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Abstract. This paper develops a novel control-theoretic framework to analyze the nonasymp-
totic convergence of Q-learning. We show that the dynamics of asynchronous Q-learning with a
constant step size can be naturally formulated as a discrete-time stochastic affine switching system.
In particular, for a given Q-function parameter, @, the greedy policy, mg(s) := argmax,Q(s,a), in
the Q-learning update plays the role of the switching policy, and is the key connection between the
switching system and Q-learning. Then, the evolution of the Q-learning estimation error is over- and
under-estimated by trajectories of two simpler dynamical systems. Based on these two systems, we
derive a new finite-time error bound of asynchronous Q-learning when a constant step size is used.
In addition, the new analysis sheds light on the overestimation phenomenon of Q-learning.
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1. Introduction. First introduced by Watkins and Dayan [20], Q-learning is
one of the most fundamental and important reinforcement learning algorithms. The
theoretical behavior of Q-learning has been extensively studied over the years. Classi-
cal analysis of Q-learning mostly focused on asymptotic convergence of asynchronous
Q-learning [18, 8] and synchronous Q-learning [3]. Substantial advances have been
made recently in the guarantee of their finite-time convergence; see [17, 10, 5, 1, 2,
19, 15, 13, 4].

To list a few, Szepesvéri in [17] gave the first nonasymptotic analysis of asynchro-
nous Q-learning under an independent and identically distributed (i.i.d.) sampling
setting. [5] first provided the nonasymptotic analysis for both synchronous and asyn-
chronous Q-learning with polynomial and linear step sizes under a single trajectory
Markovian sampling setting. Recently, [19] established the best known bound for
synchronous Q-learning under a rescaled linear step size. In a subsequent work, [15]
derived a matching bound for asynchronous Q-learning under the Markovian setting
using a similar decaying step size. The sample complexity is further improved with a
refined analysis based on constant step size in [13] and [4].
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Existing results for the most part treat the Q-learning dynamics as a special
case of general nonlinear stochastic approximation schemes with Markovian noises.
In a different line of work, [12] discovered a close connection between Q-learning
and continuous-time switching systems. The switching system perspective captures
unique features of Q-learning dynamics and encapsulates a wide spectrum of Q-
learning algorithms including asynchronous Q-learning, averaging Q-learning [12],
and Q-learning with function approximation, etc. However, existing O.D.E. analy-
sis of such continuous-time switching systems yields only asymptotic convergences of
Q-learning algorithms and requires diminishing step sizes. Obtaining a finite-time
convergence analysis would require a departure of the switching systems from the
continuous-time domain to the discrete-time domain, which remains an open and
challenging question.

In this paper, we aim to close this gap and provide a new finite-time error bound of
Q-learning through the lens of discrete-time switching systems. In particular, we focus
on asynchronous Q-learning with constant step sizes for solving a discounted Markov
decision process with finite state and action spaces. We first show that asynchro-
nous Q-learning with a constant step size can be naturally formulated as a stochastic
discrete-time affine switching system. This allows us to transform the convergence
analysis into a stability analysis of the switching system. However, its stability analy-
sis is nontrivial due to the presence of the affine term and the noise term. The main
breakthrough in our analysis lies in developing upper and lower comparison systems
whose trajectories over- and under-estimate the original system’s trajectory. The
lower comparison system is a stochastic linear system, while the upper comparison
system is a stochastic linear switching system [14], both of which have a much sim-
pler structure than the original system or general nonlinear systems. Our finite-time
error bound of Q-learning follows immediately by combining the error bounds of the
stochastic linear system (i.e., lower comparison system, which has no affine term)
and the error system (i.e., difference of the two comparison systems, which has no
noise term). Comparing this to existing analyses based on nonlinear stochastic ap-
proximation schemes, our analysis seems more intuitive and builds on simple systems.
It also sheds new light on the overestimation phenomenon in Q-learning due to the
maximization bias [7].

Last, we emphasize that our goal is to provide new insights and an analysis frame-
work to lay out a strong theoretical foundation for Q-learning via its unique connec-
tion to discrete-time switching systems, rather than improving existing convergence
rates. In particular, as opposed to classical ODE analysis/stochastic approximation
approaches, the proposed strategy adopts the idea of formulating the Q-learning al-
gorithm as a stochastic affine switching system, and directly conducting analysis in
discrete time, which is new in the literature. The switching system model of Q-
learning in this paper allows us to use already well-established tools in control theory
such as Lyapunov analysis, which make the analysis easier and more familiar to re-
searchers in control community. Therefore, we expect that, such a control-theoretic
analysis could promote more research activities of people with control backgrounds
for reinforcement learning, further stimulate the synergy between control theory and
reinforcement learning, and open up opportunities to the design of new reinforcement
learning algorithms and refined analysis for Q-learning, such as double Q-learning [7],
distributed Q-learning [9], and speedy Q-learning [1].

Moreover, the proposed analysis follows a particularly clean and simple strategy.
The core idea that leads to the simplicity is identifying two simpler dynamical systems:
a “lower comparison system” that is a stochastic linear system and “upper comparison

©) 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 11/01/23 to 73.103.89.155 . Redistribution subject to CCBY license

SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1863

system” that is a stochastic switching system, which have favorable structures that
are easily analyzed via control theory; stability of a linear system can be used to derive
a finite-time error bound for Q-learning. Overall, we view our analysis technique as a
complement rather than a replacement of existing techniques for Q-learning analysis.
Moreover, our approach based on the comparison systems could be of independent
interest to the finite-time stability analysis of more general switching systems.

