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ABSTRACT: In order to evaluate urban earthquake resilience, reliable structural modeling is needed. 

However, detailed modeling of a large number of structures and carrying out time history analyses for 

sets of ground motions are not practical at an urban scale. Reduced-order surrogate models can expedite 

numerical simulations while maintaining necessary engineering accuracy. Neural networks have been 

shown to be a powerful tool for developing surrogate models, which often outperform classical surrogate 

models in terms of scalability of complex models. Training a reliable deep learning model, however, 

requires an immense amount of data that contain a rich input-output relationship, which typically cannot 

be satisfied in practical applications. In this paper, we propose model-informed symbolic neural networks 

(MiSNN) that can discover the underlying closed-form formulations (differential equations) for a 

reduced-order surrogate model. The MiSNN will be trained on datasets obtained from dynamic analyses 

of detailed reinforced concrete special moment frames designed for San Francisco, California, subject to 

a series of selected ground motions. Training the MiSNN is equivalent to finding the solution to a sparse 

optimization problem, which is solved by the Adam optimizer. The earthquake ground acceleration and 

story displacement, velocity, and acceleration time histories will be used to train 1) an integrated SNN, 

which takes displacement and velocity states and outputs the absolute acceleration response of the 

structure; and 2) a distributed SNN, which distills the underlying equation of motion for each story. The 

results show that the MiSNN can reduce computational cost while maintaining high prediction accuracy 

of building responses.

1. INTRODUCTION 

To assess earthquake resilience for large-scale 

urban building clusters, there is a need for a 

detailed structural model of buildings to carry out 

reliable numerical simulations. Because buildings 

in an urban area experience different levels of 

ground motion (GM) severities (primarily due to 

fault rupture location and characteristics, soil 

condition, and the buildings’ fundamental 

periods), the numerical simulations of a building 

need to be carried out under a series of selected 

GMs. More specifically, a considerable number of 

repeated numerical simulations are required to 

assess urban earthquake resilience, which is not 

practical. To address this issue, surrogate models 

can be used to expedite numerical simulations 

while maintaining necessary engineering 

accuracy. 

Surrogate models have drawn significant 

attention in civil, mechanical, and aerospace 

engineering, enabling computationally efficient 

analysis of complex structures. In performance-

based structural engineering, surrogate models 

can promote efficient design, assessment, control, 

and optimization of engineering structures with 

reduced computational effort. Recent studies have 

shown that, owing to state-of-the-art advances in 

artificial intelligence, the use of deep learning 

(e.g., convolutional and recurrent neural 

networks) is a promising approach to establishing 

surrogate models for fast prediction of structural 

dynamic response (Wu and Jahanshahi, 2019; Oh 
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et al., 2020; Stoffel et al., 2020; Zhang et al., 

2020a; Zhang et al., 2020b). Nonetheless, deep 

learning still has some limitations. Training a 

reliable deep learning model requires an immense 

amount of data that contains rich input-output 

relationships, which typically cannot be satisfied 

in most engineering problems. Commonly used 

nonlinear activation functions (e.g., sigmoid, 

hyperbolic tangent, and rectified linear unit) may 

drastically increase model complexity. Moreover, 

deep learning models are a “black box” and highly 

dependent on the representative quality of labeled 

data, leading to overfitting issues and limited 

extrapolation. Even with rich data, the resulting 

trained models are uninterpretable and may not 

make physical sense.  

