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Abstract—In-memory computing provides revolutionary
changes to computer architecture by fusing memory and
computation, allowing data-intensive computations to reduce
data communications. Despite promising results of in-memory
computing in each layer of the memory hierarchy, an in-
tegrated approach to a system with multiple computable
memories has not been examined. This paper presents a holistic
and application-driven approach to building Multi-Layer In-
Memory Processing (MLIMP) systems, enabling applications
with variable computation demands to reap the benefits of
heterogeneous compute resources in an integrated MLIMP
system. By introducing concurrent task scheduling to MLIMP,
we achieve improved performance and energy efficiency for
graph neural networks and multiprogramming of data parallel
applications.

Keywords-in-memory computing, processing in memory, ac-
celerator, GNN

I. INTRODUCTION

Computing systems today have invested the majority of
aggregated die area for the memory system. For example, a
recent server-class Xeon processor from Intel uses over 70%
of its die area for on-chip SRAM caches, and the upcoming
Milan-X processor from AMD will have 768MB of LLC [19].
The dense DRAM main memory and NVM-based storage
class memory have also played pivotal roles to enable efficient
processing of today’s data-intensive applications. However,
as the amount of data communicated through the memory
hierarchy grows, so does the cost of the data movement.

In- and near-memory computing have attracted growing
attention for their potential to resolve the disparity between
processor and memory performance. Near-memory comput-
ing moves processing elements close to the memory, thereby
reducing the data movement cost [4], [11], [22], [24], [39],
[52], [54], [56], [58], [66], [70]. Moreover, certain memories
can morph themselves into compute units by exploiting the
physical properties of the memory cells, enabling in-situ
computing in the memory array [2], [14], [21], [26], [27], [59],
[60], [61]. Compared to near-memory computing, in-memory
computing has stricter limitations in data alignment and data
movement flexibility, while it can harness the benefits of
massive parallelism and reduced data movement, making it
suitable for data-intensive/data-parallel applications.

While there is a rich body of work on in-memory
computing in each memory substrate, an integrated approach
to utilize multiple computable memories in a system has
been lacking. As the memory hierarchy today has combined

different memories exploiting their trade-offs (e.g., in speed
and density), we discover a similar opportunity for in-memory
computing.

The wide spectrum of memory technologies and their
differentiated compute capabilities open up an interesting
opportunity to perform multi-layer in-memory computing in
the hierarchy. The preference for in-memory computing is
determined by multiple and intertwined factors, such as reuse
patterns, data size, and instruction mix [26], [27]. Considering
the multiple options of memories, customizing the location
of in-memory computing for applications with non-trivial
complexity will yield a significant benefit. This is prominent
for applications with runtime workload dynamism, i.e., the
performance determinants (e.g. working dataset size) have
a broad distribution and are knowable only at runtime. To
maximize the potential of Multi-Layer In-Memory Processing
(MLIMP), determining when and where to execute in the
memory hierarchy is a challenge.

This work addresses several challenges to enable MLIMP.
First, considering the state-of-the-art, we design a program-
ming frontend adaptable to multiple in-memory computing
frameworks and a memory allocation scheme that allows
in-memory computing to co-exist with traditional memory
systems. Second, we devise kernel mappings of General
Matrix Multiplication (GEMM) and Sparse Matrix Multi-
Vector Multiplication (SpMM), critical kernels of many
ML frameworks, paying attention to maximizing its reuse
and resource utilization. As a representative case study,
we show the advantages of MLIMP using Graph Neural
Networks (GNNs) [12], [33], [41] which entail significant
workload dynamism during processing subgraphs. Further,
we analyze case studies for multiprogramming scenarios
using data parallel applications studied in the prior work.
Third, we design a scheduler and a performance predictor
that are essential to perform efficient job scheduling and
fully utilize the resources in MLIMP. Job scheduling in
MLIMP is classified into an NP-hard resource constrained
project scheduling problem. Also, memory allocation size
has to be adjusted to balance parallelism and per-job latency.
Based on an analytical scaling model, we develop efficient
heuristics to schedule jobs in heterogeneous in-memory
systems. Further, to provide an estimation of performance
for a specific configuration, we propose a light-weight
performance predictor using neural network based regressors.
We observe that taking full advantage of multi-layer in-
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memory computing is not possible without introducing
sophisticated job scheduling.

In summary, this work offers the following contributions:
• We design MLIMP that re-purposes multiple memories

in the memory hierarchy on demand for applications
with workload dynamism and diverse compute intensity.
The proposed architecture offers a common program-
ming interface and the ability to co-exist in-memory
computing with a general cache or memory system.

• Efficient job processing in MLIMP cannot be accom-
plished without careful job scheduling and performance
prediction to maximize the resource utilization. We de-
velop heuristics for the job scheduler using an analytical
scaling model and a neural network based performance
predictor.

• We show MLIMP can improve general data parallel
applications. We also design a kernel mapping of
GEMM and SpMM for each memory. We conduct
an interesting case study of GNNs demonstrating a
significant performance benefit from MLIMP.

• We compare our MLIMP system with a server-class
GPU connected to a Xeon processor. Our experimental
results show MLIMP can provide an overall speedup
of 4.8× for GNNs, achieving 77% of the oracle
throughput. General applications also achieve 7.1×
speedup compared to single layer IMP. The proposed
architecture improves the energy efficiency by 5.02×.

II. MOTIVATION AND BACKGROUND

A. Motivation

There is a significant body of research on in-memory
computing with individual layers of memory. Figure 1
shows the relative energy per access, delay, and metrics
for calculating available compute parallelism of different
memory technologies. The parallelism can be estimated based
on available sense amplifiers (SAs) at the bitline peripherals
per unit area. This is because each bitline operation usually
requires sensing at SA to complete. It is also dependent on the
bit-cell structure and design target (e.g., cache, main memory,
or storage DIMMs). For example, while NAND-Flash and
DRAM have a small cell size, their available parallelism can
be low because a large number of cells in an array share the
same set of sensing amplifiers (low SA density).

Computing with Non-Volatile Memories (NVMs) has
different trade-offs compared to computing with SRAM or
DRAM. Since NVMs are more stable against data corruption,
they can support operations involving multiple wordlines.
Due to their high density, NVMs can accommodate large
datasets which dwarf SRAMs. Higher density also increases
data level parallelism of in-place computation. On the other
hand, in-memory computing in NVMs (STT-RAM and
ReRAM) can be one to two orders of magnitude slower and
requires significantly higher energy per bit when compared
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Figure 1. Energy, latency, and parallelism characteristics of various memory
technologies.

to SRAMs. Further, NVMs have limited endurance (and high
write energy/delay) which curtails the number of writes the
memories can reliably sustain. Similarly, DRAMs pose their
own unique challenges, such as destructive read access and
stability against data corruption.

While prior research has proposed a variety of in-memory
computing approaches in individual memory, a framework
that integrates multiple computable memories into the mem-
ory hierarchy has been lacking. Given the wide spectrum
of memory technologies and their differentiated compute
capabilities, customizing the memory hierarchy for specific
application domains may yield significant benefits.

