaluation itself was not always accurate enough to verify the appropriateness
of the analogical reasoning. Sometimes, they fixated on irrelevant similarities and
inaccurately evaluated the analogy application even after testing with the robot.

Another notable finding was that the functional analogies were used effectively along
with other foci such as visual or structural analogies in multiple phases of the analogical
reasoning process as well as debugging. Noticing similarities in function led to the pairs’
discovery of similarities in the relation between block codes as well as between block code

and the robot, resulting in finding the bugs in the buggy code. This finding stands in contrast
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to the finding in a prior study in which functional analogies prevented identifying relevant
analogies (Cheong et al., 2014).

The presence of the robot played a critical role in the overall flow of analogical
reasoning foci and forms. Noticing relevant similarities and irrelevant similarities in the
relation between the block code and the robot guided the pairs to discover relevant
similarities between block code in the target and source tasks. However, noticing a relevant
similarity in the relation between the block code and the robot led Anne and Judith to
discover an irrelevant similarity in function but Ariana and Kimberly to discover a relevant
similarity in function. The flow from relevant or irrelevant relational similarity between the
block code and the robot guided to relevant relational similarity but not always to the relevant
similarity in function. Since analogy enables reasoners to focus more on relations than
objects (Gentner & Smith, 2013), use of the robot with block code enriched the analogical
reasoning flow from relational similarity to relational similarity rather than to the objects’
functions.

Despite the benefits of block-based coding using multimodal objects for novices’
analogical reasoning, the difficulty that the pairs experienced with the role of variables
negatively affected their use of related analogies. This finding aligns with a previous finding
that successful use of analogy is influenced by relevant domain knowledge (Ahmed &
Christensen, 2009). In addition, both pairs did not notice and use any dissimilarity between
the source and target tasks, and their analogical reasoning process was based on the
similarities. A possible reason is that similar attributes can be perceived without creating
additional cognitive load and readily used in reducing the perceived complexity of the target
task (Ahmed & Christensen, 2009). Noticing only dissimilarities rarely helps to reduce
perceived complexity of the target task, and using dissimilar attributes requires reasoners to

integrate new information presented in the target task and to create or modify their schema
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accordingly, increasing cognitive load. Reasoners are also required to have concrete
knowledge of elements involved in the task and their relations to use the dissimilarities
properly in problem solving.

Table S4 in the supplementary highlights the study findings in relation to the existing
literature and also implications for computing education research.

Limitations and Suggestions for Future Research

Only two pairs of participants were presented in the paper. However, generalizability
was not the purpose of the paper. The qualitative method was the most suitable for our
research goal: to uncover novice programming learners’ analogical reasoning process in a
naturalistic setting. A qualitative approach is suitable when a straight-forward description of
the phenomenon is desired (Lambert & Lambert, 2012). Such an approach can also generate
new insights and generate conceptual frameworks, theories, and hypotheses (Kramer, 1985).
Our approach was designed to study participants in their natural state to the extent possible
within the context of the research area (Lambert & Lambert, 2012). Moreover, descriptive
research should be viewed as an initial stage leading to development of new knowledge
(Kramer, 1985). As the study of analogical reasoning in block-based programming is still in
its infancys, this article sets the foundation for more future research on analogical reasoning in
block-based programming.

Further research needs to examine strategies to help novice programming learners
leverage analogical reasoning in block-based programming. For example, providing relevant
retrieval cues could facilitate the phase of structuring (Mozzer & Justi, 2012). Offering
scaffolding tools to help them evaluate their analogy application could be studied in future
studies. The ultimate goal is to create a safe learning environment that encourages students to
generate and explain their analogical reasoning processes.

Implications for Educational Computing Research
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Though this study is not meant to be generalizable, it does indicate that novice
programmers have the potential to engage in analogical reasoning focusing on structural
similarities between the source and the target task. Doing so has the potential to help novice
programmers learn to debug effectively. Some conditions that helped the current participants
do so include the multimodal nature of the objects with which they interacted. Specifically, it
helped them to notice structural elements in the code and link such to robot behaviors. Next,
robot behavior lent a concrete manifestation of the code that allowed participants to link code
fragments to robot behavior and to immediately test revisions to the code. These findings call
for further research in computing education toward culturally responsive design that enables
multimodal analogical reasoning and debugging (see Table S4 in the supplementary for
related implications).

The findings of this study may be applied to debugging within other block-based
programming platforms, such as Scratch. There are many commonalities among block-based
coding languages, but also some important differences such as the inclusion of functions and
Boolean operators (Kraleva et al., 2019). Still, the existence of a physical robot in this study
compared to other block-based platforms that have virtual agents may be critical to fostering
effective analogical reasoning.

This study also points to the potential of the inclusion of robots within early
childhood education. If preservice early childhood teachers can program and debug, then they
have the potential to teach with robots. Of course, skill is only one part of the equation, and
much work needs to examine the dispositions and motivation to teach with robots among
preservice, early childhood teachers.
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