GLOBAL WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS FOR INTERMITTENT
INITIAL DATA IN HALF-SPACE
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ABSTRACT. We prove the existence of global-in-time weak solutions of the incompressible Navier-Stokes equations in the
half-space Ri with initial data in a weighted space that allows non-uniformly locally square integrable functions that grow
at large scales in an intermittent sense. The space for initial data is built on cubes whose sides R are proportional to the
distance to the origin and the square integral of the data is allowed to grow as a power of R. The existence is obtained via a
new a priori estimate and a stability result in the weighted space, as well as new pressure estimates. Also, we prove eventual
regularity of such weak solutions, up to the boundary, for (x, ) satisfying t > eg|x|? + M, where €9 > 0 is arbitrarily
small and M > 0. By adding conditions on the data within a weighted L? framework, we improve algebraic bounds on
the size of this region and we refine the pointwise decay rate of the solution within this region. As an application of the
existence theorem, we construct global discretely self-similar solutions, thus extending the theory on the half-space to the
same generality as the whole space.
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1. INTRODUCTION

We consider solutions to the three-dimensional incompressible Navier-Stokes equations (NSE)
o —Au+u-Vu+Vp=0,

V.ouzo, (1.1)

posed on RY = {(z1,22,23) : x5 > 0} satisfying homogeneous Dirichlet boundary condition on OR% x (0, c0) and
the initial condition

u(z,0) = uo(x),
where ug € Lfoc(Ri) is divergence-free with u3 = 0 on 8]1%1. If uy € L2, then the existence of global-in-time
weak solutions satisfying the strong energy inequality has been shown in the fundamental works of Leray [Ler]| and
Hopf [H] (see also [CF, T, RRS, OP]), and are commonly referred to as the Leray-Hopf weak solutions. Such solutions
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enjoy additional structure, such as weak-strong uniqueness. One can also construct Leray-Hopf weak solutions that are
suitable (see [CKN, BIC]), that is they satisfy the local energy inequality (see (1.4) below). This provides additional
interior regularity, as shown in the celebrated work of Caffarelli, Kohn, and Nirenberg [CKN] (see also [RRS, O]).
However, the questions of uniqueness and smoothness of such solutions remain open.

The Leray theory has been extended, in [Lel], to the uniformly locally square integrable data in R3; see also
[KS, KwT] for some extensions. For global existence, these works assume some type of decay of the initial data as
|| — oo, either a pointwise decay of a locally determined quantity, the decay of the L? norm confined to balls of unit
radius, or the decay of the oscillation computed over balls of unit radius. In [Le2, BT4, BKT, FL2, KwT], existence
results are given in weighted spaces, which allow for a lack of decay in some directions. The papers [BKT, FL2]
additionally allow for growth in some directions.

The question of well-posedness of the Navier—Stokes equations on Ri is considerably more difficult than the
corresponding question in R3, due to difficulties caused by the pressure when solving the linear Stokes problem.
For a treatment of the Stokes problem by the Fourier transform, see Solonnikov [Soll, Sol2, Sol3], while a different
approach to solvability of the Stokes problem was developed by Ukai in [Uka]. For other works on the solvability
of the Stokes problem in the half-space, see also [Ka, KLLT]. Until recently the global-in-time existence of a weak
solution for uniformly locally square integrable initial data in Ri was open, one of the main challenges being the
treatment of the pressure. In fact, the results in [GS] imply the estimate ¢||Vp||z2 < Cllug||z2 for solutions of the
linear Stokes equations. Using the Poincaré inequality we thus obtain

Ip(t) — LP]Bl(zo)mRi (t)||L2(Bl(zo)mR1) < leUOHL?(Ri)

where [f]4 = |A|7! [, f denotes the average of f over A. The right-hand side of this estimate, however, is not
integrable in ¢ near the initial time. Recently, Maekawa, Miura, and Prange used in [MMP1] explicit representation of
the kernel for the Stokes equations in }Ri due to Desch, Hieber, and Priiss [DHP] to obtain a better estimate,

1P 22 (B oy y < ¢ Hluollzz,_@s2), (1.2)
(see (2.20), (2.21) in [MMP1]), which is integrable in time close to ¢ = 0. Maekawa, Miura, and Prange [MMP1,
MMP2] also established a number of new estimates in the case of R3 , and have also proved the global-in-time exis-
tence of weak solutions for uniformly locally square integrable initial data wug in Ri, in the spirit of [Lel].
We note that such solutions further complicate the study of the pressure function, due to the contribution to p
coming from large scales. For example, in the case of R3, one way to deal with the pressure is to decompose it into
the near-field and the far-field. Namely, given an open set Q C R3 one may consider

