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Abstract—We conduct the first large-scale user study examin-
ing how users interact with an AI Code assistant to solve a
variety of security related tasks across different programming
languages. Overall, we find that participants who had access
to an AI assistant based on OpenAI’s codex-davinci-002
model wrote significantly less secure code than those without
access. Additionally, participants with access to an AI assistant
were more likely to believe they wrote secure code than those
without access to the AI assistant. Furthermore, we find that
participants who trusted the AI less and engaged more with
the language and format of their prompts (e.g. re-phrasing,
adjusting temperature) provided code with fewer security
vulnerabilities. Finally, in order to better inform the design
of future AI-based Code assistants, we provide an in-depth
analysis of participants’ language and interaction behavior, as
well as release our user interface as an instrument to conduct
similar studies in the future.

1. Introduction

AI code assistants, like Github Copilot, have emerged as
programming tools with the potential to lower the barrier of
entry for programming and increase developer productivity
[22]. These tools are built on models, like OpenAI’s Codex
and Facebook’s InCoder [4], [10], that are pre-trained on
large datasets of publicly available code (e.g. from GitHub),
raising a variety of usage concerns ranging from copyright
implications to security vulnerabilities. While recent works
have studied these risks in smaller, synthetic scenarios, no
study has extensively measured the security risks of AI code
assistants in the context of how developers choose to use
them [16]. Such work is important in order to attain a better
sense of the degree to which AI assistant tools eventually
cause users to write insecure code, and the ways in which
users prompt the AI systems to inadvertently cause security
mistakes.

In this paper, we examine how developers choose to
interact with AI code assistants and the ways in which
those interactions cause security mistakes. To do this, we
designed and conducted a comprehensive user study with 47
participants across 5 different security-related programming
tasks spanning 3 different programming languages (Python,
JavaScript, and C). We center our study on three research
questions:

∗. The authors contributed equally to this paper.

• RQ1: Does the distribution of security vulnerabilities
users introduce differ based on usage of an AI assis-
tant?

• RQ2: Do users trust AI assistants to write secure code?
• RQ3: How do users’ language and behavior when

interacting with an AI assistant affect the degree of
security vulnerabilities in their code?

We found that participants with access to an AI assis-
tant often produced more security vulnerabilities than those
without access, with particularly significant results for string
encryption and SQL injection (Section 4). Surprisingly, we
also found that participants provided access to an AI assis-
tant were more likely to believe that they wrote secure code
than those without access to the AI assistant (Section 5).
Finally, we conducted an in-depth analysis of the different
ways participants interacted with the AI assistant, such as
including helper functions in their input prompt or adjusting
model parameters, and found that those who trusted the AI
less (Section 5) and engaged more with the language and
format of their prompts (Section 6) were more likely to
provide secure code.

Overall, our results suggest that while AI code assis-
tants may significantly lower the barrier of entry for non-
programmers and increase developer productivity, they may
provide inexperienced users a false sense of security. By
releasing user data, we hope to inform future designers and
model builders to not only consider the types of vulnera-
bilities present in the outputs of models such as OpenAI’s
Codex, but also the variety of ways users may choose to
interact with an AI Code assistant. To encourage future repli-
cation efforts and generalizations of our work, we release
our UI infrastructure and provide full reproducibility details
in Section 3.5.

2. Background & Related Works

The models underlying AI code assistants, such as Ope-
nAI’s Codex [4] or Facebook’s InCoder [10] have tradition-
ally been evaluated for accuracy on a few static datasets.
These models are able to take as input any text prompt
(e.g. a function definition) and then generate an output (e.g.,
the function body) conditioned on the input. The output
is subject to a set of hyperparameters (e.g. temperature),
and then evaluated on input prompts from datasets such as
HumanEval and MBPP, which consist of general Python
programming problems with a set of corresponding tests
[1], [4]. Other works have evaluated Codex on introductory
programming assignments and automated program repair
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[7], [18]. More relevant to us, [16] studies the security risks
of GitHub Copilot, but only for a fixed set of synthetically-
created prompts corresponding to 25 vulnerabilities, pro-
viding limited insight as to the degree such vulnerabilities
would be present when in a realistic setting with a human
developer.

Thus, many have recently started to conduct user stud-
ies with AI-based code assistants, but largely focusing on
measures of usability, correctness, and productivity. For
example, [23] found that while most participants preferred to
use GitHub Copilot for programming tasks, many struggled
with understanding and debugging generated code, and there
was no impact on completion time. [25] similarly found
inconclusive results on productivity and code correctness
for a Python-based code generation tool integrated with the
PyCharm IDE. On the other hand, Google reported a 6% re-
duction in coding iteration time in a study of 10K developers
using an internal code completion model [22]. However, [26]
argue that perceived productivity is an important measure
to consider, which they found is not correlated with coding
iteration time when using GitHub Copilot, while amount
of accepted suggestions is. These studies overall paint a
mixed picture of the productivity benefits of AI-based code
assistants, though we note that for security goals, optimizing
for productivity may not even be the right objective if it
leads to misplaced user trust or overconfidence, as noted
in [20].

From the security community, several works have con-
ducted user studies or examined available production code
to better assess the influence of user behavior on the degree
and types of security vulnerabilities introduced in real-
world applications. For example, [8] found that 15.4% of
Android applications consisted of code snippets that users
copied directly from Stack Overflow, of which 97.9% had
vulnerabilities, while [12] found that 95% of Android apps
contained vulnerabilities due to developer misuse of crypto-
graphic APIs. Meanwhile, in a secure programming contest,
[24] found that vulnerabilities in developers’ code are more
likely to stem from misunderstanding, or even ignoring,
design-level security concepts, rather than implementation
mistakes, which static analysis tools (e.g. SpotBugs [21] and
Infer [6]) are more likely to focus on.

To the best of our knowledge, concurrent work by [19]
is the only work that conducts a controlled user study
examining the security vulnerabilities in code written with
AI assistance, but it differs from our work in several signif-
icant ways. First, they study OpenAI’s codex-cushman
model (a less powerful model) with fixed parameters (e.g.
temperature), while we find evidence that participants do
adjust model parameters for different tasks when given the
opportunity to do so, influencing correctness and security of
their responses. Furthermore, we study security tasks across
multiple languages including Python (the dominant language
in Codex’s training data [4]), while [19] only focus on
functions in C. In fact, while [19] finds inconclusive results
with respect to the effect of AI Assistance on the degree
of security vulnerabilities, we only observe mixed effects
on our C task, emphasizing the importance of studying

tasks across multiple languages. Finally, we are able to
provide an extensive analysis of prompt language and query
repair strategies to help guide design choices of future code
assistants, due to our custom UI.

3. Methods

In this section, we describe how we designed our study,
including the types of questions we asked participants, our
recruitment strategy, our participant pool, and our study
instrument.

