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ABSTRACT: In order to evaluate urban earthquake resilience, reliable structural modeling is needed.
However, detailed modeling of a large number of structures and carrying out time history analyses for
sets of ground motions are not practical at an urban scale. Reduced-order surrogate models can expedite
numerical simulations while maintaining necessary engineering accuracy. Neural networks have been
shown to be a powerful tool for developing surrogate models, which often outperform classical surrogate
models in terms of scalability of complex models. Training a reliable deep learning model, however,
requires an immense amount of data that contain a rich input-output relationship, which typically cannot
be satisfied in practical applications. In this paper, we propose model-informed symbolic neural networks
(MiSNN) that can discover the underlying closed-form formulations (differential equations) for a
reduced-order surrogate model. The MiSNN will be trained on datasets obtained from dynamic analyses
of detailed reinforced concrete special moment frames designed for San Francisco, California, subject to
a series of selected ground motions. Training the MiSNN is equivalent to finding the solution to a sparse
optimization problem, which is solved by the Adam optimizer. The earthquake ground acceleration and
story displacement, velocity, and acceleration time histories will be used to train 1) an integrated SNN,
which takes displacement and velocity states and outputs the absolute acceleration response of the
structure; and 2) a distributed SNN, which distills the underlying equation of motion for each story. The
results show that the MiSNN can reduce computational cost while maintaining high prediction accuracy
of building responses.

1. INTRODUCTION while maintaining necessary  engineering

To assess earthquake resilience for large-scale
urban building clusters, there is a need for a
detailed structural model of buildings to carry out
reliable numerical simulations. Because buildings
in an urban area experience different levels of
ground motion (GM) severities (primarily due to
fault rupture location and characteristics, soil
condition, and the buildings’ fundamental
periods), the numerical simulations of a building
need to be carried out under a series of selected
GMs. More specifically, a considerable number of
repeated numerical simulations are required to
assess urban earthquake resilience, which is not
practical. To address this issue, surrogate models
can be used to expedite numerical simulations

accuracy.

Surrogate models have drawn significant
attention in civil, mechanical, and aerospace
engineering, enabling computationally efficient
analysis of complex structures. In performance-
based structural engineering, surrogate models
can promote efficient design, assessment, control,
and optimization of engineering structures with
reduced computational effort. Recent studies have
shown that, owing to state-of-the-art advances in
artificial intelligence, the use of deep learning
(e.g., convolutional and recurrent neural
networks) is a promising approach to establishing
surrogate models for fast prediction of structural
dynamic response (Wu and Jahanshahi, 2019; Oh
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et al., 2020; Stoffel et al., 2020; Zhang et al.,
2020a; Zhang et al., 2020b). Nonetheless, deep
learning still has some limitations. Training a
reliable deep learning model requires an immense
amount of data that contains rich input-output
relationships, which typically cannot be satisfied
in most engineering problems. Commonly used
nonlinear activation functions (e.g., sigmoid,
hyperbolic tangent, and rectified linear unit) may
drastically increase model complexity. Moreover,
deep learning models are a “black box” and highly
dependent on the representative quality of labeled
data, leading to overfitting issues and limited
extrapolation. Even with rich data, the resulting
trained models are uninterpretable and may not
make physical sense.

One approach to overcoming the limitations
of deep learning is to develop a reduced-order
surrogate model — model-informed symbolic
neural network (MiSNN). MiSNN is essentially a
symbolic neural network designed by leveraging
domain-specific knowledge and fundamental
principles of existing surrogate models (e.g.,
shear-beam for building seismic performance
evaluation, Joyner and Sasani, 2020). MiSNN can
discover the underlying closed-form formulations
(differential equations) and accommodate use by
engineers and practitioners who do not have
knowledge of deep learning. Unlike deep learning
models, symbolic neural networks use a
combination of math operators as activation

functions (e.g., absolute, sign, exponential,
sinusoidal,  cosine, square, cube, and
multiplication). Recent studies show that

symbolic neural networks are capable of finding
parsimonious and interpretable mathematical
expressions for generalized regression (Martius
and Lampert, 2016; 2018; Kim et al., 2020). The
domain-specific knowledge and fundamental
principles of existing surrogate models are
embedded in symbolic neural networks via
variations of input data and selection of math
operators. The embedded information can provide
rigorous constraints to the parameters, alleviate
overfitting issues, reduce the need for large
training datasets, and thus, improve the robustness

Dublin, Ireland, July 9-13, 2023

of the trained MiSNN for more reliable
prediction. Additionally, MiSNN can reduce the
“black box” effect by making the model
interpretable and providing physical meaning,
thereby rendering it readily accessible for use by
engineers and practitioners.