The overall paper consists of the following parts: section 2 provides preliminary
discussions including basics of Markov decision process, switching system, Q-learning,
and useful definitions and notations used throughout the paper; section 3 provides
the main results of the paper, including the switched system models of Q-learning,
upper and lower comparison systems, and the finite-time error bounds; we conclude
in section 4 with a discussion on potential extensions of this work.

2. Preliminaries.

2.1. Markov decision problem. We consider the infinite-horizon discounted
Markov decision problem (MDP), where a decision making agent sequentially takes
actions to maximize cumulative discounted rewards in environments called the Markov
decision process. The Markov decision process is a mathematical model of dynamical
systems with the state-space & :={1,2,...,|S|} and action-space A:={1,2,...,|A|}.
In a Markov decision process, the decision maker selects an action a € A with the cur-
rent state s, then the state transits to the next state s’ with probability P(s’|s,a), and
the transition incurs a reward r(s,a,s’). For convenience, we consider a deterministic
reward function and simply write r(sg, ag, sk+1) =: 7%,k € {0,1,...}.

A deterministic policy, 7 : § — A, maps a state s € S to an action 7(s) € A.
The objective of the MDP is to find a deterministic optimal policy, 7*, such that the
cumulative discounted rewards over infinite-time horizons are maximized, i.e.,

o0
7= argmaxE [Z’ykrk 7T‘| ,

TEO k=0
where v € [0,1) is the discount factor, © is the set of all admissible deterministic
policies, (so,ao,s1,a1,...) is a state-action trajectory generated by the Markov chain
indicated by the policy m, and E[-|7] is an expectation conditioned on the policy .
The Q-function under policy 7 is defined as

o0

Q"(s,a)=E [Z Vo

k=0

sozs,ag:a,ﬂ] , SE€ES,acA,

and the optimal Q-function is defined as Q*(s,a) = Q™ (s,a) for all s€ S and a € A.
Once Q* is known, then an optimal policy can be retrieved by the greedy policy
m*(s) = argmax,c 4Q"(s,a). Throughout, we assume that the MDP is ergodic so
that the stationary state distribution exists and the MDP is well posed.

2.2. Switching system. Since the switching system is a special form of nonlin-
ear systems, we first consider the general nonlinear system

(2.1) 2pe1 = f(zg), xo=2z€R", ke{l,2,...},

where z € R" is the state and f: R"™ — R" is a nonlinear mapping. An important
concept in dealing with the nonlinear system is the equilibrium point. A point x = z*
in the state-space R" is said to be an equilibrium point of (2.1) if it has the property
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that whenever the state of the system starts at «*, it will remain at z* [11]. For (2.1),
the equilibrium points are the real roots of the equation f(x) = z. The equilibrium
point x* is said to be globally asymptotically stable if for any initial state xzo € R",
T — " as k — oo.

Next, let us consider the particular nonlinear system, the linear switching system,

(2.2) Tpp1=Asxn, xo=2€R", ke{0,1,...},

where zp, € R" is the state, 0 € M := {1,2,...,M} is called the mode, o, € M
is called the switching signal, and {A,,0 € M} are called the subsystem matrices.
The switching signal can be either arbitrary or controlled by the user under a certain
switching policy. Especially, a state-feedback switching policy is denoted by o =
o(xy). A more general class of systems is the affine switching system

$k+1:Aa;€xk+bo—k7 .’L‘OZZERn, kE{O,l,...},

where b,, € R" is the additional input vector, which also switches according to oy.
Due to the additional input b, , its stabilization becomes much more challenging.

2.3. Revisiting Q-learning. We now briefly review the standard Q-learning
and its convergence. Recall the Q-learning update:

Qrr1(sk, ar) = Qr(sk, ar)
+ (s, ax) {Tk + VTGa}Qk(Sk-i-la u) — Qi (s, ak)} ;
where 0 < ay(s,a) < 1, is called the learning rate or step size associated with the state-

action pair (s,a) at iteration k. This value is assumed to be zero if (s,a) # (sk, ax).
It

oo oo
Zak(s,a):oo, Za%(s a) < 00,
k=0 k=0

and every state-action pair is visited infinitely often, then the iterate is guaranteed
to converge to Q* with probability one [16]. Note that the state-action pair can be
visited arbitrarily, which is more general than stochastic visiting rules.

In this paper, we focus on the following setting: {(sx,ar)}7>, are i.i.d. samples
under a behavior policy S, where the behavior policy is the policy by which the
reinforcement learning agent actually behaves to collect experiences. For simplicity,
we assume that the state at each time is sampled from the state distribution p and,
in this case, the state-action distribution at each time is identically given by

d(s,a) =p(5)ﬂ(a|5)v (s.a) €S x A

2.4. Assumptions and definitions. Throughout, we make the following stan-
dard assumptions.
Assumption 2.1. d(s,a) >0 holds for all s€ S,a € A.

Assumption 2.2. The step size is a constant « € (0,1).

Assumption 2.3. The reward is bounded as follows:

ma r(s.a.8") = Ry <1.
(s’afs’)e.sXxAX3| (s,a.87)| max =
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Assumption 2.4. The initial iterate Qg satisfies ||Qo|lo < 1.

Remark 2.5. All the assumptions are standard and widely used in the reinforce-
ment learning literature. All these assumptions will be used throughout this paper
for the convergence proofs. Assumption 2.1 guarantees that every state-action pair is
visited infinitely often with probability one for sufficient exploration. This assump-
tion corresponds to the sufficient exploration condition in the standard Q-learning
analysis [8]: every state-action pair (s,a) is visited infinitely often. Moreover, this
assumption is used when the state-action visit distribution is given. It has also been
considered in [13] and [4]. The work in [2] considers another deterministic exploration
condition, called the cover time condition, which states that there is a certain time
period, within which all the state-action pairs are expected to be visited at least once.
Slightly different cover time conditions have been used in [5] and [13] for convergence
rate analysis. Assumption 2.3 is required to ensure the boundedness of Q-learning
iterates, which is applied in almost all reinforcement learning algorithms. The unit
bounds imposed on R,.x and Qg are just for simplicity of analysis. The constant step
size in Assumption 2.2 has been also studied in [2] and [4] using different approaches.