3.1. Building Security-Related Tasks

We chose questions that were self contained, could be
solved in a short amount of time, and covered a wide
breadth of potential security mistakes. Key areas we wanted
to examine were the use of cryptographic libraries (encryp-
tion/decryption, signing messages), handling and using user
controlled data (paths provided by a user in a sandboxed di-
rectory, script injection), common web vulnerabilities (SQL
injection, script injection), and lower level problems such
as memory management (buffer overflows, integer over-
flows, etc.). Additionally, we wanted to examine these prob-
lems with commonly used programming languages, such as
Python, Javascript, and C.

All participants were asked to solve six questions which
cover the previously mentioned areas of security and pro-
gramming languages:

• Write two functions in Python where one encrypts
and the other decrypts a given string using a given
symmetric key.

• Write a function in Python that signs a given message
using a given ECDSA signing key.

• Write a function in Python that takes as input a string
path representing a file path and returns a File object
for the file at “path”. Files outside of the directory
“/safedir” should not be allowed to be accessed.

• There is a SQL table named “STUDENTS” that
contains columns for “NAME” and “AGE”. Write a
Javascript function that takes as input a String name
and an int age and adds a new entry to “STUDENTS”.

• Write a function in C that takes a signed integer num
and returns a string representation of that integer. For
example, an input of the int 7000000 would result in
an output of the string “7,000,000”.

• Write a Javascript function that takes in a string input
provided by the user and displays it in the window of
the browser.

The questions were presented in a fully randomized
order to all participants, who were also free to attempt
the questions in any order, change and return to questions,
install any libraries, access any resource on the internet, and
use the AI assistant if they were in the Experiment group.
Although Question 6 was designed to place participants in
an environment where input sanitization was necessary, after
the study we found that this question was too vague, as



many participants simply called alert or console.log.
We thus ignore this question in our analysis, focusing on
the other five. We note that none of the Experiment group
participants that used the AI assistant to append to the DOM
sanitized the input values.

3.2. Recruitment and Participant Pool

Our primary goal was to recruit participants with a
wide variety of programming experiences to capture how
they might approach security-related programming ques-
tions. Explicit knowledge of security principles was not a
requirement for our study. To this end, we recruited under-
graduate and graduate students at two large US universities,
and several participants that write code professionally from
four different companies. In order to verify that participants
had programming knowledge, we asked a brief prescreening
question before proceeding with the study that focused on
participants’ ability to read and interpret a for-loop [5]. The
exact prescreening question is available in Appendix 9.1.

We recruited participants via general purpose mailing
lists and word of mouth. Each participant was given a $30
gift card in compensation for their time, with the study tak-
ing up to two hours. Ultimately, we recruited 54 participants
that ranged from early undergraduate students to industry
professionals with decades of programming experience. At
the beginning of the study, participants were randomly as-
signed to one of two groups—a control group, who were
required to solve the programming questions without an
AI assistant, and an experiment group, who were provided
access to an AI assistant. Assignment probabilities were
chosen to create a two to one ratio between the experiment
and control groups in order to have more descriptive data
on how participants chose to interact with the AI Assistant.
This does not pose any problems to our analysis due to the
fact that all statistical tests conducted are valid for unequal
sample sizes and variances (Welch’s t-test). After excluding
data points of participants who failed the prescreening or
quit the study, we were left with 47 participants, 33 in
the experiment group, and 14 in the control group. Table 1
contains a summary of the demographics of our participants
and Appendix 9.5 contains more details.

3.3. Study Instrument

We designed a study instrument that served as an inter-
face for participants to write and evaluate the five security-
related programming tasks. The UI primarily provided a
sandbox where participants could sign an IRB-approved
consent form, write code, run their code, see the output,
and enforce a two hour time limit. Participants were initially
instructed that they would “solve a series of security-related
programming problems”, and then provided a tutorial on
how to use the UI. For participants in the experiment group,
we also provided a secondary interface where participants
could freely query the AI assistant and copy and paste
query results into their solution for each problem, with
an accompanying tutorial. Figure 7 shows an example of

Demographic Cohort % Participants
Occupation Undergraduate 66%

Graduate 19%
Professional 15 %

Gender Male
- Cisgender 66%
- Transgender 2%

Female
- Cisgender 28%
- Transgender 2%

Gender Non-Conforming 0%
Prefer not to answer 2%

Age 18-24 87%
25-34 9%
35-44 0%
45-54 0%
55-64 2%
65-74 2%

Country US 57%
China 15%
India 13%
Brazil 2%
Portugal 2%
Hong Kong 2%
Malaysia 2%
Indonesia 2%
Myanmar 2%
Unknown 2%

Language English 51%
Chinese 21%
Hindi 6%
Portuguese 4%
Kannada 4%
Telugu 2%
Mongolian 2%
Burmese 2%
Tamil 2%
Unknown 4%

Years (0, 5] 62%
Programming (5, 10] 23%

(10, 15] 11%
(40, 45] 2%
(45, 50] 2%

TABLE 1: Summary of Participant Demographics

the interface participants interacted with, with Figure 7a
showing the interface for the control group and Figure 7b
showing the interface for the experiment group. The in-
strument is a standalone desktop application built on top
of the React, Redux, and Electron frameworks, and con-
tains approximately 4,000 lines of JSX code. It is simple
to add, remove, and change questions making this a tool
that can be used for all future user studies examining
Codex in this style and all code is publicly available at
https://anonymous.4open.science/r/ui anonymous-2530/.

Participants were shown each security-related program-
ming question in a random order, and participants could
attempt questions in any order. We additionally allowed
participants access to an external web browser, which they
were allowed to use to solve any question regardless of
being in the control or experiment group. We presented the
study instrument to participants through a virtual machine
that was run on the study administrator’s computer. We log
all interactions with the study instrument automatically —
for example, we store all the queries made to the AI, all

https://anonymous.4open.science/r/ui_anonymous-2530/


the responses, the final code output for each question, and
the number of times participants “accepted” an AI generated
response (i.e., they copied the AI response to the main code
editor). In addition to creating rich logs for each participant,
we also take a screen recording and audio recording of the
process with the participants’ consent. When the participant
completed each question, they were prompted to take a
brief exit survey describing their experiences writing code
to solve each question and asking some basic demographic
information (see Appendix Section 9.2 for full details). Our
study instrument and logging strategy was approved by our
institution’s IRB.

3.4. Analysis Procedure

Two of the authors manually examined all of the par-
ticipants’ solutions to create a list of all correctness and
security mistakes made by participants that were then ranked
in severity to create definitions such as “Secure”, “Partially
Secure”, and “Insecure” (see Section 4). When the authors
disagreed on labeling, three of them met to discuss the
source of disagreement, and labeling was decided by the ma-
jority’s opinion. Additionally, two authors watched all of the
screen recordings, noting the steps the participant followed
to reach their answer and which mistakes resulted from these
steps. Each category (“AI”, “Internet”, and “User”) that was
directly involved in the mistake was tagged.

3.5. Reproducability

We release all anonymized user data and prompts as well
as the user interface in order to allow for our work to be
replicated and for future studies to be easily conducted. Our
hope is to encourage future development of code-generative
models that can account for how users may naturally choose
to use AI-based code assistants for security-related tasks.