The underlying closed-form formulations
discovered by MiSNN can be solved using
numerical integration methods, such as the fourth
order Runge-Kutta method (RK4, Dormand and
Prince, 1980). The Runge—Kutta method is an
effective and widely used method for solving
initial-value problems of differential equations
(Zheng and Zhang, 2017). Compared with
Newmark and Euler methods, which have the
maximum orders of accuracy as second and first,
respectively, the Runge-Kutta method is easy to
implement and can achieve a higher order of
accuracy.

In this paper, the MiSNNs embedded into
RK4 are used to discover the equations of motion
for a multi-degree-of-freedom (MDOF) system
under seismic excitation.

2. MODEL-INFORMED SYMBOLIC
NEURAL NETWORK FOR
APPROXIMATING THE EQUATION OF
MOTION

The equation of motion for an MDOF system

under seismic excitation can be written as

U+f(UU)=-ra, (1)

where U, U, and U = vectors that represent the
displacements, velocities, and accelerations of n
DOFs relative to ground; a; = GM acceleration
time series; I' = influence vector, an X 1 vector
with each element (y); and f (U, U) = mass-
normalized internal restoring force vector learned
by MiSNNs, which has the same dimension as U,
U,and U.

The U, U, and signs of interstory drift and
velocity (AU and AU) are included as inputs to
MiSNN. A n X 1 vector containing sinusoidal
functions of time with a phase shift (sin(T)
learned from time via a fully-connected layer with
weights and bias) is also included in MiSNN to
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detect possible time-variant structural properties.
The output of MiSNN is the absolute acceleration
of a DOF, —ii —yay. For an MDOF system,
instead of using one MiSNN with n outputs, it is
better to use the same number of MiSNNs as the
number of DOFs (Chen et al.,, 2022a). Each
MiSNN has sufficient flexibility to learn the
contributions from all DOFs’ displacement and
velocity states to the absolute acceleration of each
DOF.

The proposed MiSNN includes two layers of
multiplication to produce a polynomial function
up to fourth order to learn the potential complex
input-output relationship (see Figure 1).
Analogous to Long et al. (2019), Chen et al.
(2022a), and Chen et al. (2022b), instead of fully
connected layers, MiSNN allows inputs (and
outputs of hidden layers) to pass directly to the
following layers. This can significantly reduce the
number of parameters while maintaining high
accuracy, as observed from parametric studies.

Figure 1: Standard MiSNN (solid thick black arrow
= identity, solid thin red arrow = fully connected
with weights and bias, dotted green arrow =
multiplication).

In addition to domain-specific knowledge,
the fundamental principle of shear-beam is also
used to develop MiSNN. Shear-beam has been
proven to be an effective approach to simplify
building models for dynamic analysis while
maintaining accuracy (Miranda and Taghavi,
2005; Khoshnoudian and Ehsan, 2013; Ganhavi et
al., 2016; Escalona and Wong, 2018; Joyner and
Sasani, 2020). This type of model idealizes each
story’s constitutive shear-drift relationship using
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a single shear element, which can significantly
reduce the computational cost (Joyner and Sasani,
2020). If a frame structure is considered as a
shear-beam, the only inputs to MiSNN that are
needed to estimate the absolute acceleration of a
given DOF are those from that DOF and its
adjacent DOFs. If the given DOF is either the first
or last, the out-of-range states are assumed to be
the same as the states of the given DOF.

3. FOURTH ORDER RUNGE-KUTTA
INTEGRATION

The underlying closed-form formulations learned
by MiSNNs can be treated as a system of second
order differential equations, which can be solved
using RK4. With displacement and velocity states
at t; (U; and U;), the states at t;,; can be
estimated as

Uper = Uy + - At(Ky + 2K5 + 2K3 + Ky) (2)
Ui+1 = Ul' + %At(l;l + 2L2 + 2L3 + L4) (3)

where K¢, K,, K3, and K, = vectors consisting
of slopes of displacement at each DOF (see Figure
2); Ly, Ly, L3, and L, = vectors consisting of
slopes of velocity at each DOF (see Figure 2); and
At = user-defined time interval.