One approach to overcoming the limitations 

of deep learning is to develop a reduced-order 

surrogate model – model-informed symbolic 

neural network (MiSNN). MiSNN is essentially a 

symbolic neural network designed by leveraging 

domain-specific knowledge and fundamental 

principles of existing surrogate models (e.g., 

shear-beam for building seismic performance 

evaluation, Joyner and Sasani, 2020). MiSNN can 

discover the underlying closed-form formulations 

(differential equations) and accommodate use by 

engineers and practitioners who do not have 

knowledge of deep learning. Unlike deep learning 

models, symbolic neural networks use a 

combination of math operators as activation 

functions (e.g., absolute, sign, exponential, 

sinusoidal, cosine, square, cube, and 

multiplication). Recent studies show that 

symbolic neural networks are capable of finding 

parsimonious and interpretable mathematical 

expressions for generalized regression (Martius 

and Lampert, 2016; 2018; Kim et al., 2020). The 

domain-specific knowledge and fundamental 

principles of existing surrogate models are 

embedded in symbolic neural networks via 

variations of input data and selection of math 

operators. The embedded information can provide 

rigorous constraints to the parameters, alleviate 

overfitting issues, reduce the need for large 

training datasets, and thus, improve the robustness 

of the trained MiSNN for more reliable 

prediction. Additionally, MiSNN can reduce the 

“black box” effect by making the model 

interpretable and providing physical meaning, 

thereby rendering it readily accessible for use by 

engineers and practitioners. 

The underlying closed-form formulations 

discovered by MiSNN can be solved using 

numerical integration methods, such as the fourth 

order Runge-Kutta method (RK4, Dormand and 

Prince, 1980). The Runge–Kutta method is an 

effective and widely used method for solving 

initial-value problems of differential equations 

(Zheng and Zhang, 2017). Compared with 

Newmark and Euler methods, which have the 

maximum orders of accuracy as second and first, 

respectively, the Runge-Kutta method is easy to 

implement and can achieve a higher order of 

accuracy.  

In this paper, the MiSNNs embedded into 

RK4 are used to discover the equations of motion 

for a multi-degree-of-freedom (MDOF) system 

under seismic excitation. 

2. MODEL-INFORMED SYMBOLIC 

NEURAL NETWORK FOR 

APPROXIMATING THE EQUATION OF 

MOTION 

The equation of motion for an MDOF system 

under seismic excitation can be written as  

 𝑼̈ + 𝑓(𝑼, 𝑼̇) = −𝜞𝑎𝑔 (1) 

where 𝑼, 𝑼̇, and 𝑼̈ = vectors that represent the 

displacements, velocities, and accelerations of 𝑛 

DOFs relative to ground; 𝑎𝑔  = GM acceleration 

time series; 𝜞 = influence vector, a 𝑛 × 1 vector 

with each element ( 𝛾 ); and 𝑓(𝑼, 𝑼̇)  = mass-

normalized internal restoring force vector learned 

by MiSNNs, which has the same dimension as 𝑼, 

𝑼̇, and 𝑼̈.  

The 𝑼, 𝑼̇, and signs of interstory drift and 

velocity (Δ𝑼 and Δ𝑼̇) are included as inputs to 

MiSNN. A 𝑛 × 1  vector containing sinusoidal 

functions of time with a phase shift ( sin⁡(𝑻) 
learned from time via a fully-connected layer with 

weights and bias) is also included in MiSNN to 
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detect possible time-variant structural properties. 

The output of MiSNN is the absolute acceleration 

of a DOF, −𝑢̈ − 𝛾𝑎𝑔 . For an MDOF system, 

instead of using one MiSNN with 𝑛 outputs, it is 

better to use the same number of MiSNNs as the 

number of DOFs (Chen et al., 2022a). Each 

MiSNN has sufficient flexibility to learn the 

contributions from all DOFs’ displacement and 

velocity states to the absolute acceleration of each 

DOF. 

The proposed MiSNN includes two layers of 

multiplication to produce a polynomial function 

up to fourth order to learn the potential complex 

input-output relationship (see Figure 1). 

Analogous to Long et al. (2019), Chen et al. 

(2022a), and Chen et al. (2022b), instead of fully 

connected layers, MiSNN allows inputs (and 

outputs of hidden layers) to pass directly to the 

following layers. This can significantly reduce the 

number of parameters while maintaining high 

accuracy, as observed from parametric studies.  

 

 
Figure 1: Standard MiSNN (solid thick black arrow 

= identity, solid thin red arrow = fully connected 

with weights and bias, dotted green arrow = 

multiplication). 
 

In addition to domain-specific knowledge, 

the fundamental principle of shear-beam is also 

used to develop MiSNN. Shear-beam has been 

proven to be an effective approach to simplify 

building models for dynamic analysis while 

maintaining accuracy (Miranda and Taghavi, 

2005; Khoshnoudian and Ehsan, 2013; Ganhavi et 

al., 2016; Escalona and Wong, 2018; Joyner and 

Sasani, 2020). This type of model idealizes each 

story’s constitutive shear-drift relationship using 

a single shear element, which can significantly 

reduce the computational cost (Joyner and Sasani, 

2020). If a frame structure is considered as a 

shear-beam, the only inputs to MiSNN that are 

needed to estimate the absolute acceleration of a 

given DOF are those from that DOF and its 

adjacent DOFs. If the given DOF is either the first 

or last, the out-of-range states are assumed to be 

the same as the states of the given DOF.  