B. In-Memory Computing

1) In-SRAM Computing: In-SRAM computing activates
multiple wordlines of SRAM arrays and performs logic or
arithmetic operations on vertically aligned bit cells within
a column. Compute Caches [2] introduces an in-SRAM
computing framework that supports copying, zeroing, XOR,
comparison, and search. Multi-row activation produces NOR
and AND of two bit cells at the end of the bitline (BL) and
bitline bar (BLB). BL and BLB are sensed independently by
a re-configurable differential senseamp [2]. Combining the
results with extra logic gates at the peripheral, any binary
commutative operations, including the universal operator
NAND, can be derived.

Logic operations can be sequenced to perform arithmetic
operations. Neural Cache [21] supports arithmetic operations
inside the SRAM arrays for machine learning workloads,
and Duality Cache [27] further extends it for floating point
operations for general data parallel applications. They verti-
cally align operands in each bitline and perform computation
in a bit-serial manner. As opposed to bit-parallel computing
which processes multiple bits in a single data word, bit-
serial computing processes bit-by-bit, taking multiple cycles
to produce results. Each n-bit element is stored across n

wordlines, and thus each wordline holds one bit-slice of 256
vector elements as shown in Figure 2 (a).
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Figure 2. In-SRAM computing (Neural Cache [21]).

(a) Multiply-accumulate operation (b) Vector-matrix multiplier
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Figure 3. In-ReRAM computing (adopted from [60]).

A 1-bit full adder can be implemented using a few gates at
the peripheral as shown in Figure 2 (b). By adding each bit
iteratively, we can perform the addition of two n bit numbers
in n cycles. Multiplication takes n2 + 3n− 2 cycles and is
implemented as a series of additions of partial products. Due
to the dense SA density of SRAM, LLC of typical server
class CPU can be transformed into millions of bit-serial
ALUs.

2) In-DRAM Computing: Prior work has mainly focused
on near-memory computing using DRAM, including 3D
stacked memory and bit-serial ALUs attached to each bitline
or sense amplifier ( [23], [46]) There has been several
known obstacles for DRAM-based in-memory computing,
such as logic cost and memory density issue. Charge sharing
techniques are proposed as a key enabler of DRAM-based
in-memory computing [28], [47], [59], [65]. Charge sharing
techniques activate more than one wordline and perform
bitwise operations by exploiting altered charges in capacitors
connected to the same bitline. Hence, it can provide some
important logic operations with a small area cost.

Ambit [59] proposes charge sharing based bitwise AND
and OR operation. Ambit simultaneously activates three
wordlines (referred to as triple-row activation or TRA), and
based on the charge sharing principles [38], the status of
vertically aligned three cells is determined. The behavior of
TRA is the same as a 3-input majority gate. By using one cell
as a control bit C, TRA can perform AND (C = 0) and OR
(C = 1). Ambit also supports NOT operation using a dual-
contact cell that has an additional transistor. A combination
of AND and NOT forms NAND, a functionally complete
operator. Therefore, Ambit can support any logical operations
and arithmetics [59].

3) In-ReRAM Computing: The linear IV characteristics
of ReRAM cells are exploited for in-memory computation
in the analog domain. In-ReRAM computing feeds reference
voltage under the threshold for set and reset, and the bitline
current that results from this operation is interpreted as
the outcome of the multiplication of cell conductance and
the input voltage. Furthermore, by activating multiple rows,
currents that flow from different memristor cells sharing a
bitline accumulate in the bitline, following Kirchhoff’s law,
as shown in Figure 3 (a). This analog computing capability

of memristors is leveraged for accelerating machine learning
workloads of which computation is dominated by multiply-
accumulate (MAC) operations that compose dense matrix
multiplications [14], [60], [61] (Figure 3 (b)).

IMP [26] proposes a programmable in-memory processor
architecture and data-parallel programming framework. Data
parallel applications are described using TensorFlow and
compiled for the ReRAM crossbar array. IMP supports
various integer operations leveraging extra circuitry and the
compiler’s lowering operations.

C. Acceleration targets

1) Data-Parallel Applications: Prior work on in-memory
computing has mainly focused on accelerating machine
learning workloads such as DNNs and CNNs by efficiently
performing GEMM and dot-product in situ in memory. On
the other hand, the compute capability of memories is also
explored for data-parallel applications. IMP [26] runs SIMD
vectorized kernels from Parsec and Rodinia benchmarks, and
Duality Cache [27] supports SIMT applications written in
CUDA and OpenACC.

The execution time of the compute kernels in data-parallel
applications depends on the in-situ operation latency and
parallelism of each memory and the instruction mix of the
applications. Therefore, they can have different preferences
for memory. Moreover, given multiple such data-parallel
applications running concurrently, one has to carefully choose
where to execute each job, so that one memory will not be
oversubscribed and the turnaround time will be minimized.
As these applications have a variety of execution times, it is
important to think about a sophisticated job dispatching and
resource allocation scheme.

2) GNN (GEMM + SpMM): GNNs [12], [33] revolu-
tionalize commertially and academically important inference
tasks based on a graph structured data, such as recommender
system [1], [10], protein interaction prediction [57], and drug
response prediction [63]. GNN is an algorithm applied to a
graph G.Each node v has its input feature vector xv. At each
layer, the node features are propagated to its neighbors and
get updated. Thus, output node features (also referred to as
node embeddings) of the k-th layer include information from
k-hop away neighbors. The most important kernels of GNNs

922

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 01,2023 at 20:55:20 UTC from IEEE Xplore.  Restrictions apply. 



Node feats X
Dense weights Θ Node embedding X’

Normalized 
Adj mat

Aggregate 
neighbor embs

GEMM
(combination)

SpMM
(aggregation)ࢄᇱ = ෡ିࡰଵ/ଶ෡࡭෡ିࡰଵ/ଶࢄદ

Figure 4. Operations in GCN

Figure 5. Node distribution of 3-hop subgraphs in ogbl-citation2 dataset.

lie in this iterative update step, and it is manifested by an
aggregation-combination function, as shown in Figure 4.

During aggregation, the feature vectors from neighboring
nodes and the feature of the node/edge itself are aggregated

by functions such as mean and max to a single feature
vector. Using a matrix representation, it does B = AX , where
A is the normalized adjacency matrix (= D̂−1/2AD̂−1/2, D

is the diagonal degree matrix [41]) and X is the feature
matrix. Since A is a sparse matrix and X is a dense matrix,
aggregation performs SpMM, which is known to have an
irregular memory access pattern. Thus the key kernel for
aggregation involves SpMM. The aggregated feature vector
will be combined to yield a new feature vector. The new
feature vector is used as an input for the next step. The
combination function is typically composed of a feed-forward
network. Hence, the main kernel of the combination step
uses GEMM.

Many state-of-the-art GNN frameworks employ an ap-
proach called subgraph learning (a.k.a. mini-batching) [68],
[69] to efficiently train on a large-scale graph [15] and to
improve accuracy by inducing regularization effects [35]. It
extracts the k-hop neighborhood of nodes of interest and
applies GNNs to this subgraph.