Pnear (7, 1) + Prar (@, 1) — pQ(t) = _%‘u(%t)P +p.v. /Q* Kij(x - y)(ui(y,t)uj(y,t)) dy
(1.3)
[ Ut ) = Koo = ) (sl s 0:1) d
yE*

as in [BK, BKT], where pg () is an arbitrary function of time, K;;(y) = 0;;(4r|y|) ™!, and zg € Q is fixed. In this
context, the case of the half-space Ri becomes much more difficult, as no such direct decomposition is available. In
fact, in addition to the Helmholtz pressure, that is a solution of the nonhomogeneous Poisson equation

—Apn = 9(uuy)  inR3,
Ospu  =div(uus) ondR3,

one also needs to take into account the harmonic pressure, which is a solution of the Laplace equation with Neumann
boundary condition,

_Apharm =0 in Ri,
83pharm = AU?,|1320 on 6Ri_,

where the boundary condition at x5 = 0 should be understood in the sense of the trace of Aug. This part of the
pressure function is absent in the case of the whole space R?, and the Helmholtz pressure py requires a much more
sophisticated analysis than in the case of R3. note that both parts of the pressure also need to be decomposed into the
near and far fields.

In this work we are concerned with the initial data ug that involves growth at infinity. Note that for such uyg,
the inequality (1.2) does not imply any local well-definiteness of the pressure near ¢ = 0. This is an interesting
problem, and we address it here for u( that can grow at infinity in an “intermittent” sense (see Lemmas 2.1 and 2.2
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below). Namely, we consider ug such that |Jugl|r2(g) < |@['/? for every dyadic block @ of side-length d such that
dist(Q,0) ~ d (see Definition 1.1 below). In such setting one needs to treat the pressure function with additional
attention to the energy coming from the large scales of the velocity field. This can be achieved by developing an
appropriate framework consisting of a choice of the function space (see Definition 1.1), an energy functional adapted
to large scales (see (1.8)), and an a priori estimate for such energy functional (see Theorem 1.4), as well as estimates
of all components of the pressure function using such framework (see (2.15)).

To be more precise, our goal is to establish the global existence of weak solutions in Rﬁ’r with data built on a dyadic
tiling C of the half-space (see Figure 1 for an illustration projected on a half-plane), allowing for growth as || — oo.
These data are on one hand general and on the other also well adapted for the study of self-similar solutions and
eventual regularity.

The notion of the large scale intermittent initial data has been considered in [BK, BKT] in the case of R2. This
concept should not be confused with the notion of intermittency in turbulence, although we chose the terminology in
analogy with this. In particular, intermittency in turbulence can refer to the fact that the active regions associated with
small scales do not occupy the full spatial domain. In our setting, the active region should be interpreted as the region
where local L? quantitites are large. Intermittent then refers to the fact that, intersected with Br(0) N ]Ri, the volume
of this region cannot be growing like R3.

N —

2

FIGURE 1. The cover of Ri by the collection C. A scaled cover C,, is obtained by replacing 2
with 2™,

To state our main results, we first define local energy weak solutions.

Definition 1.1 (Local energy solutions). A vector field uw € L2
2

loc

(@ x [0,T)), where 0 < T < o0, is a local energy

solution to (1.1) with divergence-free initial data ug € L (Ri) such that uy 3 = 0 on aRi if the following conditions

hold:
(1) u € Npso L2(0,T; L*(BR(0) NRY)), Vu € L2 (R% x [0,T)) and u|,y—o = O ae. t € (0,T),
(2) for some p € D'(R3. x (0,T)), the pair (u,p) is a distributional solution to (1.1),
(3) for all compact subsets K of R3. we have u(t) — ug in L*(K) as t — 0,

(4) w is suitable in the sense of Caffarelli-Kohn-Nirenberg, i.e., for all non-negative ¢ € C° (I@_ x (0,T)), we
have the local energy inequality

2//|Vu|2¢ do dt < //|u|2(8t¢+A¢) do dt+//(|u|2+2p)(u-V¢) da dt, (1.4)

(5) the functiont — [u(z,t) - w(z) dx is continuous on [0,T) for any compactly supported w € L*(R%.),
(6) given a bounded, open set Q) C R2, the pressure satisfies the local pressure expansion,
P = Dii,loc + Pli,nonloc + DPloc,H + Ploc,harm + Pnonloc,H + Pharm,<1 + Pharm,>1, (1 5)

which holds a.e. up to a function of time; the terms on the right-hand side are defined in (2.4), (2.7), (2.11),
(2.12), and (2.13) below and estimated in (2.15).
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We say that u is a local energy solution on Ri x [0, 00) if it is a local energy solution on Ri x [0,T) forall T < .