The following quantities will be frequently used in this paper; hence, we define
them for convenience.

DEFINITION 2.6.
1. Mazimum state-action visit probability:

dmax:: d 5 S 071 .
e de ) €0

2. Minimum state-action visit probability:

dmin = i d s € (0,1).
o n dlsa)€(0.1)

3. Exponential decay rate:
(2.3) pi=1—adpnin(l—7).

Under Assumption 2.2, the decay rate satisfies p € (0,1).

Throughout the paper, we will use the following compact vector and matrix no-
tations for dynamical system representations:

[ Py Ry Q1)
P=| ! |, R=| : |,Q:= ,
| Pl R4 Q- A])
-d(l,a) D1
(2.4) D, := , D:= ,
i d(|Sl,a) D) 4

where P, = P(-|a,-) € RIS Q(..a) e RISla € A, and R,(s) := E[r(s,a,5)|s,d].
Note that P € RISIMAXISIT g e RISIAIT ¢ ¢ RISIAI and D € RISIAIXISIALL Ty this
notation, the Q-function is encoded as a single vector @ € RISIMI which enumerates
Q(s,a) for all s €S and a € A. The single value Q(s,a) can be written as Q(s,a) =
(eq ®es)TQ, where e, € RIS and e, € R4 are sth basis vectors (all components are 0
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except for the sth component which is 1) and ath basis vectors, respectively. Note also
that under Assumption 2.1, D is a nonsingular diagonal matrix with strictly positive
diagonal elements.

For any stochastic policy, 7 : S — A4}, where A4 is the set of all probability
distributions over A, we define the corresponding action transition matrix as

()T @el
2 T T
(2.5) o — m(2) '®€2 cRISIXISIAL

m(|S])T ® el

where e, € RIS Then, it is well known that PII™ € RISIAIXISIAL ig the transition
probability matrix of the state-action pair under policy w. If we consider a determin-
istic policy, 7 : S — A, the stochastic policy can be replaced with the corresponding
one-hot encoding vector 7(s) := er(5) € A 4|, Where e, € R, and the corresponding
action transition matrix is identical to (2.5) with 7 replaced with 7. For any given
Qe RlSHAl, denote the greedy policy w.r.t. @ as

(2.6) mo(s) :=argmaxQ(s,a) € A.
acA

We will frequently use the following shorthand:
HQ =117,

We note that this notation, Ilg :=1II"2, will play an important role in the derivation
of the switching system model in this paper. In particular, the matrix appears in the
system parameters, and switches as the greedy policy m¢(s) := argmax,c 4Q(s,a) € A
is changed according to Q.

The boundedness of Q-learning iterates [6] plays an important role in our analysis.

LEMMA 2.7 (boundedness of Q-learning iterates [6]). If the step size is less than
one, then for all k>0,

m&X{Rmax, maXs.qa)esSx.A Qo(s, C()}
1—7 '

||Qk:||:>o < Qmax =

From Assumptions 2.3 and 2.4, we can easily see that Quax < ﬁ

3. Finite-time analysis of Q-learning from switching system theory.
In this section, we study a discrete-time switching system model of Q-learning and
establish its finite-time convergence based on the stability analysis of switching sys-
tems. We consider a version of Q-learning given in Algorithm 3.1. Compared to
the original Q-learning, the step size, «, does not depend on the state-action pair
and is constant in this paper. Moreover, the output of Algorithm 3.1 is the average,
Qr = % Zi:gl Qr,k > 1, instead of the final iteration Q.

3.1. Q-learning as a stochastic affine switching system. Using the nota-
tion introduced, the update in Algorithm 3.1 can be rewritten as

(3.1) Qi1 =Qr +o{DR+yDPIlg, Qr — DQk + wy },
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Algorithm 3.1 Q-learning with a constant step size.

1: Initialize Qo € RIIMI randomly such that [|Q o < 1.
2: Set QQ = QQ
3: Sample sg ~p
4: for iteration k=0,1,... do
5: Sample ay, ~ S(-|sk)
6: Sample s}, ~ P(-|sx, ax) and ry =1r(sg, ax, s}.)
T Update Q1 (sk, ar)=Qk(sk, ar) +ofrr+ymaxyea Qr(sy, u) — Qr(sk. a)}
8:  Update Qry1=Qk + 737 (Qrx — Qk)
9: end for
where
Wk :(eak ® esk)rk + V(eak ® eSk)(eS;)THQk Qk
(32) — (ear, ®eg)(€a, ®e)" Qx — (DR +7DPIg, Qx — DQy),

and (sg, ax, g, s5,) is the sample in the kth time step.
Remark 3.1. Note that in Algorithm 3.1, (sg,a,s)) is sampled from the joint

distribution

P (s} |5k, ar)p(sk)B(ak|sk) = P(s|sk, ax)d(sk, ax).

which is represented by the matrix multiplication, DP, in (3.1). By the definition of
matrix D in (2.4), it is a diagonal matrix whose diagonal entries are an enumeration
of d(s,a) =p(s)B(als),(s,a) € S x A. Therefore, it is easy to see that an entry of DP
is a joint distribution of a certain (s,a,s’) € S x A x S. Moreover, from the definition
of matrix II"™ in (2.5) and the greedy policy in (2.6), the multiplication Ilg, Q) in
(3.2) represents that max operator in the Q-function update in (3.1).