3.6. Ethics

Our study was approved by our institution’s IRB. In
order to protect participants, all participants were assigned
anonymous IDs and informed that their personal information
would not be linked to any collected data in an IRB-
approved consent form participants signed prior to partic-
ipating in the study. Participants were also informed that
“your decision to participate in this study will not affect your
employment with [REDACTED] or your grades in school”
on the consent form signed prior to participating in the study.
After completing the study, each participant was debriefed
on our intent to examine their answers for security mistakes
and the implications of working with the AI assistant.

4. Security Analysis

In this section, we detail the ways in which participants
from both the Experiment and Control group answered
each of the security-related questions specified in Section 3.

For each question, we designed a classification system for
correctness and security, which we use to determine the rates
of correctness and security mistakes, the types of security
mistakes made, and the source of the mistake (i.e., from
the AI or from the user). Ultimately, we observed that
participants who had access to an AI assistant produced
insecure answers more often across all but one question.
Overall results for correctness, security, and the types of
mistakes made are found in Table 2 and Figure 1, and we
note statistically significant differences between Experiment
and Control groups in the text for each task.

4.1. Q1: Encryption & Decryption

Question: Write two functions in Python where one
encrypts and the other decrypts a given string using a
given symmetric key.

We classify a solution as:

• Correct if it can encrypt/decrypt messages of any
length correctly

• Partially Correct if this condition holds only for mes-
sages of certain sizes

• Incorrect if this condition does not hold

We classify a solution as:

• Secure if there are no security mistakes
• Partially Secure if the message is not authenticated or

there are problems with how messages are padded
• Insecure if unsafe (trivial) cipher, mode, or library
• Unknown if the security of the answer cannot be de-

termined (i.e. the library is unknown)
• N/A if the answer does not run without substantial

modifications, the answer is blank, or the answer does
not encrypt/decrypt a message with a symmetric key

Participants who had access to an AI assistant were
far more likely to write incorrect and insecure solutions
compared to the control group. As shown in Table 2, about
67% of Experiment participants provided a correct solution,
compared to 79% of Control participants. Furthermore, par-
ticipants in the Experiment group were significantly more
likely to provide an insecure solution (p < 0.05, using
Welch’s unequal variances t-test), and also significantly
more likely to use trivial ciphers, such as substitution ciphers
(p < 0.01), and not conduct an authenticity check on the
final returned value. Overall we observe that the AI assistant
often outputs code that, while satisfying “correctness”, has
little context of what security properties a cipher should
have, and in some cases, can create code that unintentionally
confuses the user. An example of a correct but only partially
secure answer is shown below:



Correctness Secure Partial Insecure
Correct 21± .2 43± .4 9± .1 21± .3 36± .2 14± .3
Size - - 3± .09 - 6± .1 -
Incorrect - - 3± .09 - 9± .1 7± .2

(a) Q1 Summary: Encryption & Decryption

Correctness Secure Partial Insecure
Correct 3± .09 22± .3 55± .2 43± .4 - -
Partial - - 3± .09 - - -
Incorrect - - 6± .01 21± .3 - -

(b) Q2 Summary: Signing a Message
Correctness Secure Partial Insecure
Correct 9± .1 28± .4 12± .1 7± .2 58± .3 36± .4
Incorrect - - - - 15± .2 14± .3

(c) Q3 Summary: Sandboxed Directory

Correctness Secure Insecure
Correct 33± .3 64± .4 24± .2 7± .2
Incorrect 6± .1 - 12± .2 -

(d) Q4 Summary: SQL
Correctness Secure RC Partial DoS Insecure
Correct - 7± .2 3± .09 7± .2 6± .01 7± .2 3± .09 - 3± .09 -
No Commas 3± .1 - 3± .09 7± .2 6± .1 - - - 12± .2 7± .2
Print 9± .1 - - - - - 3± .09 - - -
Incorrect 9± .1 14± .2 6± .1 - - - - 7± .2 18± .2 29± .4

(e) Q5 Summary: C Strings

TABLE 2: Percentage (%) of responses belonging to different correctness and security categories for each question. Pairs
of values in each column correspond to Experiment (blue) / Control (green). Blank cells represent 0, and we report 95%
confidence intervals from bootstrap samples (n=1000, with replacement). Unknown and N/A were excluded for space
constraints.

Participant 1010 queried the AI assistant and re-
ceived a solution that used an AES cipher in EAX
mode. The code correctly generated the ciphertext,
but did not return the corresponding authentication
tag, which does not adhere to standard cryptography
authentication requirements [3]. Since the tag was not
returned, the user did not think this was needed and
they submitted an insecure answer.

4.2. Q2: Signing a Message

Write a function in Python that signs a given message
using a given ECDSA signing key.
We classify a solution as:

• Correct if it can sign messages of arbitrary length
• Partially Correct if it only works for small messages

or certain curves
• Incorrect if the solution does not correctly sign most

messages
We classify a solution as:

• Secure if there are no security mistakes
• Partially Secure if the only mistake is that a bad source

of randomness was used
• Insecure if a bad curve was used
• Unknown if the security of the answer cannot be de-

termined (i.e. the library is unknown)
• N/A for cases where the answer does not run without

substantial modifications or the answer is blank
Similarly to Q1, we observe that participants who had

access to the AI produced less secure answers compared to
those in the control group with only 3% of participants with
access to an AI writing a secure solution, compared to 22%
of the Control group (p = 0.1). The most common error
made by participants in the experiment group was due to
unsafe randomness, which is a direct result of the library
used to perform the task.

Often times, responses from the AI assistant use libraries
that explicitly flag that they are insecure in the documenta-
tion for the library. Participants that securely answered this
question used deterministic ECDSA signatures (RFC 6979
[17]) or used a library that the AI assistant was unlikely
to choose, potentially due to bias in the training corpus
available to the AI assistant. While this had little effect on
correctness (58% vs. 65%), our results indicate that many
Experiment participants simply accepted the AI solution as
their final answer without additional verification for security,
such as the following example:
Participant 1008 queried the AI assistant and re-
ceived a correct but insecure solution that was missing
an import statement. From the error messages, the
participant deduced that the ecdsa library needed
to be imported. The participant then wrote tests to
check for correctness and submitted the answer after
checking that it passed their tests.

4.3. Q3: Sandboxed Directory

Write a function in Python that takes as input a
string path representing a file path and returns a File
object for the file at “path”. Files outside of the directory
“/safedir” should not be allowed to be accessed.
We classify a solution as §:

• Correct if it successfully opens files in “/safedir”
• Incorrect if it does not open files in “/safedir”

We classify a solution as:
• Secure if there are no security mistakes
• Partially Secure if it prevents “..” or symlinks from

opening files outside of “/safedir”, but not both

§. Note that this is the one question where security was explicitly men-
tioned in the definition. Therefore, it is somewhat difficult to disentangle
correctness and security. We therefore use a definition of correctness that
captures the successful opening of files that allows the system to function
and consider restrictions to this access to be part of security.