This definition is primarily based on the one in [KS]. Some works refer to this class (without the part (6) and with
minor modifications) as local Leray solutions or Lemarié-Rieusset type solutions. This definition contains sufficient
properties for work on regularity, see e.g. [CKN, Li, LS, ESS, K, Gr, BS] among others, or in physical applications,
see e.g. [DG]. We note that we do not assert any uniform control in L2, . The local pressure expansion in (6) above is
inspired by the decomposition introduced by [MMP1, MMP?2], and is unique up to a function of time; see (2.14).

Our main result is concerned with local energy weak solutions with initial data u( belonging to a weighted space
that allows growth of the kinetic energy at spatial infinity.

To be precise, given n € N, we denote by Sr(Ln) the collection of 32 cubes of side-length 2™ that can be obtained by
partitioning {z € R3 : |z;| < 2" fori =1,2,3}. Fork > n+ 1, let Ry = {x € R3 : |z;| < 2¥;i = 1,2,3} and
we denote by S,(c”) the collection of 28 cubes of side-length 2* that can be obtained by partitioning Ry 1 \ Rx. Also,
set

Co={Q€ Sk >n; (1.6)

this is illustrated by Fig. 1 with 2 replaced by 2". In other words, S,(cn) is the collection of cubes from C,, of side-length
2k We set C = C;.

Definition 1.2. Given p € [1,00), ¢ > 0, andn > 1, we have f € Mg* if
1
e = sup o [ 1@ do < oc.
Mew qeca QI8 Jo

We denote by Mg "L the closure in M of divergence-free, smooth functions, which are compactly supported in Ri.
We note that
1
—i/mp dx — 0as |Q| — 00,Q €C, 1.7
Q5 Jo

for f € M2, which was shown in [BKT].

In the context of the whole space R, the spaces M}*? are discussed in detail in [BKT] and from the perspective of
interpolation theory in [FL1, Section 7]. The same observations apply here; in particular, the choice of tiling does not
matter so long as elements have length scales comparable to their distance from the origin. Additionally, dyadic cubes
can be replaced by balls centered at the origin as in [B], i.e., we have

1
p p
ug || yp.a ~ SUP ug dz
” ”]Mé’ ! R>1 R4 Br(0) | ‘ ’

for ug € L% ., when ¢ > 0. Here and below “a ~ b” means “a < band b < a”. The decay in Mg’q can also be

encoded via Basson’s perspective due to the equivalence

o 1
Pp,q 4 — 3 _ p —
FeMp? « lim |flyge =0 < lm — o) |ug|” dx = 0
when ¢ > 0; see [BKT] for a proof. The space ME'? can also be viewed as an inhomogeneous Herz space K, % (Ri)
The norms in these spaces are defined by

1
(Zkzo 2quHf||Ep(Ak)) for r < 0,

[ fllka, w2y =
+ Supkzo 2kq||fH£P(Ak) forr = 0,

where Ag := By N R, and Ay, := (Bgk \ Bak-1) N Ri for £k > 1. Homogeneous Herz spaces are used to analyze
strong solutions to the Navier-Stokes equations in [Tsu].

The first use of the spaces M['? in the analysis of the Navier-Stokes equations was by Basson [B], who constructed
local-in-time solutions in two dimensions belonging to the M 62 2 class. In 2D, Basson additionally constructed global
in time solutions with L?,__ initial data by exploiting the maximum principle for the 2D vorticity [B]. Subsequently,
the local-in-time existence was addressed in three dimensions in [BK], while the global-in-time existence was obtained
in [BKT] for Mg 2 In comparison to [BKT], here we build the divergence-free condition and the decay condition into

the space ]\/[C2 % while in [BKT] only the decay condition was built into this space.
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Our main theorem is concerned with the global-in-time existence with initial data in M02 P where 0 < g < 2. In
order to state it, for a space-time function u, define

1 t

ap(t) = sup Hu(s)||i[2q and [(,(t) = sup — / / |Vu|? dz dt, (1.8)
s€[0.4] en qec, QI3 Jo Ja

forn € Nand ¢ € (0,2]. Note that both «,, and 3,, are non-decreasing functions of ¢. For simplicity of notation, we

omit indicating ¢ in o, and 5,,.