In more details, a vector form of the Q-function update in (3.1) can be written as

(3-3) Qri1=0Qr + a((eak X €Sk)rk + '7(6% by QSk)(esk/)THQka - (eak ® esk)TQk)'

Taking the conditional expectation conditioned on Qi leads to the mean dynamic

(3-4) E[Qk+1]Qk] = Qr + a(DR+yDPlq, Q. — DQk),

where D =E[(e,, ® €5, )(€q, @ €5, )7 Q1] and DP =E|[(eq, ® €5, )(es,, )7 |Qr]. Adding
the right-hand side of (3.4) to (3.3) and subtracting it from (3.3), we obtain (3.1).

Moreover, by definition, the noise term has the zero mean conditioned on Qy, i.c.,
Elwr|Qr] =0. Recall the definitions of mg(s) and Ilg. Invoking the optimal Bellman
equation (yDPIlg- — D)Q* + DR=0, (3.1) can be further rewritten as

(3.5)
(@1 — Q) ={I + a(yDPIlg, — D)}(Qx — Q°) + ayDP(Ilg, — g-)Q" + awy,,

which is a linear switching system with an extra affine term, yDP(Ilg, — Ilg-)Q,
and stochastic noise wy. For notational simplicity, given any @ € RIS”A|, define

Ag:=1+a(yDPIlg — D), bg:=ayDP(llg—1Ig-)Q".
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Using the notation, the Q-learning iteration can be concisely represented as the sto-
chastic affine switching system

(3'6) Qk"‘l - Q* = AQk (Qk - Q*) + ka + awg,

where Ag, and bg, switch among matrices from {I + a(yDPII™ — D) : 7 € O} and
vectors from {ayDP(II™ —II™ )Q* : = € ©} respectively. Note that in the switching
system in (3.6), the switching signal is not arbitrary, and the switching signal follows
a switching rule associated with the greedy policy mg, (s) := argmax,c 4Qr(s,a) € A,
which changes according to Q.

Therefore, the convergence of Q-learning is now reduced to analyzing the stability
of the above switching system. A main obstacle in proving the stability arises from
the presence of the affine and stochastic terms. Without these terms, we can easily
establish the exponential stability of the corresponding deterministic switching system
under an arbitrary switching policy. Specifically, we have the following result.

PROPOSITION 3.2. For arbitrary Hy, € R‘S”Al,k’ >0, the linear switching system

Qre1 — Q" =An (Qr—QF), Qo—Q"€ RISHAI’

18 exponentially stable with

where p is defined in (2.3).

The above result follows immediately from the key fact that |[Ag|le < p, which
is formally stated in the next lemma.

LEMMA 3.3. For any Q € RlSHAl,

[4glle < p-

Here the matriz norm || A||co := maxi<i<m Z?zl |Ai;| and A;j is the element of A in
the ith row and jth column.

Proof. Note the following identities
> llAglijl = Il — aD + ayDPTg);;|

J J
=[I—aDlii+»_[ayDPIg;
J

=1—«a[D];; + ay[D]i; Z [PIlg)s;

J
=1—a[D];; + ay[D]i;
=1+ Q[D]“(’)/ - 1)7
where the second line is due to the fact that Ag is a nonnegative matrix. Taking the
maximum over i, we have

Agllee = max 1+ aD];(y—1
gl = mox.  {1+alDlu(y=1)}

—1—a min d(s,a)(l—n
o (s,a)(1—7)

=p
which completes the proof. ]
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Upper comparison system

oL — 0~ Q-learning

k

\Lowcr comparison system

Fic. 1. Overview of the proposed analysis.

However, because of the additional affine term and stochastic noises in the original
switching system (3.6), it is not obvious how to directly derive its finite-time conver-
gence. To circumvent the difficulty with the affine term, we will resort to two simpler
comparison systems, whose trajectories upper and lower bound that of the original
system, and can be more easily analyzed. These systems will be called the upper and
lower comparison systems depicted in Figure 1, which capture important behaviors of
Q-learning. The upper comparison system, denoted by Q¥ , upper bounds Q-learning
iterate i, while the lower comparison system, denoted by Qﬁ , lower bounds Q.
The construction of these comparison systems is partly inspired by [12] and exploits
the special structure of the Q-learning algorithm. Unlike [12], here we focus on the
discrete-time domain directly and a finite-time analysis. To address the difficulty
with the stochastic noise, we introduce a two-phase analysis: the first phase captures
the noise effect of the lower comparison system, while the second phase captures the
difference between the two comparison systems when the noise effect vanishes.

3.2. Lower comparison system. Consider the stochastic linear system

(3.7) Qi1 — @ =Ag-(QF — Q") +awy, QF —QeRFIM,
where the stochastic noise wy, is the same as the original system (3.5). We call it the
lower comparison system.

PROPOSITION 3.4. Suppose QF —Q* < Qo — Q*, where < is used as the elemen-
twise inequality. Then,

Q- Q <Q—Q"
for all k> 0.