3. FOURTH ORDER RUNGE-KUTTA 

INTEGRATION 

The underlying closed-form formulations learned 

by MiSNNs can be treated as a system of second 

order differential equations, which can be solved 

using RK4. With displacement and velocity states 

at 𝑡𝑖  ( 𝑼𝑖  and 𝑼̇𝑖 ), the states at 𝑡𝑖+1  can be 

estimated as 

𝑼𝑖+1 = 𝑼𝑖 +
1

6
∆𝑡(𝑲𝟏 + 2𝑲𝟐 + 2𝑲𝟑 +𝑲𝟒)  (2) 

𝑼̇𝑖+1 = 𝑼̇𝑖 +
1

6
∆𝑡(𝑳𝟏 + 2𝑳𝟐 + 2𝑳𝟑 + 𝑳𝟒)   (3) 

where 𝑲𝟏 , 𝑲𝟐 , 𝑲𝟑 , and 𝑲𝟒  = vectors consisting 

of slopes of displacement at each DOF (see Figure 

2); 𝑳𝟏 , 𝑳𝟐 , 𝑳𝟑 , and 𝑳𝟒  = vectors consisting of 

slopes of velocity at each DOF (see Figure 2); and 

∆𝑡 = user-defined time interval.  

4. MODEL TRAINING ALGORITHM 

Since the underlying closed-form formulations 

discovered by MiSNNs are solved using RK4, the 

stability of RK4 must be considered. According to 

Hairer and Wanner (2010), the stability region of 

RK4 depends on ∆𝑡 and the differential equations. 

More specifically, only a reasonably-selected ∆𝑡 
with well-trained MiSNNs can guarantee the 

stability of RK4.  Training MiSNN independent 

to RK4 may trigger stability issues. To improve 

training efficiency, the MiSNNs are embedded 

into RK4 and trained using the Adam optimizer 

(Kingma and Ba, 2014) with the reducing learning 

rate on plateau strategy (i.e., reducing learning 

rate when the loss metric stops improving). The 

loss function is given by
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Figure 2: Slopes in RK4 (MiSNNs = −𝑓(𝑼, 𝑼̇), 𝛥𝑡 = time interval, 𝑎𝑔 (𝑡𝑖 +
𝛥𝑡

2
) ≈

𝑎𝑔(𝑡𝑖)+𝑎𝑔(𝑡𝑖+𝛥𝑡)

2
). 

𝐿𝑜𝑠𝑠 =
1

𝑀
∑

1

𝑊
∑ (𝒀𝑖𝑗 − 𝒀̂𝑖𝑗)

2𝑊
𝑖=1

𝑀
𝑗=1  (4) 

where 𝒀𝑖𝑗 = matrix including all recorded 𝑼𝑖 and 

𝑼̇𝑖 ; 𝒀̂𝑖𝑗  = matrix including all 𝑼̂𝑖  and 𝑼̂̇𝑖 

estimated by MiSNNs embedded into RK4; 𝑊 = 

window, which is the number of time steps used 

in RK4 calculation; and 𝑀 = number of windows. 

In light of the different magnitudes of 

displacement and velocity, in Eq. (4), 𝑼𝑖 and 𝑼̂𝑖 

are assigned more weight by multiplying them by 

a factor of 10 to match the magnitudes of 𝑼̇𝑖 and 

𝑼̂̇𝑖. In addition to embedding MiSNN into RK4, 

during the training, ∆𝑡  can be multiplied by 

factors of 0.5, 0.25, 0.125, and 0.065 to avoid a 

potential stability issue. The corresponding GM 

acceleration is linearly interpolated.   

5. APPLICATIONS 

The linear and nonlinear dynamic analysis results 

of 3-story detailed reinforced concrete (RC) 

buildings under a series of selected GMs are used 

to evaluate the proposed MiSNNs embedded into 

RK4. 