4. MODEL TRAINING ALGORITHM

Since the underlying closed-form formulations
discovered by MiSNNs are solved using RK4, the
stability of RK4 must be considered. According to
Hairer and Wanner (2010), the stability region of
RK4 depends on At and the differential equations.
More specifically, only a reasonably-selected At
with well-trained MiSNNs can guarantee the
stability of RK4. Training MiSNN independent
to RK4 may trigger stability issues. To improve
training efficiency, the MiSNNs are embedded
into RK4 and trained using the Adam optimizer
(Kingma and Ba, 2014) with the reducing learning
rate on plateau strategy (i.e., reducing learning
rate when the loss metric stops improving). The
loss function is given by
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where Y;; = matrix including all recorded U; and

U;; Y;j = matrix including all U; and U;
estimated by MiSNNs embedded into RK4; W =
window, which is the number of time steps used
in RK4 calculation; and M = number of windows.
In light of the different magnitudes of
displacement and velocity, in Eq. (4), U; and U;
are assigned more weight by multiplying them by
a factor of 10 to match the magnitudes of U; and

U;. In addition to embedding MiSNN into RK4,
during the training, At can be multiplied by
factors of 0.5, 0.25, 0.125, and 0.065 to avoid a
potential stability issue. The corresponding GM
acceleration is linearly interpolated.

5. APPLICATIONS

The linear and nonlinear dynamic analysis results
of 3-story detailed reinforced concrete (RC)
buildings under a series of selected GMs are used
to evaluate the proposed MiSNNs embedded into
RKA4.

5.1. Model and Data

5.1.1. 3D detailed reinforced concrete building
model
A 3-story representative RC building located in
Financial District, San Francisco, California, is
designed according to ASCE 7 (ASCE, 2022)
Design Level as a Risk Category II building. The
typical floor plan of the designed building is
shown in Figure 3. The story heights are 4.27 m
and 3.66 m for the first story and all other stories,
respectively. 3D detailed linear and nonlinear
models of the designed building are developed

ag(tl-)+ag (ti+A4t)

2 )

using OpenSees (McKenna et al., 2010). The
linear model is developed using elastic beam-
column elements. For the nonlinear model,
distributed plasticity is accounted for using
nonlinear beam-column elements with sections
discretized into concrete core, concrete cover, and
steel fibers. The buckling and bar-slip effects of
reinforcing bars are also included. More details
about building design and the corresponding 3D
detailed model development can be found in Chan
Esquivel et al. (2023).
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Figure 3: Plan view of the designed RC buildings

5.1.2. Ground motion selection and numerical
simulation

Using spectral acceleration as the GM intensity
measure, the GMs are selected using conditional
spectra (Baker, 2011; Lin et al., 2013; Baker and
Lee, 2018) at the building’s fundamental period.
20 GMs are selected to represent the median and
logarithmic standard deviation of the conditional
spectrum (Chan Esquivel et al., 2023). Because
pulse-type GM has a larger damage potential than
ordinary GM, the selection procedure
accommodates a portion of the selected GM
records being pulse-type (NIST, 2011). The
spectral acceleration of the 20 selected GMs and
4 (out of the 20) GM acceleration time series are
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shown in Figures 4 and 5, respectively. The
numerical simulations of 3D detailed linear and
nonlinear models of the 3-story RC building under
the selected GMs are carried out using OpenSees
(McKenna et al., 2010). Seismic excitation is
applied to the designed building in a direction
parallel to the longitudinal frame.
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Figure 4: Spectral accelerations of the selected 20
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Figure 5: 4 GM acceleration time series.

5.2. Linear response estimation

The linear dynamic analysis results of the 3D
detailed model of the 3-story RC building are used
to train the MiSNNs embedded into RK4. The
building responses and the corresponding GM
accelerations are interpolated to a time interval of
0.05 s wusing a piecewise cubic hermite
interpolating polynomial (Kreyszig, 2020). The
training setups are listed in Table 1.
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Table 1. Training setups

Training dataset 18 GMs*
Test dataset 2 GMs
Window size 25

Time in each window 0:0.05:1.20s"

Epochs 500
Initial learning rate 0.001
25%¢

Initial learning rate decay

* 18 GMs are randomly selected.

b Using relative time in each window can result in
higher model accuracy than using recorded time (as
observed by parametric study).

¢ The initial learning rate decays by 25% whenever
the training loss stops decreasing for 4 epochs.