While subgraph learning shows promising results, it
induces substantial variation in the working dataset size
and compute load. The subgraph size distribution of a real-
world graph is shown in Figure 5. Since the processing time
of in-memory computing is correlated with the subgraph
size, the variation is also propagated to the latency. Thus,

a monolithic approach using a single type of hardware or
memory-centric acceleration (e.g., in-SRAM only) will be
suboptimal. In this context, we observe that a sophisticated
job scheduling is crucial to harnessing the heterogeneous
computation resources of MLIMP.

III. MLIMP

In this section, we present the MLIMP system stack. The
architecture of MLIMP is presented, then we introduce our
job scheduling approaches to enable optimized job processing.
Following that, we show our kernel mappings of data-parallel
applications and GNNs, and propose a performance predictor
for efficient scheduling.

A. Overview

The proposed system is shown in Figure 6. At runtime,
a call to a function that has been explicitly marked for in-
memory processing triggers the MLIMP scheduler. Such a
function call generates MLIMP jobs. The scheduler creates
an optimized schedule with inputs from the performance
predictor, and enqueues jobs into individual queues for each
memory layer. Note that the scheduler and job queues are
implemented in the system software. The functions used for
in-memory processing are data-parallel kernels with no side-
effects (i.e. no implicit sharing of variables with other parts of
the application). There is no context or task migration from
the host processor. Our current execution model accesses
input data via SIMD load instructions. Future work can
possibly extend the execution model to support other forms
of function call ABI, e.g. x86-64 variadic function call ABI.
The in-memory device has support for storing cross-compiled
binary code similar to prior in-memory architectures and the
execution is launched by the system firmware. The runtime
flow is similar to the kernel launch for CUDA runtime. Indeed,
in-memory processing can be viewed as a tightly coupled
data-parallel accelerator with a runtime and an execution
model similar to GPUs.

At compile time, the in-memory processing function
targets are described in SIMD data flow graph (DFG) [26]
and cross compiled for different target in-memory ISAs,
as shown in Figure 6. SIMD DFG can be programmed in
general programming languages and extracted from inter-
mediate representation or directly from tensor computation
frameworks (e.g. TensorFlow can dump DFG in the protobuf
format). The gaps in the supported operations between the
frontend and ISA are bridged by the compiler’s lowering
and legalization operations. This enables operation level
abstractions such as matrix operations to work with existing
machine learning frameworks, and also facilitates expressing
data-parallel kernels with a common programming front-end.
At the execution time, a suitable in-memory device is chosen
by the scheduler and resources are allocated. In this way,
architecture-specific optimizations (e.g., VLIW execution
of [27]) and algorithm-level optimizations (e.g., kernel
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Figure 6. MLIMP framework. SIMD DFG [26] of the target kernel is
extracted and cross compiled by backend compilers which target different in-
memory layers and ISAs. At the runtime, a function call generates MLIMP
jobs which are scheduled for execution on different in-memory layers with
favorable memory allocations.

execution order) can co-exist. Note that other programming
models (e.g. CUDA [27]) are possible. This work assumes
SIMD data flow graph as a versatile programming model
for both graph neural networks and general data-parallel
applications.

B. Architecture Support

1) Common Programming Interface: Prior work has
covered most of the innovations needed to enable in-memory
computing in the existing memory hierarchy as described in
Section II-B. To interface with the heterogeneous in-memory
computing resource efficiently, we need to design a common
programming frontend.

While the instruction set architecture (ISA) and the
preferred data mapping within an array vary for each memory
(e.g., in-SRAM computing performs bit-serial computing on
vertically aligned data, while in-ReRAM computing uses
bit-parallel computing with multi-level cells), most of the in-
memory computing works support arithmetic operation level
abstraction either in their API or ISA. They usually support
integer arithmetic operations, and some also support floating
points. For wide compatibility with the past proposals, we
focus on integer operations in this work.

Binary bit-serial computing with bit transposed data is
employed for in-SRAM and in-DRAM computing. To make
peripheral complexity comparable, memory arrays compute a
universal operator such as NAND and NOR with the smallest
possible cycle counts, and the result and any byproducts (e.g.,
AND) are fed to extra logic gates at the peripheral to perform
the rest of the operations. In-ReRAM computing performs
bit-parallel computing with the peripheral shifter and adder,
and extra logic such as LUTs is introduced to enable other
non-native operations.

Taking the intersection of supported arithmetic operations
among the three types of in-memory computing devices,
our programming interface supports integer addition, sub-
traction, multiplication, division, comparison, moves, and

simple transcendental functions (e.g. exp2). The arithmetic
operations abstracted in each ISA are further expanded into
a sequence of micro-operations within controllers or FSMs
in each memory [21], [27], [59].

2) Memory allocation: Memory workspace for in-memory
computing is allocated within a scratchpad memory region
in each memory to ease the collocation with the existing
memory virtualization frameworks. There is a body of work
trying to enable private scratchpad memory within the cache
and main memory [18], [44]. This is a middle ground
approach of two extremes: using all memory space as a
scratchpad for in-memory computing (most of the prior work)
and completely integrating in-memory computing with the
existing memory management system.

Complete integration would enable seamless processing
of in-memory operations with minimized data copy and
transformation. While there are non-trivial benefits to the
complete integration of in-memory computing under the
existing memory management system, its cost is also non-
trivial. Supporting compute cache lines and other cache
lines in a finer-grained manner under the general set-
associative cache scheme would lead to a prohibitive cost
for guaranteeing data layout and bookkeeping the cache
lines for avoiding unexpected cache line replacement, etc.
In contrast, the hybrid approach using VLS [18] enables
scratchpad memory on a coarse partition of cache (e.g., a
single way) with a tiny modification to the cache architecture.

It is possible in the main memory to align data to an exact
position of a physical memory array by reverse-engineering
the XOR-based address mapping of microarchitectures [55]
and by modifying operating systems’ memory management
system to support finer-grained page coloring [16]. However,
it comes at the cost of expensive page management (i.e., page
numbers for each color have to be extensively searched [16],
[17]) and involves a risk of external fragmentation. We thus
consider the complete integration of in-memory computing
with the current memory virtualization scheme does not
provide convincing benefits compared to its cost, but future
work can address this issue. The hybrid approach still allows
compute regions to co-exist with existing managed memory
space in a coarse grained manner, while guaranteeing data
layout flexibility that is essential to in-memory computing.

C. Scheduler

1) Scheduling Challenges: Conventional computers per-
form job scheduling in their operating system (OSs). We
notice that the existing job scheduling approaches are not
directly applicable to in-memory computing. While OS job
scheduling targets a homogeneous CPU architecture, we need
to choose from a variety of in-memory processors. Although
there exist OS job schedulers for heterogeneous cores
(e.g., big.LITTLE architecture [7]), in-memory computing
is additionally required to determine the allocation size of
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Figure 7. Resource Constrained Project Scheduling Problem (RCPSP).
Multi-layer in-memory computing has another dimension for memory type.

the memory. Execution time is also largely dependent on
memory properties and jobs; thus, simple scaling techniques
(e.g., big cores are about x times faster than small cores)
cannot be applied. These three factors, i.e., memory type,
allocation size, and challenges in estimating execution time,
make it difficult to apply OS’s job scheduler for in-memory
computing.