5.1. Model and Data 

5.1.1. 3D detailed reinforced concrete building 

model 

A 3-story representative RC building located in 

Financial District, San Francisco, California, is 

designed according to ASCE 7 (ASCE, 2022) 

Design Level as a Risk Category II building. The 

typical floor plan of the designed building is 

shown in Figure 3. The story heights are 4.27 m 

and 3.66 m for the first story and all other stories, 

respectively. 3D detailed linear and nonlinear 

models of the designed building are developed 

using OpenSees (McKenna et al., 2010). The 

linear model is developed using elastic beam-

column elements. For the nonlinear model, 

distributed plasticity is accounted for using 

nonlinear beam-column elements with sections 

discretized into concrete core, concrete cover, and 

steel fibers. The buckling and bar-slip effects of 

reinforcing bars are also included. More details 

about building design and the corresponding 3D 

detailed model development can be found in Chan 

Esquivel et al. (2023). 

 

 
Figure 3: Plan view of the designed RC buildings 

5.1.2. Ground motion selection and numerical 

simulation 

Using spectral acceleration as the GM intensity 

measure, the GMs are selected using conditional 

spectra (Baker, 2011; Lin et al., 2013; Baker and 

Lee, 2018) at the building’s fundamental period. 

20 GMs are selected to represent the median and 

logarithmic standard deviation of the conditional 

spectrum (Chan Esquivel et al., 2023). Because 

pulse-type GM has a larger damage potential than 

ordinary GM, the selection procedure 

accommodates a portion of the selected GM 

records being pulse-type (NIST, 2011). The 

spectral acceleration of the 20 selected GMs and 

4 (out of the 20) GM acceleration time series are 
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shown in Figures 4 and 5, respectively. The 

numerical simulations of 3D detailed linear and 

nonlinear models of the 3-story RC building under 

the selected GMs are carried out using OpenSees 

(McKenna et al., 2010). Seismic excitation is 

applied to the designed building in a direction 

parallel to the longitudinal frame. 

 

 
Figure 4: Spectral accelerations of the selected 20 

GMs. 

 

 
Figure 5: 4 GM acceleration time series. 

5.2. Linear response estimation 

The linear dynamic analysis results of the 3D 

detailed model of the 3-story RC building are used 

to train the MiSNNs embedded into RK4. The 

building responses and the corresponding GM 

accelerations are interpolated to a time interval of 

0.05 s using a piecewise cubic hermite 

interpolating polynomial (Kreyszig, 2020). The 

training setups are listed in Table 1.  
 

 

 

 

Table 1. Training setups  

Training dataset 18 GMsa 

Test dataset 2 GMs 

Window size 25 

Time in each window 0:0.05:1.20sb 

Epochs 500 

Initial learning rate 0.001 

Initial learning rate decay 25%c 

a 18 GMs are randomly selected.  
b Using relative time in each window can result in 

higher model accuracy than using recorded time (as 

observed by parametric study). 
c The initial learning rate decays by 25% whenever 

the training loss stops decreasing for 4 epochs. 

5.2.1. Standard MiSNN 

The standard MiSNNs embedded into RK4 are 

trained using the setups specified in Table 1. The 

comparisons between the building responses 

estimated by these MiSNNs and those recorded by 

numerical simulation for one test GM are shown 

in Figure 6. The correlation coefficient ( 𝜌 ) 

between these two building response estimates is 

used as a numerical goodness-of-fit measurement 

(see Figure 6). Both the graphical and numerical 

results indicate that the standard MiSNNs 

embedded into RK4 can capture the dynamic 

behaviors of 3-story RC buildings very well.  

 

 

(a) 
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Figure 6: Comparison between the linear responses 

of the 3-story RC building under one test GM 

estimated by the standard MiSNNs embedded into 

RK4 and recorded by numerical simulation: (a) 

interstory drift, (b) interstory velocity, and (c) 

acceleration relative to ground. 

5.2.2. Shear-beam-based MiSNN 

Shear-beam-based MiSNNs embedded into RK4 

are also trained following Table 1. The 

comparisons for one test GM show that these 

MiSNNs also can predict the linear dynamic 

responses of 3-story RC buildings very well (see 

Figure 7). The correlation coefficients obtained 

for shear-beam-based MiSNNs are slightly lower 

than those obtained using the standard MiSNNs. 