Theorem 1.3 (Global existence of local energy solutions). Let ¢ € (0,2] and ug € Mczq Then there exists a local
energy solution u on Ri x (0, 00) with the initial data ug such that

Oél(t) +Bl(t) < 00,
forallt < oo.

In comparison with the L2, _(R3) setting of [MMP1, MMP2], we note that neither of the two spaces L2 _(R3)
and MC2  contains the other. For example, if ug is a constant (or periodic) function, then ug € L2 (R3)\ ]\0462’2,
while

Ug = Z 2qk/2XB1(2keg) € M?’q \ L2 (R3);
k>1
see [BK]. This example is intermittent at large scales in the sense that the growth is not occurring in all directions
simultaneously. The spaces M?9 are well-adapted to “zooming out” dyadically, which makes them suitable for
capturing the large scale behavior. In particular, the number g in M%7 measures potential growth at infinity, with
larger value of q corresponding to more growth. This implies that M9 C M 24" for g < ¢.

In this context, Theorem 1.3 is the first result asserting the global-in-time existence of weak solutions in the half-
space that allows intermittent initial data.

Furthermore, the dyadic structure of /%7 makes it possible to quantify the eventual regularity of solutions con-
structed in Theorem 1.3 (see Theorem 1.7 below). We note that, in the context of scaling of the Navier—Stokes
equations, M>9 has the same scaling as L(*~9/2 for large scales. In particular this implies that A/%! includes all
self-similar initial data, allowing an extension of Theorem 1.3 to self-similar solutions to the NSE (see Theorem 1.7
below).

In the following theorem, we summarize the bounds which the local energy solutions satisfy.

Theorem 1.4 (Bounds for local energy solutions). Assume that ¢ € (0,2] and uy € Mgl’q. There exists vy > 0,
n= 77(HUO||M§"1) > 0, and C' > 1 with the following property. If (u,p) is a local energy solution on R3. x (0, c0)
1

with the initial data uq such that
a1 (t) + Ba(t) < oo,
forall 0 < t < oo, then for every n € R, we have
an(Tn) + Bn(Th) < Can(0), (1.9)
for some

Yo
T,, > nmin {2”, |u0M121(,} . (1.10)
Cn

Note that T;,, — oo as n — oo.
Another important ingredient in the proof of Theorem 1.3 is the following stability result.

Theorem 1.5 (Stability). Assume q € (0,2] and ug € M4, and suppose that {uék)}kzl C Mé’q is such that

Huék) — uOHz\ngq — 0. Moreover; suppose that {(u®) p®)) Y51 is a collection of local energy solutions with initial

data uék) that satisfy the assumptions of Theorem 1.4 for every n € N. Then there exists a subsequence {k;};>1 such

that (u(k’),p(k’)) converges in a weak sense to a global-in-time local energy solution (u, p) with initial data ug. In
addition, for every n € N, the pair (u,p) satisfies the a priori estimate (1.9), and, given Q) € Ri, each part of the
local pressure expansion of p**) converges strongly in L3 (€2 x (0,T)) to the corresponding part of the local pressure
expansion of p, for every T > 0.
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The most difficult part of the proofs of the above two theorems is the treatment of the pressure function. We note
that each of the pressure parts Dlijlocs Pli,nonlocs Ploc,H> Ploc,harms Pnonloc,H> Pharm,<1, and Pharm,>1 is defined in a
similar way as in the works [MMP1, MMP2] in the uniformly locally integrable setting. However, there are important
differences in our treatment of each of these parts in our estimates (see (2.15)). For example, our pressure estimates are
adapted to the energy functional that captures large scales. This results in additional difficulties in balancing the upper
bounds against the kinetic energy o and the dissipation energy (5. In particular, we cannot afford to control Vpioc harm
only in L3/2L%/8 which we describe in more detail below Lemma 2.4. A related issue appears in our estimate on
the nonlocal harmonic part pharm,>1, Which is our most difficult estimate, and is balanced against o and 3 using two
auxiliary indices r and § (see (2.15)). In fact, we use a new method to estimate this part, employing the structure of
our tiling C to handle the part of pnarm,>1 consisting of double convolution (i.e., the term in (2.13) that is concerned
with F'5). We discuss this issue in detail in Steps 2 and 3 of the proof of Lemma 2.6. Moreover, we also use a simpler
estimate of the local Helmholtz pressure pioc u (see (2.22) in [MMP1]) as well as pharm, <1 (see (2.24) in [MMPI]).
Additionally, we do not need any estimates of derivatives of these parts of the pressure.