In fact, the job scheduling problem of this set-up is
categorized into NP-hard Resource Constrained Project
Scheduling Problem (RCPSP) [43]. As illustrated in Figure 7,
Scheduler has to choose the right resource amount (and
resource type) for a job, as well as its execution order.
Multiple jobs can be executed at a time upon the availability
of resources. While there is a rich body of work from the
operations study community [42], [43], [53], there is no
known golden solution to RCPSP (except for a special case of
Johnson’s rule [36]), so the problem needs to be approached
on a case-by-case basis [51].

2) Baseline - Longest Job First Scheduling: For our
baseline, we use the Longest Job First (LJF) scheduling.
LJF scheduling tends to increase work in progress while
making short jobs late [6]. This is ideal for minimizing the
batch process time. Short jobs being late does not matter
because all jobs in the batch need to wait for the completion
of batch processing before moving to the next step. Rather,
increasing in-flight jobs is important because it improves
resource utilization. Moreover, if jobs in one processor end
earlier, LJF makes it easier to load balance by filling the gap
with smaller jobs left in the queue. Our schedules are thus
based on LJF.

Each job in an incoming batch is first processed by a
performance predictor (covered in Section III-E) to calculate
the estimated execution time for each in-memory processor.
The baseline LJF scheduling does not adjust the memory
allocation size, but uses a fixed size aunit =max_size/P where
P is the number of parallel jobs. Then, jobs are pushed into
a single queue in descending order of the shortest execution
time. Whenever a spot is available, a job item at the head of
the queue is dequeued and scheduled to the best performing
memory.

3) Scheduling with Variable Memory Allocation: The
memory allocation size can be adjusted to optimize in-
memory compute performance. While applications with a
large dataset may benefit from a large allocation, allocating as

large memory as the entire working dataset can be suboptimal
when the compute intensity for the allocation is low (e.g.,
SpMM of a very sparse matrix). On the other hand, a small
memory footprint but compute-heavy workload can benefit
from a larger allocation by performing data replication and
parallel operations on data replicas. Replication copies data
within memory, reducing off-chip bandwidth of applications
with a data reuse opportunity [21].

To seize this opportunity, we need to know the memory
allocation size for a job that minimizes execution time.
This requires an understanding of the relationship of the
allocation size with the execution time. We develop a
analytical performance model which determines the execution
time t(x,m) for job x with allocation size m. The proposed
scheduler calculates the tradeoff of execution time and
memory allocation size using an analytical performance
model, and then determines the best memory allocation size
for a specific job.

Our performance model is composed of two parts, load
time tld(x,m) and compute time tcmpt(x,m), and the expected
job execution time t for job x with allocation size m is
calculated as the product of the number of iterations and the
sum of the latency from the two parts:

t(x,m) = niter(x)× (tld(x,m)+ tcmpt(x,m)). (1)

Let arepunit be a unit allocation for one replica and the
static dataset size of the kernel. If the whole working set
does not fit in the allocated memory, the number of iterations
niter(x) = datasize(x)/arepunit becomes larger than 1. The
load latency tld is calculated based on the time to load input
data and the time to replicate data. The number of replications
is calculated by m/arepunit . Thus, we have

tld(x,m) = tld(x)+ treplica(m/arepunit). (2)

The compute performance model that estimates tcmpt(x,m)
assumes the scale free property [8] of resource size and
performance. In our case, the resource size is memory
allocation size m. With a shape parameter β , our scale-free
model is described as

tcmpt(x,m) = tcmpt(x,arepunit)
(arepunit

m

)β
. (3)

The intuition is that tcmpt is inversely proportional to the
amount of parallel processing possible due to replication and
the number of in-memory processing elements available.
The parallelization cost can be empirically modeled by
setting the shape parameter β less than 1. The performance
for the unit allocation tcmpt(x,arepunit) is provided by the
performance predictor covered in Section III-E or through
profiling. Similar to load latency, if the whole working set
does not fit in the allocated memory, the compute latency is
multiplied by the number of kernel iterations niter(x) as in
Equation 1.
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In-SRAM

In-ReRAM

Figure 8. Inter-Queue∗ and Intra-Queue∗∗ Adjustments.

We observed that the scale-free compute model fits well
to a variety of problems. For example, SpMM kernels in the
Open Graph Benchmarks (OGB) [35] sees a median R2 of
0.998. There is a small deviation in the compute performance
model for the combination of small-sized jobs and large
memory allocation due to a lack of enough parallelism to
exploit all allocated resources. Fortunately, this minimally
affects the overall performance because such small-sized jobs
take a short time to finish execution and it is unlikely for
small jobs to get large memory allocation from the scheduler.

The scheduler finds the memory allocation size for a job
by finding the best m to minimize t(x,m). We find that the
memory allocation size m that perfectly minimizes t(x,m)
tends to overprovision resources as the execution time curve
flattens out with large memory allocation sizes. To solve this
problem we use m that roughly corresponds to the knee of the
execution time curve t(x,m) plotted w.r.t memory allocation
size. Precisely, the scheduler uses m that maximizes the angle
speed ∂θ/∂m of the tangent to the execution time curve.

4) Adaptive Scheduling: To balance the execution time of
the multi-queue LJF scheduling, we introduce inter-queue

adjustment shown by Algorithm 1. The goal of the inter-
queue adjustment is to balance the mean execution time
between queues (Figure 8 middle). For each iteration, it
calculates the mean processing time of the job items in
each queue. If the maximum difference of the mean times
is larger than the acceptable gap ε , it migrates migr_cand,
the job with the smallest execution time (when executed in
min_mem), from the max_mem queue to min_mem queue.
This is repeated until the mean time difference is below ε
or migration no longer contributes to improvement in job
balancing. After successful inter-queue adjustment, proper
resource distribution will lead to an execution time close to
the mean.

Adaptive scheduling dispatches jobs in the queue in a
greedy fashion. Whenever there are available resources that
can run a job with its requested allocation, it runs the job,
giving priority to larger jobs. If there are any remainder
resources not allocated by the prior procedure, the scheduler
calculates the expected completion time for each awaiting
job in the queue and dispatches jobs if they can finish earlier
than the completion of jobs in flight using the remainder
resources.

Algorithm 1 Inter-Queue Adjustment.

Input: queues: Map[mem, queue], tmem: x −→ tmem_unit(x)
1: for up to N times do

2: t̄ = {mem : get_mean(queues[mem]) foreach mem}
3: Get max_mem,max_mean

4: Get min_mem,min_mean

5: if difference(max_mean, min_mean) > ε then

6: migr_cand = argminx∈queues[max_mem] tmin_mem(x)
7: Migrate migr_cand from queues[max_mem] to

queues[min_mem] if t̄ improves else break

8: else

9: break

10: end if

11: end for

12: return queues

5) Global Scheduling: Adaptive scheduling can flexibly
adjust the dispatching order even if there is a gap between
the estimated execution time and the actual time. However, it
is challenging to fully utilize the resources due to scheduling
bubbles. Bubbles are introduced when a small remainder
allocation cannot be utilized by any waiting jobs.