This difference is observed because the data used 

for shear-beam-based MiSNNs training are not as 

extensive as those used for standard MiSNNs 

training due to the out-of-range states. 

 
Figure 7: Comparison between the linear responses 

(interstory drifts) of the 3-story RC building under 

one test GM estimated by the shear-beam-based 

MiSNNs embedded into RK4 and recorded by 

numerical simulation. 

5.3. Nonlinear response estimation 

Considering the complexity of nonlinear 

behavior, two more multiplications and the 

sinusoidal functions of 𝑾𝑼𝑖 + 𝑩  and 𝑾𝑼̇𝑖 + 𝑩 

(where 𝑾 and 𝑩 are an 𝑛 × 𝑛 weight matrix and 

an 𝑛 × 1 bias vector, respectively, learned during 

MiSNN training) are included in the MiSNN 

architecture (see Figure 8). Both the standard and 

shear-beam-based MiSNNs are embedded into 

RK4 and trained using the 3-story RC building 

nonlinear dynamic responses obtained for 12 non-

pulse-type GMs. This procedure was 

implemented because the pulse-type and non-

pulse-type GMs have different damage potentials 

for RC buildings (NIST, 2011), and 13 sets of 

building responses under non-pulse-type GM (12 

for training and 1 for test) can provide sufficient 

data for MiSNNs to learn the equation of motion. 

The training setups are the same as those shown 

in Table 1 but with one randomly selected GM for 

test purposes. Table 2 lists the improvements in 

model accuracy by comparing the nonlinear 

responses estimated using the MiSNNs designed 

for linear and nonlinear cases (see Figures 1 and 

8). Although the model accuracy is improved for 

MiSNNs designed for nonlinear cases, the 

MiSNN shown in Figure 8 does not reach a high 

prediction accuracy (say 𝜌  > 0.95), which 

(b) 

(c) 
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indicates that further studies on MiSNN 

architecture design are needed. 

 
Figure 8: Standard MiSNN designed for nonlinear 

building response estimation (solid thick black arrow 

= identity, solid thin red arrow = fully connected 

with weights and bias, dotted green arrow = 

multiplication). 

 
Table 2. Model accuracy improvement for the test GM  

Response Story 

(𝜌𝑁𝐿 − 𝜌𝐿)
𝑎

𝜌𝐿
 

(%) 

Interstory 

drift 

1 6 

2 11 

3 81 

Interstory 

velocity 

1 6  

2 9  

3 46 
a 𝜌𝑁𝐿 and 𝜌𝐿 are the correlation coefficients between 

the nonlinear responses of the 3-story RC building 

under the test GM estimated by the standard MiSNNs 

designed for nonlinear (NL, see Figure 8) and linear 

(L, see Figure 1) cases embedded into RK4 and 

recorded by numerical simulation.  

6. CONCLUSIONS 

The MiSNN is designed by leveraging domain-

specific knowledge and fundamental principles of 

existing surrogate models. Embedding MiSNN 

into RK4 can successfully establish a reduced-

order surrogate model to estimate the response of 

MDOF systems under seismic excitation with low 

computational cost while maintaining high 

accuracy. Compared with deep learning models, 

the architecture of MiSNN can significantly 

reduce model complexity while increasing model 

interpretability. MiSNNs embedded into RK4 are 

a user-friendly approach and can be implemented 

easily by engineers and practitioners. 

The following conclusions are drawn based 

on the applications:  

 Including the signs of inter-story drift and 

velocity as inputs and sinusoidal function of 

time with a phase shift in MiSNN architecture 

can improve the model accuracy.  

 The shear-beam-based MiSNN can predict 

RC buildings’ responses with high accuracy.  

 Training MiSNN embedded into RK4 can 

effectively avoid a potential stability issue and 

speed the training process. 

 Further studies on MiSNN architecture design 

are needed to improve the accuracy of 

nonlinear response estimation. 

 

The MiSNN presented in this paper can also 

be solved using numerical integration methods 

other than RK4 and has the potential to be applied 

more widely to other engineering problems.  
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