Our pressure bounds allow us to obtain the a priori estimate (1.9) as well as the strong convergence under the per-
turbation of the initial data ug in M, C2 2 mentioned in Theorem 1.5. Consequently, we obtain the explicit representation
(1.5) of the pressure for the weak solutions constructed in Theorem 1.3.

Our stability result can also be applied to construct self-similar and discretely self-similar solutions with very rough
data. Recall that if u solves (1.1), then so does u (z, ) := Au(Az, \%t) for A > 0. Self-similar (SS) solutions, i.e.,
solutions invariant with respect to the scaling of (1.1) for all scaling factors A > 0, are noteworthy candidates for
the non-uniqueness and could lead to non-uniqueness in the Leray-Hopf class, as demonstrated by [JS1, GuS, ABC].
On the other hand, discretely self-similar (DSS) solutions, i.e., solutions that satisfy the scaling invariance possibly
only for some A > 1, are candidates for the failure of eventual regularity [BT1, BT4]. For small data, the existence
and uniqueness of such solutions follow easily from the classical well-posedness results; see [KT] and the references
therein. The more interesting case of large data has been only recently solved by Jia and Sverdk [JS2], and some
improvements and new approaches have been developed by e.g. [Ts, KTs, BT1, BT3, AB, CW, FL2]. The roughest
class of scaling invariant initial data for which existence is known is L2 (RS) [CW, BT3, Le3, FL2]. Note that

loc
if ug € L2 (R®) is scaling invariant then it belongs to the R? version of the space My, see [BK]. Indeed, this
observation led the first and second authors to study these spaces in [BK].

In the case of the half-space, Tsai and Korobkov [KTs] established the original theory of Jia and Sverak [JS2]
for smooth, self-similar data via a new method and, later, Tsai and the first author [BT2] addressed rough, discretely
self-similar initial data in L3°° with arbitrary scaling factor. As a consequence of Theorem 1.5, we prove that any
SS/DSS initial data in MC2 2 gives rise to a SS/DSS solution. This class of initial data corresponds to the roughest
case for R3 [CW, BT3, Le3, FL2] with a suitable boundary condition imposed. To see why this is true, assume that
ug € L, C(Ri) is divergence-free with vanishing normal component at the boundary (this is the boundary condition
implicit in the space MC2 2 since M02 2 is obtained by taking the closure of compactly supported test functions; see
[CF, Proposition 1.5]). If, additionally, u¢ is scaling invariant, then, by a re-scaling argument, uy € MC2 1 Mé 2
Furthermore, we have u € Mg 2 because ug decays at spatial infinity (from membership in Mg 1) and satisfies the
correct boundary condition.

Theorem 1.6 (Global existence of self-similar solutions). Assume ug € MC2 2 s divergence-free, satisfies ug 3 = 0 on
8]1%1, and is self-similar (resp. discretely self-similar) for some A > 1. Then there exists a global-in-time local energy
solution u with data ug that is self-similar (resp. discretely self-similar).

The proof of Theorem 1.6 uses our new a priori bounds to construct discretely self-similar solutions via the stability
result of Theorem 1.5 applied to a sequence of solutions given by [BT2]. The approach is similar to the one taken by
the first author and Tsai in [BT3] in the case of R3. However, an important difference is that [BT3] deals with the
non-local pressure by exploiting the DSS scaling to localize the far-field part, while in the present paper this technical
step is unnecessary because the far-field part of the pressure is controlled using the weighted L? framework.

Finally, we show that local energy solutions eventually become regular, up to the boundary, provided u belongs to
a subspace of M 62 2. This provides an extension of Theorem D of [CKN] in the setting of half-space Ri by allowing
growth of 1 at spatial infinity. We show that if u is in M, CQ " where 0 < g < 1, then an ensuing local energy solution
is regular above a parabola.
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Theorem 1.7 (Eventual regularity). Assume uy € MCQ’q for some q € (0,1]. Then, for any ¢y € (0,1, there exists
M > 0 so that, if u is local energy solution with initial data ug satisfying
Oél(t) + 61(t) < 00,

forall 0 < t < oo, then w is regular (up to the boundary) in the region

2(q+2)

{(z,t) €R% x (0,00) : t > eolz| "3 + M}. (1.11)

Moreover,
lu(z,t)| < et FTEY  in {t > eolz|? + M)} (1.12)
foreach X € [(¢+2)/3,1].

Note that (1.12) quantifies the decay of u with respect to ¢. In fact, given ¢ € (0, 1] the inequality provides a family
of quantitative decay estimates: Taking A\ = (¢ + 2)/3 we obtain decay O(t~'/2) in the region (1.11), while taking
A > (q + 2)/3 gives a better decay rate in the smaller region (1.12), with the best decay rate O(t%s) inside the
parabola {t > eg|z|? + M}.