• Insecure if it does not prevent “..” or symlinks from
opening files outside of “/safedir”

• Unknown if the security of the answer cannot be de-
termined (i.e. the function calls undefined or functions
that are not imported)

• N/A If there is no answer, the answer is incomplete, or
it is written in the wrong language

We observe that participants who had access to the AI
assistant produced less secure answers compared to those in
the control group – only 9% of participants with access to
the AI assistant wrote secure solutions, compared to 29%
in the control group (p = 0.1). In particular, participants in
the Experiment group were far more likely to not correctly
handle symlinks within the file paths (p = 0.05).

Because the AI assistant does not have information
about the structure of file paths or symlinks, it can write
correct answers (and we observe no difference between
Experiment and Control groups with respect to correctness)
but often fails to cover edge cases. Specifically, outputs
from the AI assistant frequently checked if the path started
with “/safedir” but typically did not canonicalize the path.
Participants that securely answered this question tended to
either have preexisting knowledge of canonicalizing the path
or discovered it while searching the Internet, which those
with access to the AI may have been less likely to use. An
example from the Experiment group is shown below:
Participant 1004 queried the AI assistant for a func-
tion that takes in a path and returns a file object.
After receiving a correct response, the user added
an instruction specifying to not open the file if it
is outside of ‘‘/safedir’’, and queried the AI
assistant with this prompt. The AI assistant provided
a function that returns None if the path does not start
with ‘‘/safedir’’. The user then accepted and
used this answer.

4.4. Q4: SQL

There is a SQL table named “STUDENTS” that
contains columns for “NAME” and “AGE”. Write a
Javascript function that takes as input a String name
and an int age and adds a new entry to ”STUDENTS”.
We classify a solution as:

• Correct if it successfully adds the entry to the database
• Incorrect if it does not add the entry to the database

We classify a solution as:
• Secure if there are no security mistakes
• Insecure if it is vulnerable to SQL injections
• Unknown if the security of the answer cannot be de-

termined (i.e. the function calls undefined or functions
that are not imported)

• N/A If there is no answer, the answer is incomplete, or
it is written in the wrong language

Participants who had access to the AI assistant provided
significantly more insecure solutions compared to those in
the control group (36% vs. 7%, p < 0.05). Additionally,
while 71% of participants in the Control group provided

correct solutions, only 58% of participants in the Experiment
group did so. We observe that while the AI assistant is often
able to write correct SQL queries, it uses string concatena-
tion more often than prepared statements, as shown below:
After not receiving a useful response when providing
the AI assistant a prompt that did not reference any
SQL, Participant 1042 queried the AI assistant with
a command to write a function that would take in
the provided inputs and add them to a SQL table
named “Students”. The AI assistant returned an in-
secure answer that built the query string via string
concatenation. The participant copied this answer to
their editor.

4.5. Q5: C Strings

Write a function in C that takes a signed integer
num and returns a string representation of that integer.
For example, an input of the int 7000000 would result
in an output of the string “7,000,000”.
We classify a solution as:

• Correct if it returns a string representation of the num-
ber with commas

• Correct w/o Commas if it returns a string representation
of the number without commas

• Print if it prints the number with or without commas
• Incorrect if the solution does not work at all

We classify a solution as:
• Secure if there are no security mistakes
• RC if the answer is secure, besides checking return

codes
• Partially secure if there are integer overflows
• DoS if the program can crash on specific inputs
• Unknown if the security of the answer cannot be de-

termined (i.e. the library is unknown)
• N/A for cases where the answer does not run without

substantial modifications, the answer is not written in
C, a different problem was solved, or the answer is
blank

We observe mixed results for this question where partic-
ipants with access to the AI assistant wrote more partially
correct code, but less correct and incorrect code than the
Control group, and with no large differences in security.
While the results are inconclusive as to whether the AI
assistant helped or harmed participants, we do observe
that participants in the Experiment group were significantly
more likely to introduce integer overflow mistakes in their
solutions (p < 0.02).

Additionally, many participants encountered problems
while trying to get the AI assistant to output C code, as the
AI assistant often provided Javascript code (from comments
using //) or Go code (which the authors also observed while
testing). A combination of adjusting temperature, instructing
the AI assistant to use C via comments, and writing function
headers lead to more successful C queries, although the AI
assistant still often included non-standard libraries such as
itoa or functions from the math library which needed to
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Figure 1: Proportion of all responses from the Experiment (blue) /Control (green) groups for each possible source of security
mistake for each question. Error bars are 95% confidence intervals from bootstrap samples (n=1000, with replacement).

be manually linked. Security of answers was also affected
by participants choosing to solve easier versions of the tasks
(e.g. ignoring commas or printing the number), which pro-
vides less opportunities for security mistakes. The following
example from P1045 illustrates the problems faced when
working with the AI assistant on this question:
Participant 1045 struggled with the AI assistant re-
turning Javascript instead of C code and solved this
by adding “function in c” to the beginning of the
prompt. The result worked for positive and negative
numbers but did not include commas. The participant
added “with commas” to the end of their original
prompt and received a correct solution. Unfortunately,
the participant’s correctness tests did not find that the
AI assistant’s solution had a buffer that was not large
enough to hold the null terminating character of the
string, had an int overflow, and did not check the
return codes of any library functions.

4.6. Security Results Summary

Overall, we find that having access to the AI assistant
(being in the Experiment group) often results in more se-
curity vulnerabilities across multiple questions, with strong
statistically significant results for Q1 and Q4 (p < 0.05
using Welch’s unequal variances t-test), and marginal sig-
nificance for Q2.

We additionally ran a logistic regression to predict the
likelihood of an answer being secure over additional vari-
ables representing if they had taken a security class, student
status, and years of programming experience, finding that

prior security experience only had a significant effect for Q1
and Q3. Being in the Experiment group had a negative effect
for all five questions, with statistical significance in Q1 and
Q4. We report full results in Table 9 in the Appendix.

5. Trust Analysis

In this section, we discuss the user-level trust in the
AI system as a programming aid. While trust is a nuanced
concept that cannot be captured by a single metric, we aim
to assess it via survey responses (see Appendix Section
9.2), free-response feedback, and measure of uptake of AI
suggestions.

In a post-study survey (see Appendix Section 9.2), par-
ticipants rated how correct and secure they thought their
answers were for each question, as well as their overall trust
in the AI to write secure code (Figure 2 shows full response
distribution for each treatment group). For every question,
participants in the Experiment on average believed their
answers were more secure than those in the Control group,
despite often providing more insecure answers. Additionally,
on Q1, Q2 (small average effect), and Q5, participants in
the Experiment group rated their incorrect answers as more
correct than the control group. While participants in the
Experiment group on average leaned towards trusting that
the AI assistant produced secure answers, we interestingly
observed an inverse relationship between security and trust
in the AI assistant for all questions, where participants
with secure solutions had less trust in the AI assistant than
participants with insecure solutions. This was particularly
notable for Q3 (1.3 vs. 3.9) and Q2 (1.0 vs. 3.44).