5.2.1. Standard MiSNN

The standard MiSNNs embedded into RK4 are
trained using the setups specified in Table 1. The
comparisons between the building responses
estimated by these MiSNNss and those recorded by
numerical simulation for one test GM are shown
in Figure 6. The correlation coefficient ( p )
between these two building response estimates is
used as a numerical goodness-of-fit measurement
(see Figure 6). Both the graphical and numerical
results indicate that the standard MiSNNs
embedded into RK4 can capture the dynamic
behaviors of 3-story RC buildings very well.
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Figure 6: Comparison between the linear responses
of the 3-story RC building under one test GM
estimated by the standard MiSNNs embedded into
RK4 and recorded by numerical simulation: (a)
interstory drift, (b) interstory velocity, and (c)
acceleration relative to ground.

5.2.2. Shear-beam-based MiSNN
Shear-beam-based MiSNNs embedded into RK4
are also trained following Table 1. The
comparisons for one test GM show that these
MiSNNs also can predict the linear dynamic
responses of 3-story RC buildings very well (see
Figure 7). The correlation coefficients obtained
for shear-beam-based MiSNNs are slightly lower
than those obtained using the standard MiSNN:Ss.
This difference is observed because the data used
for shear-beam-based MiSNNSs training are not as
extensive as those used for standard MiSNNs
training due to the out-of-range states.
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Figure 7: Comparison between the linear responses
(interstory drifts) of the 3-story RC building under
one test GM estimated by the shear-beam-based
MiSNNs embedded into RK4 and recorded by

numerical simulation.

5.3. Nonlinear response estimation

Considering the complexity of nonlinear
behavior, two more multiplications and the
sinusoidal functions of WU; + B and WU, + B
(where W and B are an n X n weight matrix and
an n X 1 bias vector, respectively, learned during
MiSNN training) are included in the MiSNN
architecture (see Figure 8). Both the standard and
shear-beam-based MiSNNs are embedded into
RK4 and trained using the 3-story RC building
nonlinear dynamic responses obtained for 12 non-
pulse-type  GMs. This  procedure  was
implemented because the pulse-type and non-
pulse-type GMs have different damage potentials
for RC buildings (NIST, 2011), and 13 sets of
building responses under non-pulse-type GM (12
for training and 1 for test) can provide sufficient
data for MiSNNSs to learn the equation of motion.
The training setups are the same as those shown
in Table 1 but with one randomly selected GM for
test purposes. Table 2 lists the improvements in
model accuracy by comparing the nonlinear
responses estimated using the MiSNNs designed
for linear and nonlinear cases (see Figures 1 and
8). Although the model accuracy is improved for
MiSNNs designed for nonlinear cases, the
MiSNN shown in Figure 8 does not reach a high
prediction accuracy (say p > 0.95), which
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indicates that further studies on MiSNN

architecture design are needed.

Figure 8: Standard MiSNN designed for nonlinear
building response estimation (solid thick black arrow
= identity, solid thin red arrow = fully connected
with weights and bias, dotted green arrow =
multiplication).

Table 2. Model accuracy improvement for the test GM

(pne — pL)*
Response Story oL
(%)
Interst ! 6
nterstory
drift 2 11
3 81
Interst ! 6
nterstory
velocity 2 9
3 46

“ pyL and p;, are the correlation coefficients between
the nonlinear responses of the 3-story RC building
under the test GM estimated by the standard MiSNNs
designed for nonlinear (NL, see Figure 8) and linear
(L, see Figure 1) cases embedded into RK4 and
recorded by numerical simulation.

6. CONCLUSIONS

The MiSNN is designed by leveraging domain-
specific knowledge and fundamental principles of
existing surrogate models. Embedding MiSNN
into RK4 can successfully establish a reduced-
order surrogate model to estimate the response of
MDOF systems under seismic excitation with low
computational cost while maintaining high
accuracy. Compared with deep learning models,
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the architecture of MiSNN can significantly
reduce model complexity while increasing model
interpretability. MiSNNs embedded into RK4 are
a user-friendly approach and can be implemented
easily by engineers and practitioners.

The following conclusions are drawn based
on the applications:

e Including the signs of inter-story drift and
velocity as inputs and sinusoidal function of
time with a phase shift in MiSNN architecture
can improve the model accuracy.

e The shear-beam-based MiSNN can predict
RC buildings’ responses with high accuracy.

e Training MiSNN embedded into RK4 can
effectively avoid a potential stability issue and
speed the training process.

e Further studies on MiSNN architecture design
are needed to improve the accuracy of
nonlinear response estimation.

The MiSNN presented in this paper can also
be solved using numerical integration methods
other than RK4 and has the potential to be applied
more widely to other engineering problems.
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