Proof. The proof is done by an induction argument. Suppose the result holds for
some k > 0. Then,

(Qrr1— Q")
=Ao-(Qr — Q") + (A, — A@-)(Qr — Q") + b, + awy,
=Aq-(Qr — Q) + ayDP(llg, — Hg-)Qk + awy,
> Ag- (Qk - Q")+ awy,
> Ag-(QF — Q")

:Qk+1 _Q )

+ awy,
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where the first inequality is due to DP(Ilg, —IIg+)Qr > DP(Ilg- — g+ )Qr =0 and
the second inequality is due to the hypothesis Qﬁ — Q" <Qr — Q" and the fact that
Ag-+ is a nonnegative matrix (all elements are nonnegative). The proof is completed
by induction. a

Remark 3.5. Rearranging terms, the original system (3.6) can be written as

Qi1 — Q" =Ag-(Qr — Q) + ayDP(Ilg, — - )Qx +awy,

=:hq,

where one can casily prove that hg, > 0 using the definition of Ilg, , i.c., Ilg, Qr >
IIg«Qy. Intuitively, removing this nonnegative bias term, hg,, leads to the lower
comparison system. The vector hg, represents a portion of the gap between the
original and lower systems incurred at a single time step.

Note that the mean dynamics of the lower comparison system is simply a linear
system. By Proposition 3.2, we have the exponential stability of the mean dynamics:

(3:8) IE[QF] = @[l < A"1QF — Q"I VE>0.

Furthermore, we can conclude that Ag- is Schur, i.e., the magnitude of all its en-
genvalues is strictly less than one, and from the Lyapunov theory for linear systems,
there exists a positive definite matrix M > 0 and § € (0,1) such that

AL MAg- < BM.

The parameter 5 € (0,1) determines the convergence speed of the state to the origin,
and it depends on the structure of the matrix Ag-. We prove that in our case, an
upper bound on 3 can be expressed in terms of p. In fact, we can set 8= (p+¢€)? for
arbitrary e >0 such that g€ (0,1).

PROPOSITION 3.6. For any € >0 such that p+ ¢ € (0,1), there exists the corre-
sponding positive definite M > 0 such that

AL MAG- = (p+e)*(M—1)
and

)‘min(]\f) > ]-7 )\maX(M) < LJL”Q
1= (Pif)

The above result can be easily verified by setting

&S] 1 2k e Tk
M_;)(/H_E) (A )T A

We defer the detailed proof to Appendix 5.1. Based on this result, we can derive a
finite-time error bound for the lower comparison system.

THEOREM 3.7. Under Assumptions 2.1-2.4, for any N >0, it holds that

]<\/320¢|S|2|A|2 1 2|SP2[A]2

+= E[|Qo — Q*|%.]-

(39) ]E [ dmin(l — ’7)3 N Oldmiu(]- - ,Y)

| N-1

1
sy
v
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Proof. Define the Lyapunov function V(z) = ™ Mz, the history set

L L L L
]:k' = {QO vQOaw()le 7Q17w13' "7Qk—17Qk—17wk—vak7Qk’}7

and also denote A = Ag-~ for simplicity of the presentation, where the matrix M
satisfies the conditions in Proposition 3.6. Then, we have

E[V(Qk41 — Q)| Fi]
=E[(A(QF — Q") + awp) ' M(AQF — Q") + awy) | F]
=E[(Qr — Q")TATMA(Q{ - Q) + a®wj, Mwy,|Fy]
<(p+°V(Qx — Q") = (p+€)?|QK — Q"I + Amax(M)a’Elw wi| Fi).

Here € > 0 is such that p + ¢ < 1. The first inequality comes from Proposition 3.6.
The second equality is due to the fact that

=E[(ea, ® es,)r1 +V(ea, ®es)(es,,) Mg, Qx
— (ea, @ €s,)(€a, @ es) Qi — (DR +yDPIg, Qx — DQ1)|Fi]

= E[(eak ® 6819)776 + ’Y(eak ® eSk)(eskJ )THQk Qr — (eak, ® 68k)(€ak ® esk)TQk|Qk]
— (DR +~DPIl,, Qr — DQy)

=DR+~DPIly, Qr — DQx — (DR +~vDPIlg, Qr — DQy)

=0.

Therefore, we have

Elawy MA(Qf — Q)| Fi] = Elawy MA(QK — Q)|QF, Q]
= aE[wy |Qx] MAQ) — Q")
=0.

Subtracting V(QE — Q*) from both sides and using Amin(M) > 1 in Proposition 3.6
lead to

E[V(Qt11 — Q") F] - V(QF — Q")

<(p+e)’V(QF — Q") = V(Qr — Q") = (p+2)?|QF — Q|
+ & Amax (M) E[w] wy, | Fi]

=((p+e)* -1V (QF — Q") — (p+e)?lQy — Q"I
+oz2)\maX(M)IE[wkka|.Fk]

<((p+e)? = 1IQF — Q1P = (p+2)*IQF — Q|7
+ aQ)\max(M)E[wgwMFk]

= _”Qé - Q*||2 + a2)\max(M>E[wl{wk|fk]’

where the last inequality uses the facts, (p+¢)2 —1 <0 and Apin(M) > 1. Therefore,
we have

E[V(Qkr1 — Q)IF] = V(Qr - Q")
< —1IQK — QI + 0 A (M) Efwi wi | F.
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Taking the expectation E[] on both sides and rearranging terms yield

E[|QF —Q**]
E[V(Qé - Q*)] - E[V(Qé-i-l - Q*)] + 042)\maX(M)IE[wgwk].