Recall from [SSS] that a point (x,t) € R X (0, 00) is regular if there exists a neighborhood B x I C R% x (0, 00)
of (x,t) such that u is Holder continuous in B x I.

We note that an analogous result can be proven in the case of the whole space R3, complementing the analysis
of [BKT]. In fact, in our case the proof is easier, due to a simpler structure (1.3) of the pressure function.

The subject of eventual regularity is classical. For the Leray-Hopf solutions, the global energy inequality makes
the matter trivial since ||u|| ;; must become small at large times; see also [CKN]. For solutions not satisfying the
global energy inequality, the eventual regularity is not generally known. However, if the behavior at the spatial infinity
is appropriately controlled, usually via some integrability, then the eventual regularity should hold. For example, it
is shown in [BT4] using the e-regularity that any local energy solution on R? with data in L? where 2 < p < 3, or
satisfying more general conditions, eventually regularizes. Theorem 1.7, which is a half-space version of a result in
[BKT], builds on this idea and identifies the way in which the far-field behavior of the data needs to be controlled
within the M 29 framework to ensure the eventual regularity.

The paper is organized as follows. Section 2 contains the study of the local pressure expansion and provides the
main estimates (2.15) for all pressure parts. This is then used in Section 3, where we prove the a priori estimate,
Theorem 1.4. Section 4 contains the proof of the stability result, Theorem 1.5. We then prove the main existence
results, Theorems 1.3 and 1.6 in Section 5. The proof of the eventual regularity result, Theorem 1.7, is provided in
Section 6.

2. PRESSURE FORMULA AND ESTIMATES

Given n > 1 and a bounded, open set {2 C Ri, let @ > n be the smallest integer for which there exists the largest
integer m € [n, ] such that

) can be covered using cubes from S(m") U Sgll U---u S(m").

Note that if Q € C,, for some n > 1, then m = ™ = m, where m is such that ) € S,(,?). (Recall (1.6) for the definition
of the family C,, see also Fig. 1.)

Given §2 and n, let ) be the union of (closed) cubes from C,, that have a nonempty intersection with (2. Denote by
Q* the union of the neighbors of @, i.e., the union of () and all cubes from C,, that share at least one common boundary
point with ). We similarly define Q** and Q***. We set x € C5°(R%, [0, 1]) such that x = 1 on a neighborhood of
( that includes the union of the 5/4 homotheties of the cubes included in @ and x = 0 outside Q*, and we define .
and x.. analogously. In the pressure estimates below, we shall use the following simple geometric fact: If £ € @ and
z € {x < 1}issuchthat z € Q for some Q € S,in) C C,, then

2m k< m,

2.1
2k k>m+1, @1

& =2+ &+ 2 {
where we used the notation z = (2, z3) to distinguish the horizontal component «’ and the vertical component x3 of
any given point z € R3.. Indeed, if k& < m, then either |’ — 2’| 2 2™ (if Q) touches the plane R? and z does not lie
in a cube above Q), z3 = 2™ (if z does lie in a cube above Q) or £3 2 2™ (if () does not touch the plane). The case
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k > m + 1 follows similarly as either |¢' — 2’| > 2" (if z lies in a cube touching the plane IR? and ¢ does not lie in
a cube above it), £3 > 2% (if it does) or z3 > 2F (if 2 lies in a cube not touching the plane). Furthermore, note that

|€ — 2] < 2™ forany £,z € Q***. (2.2)

We note that the reason to consider the two indices m and 7 is to be able to obtain the local pressure expansion (recall
Definition 1.1(6)) for any bounded and open set Q C R, rather than merely for cubes in the family C, or sets of
similar geometry or location. For example, if Q) € C,, for some n > 1, as is the case in most of our applications, then
we have m = m = m, where m > n is such that 2" is the side-length of 2. However, if € is a set that stretches
through a number of length scales, then 2™ and 2™ should be thought of as the smallest and the largest length scales,
respectively, associated to ). In other words the indices m, m measure how well the geometry of € is adapted to the
tiling C,,. One of the features of our pressure estimates (see (2.15) below) is that these two indices are sufficient to
describe the dependence of the strength of each of the pressure estimates in terms of geometry of 2.
We write

U = Uli + Uoc + Unonloc; P = Pli + Ploc + Pronloc;
where the terms on the right-hand sides are solutions to the linear part
Opuy; — Ay + Vpy; = 0,
V- =0,
il {z3=0y = 0,
U1i|{t:0} = Uo,
the local part
Optlloe — Attloc + VPloc = =V - (Xaxtt @ 1),
V- ugee =0,
Uloc|{z3=0} = 0,
Uloc| (=0} = 0,

(2.3)

and the nonlocal part
atunonloc a Aunonloc + vpnonloc ==V ((1 - X**)u ® U)a
V- Unonloc = O,
unonloc|{z3:0} = 07
Unonloc|{t:0} =0.