The global scheduler adjusts the allocation size in each
queue to fully utilize the resources and generates a complete
job dispatching schedule in advance. Instead of directly using
the provided resource allocation, the global scheduler further
adjusts the allocation size using the intra-queue adjustment

algorithm in Algorithm 2. The objective of the intra-queue
adjustment is to balance the time of long jobs, which can
take longer than the mean execution time, by trading the
resources from the smaller jobs in the queue as shown in
Figure 8.

For each queue, the intra-queue adjustment finds the largest
and smallest job, and if the largest job takes more time than
the mean, it calculates the allocation size necessary to achieve
the mean execution time. The difference is migrated from the
smallest job’s allocation, as long as minimum resources are
left. It repeats this process until all jobs can finish within the
mean execution time. In a rare case with a large discrepancy
in the job size distribution, the longest job cannot achieve
the mean even when setting the minimum allocation to the
other jobs.

We observe that global scheduling can achieve better
performance under the circumstances where the predicted
execution time is precise because of better resource utilization
and fewer bubbles. Thus, the choice of the adaptive or
global scheduler will be determined by the accuracy of the
performance estimation.

D. Kernel Mapping

1) Data-Parallel Applications: While there are several
execution models for general data-parallel applications for
in-memory computing, we use wide SIMD applications
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Algorithm 2 Intra-Queue Adjustment.

1: for each queues do

2: for up to N times do

3: Sort queue based on t(x,z(x))
4: Get max_x,max_t,min_x,mean_t

5: if difference(max_t, mean_t) > ε then

6: swap_cnt = t−1
max_x(mean_t)−mmax_x

7: swap_cnt = min(swap_cnt,mmin_x −mminimum)
8: break if swap_cnt == 0
9: Migrate swap_cnt of resources from min_x to

max_x

10: else

11: break

12: end if

13: end for

14: end for

15: return queues

in IMP [26] for simplicity. The kernel mapping of IMP
applications follows their vectorized VLIW execution model,
which can also be adopted for in-SRAM computing [27]. We
extract their compute kernels and compile them for different
in-memory processors, performing static analysis to obtain
the execution time for each code block. The statistics are
used by the scheduler. At the execution time, it chooses the
best in-memory processor based on the scheduler output.

2) GEMM: General Matrix Multiplication (GEMM) is a
core kernel of many machine learning frameworks. Prior work
has proposed efficient GEMM operations in memory [14],
[21], [60], [61]. For example, in-ReRAM computing can
perform vector-matrix multiplication using analog multi-
operand MAC computation. The weights are stored in mem-
ory and reused across different inputs. The compute-efficient
data mapping of weights varies according to the memory.
For example, in-ReRAM computing generally employs a
natural 2D mapping of the weight matrix. Each value can
use multiple memory cells to improve precision [60].

Bit-serial computing does not generally support multi-
operand operations. Thus, it is crucial to exploit parallelism
in the architecture efficiently. For example, Neural Cache [21]
unrolls input activation of CNN for each sliding window and
duplicates it for each output channel. We take a similar
approach for GEMM. The weight matrix is serialized to a
vector representation and stored in the topmost register of
each SIMD slot. The input feature vector is duplicated for
each column of the weight matrix and stored in a SIMD slot
with a corresponding weight multiplicand. In this way, all
multiplication operations can be done in parallel for each
input feature vector. Then, reduction operations are performed
to make sums to complete dot-product operations. A memory
array can have multiple input feature vectors. The weights
can also be replicated to fully utilize the available memory

Figure 9. Data reuse patterns of SpMM.

space.
3) SpMM: Sources of Inefficiency: Sparse Matrix Matrix

Multiplication (SpMM) multiplies sparse matrix A and dense
matrix B. In-memory computing in general is less efficient
for sparse computation due to the random scattered access
patterns of the workload. While in-memory computing
generally requires operands to be arranged in a designated
location to perform computation, this scheme cannot be
directly applied to a compressed storage format of a sparse
matrix. To expose the computation models of in-memory
computing, sparse matrices need to be decompressed to the
dense format, reinserting null elements eliminated by the
compression. Existing work on in-memory graph processing
accelerator [62] also performs decompression of the CSR for-
mat to perform Sparse Matrix-Vector multiplication (SpMV),
which many graph algorithms can be transformed into.

Decompression leads to the following inefficiencies: (1)
inevitable data movement and its related cost and write count,
(2) low compute density per array which undermines the
throughput oriented in-memory compute resources, and (3)
low locality due to irregular vertex access patterns, which may
result in repetitive decompression due to capacity limitation
of memory.

Lookup-Based Approach: For these reasons, we store
the dense matrix B in the memory array to bypass the
computation density issues related to the sparse format. B

is partitioned into horizontal slices and stored into arrays.
Then, a corresponding vertical slice of the sparse matrix A

is loaded from the main memory and processed row-by-row.
If A is a binary adjacency matrix, arrays will perform a
series of vector additions of some rows of B, using non-zero
column indices of A as indices to look up the B rows. If A

has non-binary values (e.g. edge weights), arrays will instead
perform a dot-product computation using the A value as the
multiplicand. Buffer arrays are utilized to temporarily store
and accumulate the partial sum vector from multiple arrays,
playing a similar role as a reduction tree.

Reuse Model: As illustrated in Figure 9, there are several
reuse patterns for SpMM [25]. While CPU and GPU generally
employ the C-stationary approach [25], [34], we adopt B-
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stationary. B-stationary maximizes the reuse of the dense B

matrix, which is ideal for subgraph learning of GNNs because
it is known that all the node features are reused several times
while processing the batch. Exploiting the predetermined
knowledge of feature reuse, in-memory computing can fully
utilize the locality of node feature access. On the other
hand, B-stationary requires an atomic update of the results if
multiple processors can add partial sums to the same output
elements. However, given the skewed non-zero distribution of
real word graphs, not every slice pair of A and B contribute to
one output position, thus the cost of update is not significant,
and is better than multi-loading A (Figure 9, C-stationary).

B-stationary also provides an opportunity for efficient
vector processing. In contrast, C-stationary needs to perform
lengthy reduction operations with a lot of null entries to make
a complete output. We observe B-stationary achieves 4.3x
better memory latency performance and 42x better compute
performance (obgl-collab [35]).

Replication: We also replicate the B slices within the
memory allocation, reducing the slice size accordingly. This
is to leverage the input row parallelism by performing parallel
reductions or dot-product operations for different rows of
A. Since the input row parallelism is easy to find, we find
that having a few replicas helps achieve good performance
scaling.

E. Performance Prediction

The performance predictor predicts the expected execution
time of a job and is an essential component of our scheduler.
Compute time (tcmpt(x,m)) for a basic block of most of the
in-memory workload studied before can be deterministically
calculated at the compile time. In such a case, while input
parameters can affect the number of kernel invocations, it is
straightforward to estimate the performance of each invoked
kernel [26]. This applies to GEMM and many data-parallel
applications, including those that we evaluate.