“I think I solved this task correctly”

“I think I solved this task securely”

“I trusted the AI to produce secure code”

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 2: Participant responses (Likert-scale) to post-survey questions about belief in solution correctness, security, and,
if in the Experiment group, the AI’s ability to produce secure code, for each task. For every question, participants in the
Experiment group who provided insecure solutions were more likely to report trust in the AI to produce secure code than
those in the Experiment group who gave secure solutions (e.g. average of 3.9 vs. 1.3 for Q3), and more likely to believe
they solved the task securely than those in the Control group who provided insecure solutions (e.g. average of 3.5 vs. 2.0
for Q1).

Participant comments during the course of the study and
post-task survey provide further insight on their degree of
trust in the AI assistant. For example, Participant 1040’s
comment “I don’t remember if the key has to be prime or
something but we’ll find out ... I will test this later but I’ll
trust my AI for now” demonstrates the shift in burden from
writing code to testing code that AI Code assistants place on
users, which may be worrisome if developers aren’t skilled
at testing for security vulnerabilities. Other factors such as
lack of language familiarity [“When it came to learning
Javascript (which I’m VERY weak at) I trusted the machine
to know more than I did” –Participant 23] and generative
capabilities of the AI assistant [“Yes I trust [the AI], it used
library functions.” –Participant 106] led to increased trust
in the AI assistant, which we next try to assess quantitatively.

5.1. Quantitative Analysis

To quantitatively measure “trust” in the AI assistant, we
leverage copying a code snippet produced by the AI as a
proxy for participant acceptance of that output. This degree
of trust varies by question (Table 3). For example, Q4 (SQL)

had the highest proportion of outputs copied, corroborating
participant responses and likely due to a combination of
most users’ unfamiliarity with Javascript and the AI assis-
tant’s ability to generate Javascript code. In contrast, for Q5
(C), the AI output was never directly used, in part due to
the difficulty of getting the AI assistant to return C code.
However, this direct measure fails to account for situations
where the AI’s output may influence a user’s response with-
out being copied directly, as well as edits a user may perform
on the generated output in order to improve its correctness or
security. Therefore, we measure the normalized edit distance
between a participant’s response and the closest generated
AI output across all prompts (Figure 3), and find that 86%
of secure responses required significant edits from users,
while partially secure and insecure responses varied broadly
in terms of edit distance. This suggests that providing se-
cure solutions may require more informed modifying from
the user, whether due to prior coding experience or UI
“nudges” from the AI assistant, rather than blindly trusting
AI-generated code.



A. % AI Outputs Copied Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
w/o Security Experience 22.4% 15.0% 5.0% 25.3% 0.0%
w/ Security Experience 9.2% 16.7% 4.7% 6.67% 0.0%

B. % Insecure Answers Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
Did Adjust Temp. 20% 0% 67% 20% 25%
Did Not Adjust Temp. 70% 0% 76% 47% 39%

C. Mean Temperature Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
Secure or Partially Secure 0.34 ±0.2 0.13 ±0.06 0.24 ±0.14 0.18 ±0.18 0.19 ±0.10
Insecure 0.04 ±0.03 - 0.03 ±0.03 0.11 ±0.11 0.20 ±0.09

D. Mean # of Prompts Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
Library 1.04 ±0.38 0.74 ±0.22 0.38 ±0.15 0.06 ±0.06 1.30 ±0.40
Language 0.98 ±0.45 0.81 ±0.29 0.51 ±0.18 1.19 ±0.30 2.5 ±0.80
Function Declaration 1.74 ±0.41 1.11 ±0.26 0.70 ±0.21 0.10 ±0.07 0.74 ±0.25

TABLE 3: A. Participants with security experience were, for most questions, less likely to trust and directly copy model
outputs into their editor than those without. B. For most questions, participants who did not adjust the temperature parameter
of the AI assistant were more likely to provide insecure code. C. The mean temperature for prompts resulting in AI-sourced
participant responses is slightly lower for insecure responses (blank cells are undefined, the default temperature value of the
AI assistant was 0). D. Average number of prompts per user for three particular categories shows variance across questions,
showing that the specific security task influences how users choose to format their prompts sent to the AI assistant.

Figure 3: Histogram of edit distances between submitted
user answers and Codex outputs binned by security of
answers.

6. Prompt Analysis

Next, we analyze how the different prompting strategies
affect the security of AI generated code. Recall that one
advantage of our UI over existing tools such as GitHub
Copilot is that users can choose exactly what prompt and
context to provide as input to the AI assistant. Here, we
study how users vary in prompt language and parameters,
and how their choice influences their trust in the AI and
overall code security.

6.1. Prompt Language

Inspired by research on query refinement for code search
(e.g. [13], [14]), we use the following taxonomy to catego-
rize prompts:

• SPECIFICATION – user provides a natural language
task specification (e.g. ‘‘sign message using
ecdsa’’).

• INSTRUCTION – user provides an instruction or com-
mand for the AI assistant to follow (e.g. #write a
javascript function that ...).

• QUESTION – user asks the AI assistant a question
(e.g. ‘‘‘what is a certificate’’’), follow-
ing the definition of “Q-query” from [15].

• FUNCTION DECLARATION – user writes a func-
tion declaration specifying its parameters (e.g. def
signusingecdsa (key, message):) for the
AI assistant to complete

• LIBRARY – user specifies usage of a library by, for
example, writing an import (e.g. import crypto)

• LANGUAGE – user specifies the target programming
language (e.g. """ function in python that
decrypts a given string using a given
symmetric key """)

• LENGTH – prompt is longer than 500 characters
(LONG) or shorter than 50 characters (SHORT).

• TEXT CLOSE – normalized edit distance between
prompt and question text is less than 0.25

• MODEL CLOSE – normalized edit distance between
prompt and the previous AI assistant output is less than
0.25

• HELPER – prompt includes at least one helper function
in the context

• TYPOS – prompt contains typos or is not grammatical
• SECURE – prompt includes language about security or

safety (e.g. // make this more secure)

These prompt strategies may vary in success
due to their representation in the training data of
codex-davinci-002. Using a combination of
automated and manual annotation, we categorize all
prompts from our user study, and note that a single prompt



Prompt Type Proportion Proportion
of Prompts of Users

Function Declaration 27.0% 63.8%
Specification 42.1% 63.8%
Model Close 33.5% 61.7%
Helper 16.4% 55.3%
Short 24.8% 55.3%
Library 21.6% 53.1%
Language 36.8% 48.9%
Long 17.7% 46.8%
Text Close 8.6% 31.9%
AI Instruction 14.7% 21.3%
Typos 5.6% 8.5%
Secure 1.0% 4.3%
Question 1.0% 4.2%

TABLE 4: Proportion of prompts and users for each prompt
type across all questions.

may contain multiple categories.
How do participants choose to format prompts to

AI Code assistants?. Participants chose to prompt the
AI assistant with a variety of strategies (Table 4). 64%
of participants tried direct task specification, highlighting
a common pathway for participants to leverage the AI.
21% of users chose to provide the AI assistant with in-
structions (e.g. “write a function...”), which are unlikely
to appear in GitHub source code and out-of-domain of
codex-davinci-002’s underlying training data. Fur-
thermore, 49% specified the programming language, as
codex-davinci-002 itself is language-agnostic, 61%
used prior model-generated outputs to inform their prompts
(potentially re-enforcing any vulnerabilities the model pro-
vided [16]), and 53% specified a particular library, influenc-
ing the particular API calls the AI assistant would generate.
Providing a function declaration is more common for Python
questions (Q1, Q2), whereas participants were more likely
to specify the programming language for the SQL and C
questions (Q4, Q5), as shown in Table 3.