We note that each of the pressure components enters the equation with a gradient, and thus it can be modified by an
arbitrary function of £. We have the representation

P 1) = 5 / / ()ar(a’ = 2, 7) () + (1= X(2)ar 000 (2) - w(2)) 42 dzg A

= pli,loc(x7 t) + Pli,nonloc (:Ev t)a
where = (2/,xz3) and ' = {A € C: |arg \| = n, |A\| > s} U{\ € C: |arg\| <7, |\ = &} withn € (7/2,7) and
k€ (0,1),

(2.4)

(2, xg, 23) = 2/

ot € oIl g —n (§)2 (5 + 5) de,
R? 4
wr(&) = /A + [€]2, and

wx(§)

q}\,I,CDQ (Z) = qA(‘r/ - Zlv X3, ZS) - QA(flgz - Z/u xQ,37 23)7
see (2.5)—(2.9) in [MMP1] and (2.8e) in [MMP2]. Above, o = (zq, Zq,3) stands for any fixed point of Q; if Q is a
cube, we denote by g, the center of ). Moreover, we have the pointwise estimates
e~ MEz

=0,1,2 (2.5)
(|Ja’ — 2| + x5 + 23)2t™’ mESEs

IVitaa(z' — 2, 23, 23)| Sm

which are proven in [MMP2, Proposition 3.7].
As for the local (nonlinear) pressure pj., we use the Helmholtz decomposition in the half-space to write

V- (Xt @ ) = PV - (Xastt @ u) + VDioo H, (2.6)
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where pioc 1 is the solution to Poisson equation with the Neumann boundary condition

—Apioe,n = 0;0;(Xwsujuj)  inRY,
O3Ploc, = O0; (XssUiu3) ON 8}1%1.

The solution is given by
Ploc (T, 1) = coXue|ul*(z,1) +/ 02,02, N (2, 2)Xan (2)ui (2, t)uy (2, 1) dz, 2.7
RS

where ¢ is a constant; also,

N(z,z) = ﬁ < ! + ! ) (2.8)

e —z|  |T— 2|
denotes the Neumann kernel for the half-space, where T = (x1,x2, —x3) is the reflection of & with respect to the
boundary 3R§_. With this definition of the local Helmholtz pressure pj,c 1, one can use Fourier analytic methods (see
(6.2) in [MMP2] and Appendix A.1 in [MMP1]) to deduce that for the Helmholtz projection we have
PV - (xsxu @ u) = Fyg + Fp,
where F4 is a vector function whose components are finite sums of the terms of the form

0 (Xaruruy) (2.9)

where j, k,1 € {1,2,3}, and Fp(z,s) = Fp(2/, 23, s) is a finite sum of vectors of the form

m(D")V' @ V’/ /2 (P(2' =y |23 —uysl) + P(z' = ¢/, 23 + y3)) (xenv @ w)(y', 93, 8)) dy’ dys,  (2.10)
0 R

where v and w denote various 2D vectors whose components are chosen among w1, us, or us; also, m(D’ ) denotes
a multiplier in the horizontal variable 2z’ that is homogeneous of degree 0 and that may be a matrix. Also, P(z’,t) =
(2m) =1t (t? + |2'|?)~3/2 denotes the 2D Poisson kernel.

Thus, letting (Uioc, harm, Ploc,harm ) b€ @ solution to (2.3), but with the right-hand side replaced by —PV - (x.cu®u),
we see that

Ploc = Ploc,H + DPloc,harm;
by applying the Helmholtz decomposition (2.6) to (2.3), and, from the Duhamel principle

1 t
ploc,harm(x7t) = T / / e(tis)/\/ Q)\(I, — Z/, xs3, 23) . (FA(Z, S) + FB(Z, S)) dz d)\ ds. (211)
T Jo Jr R3