On the other hand, the execution time of SpMM is
dependent on the contents of the adjacency matrix of the
subgraph. This is because the in-memory device also serves
as a memory for storing features, and its access patterns are
dependent on the input adjacency matrix. Here, each access
is followed by a vector MAC operation. While the cycles
for MAC operations are deterministic, we do not know how
many MACs will be triggered. It is possible to know only
by a complete scan of the input, which is impossible at the
compile time, and even at the execution time, performing
a full scan of the adjacency matrix for cycle estimation
becomes costly.

Limitations on a Simple Metric: Job size per allocation
unit can be used as a proxy to estimate the execution time for
such workloads. Let us first verify this claim. For SpMM, the
job size within a given allocation can be calculated from the
number of non-zero partial rows (prows) of width w in the
adjacency matrix. Prows are rows in vertical strips (Figure 9

Figure 10. A naive classification model using nnz(x)/H128(x) as a metric.
Red line is a threshold.

top) and non-zero prows are such rows with at least one
non-zero element. Let Hw(x) be a function that returns the
number of non-zero prows of a subgraph x of width w, then
the average amount of job per allocation (translated into w)
can be calculated from nnz(x)/Hw(x).

Figure 10 shows the memory preference tSRAM/tReRAM for
different jobs plotted with nnz(x)/Hw(x) that is used as the
metric. We can see that ReRAM outperforms when the job
size per allocation is large, i.e., the access is likely to be
localized and there are lots of opportunities to perform the
multi-operand operations in an array. This trend is reasonable
because ReRAM has a larger register capacity per array and
can perform a multi-operand dot product operation. Although
nnz(x)/Hw(x) is correlated to the memory preference and
thus can be used to roughly classify jobs, there are a lot of
borderline jobs that are misclassified. Also, a complete scan
is necessary to know Hw(x).

Our Approach: We thereby use MLP regressors to give
a better classification for this non-linear classification task,
and also to generate an estimated time for each memory. A
similar approach is adopted in a prior work that used an MLP
regressor and classifier to make the best selection of matrix
permutation for SpMM [49]. Job size and performance can
be correlated with a set of subgraph metadata, given the
subgraphs are generated from the same mother graph, based
on the scale-free property of the real-world graphs. We use
two MLP regressors to learn Hw and cycle counts from the
graph metadata. For each mother graph, Hw is first trained,
taking w, the dimension of a submatrix, and nnz as the input
from the training subgraphs. Then we use predicted Hw(x)
and the same set of metadata to train another regressor for
the cycle counts. The regressors have two hidden layers with
16 and 8 nodes. While MLP regressors are simple, the cycle
count predictor can achieve relatively good accuracy (e.g.,
R2 score of 0.995 and RMSE of 22% of the mean cycles for
ogbl-citation2 in SRAM). Note that the training cost is one
time for the mother graph, and the regressor model can be
reused for all input queries.

We notice that using more hidden nodes/layers in MLP
does not significantly contribute to the accuracy. Random
forest based solutions such as XGBoost [13] regressor can
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Table I
DATASET DETAILS.

Dataset #Vertex
Input/hidden

#Edges
Raw Min. req.

feature datasize memory

ogbl-collab 235,868 128/256 1,285,465 293M 5GB
ogbl-citation 2,927,963 128/256 30,561,187 3.8G 40GB

ogbl-ppa 576,289 58/256 30,326,273 340M 2GB
ogbl-ddi 4,267 - /256 1,334,889 9.5M 2GB

ogbn-products 2,449,029 100/256 61,859,140 3.4G 33GB

Table II
DATA PARALLEL APPLICATIONS.

App Combinations

Application Domain A B C D E F G

Blackscholes finance � � �

Fluidanimate fluid dynamics � � �

StreamclusterA,B∗ data mining �A �B �B �A �B

Backprop pattern recog � � �

Kmeans data mining � � �

Crypto message auth � � �

DBB,S∗∗ database �� �B �S �B

Bitap string search � � �

∗Streamcluster has two input data size, A and B.
∗DB has two algorithms: bitmap index (B) and full scan (S).

achieve up to 2x better accuracy (RMSE), while requiring
significantly more computation and parameter storage cost
compared to MLP.

F. Generality of Our Approach

Our scheduling approach can be broadly applied to various
data-parallel applications. Similar to OpenMP or CUDA
programs, there are largely two approaches to generating
parallel jobs: (a) generating a fixed number (e.g. core count)
of jobs with a dynamic loop count and (b) generating an
input-dependent number of jobs with a fixed loop count
(fixed load per core). MLIMP supports both approaches. Our
SpMM takes the former approach, using a predictor to predict
latency for each dynamic job. While predictor needs pre-
training, it performs best for applications with fused memory
access and compute operation. On the other hand, general
data parallel applications can take the latter approach, where
the job performance can be estimated simply by profiling.
Instead of training a predictor, the scheduler can use profiling
results under unit resource allocation and scale them. In both
cases, our scheduling approach will try its best to increase
the throughput.

IV. METHODOLOGY

Benchmarks: We show the compute kernels for tested
data-parallel applications in Table II. In addition to applica-
tions from IMP [26], we use applications with bulk bitwise
operations. Crypto is a kernel in SipHash [9], a cryptographic
hash used for message authentication code. DB is database
search queries using a bitmap index and full scan. Bitap is
a string search algorithm widely studied in bioinformatics
workloads etc. Each application generates multiple jobs with

a fixed loop count. We compare the kernel execution time
of each application. The kernels are compiled for target
machine configurations of each memory, adopting the SIMD
VLIW execution model of the prior work [26], [27]. The
machine configuration of ReRAM is taken from IMP [26]
and that of SRAM is taken from Duality Cache [27]. For both
targets, the latency of the compute kernels can be calculated
deterministically and we use this profile as the input to the
scheduler.

To evaluate machine learning kernels, we use a GNN frame-
work with three Graph Convolutional Network (GCN) [41]
layers. The models and graphs are from Open Graph
Benchmarks (OGB) [35] (see Table I). GNN input features
and weights are trained for 16bit fixed-point precision with
an additional feed-forward network. This quantization only
results in a slight accuracy degradation of < 1%. All GNN
workloads are built on top of PyTorch framework and
PyTorch Geometric (PyG) libraries that are compiled for
both CPU and GPU. Subgraphs are generated by PyG’s
neighbor sampler. We use the autograd profiler of PyTorch
and NVIDIA’s NVVP and PyProf profilers to generate the
execution trace and profiling results on the native machines.
We use a batch size of 64. Due to the limitation on the
simulation time, we sampled a random 10 batches (640
queries in total) for the simulation.

GCN also contains other operations such as activation
functions (e.g., ReLU), but they take insignificant time and
are thus executed in the host processor. The building block
kernels of our GNN approach are not dependent on each
other, so they can be reordered and applied to other GNN
frameworks.