Next, we show that the variance of w;, is bounded as follows:

16[S||A|

E[w{wﬂfk] <W:= (- )

This is because

[willoo < 1[((€a @ €5) — D)Ti oo
+7[l(ea ® 63)(65’)T - DP”OOHHQkHOCHQkHOO
+ ”((eu X es)(ea & es)T - D)”oo“Qk“oo

S QRmax + 27Qmax + QQmax
4
<
STy
where the last inequality comes from Assumptions 2.3-2.4 and Lemma 2.7. Hence,
Summing both sides from £ =0 to k=N — 1 and dividing by N > 0 leads to

1N
NE: Ik — @117

)\max M *
>\max( )W+ #E[“Q(lf - Q ”2]7

where we use Apin(M)||z]]3 < V(2) < Amax(M)]z]|3. We use the bound Ay (M) <

1_"?%‘)2 in Proposition 3.6, let QF = Qo, and set € = 52 so that p+¢ = 1+p €(0,1)
pte

to have

| /\

N11
> ElQE -
k=0

AlS|Aw 1 |S||A
. IH|2+N SIAL B0 - @7
1_<p+5> 1_<p+5>
2 (L4 P)ISIAW 1 (1+p)ISIIA ‘
<28l ~ Qo - Q)
< 20ASIAW. 1 2ASIAL gy o,

o dmin(]- - 7) N admin(]- - 7)

Taking the square root on both sides, using the subadditivity of the square root,
and combining with the relations

1
VEllQE — @[3
k=0
N-1 1 N-—
> Eller - Q] > 2: E[|Qu — Q"]
k=0 k=0
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and

1Qo — Q7113 IS Al Qo — Q*I1%,

which applies the concavity of the square root function and Jensen‘s inequality, we
further have

N-1
Lator o 320|SPLAR 1 2SPIAP o
310) 3 ek Q||QO]S\/ LT T W adon 1y BlIQ0 ~ @)

Using the Jensen inequality again yields the desired result. ]

Before closing this subsection, we provide a simple example which shows the case
that the gap between the lower comparison system and the original system is tight.

Ezample 3.8. Consider an MDP with & = {1}, A = {1}, v = 0.9, where a
reward is one at every time instances. In this case, the optimal policy is defined with
7*(1) = 1, and the corresponding optimal Q-function is Q* = 1% The overall system
is deterministic. In this case, D = P =1 and IIg =1 for any ) € R. Then, we have
Ag=1+«a(0.9—-1),bg =0, and the switching system in (3.6) is given as

Qi1 — Q" =(1-0.10)(Qr — Q).
On the other hand, since Ag+ =14 «(0.9 — 1), the lower system in (3.7) is the same
as the original system, i.c.,

Qi — Q" =(1-010)(Q - Q).

Therefore, with Qo = QF, the lower bound is tight in the sense that Q) —Q* = Q¥ —Q*
for all k> 0.

3.3. Upper comparison system. Now, let us consider the stochastic linear
switching system

(3.11) QUi — Q" =40, QY — Q") +awy,, QF —Q*eRISIAL

where the stochastic noise wy, is kept the same as the original system. We will call it
the upper comparison system.

PROPOSITION 3.9. Suppose QY —Q* > Qo — Q*, where > is used as the elemen-
twise inequality. Then,
Qi —Q >Qr—Q
for all k> 0.
Proof. Suppose the result holds for some k& > 0. Then,
(Qrt1 — Q") =Ag, (Qr — Q") +bg, +awg
< Aq,(Qr — Q") + awy
<A, (QF — Q") + awy,
= Qk[{-}-l - Q*v

where we used the fact that bg, = D(yPllg, Q" — vPllg-Q*) < D(yPllg-Q* —
~vPIlg-Q*) =0 in the first inequality. The second inequality is due to the hypothesis
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QY —Q* > Qy — Q* and the fact that Ag, is a nonnegative matrix. Then, the proof
is completed by induction. ]

Remark 3.10. In the original system (3.6), one can easily prove that by, :=
vDP(Ilg, —Ig-)Q* < 0 using the definition of Ilg,, ie., g, Q" < Ilp-Q*. In-
tuitively, removing this nonpositive bias term, bg, , leads to the upper comparison
system. The vector bg, represents a portion of the gap between the original and
upper systems incurred at a single time step.

Hence, the trajectory of the stochastic linear switching system (3.11) bounds
that of the original system from above. Note that the system matrix, Ag,, switches
according to the change of @y, which depends probabilistically on QY. Therefore, if
we take the expectation on both sides of (3.11), it is not possible to separate Ag,
and the state Qg — " unlike the lower comparison system, making it much harder
to analyze the stability of the upper comparison system.

To circumvent such a difficulty, we instead study the following error system by
subtracting the lower comparison system (3.7) from the upper comparison system
(3.11):

(3'12) Qk["]+1 - Q£+1 = AQk (QkU - Qf) + BQk (QI? - Q*)v
where
BQk = AQk — AQ* = Oz"}/DP(HQk — HQ*).

Here, the stochastic noise, awy, is canceled out in the error system. Moreover, matri-
ces (Ag,,Bq,) switch according to the external signal, @, and Q£ — Q* can be seen
as an external disturbance.

The key insight is as follows: if we can prove the stability of the error system, i.e.,
QY — QF —0 as k — oo, then since QF — Q* as k — oo, we have QY — Q* as well.

Ezample 3.11. Consider Example 3.8 again. The upper system in (3.11) is the
same as the original system, i.e.,

Qi1 — Q" =(1-01a)(Q} —Q").

Therefore, with Qo = Qf, the upper bound is tight in the sense that QY —Q* = Q,—Q*
for all £ > 0.

Ezample 3.12. Consider an MDP with S = {1}, A = {1,2}, v = 0.9, where the
reward is one when a = 1 and zero otherwise. In this case, the optimal policy is
1

defined with 7*(1) =1, and the corresponding optimal Q-function is Q*(s,1) = =

10,Q*(s,2) = 1= = 9. We consider the behavior policy 3(:|1)=[ 0.5 0.5 ]Z. Then,

we have
oo &
1

andIMop=[1 0]ifQ(1,1)>Q(1,2) and IIo=[ 0 1 ] otherwise. In this case,

10 0.5 05 0
AQ_[O 1 +a<0'9 [0.5] HQ_[O 0.5])

and
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From the result, the gap, Qg +1 — Qr+1, between the upper and original systems
incurred at each time step is bg = [§] when Q(1,1) > Q(1,2), and bg = —0.9[{:2]
when Q(1,1) < Q(1,2). Similar results can be obtained for the lower system.