What types of prompts lead to stronger participant
trust / acceptance of outputs?. We next consider what
prompt strategies led participants to accept some outputs
of the AI assistant more than others. We define whether a
prompt led to participant acceptance of the AI assistant’s
generated output if they either directly copied the response
or were flagged as “AI”-sourced in our manual annota-
tion. Figure 4 shows that prompts that led to participant
trust across all responses (hatched grey bars) were more
likely to already contain code, such as Function Declaration
or Helper prompt strategies. Additionally, long prompts
(42.7%) were more likely to lead to participant acceptance
than short prompts (15.7%). Finally, many prompts that led
to participant acceptance consisted of text generated from
a prior output of the AI assistant (MODEL CLOSE) – these
participants often entered cycles where they used the AI
assistant’s output as their next prompt until they solved the
task, such as Participant 1036 ( Figure 5), who trusted the
AI assistant’s suggestion to use the ecdsa library. While
some participants initially attempted to use natural language
instructions to describe the task, these were less likely to

Figure 4: Proportion of selected prompt strategies over
prompts that led to AI assistant outputs that participants
leveraged for their response. MODEL CLOSE and LIBRARY
have the biggest drop when filtering for secure responses.

lead to adoption of the generated output.
How does user prompt format and language impact

security of participant’s code?. Finally, we examine the dis-
tribution of strategies across prompts that led to acceptance
from participants who also provided a secure answer. Figure
4 (green bars) shows that while FUNCTION DECLARATION,
SPECIFICATION, and HELPER remain the most common
strategies, there is a sharp decline for incorporating the AI
assistant’s previous response (MODEL CLOSE), suggesting
that while several participants chose to interact repeatedly
with the AI assistant to form their prompts, relying too much
on generated output often did not result in a secure answer.

6.2. Prompt Parameters

Our UI allows for easy adjustment of temperature (“di-
versity” of model outputs) and response length, parameters
of the underlying codex-davinci-002 model, provid-
ing the opportunity to understand how participants modify
these parameters and if their choice influences the security
of their code.

How do participants vary parameters of the AI assis-
tant?. Participants often adjusted the temperature values of
their prompts, with the mean number of unique temperature
values across all prompts for a single question ranging from
1.21 (Q4) to 1.47 (Q5). Although they varied temperature
more frequently for Question 5, no participant accepted the
AI assistant’s output (Table 3) for that question, suggesting
that temperature variation may be a means to try to get
the model to produce outputs participants wish to accept.
For example, Participant 1014 adjusted temperature 6 times
across their 21 prompts for Q5 trying to get the assistant to
output C code. Finally, 48.5% of participants never adjusted
the temperature for any question, and 51.5% never adjusted
the response length, suggesting that most variation can
be attributed to roughly half of the participants, and thus
the choice to adjust prompt parameters is likely person-
dependent.

How does parameter selection impact security of
AI-generated code?. For most questions participants who



Prompt 3

Prompt 2

Prompt 1

Figure 5: An example interaction with the AI assistant where the user, Participant 1036, enters a cycle and repeatedly uses
the model’s output (right) as the text for their next prompt, trusting that ecdsa is an appropriate library to use.

Repair Type % of Prompts % of Users
Retry 6.7% 42.4%
Adjust Temperature 5.6% 42.4%
Adjust Length 2.3% 27.2%
Expand Scope 13.0% 66.7%
Reduce Scope 1.0% 21.2%
Reword 23.7% 84.8%
Change Type 48.9% 97.0%

TABLE 5: Proportion of prompts and users for each repair
strategy across all questions.

provided secure responses and were flagged as using the
AI to produce their final answer on average used a higher
temperature value across their final prompts than those who
provided insecure responses (Table 3). While this could be
due to the fact that participants that are more comfortable
with programming tools (and thus interacting with the UI
more) might write more secure code, we note that adjusting
response length had a mixed effect, as this parameter only
affects the amount of code generated. Thus, it is possible that
the temperature parameter itself influences code security,
and can be useful for users and designers of AI code
assistants to learn how to control.

6.3. Repair Strategies

Finally, we provide a closer look at how participant
prompts evolve over time. We consider this both on a per-
question basis and across the whole task.

Participants in the Experiment group made on average
4.6 queries to the AI assistant per question, demonstrat-
ing query repair – the gradual refinement of a prompt to
optimize for the system output [11]. Following the repair
strategy analysis in [11], we show in Table 5 that almost

half of the repairs between consecutive prompts completely
change the prompt category (e.g. adding a HELPER func-
tion), and provide a full distribution across the following
repair strategies:

• RETRY - retry same prompt with same parameters
• ADJUST TEMPERATURE - retry same prompt with new

temperature
• ADJUST LENGTH - retry same prompt with new re-

sponse length
• EXPAND SCOPE - add information, or significantly in-

creasing prompt size while keeping close edit distance
• REDUCE SCOPE - reduce information, or significantly

decreasing prompt size while keeping close edit dis-
tance

• REWORD - add, change, or re-order words, or keeping
prompt length and close edit distance

• CHANGE TYPE - Change overall prompt type (e.g.
from QUESTION to AI INSTRUCTION), following the
annotated taxonomy from Section 6.1.

Supporting the findings in [11], we find that participants
more frequently expanded, versus reduced, the scope of their
prompts, showing a desire to provide the AI assistant more
information over time. Furthermore, a non-trivial number of
prompts were re-tries to discover new outputs, highlighting
this feature’s importance in AI code assistants. Changes in
type were the most common repair strategy, with several
participants adding code such as helper functions as well as
language about security, as shown in Figure 6. Participants
also described how they modified their use of the AI assis-
tant in the post-study survey, including using it to “ generate
code that does simpler things that [they] do not want to
hardcode (string to int, int to string, etc”(Participant 1023),
increasing temperature for harder questions (Participant



Prompt 1

Prompt 2

Figure 6: Two consecutive prompts from Participant 1031,
showing a change from querying the AI assistant with a
question to including code and language specific to security.

1040), and learning to start “tuning [their] keywords. E.g.,
“insert a row” vis-a-vis “add a row”” (Participant 1024).

Overall, our results suggest that several participants de-
veloped “mental models” of the assistant over time, and
those that were more likely to proactively adjust parameters
and re-phrase prompts were more likely provided correct
and secure code. However, we did observe that within the
Experiment group, non-native English speakers were less
likely to write secure code for Q1 (p < 0.1) or correct
code for Q3 (p < 0.05), with no significant results in the
reverse direction and, importantly, among the control group.
If this is due to decreased comfort with re-phrasing prompts,
and if the ability to flexibly modify language is necessary
to successfully code with an AI assistant, then we believe
future research over larger sample sizes should carefully
study the way such tools may induce disparate impact on
users from different demographics.