Subgraphs in a batch can be precomputed or dynamically
generated using a data generator process or a remote graph
server. We assume the subgraph data is precomputed [69], but
since the workload is similar to breadth first search (BFS), it
can be efficiently executed in many near-memory computing
enabled memory systems [3], [50], [67].

By default, a batch contains subgraphs for each query input.
However, it is sometimes useful to generate a concatenated
subgraph that has a union of all nodes in the subgraphs,
while giving up the opportunity of job mapping of subgraph
granularity. This is when the graph has a high degree of
connectivity and the intersection of nodes between k-hop
subgraphs is large, which leads to a good chance of reusing
node features across different query inputs. We observe the
large connectivity in some of the graphs in the nature domain
in our benchmark (ogbl-ppa and ogbl-ddi), so we take this
approach.

Performance and Power Models: We develop an event-
driven simulator with timing models from IMP [26] for
in-ReRAM computing and Duality Cache [27] for in-SRAM
computing. We use parameters from Ambit [59] for bit-serial
in-DRAM computing. The execution trace from the autograd
profiler is replayed in the simulator, and the actual input
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Table III
MLIMP CONFIGURATIONS.

Array SIMD ALUs MAC throughput / ALU

Dimension # arrays MB/mm2 MHz #ALUs/array #ALUs cycles/op (2ops) MOPS (2ops) MOPS (4ops)

SRAM 256 x 256 5,120 0.6 2,500 256 1.31 M 302 8.278 2.070
DRAM 8 KB x 8,192 1,024 17.5 300 65,536 67.1 M 1510 0.199 0.050
ReRAM 128 x 128 x 2 (bit/cell) 86,016 2.5 20 16 1.37 M 8 2.500 2.500

data is regenerated to perform the timing simulation in each
module. Load and store bandwidth for the main memory
communication is simulated using Ramulator [40] integrated
into our simulator. The data transfer bandwidth between CPU
and GPU for baseline GPU execution is recalculated using the
actual bandwidth of the PCIe channels measured by CUDA
Toolkit to bypass PyTorch’s bottlenecks. Predictor latency is
measured by a C++ implementation of the regressor models.

The power parameters for in-memory computing are taken
from the prior work [26], [27], [59]. Power and energy
for CPU and DRAM activity are measured by profiling
microbenchmarks using Intel Rapl interface. We use NVIDIA
nvprof to measure GPU power.

V. RESULTS

A. Configurations Studied

In this section, we evaluate the proposed MLIMP system.
Our baseline is composed of a dual-socket Xeon E5-2697
v3 (64GB DDR4) server and NVIDIA Titan XP (12GB
GDDR5) GPU. The system configuration for MLIMP is
shown in Table III. We assume 336 MB ReRAM accelerator
chip (scaled down from [26]). It has a similar area as the
on-chip cache of a dual-socket CPU server. We use half
of total SRAMs for in-cache computing allocation because
reserving an SRAM portion for general caches is beneficial
for both CPU processes and in-cache computing as suggested
in [27]. In this configuration, SRAM and ReRAM have a
similar number of SIMD ALUs. For in-DRAM computing,
we assume DDR4-2400 memory with 4 channels, 1 rank,
16 chips, and 16 banks, supporting bank-level in-memory
operations. Each baseline in-memory processor can handle
up to 8 outstanding jobs at a time.

B. GNN Performance

1) Kernel Performance: In this section, we discuss the
performance of kernels in GNN applications. We use the
ogbl-citation2 dataset, but a similar trend is observed in most
of the real-world graphs that we tested. The box chart of the
distribution of the kernel speedup of MLIMP is shown in
Figure 11. Compared to our baseline, we observe the average
speedup of 4.07× for GEMM, 3.40× for SpMM, and 1.82×
for Vadd. The massive parallelism of in-memory computing
generally contributes to the speedup of compute-intensive
kernels such as GEMM and Vadd. SpMM additionally
benefits from the internal reuse of input features and input
parallel execution.

The execution time breakdown for the three major kernels
of our tested GNN, i.e. GEMM, SpMM, and vector add
(Vadd), is shown in Figure 12. This assumes different combi-
nations of in-memory devices are activated for acceleration.
Compared with CPU, the compute kernels are significantly
accelerated by GPU, while GPU execution incurs additional
data transfer costs for transferring submatrices and input
features to GPU. This data transfer is unavoidable especially
when dealing with large graph data. In-memory computing
can bypass the memcpy bottleneck by tight integration
with the host memory hierarchy, although memory access
time in each kernel sees a slight increase due to narrower
DDR4 memory technology. From the different mixture of
in-memory computing devices, we can see the SpMM kernel
is dominating for all scenarios, while we see the smallest
execution time in “SRAM and ReRAM” and “All”.

Focusing on the execution time for SpMM, SRAM and
ReRAM result in a similar kernel performance because they
have a similar SIMD width and an average MAC throughput
per SIMD slot considering the multi-operand operations. In-
DRAM SpMM observes worse performance for SpMM due
to the smaller SA density (Figure 1) and available array-
level parallelism. While DRAMs have a large array width,
their SIMD slots cannot be fully utilized by GNNs of a
small feature vector size. Thus, although some subgraphs are
mapped to DRAM in “All”, it does not result in a noticeable
speedup compared to “SRAM and ReRAM”.

As discussed in detail in Section V-B3, this is 77% of the
oracle case with a perfect job balancing across the memories.

2) Application Performance: Figure 13 shows the appli-
cation time breakdown for different input graphs, normalized
to the baseline GPU+CPU execution. Others include unpar-
allelized pre- and post-processing time such as indexing,
sigmoid, and prediction MLP. The pre-execution cost (e.g.
predictor) takes an insignificant time (< 2% of SpMM kernel)
even running on a single core.

We observe drastic speedup in the memcpy time and
SpMM kernel for most of the input graphs. The speedup
of GEMM is moderate compared to other kernels. This
is because the majority of GEMM time is spent for data
communication to fetch the input features, and we do not
benefit from overlapped execution because the compute time
is smaller than the data communication time due to the
massively parallel execution. Interestingly, it is also observed
that SpMM of some graphs performs poorly on SRAM (e.g.,
ogbl-ddi, ogbl-collab) or on ReRAM (e.g., ogbl-ppa). MLIMP
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Figure 11. Kernel speedups (ogbl-citation2). Figure 12. Kernel performance of different memo-
ries (ogbl-citation2). Figure 13. Application performance.

can pick the best memory and accelerate the execution,
while offloading some jobs to suboptimal memory as well to
increase the throughput. Overall we achieve 4.80× geomean
speedup over GPU and 241× over CPU for the graphs we
evaluated.

Figure 14 shows the energy consumption of the GNN
applications. Because data transfer can take more energy
than computation in the conventional CPU and GPU archi-
tecture, we achieve a greater energy benefit from in-memory
computing which can reduce it. On average, we achieve
5.02× better energy efficiency for MLIMP over a GPU.

3) Scheduler and Predictor Performance: The perfor-
mance of our job scheduler and performance predictor is
illustrated in Figure 15. The results are based on the ogbl-
citation2 dataset and use different job schedulers presented
in Section III-E. We use an oracle predictor, which returns
the accurate cycle counts of a job in each memory, and our
MLP regressor based predictor. We compare the execution
time for SpMM.