3.4. Finite-time error bound of Q-learning. In this subsection, we provide
a finite-time error bound of Q-learning, which is the main result of this paper. We
obtain the following main result.

THEOREM 3.13. Under Assumptions 2.1-2.4, for any N >0, we have the follow-
ing error bound for Q-learning iterates,

~ * 47dmax + dmin(l - 'Y) 14
1 E — o] < 2 =,
613 ElQy-Q' ]_< e G C

where o € (0,1) is the constant step size and Qn = + Zij\;_ol Q.
Proof. Taking the norm on both sides of the error system (3.12), we have for any
k>0

Q41 = Qkyalloo
<140 lloo Q% = @ lloe + [1Bay lloo |QF = @ loo
<(p+a)QF = Qklloo + 1Bau [l 1Rk — Q*llc
<(p+)QY — QFlloo + 207dimax||QF — Q|| oo

Here, the last inequality uses the fact that

||BQk [l oo Sa’YdmaXHP(HQk - HQ*)

|oo S 2a7dmax'
Rearranging terms leads to

(1=p=9)|Q — Q%
< ||Qg - Qﬁ”oo - ”Qg—i-l - Qi—i—l”oc + 2a7dmax”Q£ - Q*Hoo k > 0.

Summing both sides from £ =0 to k = N — 1, dividing by N > 0, and letting
QY =Qf = Qo lead to

N-1

(3.14) > QY ~ fll

k=0

N-1

1
> 3Rk = Qe

k=0

< 207dmax
T 1l—-p—c¢

Next, we will express the left-hand side in terms of Q. By the triangle inequality,
we have

1Qk = Q" [l < 1Q" = Qkllo + 1Qk — Qk lloo
<Q" = Qxlloo + 1QF — Q% lloc-

The second inequality comes from

0<Qr—Qr <QY —Qr-
This leads to

1Qk = Q*lloc — Q" — Qklloo < QK — QK lloc-
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Combining this inequality with (3.14), one gets

N—

H

1 * *
v 1@k =@l —1lQ — QI
k=0
N-1
< _ 1%max max o L ry*
_dmm S ek - @l
k=0
where we let € = 1 £ g0 that p+e= 1+p and =2 —__2___ Rearranging

1— p e 1-p admin(1—7)
terms again, takmg the expectation on both sides, and combining it with (3.10), we

obtain

N-1

> Bl - Q'

k=0

N-1 1
< s S Bl - Q')
Illlll k=0

5y \/32a|8|2|A|2 1 2IS]2|AP2
)

= dmin(l - dmin(]- — 7)3 Nadmm( )E[”Q Q*H ]

From Lemma 2.7, —1Qmax < Qr < 1Qmax holds for all k£ > 0, where 1 denotes a
column vector where all elements are one. Applying Qmax = 1/(1 — ) from Lemma
2.7 together with Assumptions 2.4 and 2.3, ||Qollcc < 1 from Assumption 2.4, the
Jensen inequality, and, after simplifications, we can obtain the desired conclusion. 0O

Remark 3.14. Lyapunov theory [4] has been applied for the lower comparison
system, which is a linear time-invariant system. On the other hand, the techniques
used for the error system between the upper and lower comparison systems more
resemble those used in the optimization community rather than leveraging the nature
of a switching dynamical system. However, the switching system formulation captures
essential behaviors of Q-learning algorithm, and itself is mainly used in combination
with the lower comparison system in the overall derivation process.

3.5. Remarks. Overestimation and mazimization bias. Our analysis provides
an intuitive explanation of the well-known overestimation phenomenon in Q-learning
[7]. In particular, Qx(s,a) tends to overestimate Q*(s,a) due to the maximization
bias in the Q-learning updates. This becomes severe especially when the action-space
is large. In particular, it can be problematic when the action spaces depending on
states are heterogeneous and the current estimate Q) is used for the exploration, e.g.,
the e-greedy behavior policy; in this case, since arg max,c 4Qx(s,a) tends to choose
actions with larger maximization biases, thus degrading the quality of exploration and
leading to slower convergence. Moreover, the overestimation error could be amplified
at each iteration k& when it passes through the max operator.

In fact, assuming that the initial Qo(s,a) — Q*(s,a) is a zero mean random vari-
able, namely, E[Qo — Q*] =0, we can easily see through our analysis that

E[Qr — Q"] >0 Vk>0.

This is because the lower comparison system (which is a stochastic linear system)
satisfies that
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| |
o

E[QF — Q"] = Ab.E| +ZA’“ 1 o w;)

provided that Q(’;‘ = o, namely, there exists no biases in the lower system state. On
the other hand, since QF — Q* < Qi — Q*, E[Q, — Q*] > 0 holds. Moreover, for
(s,a) € S x A such that Q% < Qy holds strictly, then E[Q(s,a)] > Q*(s,a), which
potentially explains the overestimation phenomenon.

3.6. Sample complexity. Based on the finite-time error bound on the Q-
learning iterates in Theorem 3.13, we can derive an upper bound on the sample or
iteration complexity of Q-learning: to find an e-optimal solution such that E[||Qn —

Q*||s] < €, we need at most
o dhusdSIAI
6454d6 ( )10

min

samples. Moreover, if the state-action pair is sampled uniformly from S x A, then
d(s,a) = m V(s,a) € S x A and dpin = dmax = WllAl' In this case, the sample

complexity becomes O (%) The proof is given in Appendix 5.2.