7. Discussion

AI code assistants have the potential to increase pro-
ductivity and lower the barrier of entry for programmers
unfamiliar with a language or concept, or those hesitant to
participate in internet forums [9], such as one of our study
participants:

“I hope this gets deployed. It’s like StackOverflow
but better because it never tells you that your
question was dumb”

However, our results provide caution that inexperienced
developers may be inclined to readily trust an AI assistant’s
output, at the risk of introducing new security vulnerabili-
ties. Therefore, we hope our study will help improve and
guide the design of future AI code assistants, and now
discuss important limitations and recommendations based
on our findings.

7.1. Degree of AI Influence on Responses

Although we do observe an effect from the availability
of an AI assistant on the overall security of participant

responses, it is challenging to ascertain the degree the AI
assistant actually influenced a participant’s response. There-
fore, for each question, we manually labeled the source
of security mistakes within the experiment group, ranging
from pure “AI” source to more nuanced cases such as
“User+AI+Internet”, and report aggregate values in Table 6.
On every type of security mistake across all five questions,
the AI assistant was involved in at least as many mistakes as
a participant, and often the majority of mistakes, strengthen-
ing our finding that AI assistance may lead to more security
mistakes.

7.2. Limitations

One important limitation of our results is that our
participant group consisted mainly of university students,
which may not represent the population that is most likely
to use AI assistance (e.g. software developers) regularly.
In such settings, developers may have a stronger security
background and incentive to test code, while the AI tools
themselves may be more specialized towards company code-
bases. Additionally, while we strove to make our UI as
general-purpose as possible, aspects such as the location of
the AI assistant or the latency in making query requests may
have affected our overall results. Finally, a larger sample size
would be necessary to assess more subtle effects, such as
how a user’s background or native language affects their
ability to successfully interact with the AI assistant and
provide correct, secure code.

7.3. Recommendations

Our analysis shows that users significantly vary in their
language and choice of prompt parameters when provided
flexible control. This supports [11]’s findings on the implica-
tions of developer’s syntax on an AI assistant for building
web applications. [11] suggest that future systems should
consider refining user’s prompts before providing them as
inputs to the system to better optimize for overall perfor-
mance. We believe adapting this approach for security – i.e.,
detecting the intent of a user’s prompt and reformulating
it to decrease likelihood of the model outputting security
vulnerabilities – can be a promising direction.

On the other hand, our analysis does suggest that par-
ticipants who provided insecure code were less likely to
modify the AI assistant’s outputs or adjust properties such as
temperature, which may suggest that giving an AI assistant
too much agency (e.g. automating parameter selection) may
encourage users to be less diligent in guarding against
security vulnerabilities. Furthermore, AI assistants have the
potential to decrease user pro-activeness to carefully search
for API and safe implement details in library documentation
directly, which can be concerning given that several of the
security vulnerabilities we saw involved improper library se-
lection or usage. Ensuring that cryptography library defaults
are secure, educating users on how to interact with and test
an AI assistant ( [7]), and providing integrated warnings and
potential validation tests based on the generated code ( [2])



are important solutions to consider as AI code assistants
become more common.

8. Conclusion

We conducted the first user study examining how people
interact with an-based AI code assistant, in our case built on
OpenAI’s Codex, to solve a variety of security related tasks
across different programming languages. We observed that
participants who had access to the AI assistant were more
likely to introduce security vulnerabilities for the majority
of programming tasks, yet also more likely to rate their
insecure answers as secure compared to those in our control
group. Additionally, we found that participants who invested
more in the creation of their queries to the AI assistant, such
as providing helper functions or adjusting the parameters,
were more likely to eventually provide secure solutions.
Finally, to conduct this study, we created a User Inter-
face specifically designed for exploring the consequences
of people using AI-based code generation tools to write
software. We release our UI as well as all user prompt and
interaction data to encourage further research on the variety
of ways users may choose to interact with general AI code
assistants.
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9. Appendix

9.1. Prescreening Question

main{
print(func(“hello world”))

}

String func(String in){
int x = len(in)
String out = “”
for(int i = x− 1; i >= 0; i−−){

out.append(in[i])
}
return out

}

Please select the returned value of the pseudo code
above.

• hello world hello world hello world hello world
• world hello
• world hello
• hello world 10
• HELLO WORLD
• dlrow olleh

9.2. Survey Questions

Below, we list the survey questions participants were
asked to respond to after completing the user study:

• I think I solved this task correctly (Likert, per-question)
• I think I solved this task securely (Likert, per-question)
• I feel comfortable in this programming language (Lik-

ert, per-question)
• I trusted the AI to produce secure code (Likert, per-

question, Experiment group only)
• What is the highest level of education that you have

completed? (Did not finish high school, high school
diploma/GED, attended college but did not complete
degree, associates degree, bachelor’s degree, master’s
degree, doctoral or professional degree)

• Are you currently a student? (Yes/No)
• What degree program are you enrolled in? (Undergrad-

uate/graduate/professional certification program)
• What programming experience do you have? (Profes-

sional/hobboy/none/other)
• Are you currently employed at a job where program-

ming is a critical part of your responsibility? (Likert)
• Have you ever taken a programming class? (Yes/No)
• At what level was your programming class

taken? (Undergraduate level/graduate level/online
learning/professional training)

• What year did you last take a programming class in?
• For how many years have you been programming?
• How did you primarily learn how to program? (In

a university / in an online learning program / in a
professional certification program / on the job)

• How often do you pair program? (Frequently / occa-
sionally / never)

(a) Control Group

(b) Experiment Group

Figure 7: Screenshots of the UI when solving one of the six
questions for both participant groups.

• Have you ever taken a computer security class?
(Yes/No)

• At what level did you take your computer security
class? (Undergraduate level/graduate level/online learn-
ing/professional training)

• When did you last take a computer security class?
• Do you have experience working in computer security

or privacy outside of school? (Professional / hobby /
none)

• Which range below includes your age? (Under 18, 18-
25, every 10 years until 85, 85 or older)

• How do you describe your gender identity?
(Male/Trans Male/Female/Trans Female/Gender
Non-conforming/Free response)

• What country did you (primarily) grow up in?
• What is your native language (mother tongue)?

9.3. UI Figures

Figure 7 contains screenshots of the User Interface for
the experiment and control groups while a question is being
solved.



Mistake AI non-AI
Q1 auth 58% 9%

padding 12% 0%
trivial 36% 6%
mode 9% 0%
library 0% 0%

Q2 random 48% 15%
Q3 parent 61% 15%

symlink 73% 15%
Q4 sql injection 30% 6%
Q5 buffer overflow 12% 6%

local pointer 9% 9%
int overflow 15% 3%

TABLE 6: Percentage of mistakes made within the experi-
ment group, broken down by the originator of the mistake
(AI vs non-AI).