We notice that the local adaptive scheduler slightly
decreases the performance compared to the global scheduler.
This is mainly because of the bubbles caused by small
fragmented resources that were not scheduled to any of
the awaiting jobs in the queue. On the other hand, global
scheduling results in the best performance, providing a highly
balanced job schedule across different in-memory devices. We
also notice our MLP regressor based performance predictor
provides reasonably good performance estimates, and the
scheduler performance gap between the oracle predictor
and ours is trivial (less than 1%). The accuracy of the
performance predictor also contributes to the global scheduler
outperforming the others.

We conduct a stress test of the schedulers to measure
the tolerance to impreciseness of the predictor with an
artificial dataset that follows Pareto (scale-free) distribution.
We observe the local adaptive scheduler results in better
performance with added Gaussian noise of σ > 0.39 on
average. In such a case, the global scheduler sees relatively
large tail latency for the delayed job items, whereas the local
adaptive scheduler can automatically adjust by itself which
more than amortizes the bubble induced overhead. The error
tolerance of the global scheduler becomes low if the batch

size is small (threshold σ = 0.25 for a batch size of 16).
Figure 16 compares the performance of our approach

with the oracle throughput, which assumes the perfect job
balancing among the memories. The oracle performance is
calculated by making a sum of the throughput of each in-
memory processor. The baseline assumes the same server
configuration as MLIMP, but uses naive LJF scheduling to
schedule jobs. We observe that the scheduling approach of
MLIMP achieves 77% of the best on average, while the
naive baseline barely achieves 34%. It is notable that naive
scheduling approach is likely to result in the single processor
performance of the best in-memory processor, and further
performance improvement can only be made by introducing
an intelligent job scheduling approach.

C. Data-Parallel Applications

In this section, we evaluate the data parallel applications in
MLIMP using several multiprogramming scenarios. We first
present the kernel execution time of in-SRAM, in-DRAM,
and in-ReRAM computing in Figure 17, normalized to the
minimum of these three. In-DRAM computing assumes
similar in-memory operations as in-SRAM computing, but
it might not be the best design because no prior work
has demonstrated general in-DRAM computing supporting
non-trivial arithmetic operations with an execution model
optimized for general data-parallel applications. The prefer-
ence for in-memory devices depends on many factors as we
discussed, while working data set size and instruction mix are
some of the dominating ones. For example, DRAM prefers
bulk bitwise operations but not complex operations, while
SRAM can efficiently perform relatively small but compute-
intensive kernels. ReRAM can efficiently run applications
exploiting analog operation intrinsics such as dot product.

We then assume scenarios of launching multiple programs
from the program set. All possible combinations of four
applications are tested, and we pick combinations that show
various in-memory device preferences as in Table II. For
example, combination A is composed of applications that
favor SRAM, while F favors DRAM+ReRAM. We compare
the execution time in Figure 18. The execution time is
normalized to MLIMP ALL. While the preferred set of
memory depends on the type of programs launched, MLIMP
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Figure 14. Application energy.

Figure 15. Scheduler performance (ogbl-citation2).
Oracle uses the oracle predictor.
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Figure 17. Single application. Figure 18. Multiple applications. Figure 19. Scheduling comparison.

can schedule jobs to minimize the latency while balancing
the load, resulting in the best performance. We also observe
jobs from the same application can be scheduled to different
memories for the sake of throughput. Compared to the runs
on a single layer in-memory processing system, we achieve
7.1× better performance. Note that in-memory computing
outperforms our GPU baseline for all applications we tested.
Even when they run on a single type of memory, there
are performance gaps of orders of magnitude (e.g. 15×).
Therefore, for any app combinations, MLIMP outperforms
our GPU baseline.

We also compare the performance of different scheduling
approaches in Figure 19. Because the execution time of
the compute kernels can be calculated deterministically, the
global scheduler that can perform both local and global
adjustment achieves the best performance for almost all
scenarios.

We conclude that a system with MLIMP can benefit from
the rich parallel in-memory processing resources and reduced
data transfer. Moreover, good job scheduling and performance
estimation allow such a system to exploit the heterogeneous
characteristics of different in-memory devices for jobs with
dynamism and substantial variation.

VI. RELATED WORK

To the best of our knowledge, this is the first work
demonstrating the feasibility of MLIMP and its advantage
for data parallel application with workload dynamism. In
this section, we discuss some of the closely related work.

The past decades have witnessed growing attention to
near-memory computing, also termed processing in memory
or PIM, and in-memory computing. They try to address the
cost of moving data and the issues related to the memory
wall. PIM solutions move compute near memory [4], [11],
[22], [24], [30], [39], [52], [54], [56], [58], [66], [70] to

reduce the data movement cost and utilize the bandwidth
available by computing near memory. Specialized PIM
architecture has been studied for various acceleration targets
including machine learning [29], [31], [45], sparse data
processing [29], [32], [37], and databases [20]. In contrast,
in-memory computing architectures differentiate themselves
by re-purposing memories themselves into compute engines,
utilizing the physical properties of the memory array. This
unlocks massive parallelism and reduced data movement,
making them more efficient than PIM, at the cost of reduced
flexibility for data alignment, etc.

Prior work has proposed instruction or thread scheduling
schemes for PIM. PEI [5] uses a locality monitor to assess
the performance of remote PIM execution, and AMS [64]
leverages cache partitioning techniques to determine thread
mappings for a system with multiple memory hierarchy
depths. While their ultimate goal is to answer whther or

not to offload for PIM, MLIMP is additionally required to
determine resource allocation size and memory type, making
the scheduling problem difficult. As we use a predictor for
some classes of applications, increased fuzziness between
memory and computing of IMP presents a new scheduling
challenge.

Livia [48] proposes multi-layer near-memory computing
using a common memory service unit implemented in
each memory layer. It targets applications that couple short
computation between irregular memory access, such as
pointer chasing and tree traversal. It is pointed out that
solely using PIM in the main memory leads to suboptimal
performance because they cannot reap the benefit from the
locality that caches can better harness. MLIMP has different
application targets, i.e., applications with unpredictable reuse
patterns and compute intensity. In addition to supporting
various reuse patterns, in-memory computing offers massively
parallel execution that is unseen in near-memory computing.
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VII. CONCLUSION

We propose MLIMP that runs various computing kernels
with workload dynamism in variable layers in the in-memory
computing enabled memory hierarchy. By introducing a job
scheduler and a performance predictor, GNN inference jobs,
which show significant variation in the working dataset and
reuse patterns, are well mapped to appropriate memories.
Our multi-layer in-memory computing approaches provide
performance advantages to multiprogramming scenarios for
general data-parallel applications compiled for multiple in-
memory device targets. Our experimental results show that
MLIMP improves the performance of various GNN inference
tasks in OGB by 4.80× over server class GPU, and general
applications by 7.1× over single layer IMP. Re-purposing
the existing memory hierarchy for multi-layer in-memory
computing provides 5.02× better energy efficiency.
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