The finite-time analysis of asynchronous Q-learning with constant step size was
first considered in [2], and has been recently studied in [13] and the concurrent work [4].

Based on the cover time assumption, which is deterministic, [2] provides O(% )s

where teoyer 1S t}~1e cover time and O ignores the polylogarithmic factors. The results
in [13] provide O(g- m(ll_w)sﬁ + I if:?ilx—w)) with a single Markovian trajectory, where
tmix i the mixing time. Note that the mixing time and cover time assumptions are

adopted in [13]. The complexity O (W) is given in [4] with a single Markovian

trajectory. Note that the bounds in [4] and [2] are the expected error bounds, and
those in [13] are the concentration error bounds. Besides, [15] offers a sharper bound
using a diminishing step size. Based on the analysis, we summarize advantages and
limitations of the proposed approach. A limitation of the proposed method lies in that
the corresponding sample complexity is not tighter than the existing approaches. On
the other hand, the main advantage is the proposition of a unique switching system
and control perspectives, which inherit simplicity, and provides additional insights on
Q-learning.

4. Conclusion. In this paper, we introduced a novel control-theoretic frame-
work based on discrete-time switching systems to derive finite-time error bounds of
Q-learning algorithm. By sandwiching the dynamics of asynchronous Q-learning be-
tween two simpler stochastic (switched) linear systems, a new finite-time analysis of
the Q-learning can be easily derived. We believe it is important to emphasize that the
proposed control-theoretic analysis can be viewed as a new analysis which gives addi-
tional insights into Q-learning rather than a replacement or improvement of existing
convergence rate analysis. The proposed analysis has simplicity, novelty, and more
intuition. We expect that such a control-theoretic analysis could further stimulate
the synergy between control theory and reinforcement learning, and open up oppor-
tunities for the design of new reinforcement learning algorithms and refined analysis
for Q-learning. Moreover, our approach based on the comparison systems could be
of independent interest to the finite-time stability analysis of more general switching
systems.

As promising next steps, the proposed bounds can be further tightened, and the
analysis can be extended to more general Markovian settings. The proposed analysis
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framework can potentially be applied to derive finite-time error bounds for other
variants of Q-learning, such as double Q-learning [7], averaging Q-learning [12], speedy
Q-learning [1], and multiagent Q-learning [9], as well as their function approximation
counterparts. We will leave these topics for future investigations.

5. Appendix.

5.1. Proof of Proposition 3.6.
Proof. For simplicity, denote A= Ag~. Consider matrix M such that

_ = 1 2" K\NT Ak
(5.1) M_k_0<p+€> (AR)T AP,

Noting that

S k
(p+€)2ATMA+ 1= L7 (Z( ! >2 (Ak)TA"“>A+I

2
(p+e) = \pte
=M,

we have
(p+e) 2ATMA+T=M,

resulting in the desired conclusion. Next, it remains to prove the existence of M by
proving its boundedness. Taking the norm on M leads to

1My =T+ (p+e) 2ATA+ (p+¢) 4 (A*)TA%+--||,
<INy + (p+e) 2| ATA|, + (p+e) |4 742, + -
= [Tl + (o + &) 2 A3 + (o + ) | 425 + -
=1+ SI[Al(p+e) 2 A2 +SIAl(p + )~ |22+
|S[[A]

p \?
- (3)

Finally, we prove the bounds on the maximum and minimum eigenvalues. From
the definition (5.1), M > I and, hence, Apin (M) > 1. On the other hand, one gets

=1—|S||A|l+

Amax(M) = Amax(I+ (p+€) 2ATA

+(p+e)H(A)TA 1)
< Amax(D) + (P4 €) "> Amax (AT A)

+(p+ 6)_4)‘maX((A2)TA2) +e
= Amax(D) + (p+ ) A3+ (p+ ) 425+ -
<1+ |S[JAl(p+ )2 All%,

+ |SIIA[(p+ )| %12, + -

|SI[A

1 (JL)Q
pte

The proof is completed. d
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5.2. Sample complexity.
PROPOSITION 5.1 (sample complexity). To achieve

QN — Q" [l <e

with probability at least 1 — 0, we need the number of samples/iterations to be at most

o (sl SIIA
A1, (1= )10 )

Proof. For convenience, we first find a simplified overestimate on the right-hand
side of (3.13) as

E[|Qx — Q|0

_ 20dinax|S]|A] 2 JL 2 )\ _¢
- dmin(1 - ”/)2 dmin(l - ’Y) N O‘dmin(l - f)/) T

Applying the Markov inequality

POy ~ @'l 24 < <,

we conclude that |Qx — Q*||ee < € with probability at least 1 — 4, i.e.,

P[|Qn — Q"[loo <] >1—34,

5 1200 |S]1A] 20 [1 2
B & dmin(1 - '7)2 dmin(1 - '7) N admin(]- - 7) .

N, and « are appropriately chosen so that ¢ € (0,1). One concludes that to satisfy
IQNn — Q*||eo < & with probability at least 1 — ¢, we should have

5> 1 20dumax| S| A 20 120duaS|IA] [T 2
e dmin(l - '7)2 dmin(]- - ’Y) £ dmin(l - '7)2 N adlnin(l - ’Y)

o, P2

where

which is achieved if §/2 > ®; and §/2 > ®,.
The first inequality is satisfied if
_ 5282 d?nm(]' — 7)5

2
(52) 8§ 1002, _|S]2|cal A’

and the second inequality holds if

3200d3,,,|SI?| A]?

T ae?ddy,, (1-7)°

Plugging (5.2) into the last inequality, we can arrive at the desired conclusion. O
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