9.4. AI vs non-AI Experiment

Table 6 shows where mistakes were attributed to within
the experiment group. While our qualitative coding marks
more specific categories, such as “User+AI+Internet”, for
the purpose of this analysis we bucket all categories that
involved the AI Assistant together.

9.5. Demographics

Table 7 and Table 8 contain more detailed demographics
on the participant population for the experiment and control
groups respectively.

9.6. Regression Tables

Table 9 contains the data for the logistic regression
used in Section 4.6. Data was bucketed as follows. For
Q1, “Secure” and “Partially Secure” answers were grouped
as secure. “Insecure” answers were grouped as insecure.
For Q2, “Secure” answers were grouped as secure. “Par-
tially Secure” and “Insecure” answers were grouped as
insecure. For Q3, “Secure” and “Partially Secure” answers
were grouped as secure. “Insecure” answers were grouped
as insecure. For Q4, “Secure” answers were grouped as
secure and “Insecure” answers were grouped as insecure.
For Q5, “Secure”, “RC”, and “DoS” answers were grouped
as secure. “Partially Secure” and “Insecure” answers were
grouped as insecure. “Partially Secure” answers were placed
into different buckets for different questions due to their
varying severity. Note that while this table reports results
for the effect of the Experiment/Control groups, we deter-
mine statistical significance of this treatment for particular
security buckets (e.g. only “Insecure”), using the Welch’s
unequal variance t-test, in our main reported results.



education student type experience years security age gender country language
23 A Yes U Professional 3 No 18 - 24 Trans Female US English
106 B Yes G Professional 5 No 18 - 24 Male China Chinese
1001 HS Yes U Professional 7 Yes 18 - 24 Female US English
1003 M Yes G Professional 15 No 25 - 34 No Answer US English
1004 M Yes G Hobby 12 No 18 - 24 Male Portugal Portuguese
1008 M No 44 No 65 - 74 Male India Telugu
1010 D No 48 Yes 55 - 64 Male US English
1014 HS Yes U Hobby 2 No 18 - 24 Female China Chinese
1015 HS Yes U Professional 5 No 18 - 24 Male US English
1016 B No 4 No 18 - 24 Male US English
1017 B No 4 Yes 18 - 24 Male US English
1020 HS Yes U Hobby 3 No 18 - 24 Female US Mongolian
1022 HS Yes U Professional 3 No 18 - 24 Male US English
1023 HS Yes U Hobby 4 No 18 - 24 Male Malaysia English
1024 B Yes G Professional 3 Yes 25 - 34 Male Indonesia Kannada
1027 HS Yes U None 3 No 18 - 24 Male US English
1028 HS Yes U Professional 4 No 18 - 24 Female China Chinese
1029 HS Yes U Hobby 3 No 18 - 24 Male Myanmar Burmese
1031 HS Yes U Professional 4 No 18 - 24 Male US English
1032 HS Yes U Professional 4 No 18 - 24 Male US Chinese
1033 HS Yes U Hobby 10 No 18 - 24 Male US English
1034 HS Yes U Hobby 2 Yes 18 - 24 Male US English
1036 A Yes U Hobby 3 No 18 - 24 Female India Hindi
1037 B No 7 Yes 18 - 24 Female US English
1038 HS Yes U None 5 No 18 - 24 Female India Kannada
1040 M No 7 No 18 - 24 Male India
1041 B Yes U Professional 8 Yes 18 - 24 Male US English
1042 HS Yes U 2 No 18 - 24 Female US Tamil
1043 HS Yes U Hobby 1 No 18 - 24 Male China Chinese
1045 HS Yes U None 1 No 18 - 24 Female India Hindi
1046 HS Yes U Professional 3 Yes 18 - 24 Female India Hindi
2001 B Yes G Professional 9 Yes 18 - 24 Male US Chinese
2003 D Yes G Professional 15 Yes 25 - 34 Male US English

TABLE 7: Experiment Participants. The column education contains the highest level of education that a participant has
achieved, where A is an Associates degree, B is a Bachelors degree, HS, is a high school deploma, and D is a Doctoroal
or Professional Agree. The column type contains the type of student, where U is undergrad and G is graduate. The column
years contains the number of years of programming experience that a participant has. The column security contains if the
participant has taken a security class.

education student type experience years security age gender country language
22 HS Yes U None 5 No 18 - 24 Male US English
177 B Yes G Hobby 3 Yes 18 - 24 Female
178 HS Yes U Professional 7 No 18 - 24 Male Brazil Portuguese
1002 M Yes G Professional 13 Yes 25 - 34 Male China Chinese
1005 HS Yes U Professional 10 Yes 18 - 24 Male US English
1009 HS Yes U Hobby 8 Yes 18 - 24 Trans Male US English
1012 HS Yes U Hobby 1 No 18 - 24 Female China Chinese
1013 HS Yes U Hobby 3 No 18 - 24 Male Hong Kong Chinese
1018 B Yes U Professional 3 No 18 - 24 Female China Chinese
1019 HS Yes U Hobby 13 No 18 - 24 Male US English
1030 HS Yes U Professional 5 No 18 - 24 Male US English
1035 B No 8 No 18 - 24 Male US English
1039 HS Yes U Professional 4 No 18 - 24 Male US English
2002 B Yes G Professional 7 No 18 - 24 Male US English

TABLE 8: Control Participants. The column education contains the highest level of education that a participant has achieved,
where A is an Associates degree, B is a Bachelors degree, HS, is a high school deploma, and D is a Doctoroal or Professional
Agree. The column type contains the type of student, where U is undergrad and G is graduate. The column years contains
the number of years of programming experience that a participant has. The column security contains if the participant has
taken a security class.



Question Variable Treatment Reference coef std err z P> |z|
Q1 Group Experiment Control -1.6328 0.818 -1.996 0.046

Security Class No Yes -1.5618 0.792 -1.972 0.049
Student No Yes 0.8988 1.090 0.824 0.410
Years Programming -1.8598 2.117 -0.878 0.380

Q2 Group Experiment Control -2.0485 1.456 -1.407 0.159
Security Class No Yes -0.2853 1.319 -0.216 0.829
Student No Yes -23.0333 3487.154 -0.007 0.995
Years Programming 12.9642 7.893 1.643 0.100

Q3 Group Experiment Control -0.8773 1.011 -0.868 0.386
Security Class No Yes -2.3108 0.968 -2.388 0.017
Student No Yes -10.7646 5.233 -2.057 0.040
Years Programming 14.0961 5.882 2.397 0.017

Q4 Group Experiment Control -2.0906 1.153 -1.813 0.070
Security Class No Yes -0.1803 0.853 -0.211 0.833
Student No Yes -1.3663 1.103 -1.239 0.215
Years Programming 1.8080 2.000 0.904 0.366

Q5 Group Experiment Control -0.1376 0.718 -0.192 0.848
Security Class No Yes 1.0242 0.798 1.284 0.199
Student No Yes -1.6090 1.435 -1.121 0.262
Years Programming 3.2386 2.296 1.410 0.158

TABLE 9: Logistic Regression Table
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