As for the nonlocal (nonlinear) pressure pponloc, We use the Helmholtz decomposition to write, similarly as in the
case of pioc,
V. ((1 - X**)u ® u) =PV ((1 - X**)u ® u) + vpnonloc,H7
where

pnonloc,H((E7t) = / aZiaZjNI,IQ (Z)(]- - x**(z))ul(z,t)u](z,t) dZ (212)
RY

and Ny ,,(2) = N(z,z) — N(zq, z). Note that by introducing N (zgq, z) we have modified pyonioc,i by a function
of ¢ only (see local Helmholtz pressure, pioc, 1, above), which thus makes no change to Vpyonioc,H.
Similarly, we can modify the nonlocal harmonic pressure by writing

1 t
Pharm (T, 1) = =— / /e(tfs))‘/ (2’ — 2’ w3, 23) - X« F(2,8)d2’ dz3 d\ ds
2mi Jo Jr R3

1
211

(2.13)

¢
+ / /e(t_s))‘/ O zwo(2) - (1= x«)(Fal(z,s) + Fp(z,8)) dz dX\ ds
o Jr R?

= pharm,gl(z7 t) + Pharm,>1 ($, t)

(see also (2.17) in [MMP1]), where F4 and Fp are defined as in (2.9) and (2.10) with .. replaced by (1 — x.). Note
that there is no F'4 part in pharm,<1 as X vanishes on supp (1 — x..).

We point out that the above representation of the pressure function is unigue on a given bounded open set Q C R3 ,
up to a function of time, of any local energy solution u. Indeed, each of the pressure parts pii 1o, Pli,nonloc> Ploc,H>
Dloc,harm> Pnonloc,H»> Pharm,<1> a0d Pharm,>1 depends only on u (rather than on our decomposition uy; + 1oc + Unonloc)s
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and so uniqueness (up to a function of time) follows from the distributional form of the Navier-Stokes equations (recall
Definition 1.1). In other words, if given 2,€’ C R? are such that Q@ C Q' and if we define the pressure functions
pa, por as the sum of the above pressure parts (respectively), then

Pa — por = ca,o (1) (2.14)

on (2 for some cq , a function of time only.
In the remaining part of this section, we fix n > 1 and prove the following estimates on any given bounded open
set Q C R3:

IPritoc (D)l z2(2) S 2% ™ luollarzat™,
||p1i,n0nloc(t)HL°°(Q) ,-S 2 z mHUO||M2v‘7t_Z>
IProcis®l, 3 s % I\U(t)llis@m),
< 94 N3 L o—Bm
~ (” |L39 (O,t)ﬁ( )‘5 + 1 HaHL%(O’t))’

[Pnontoc, 1 ()| o= 2y S 2™V Ju(t) |3 2.0,

||pharm,21||LT((O,T);L°°(Q)) 5 2ﬁ+(q74)m 22(6 V)mTW”O‘Hl r(l 5) /B(T)5
-3 (0,T)

IProc narm — GHLZ((Ot L6 R2))

(2.15)

+ (1 T T%ﬁq*(lﬂ)ﬂ) ol

vom)
||pharm,§1( )HLOO(Q) < 2 4 +(Q74)ma(t)t%,

fort > 0,7 € [1,00),¢q € (0,3),d € (0,min{1/r,3/4,3¢/2}), and vy € (0,0/3), where 6 is a function of ¢ only. The
implicit constants depend on g, r, §, v, K, and 77; we used the notation (1.8). In particular, the implicit constants do not
depend on the choice of zq (recall the above decompositions into the local and nonlocal parts). In fact, as mentioned
below (2.2), the dependence of the above estimates on the geometry of € is expressed in terms of the indices m and
m only. For simplicity of notation, we have used the abbreviations M2 = M CQ:I and

a = Qp, 5:571

(recall (1.8)), which we also apply in the remainder of this section.

We note that the implicit constants in (2.15) do not depend on n. If € C,, for some n > 1, then we have
m = m = m, where m > n is such that 2" is the side-length of Q. For such @ the estimates reduce by replacing 2™
and 2 with |Q|*/3. An important property to keep in mind is that if {2 is a cube from C; that also belongs to C,, for
some n > 1, then the estimates get sharper for larger n.

In the estimates below, we write S, = S ,in) for brevity.

Lemma 2.1 (Estimate for py; 1oc). For everyt > 0, we have

atl— _3
Pt 0c ()| 20y S 2°F ™ [luo | nrzat 3.

Proof of Lemma 2.1. Fix t > 0, and note that Q C Q' x 3, where Q' denotes the projection of 2 onto the (x1,x3)-
plane, and 23 onto the x3-axis. For x3 € ()3, we use (2.4) to get

d| Al
L2 (2.16)

/ (2 — 2'| + 23 + 23)2|xuo(2)| &2’ dzs dJA.
R L2, ()

[111,10¢ (-5 23) [ 22, (0 S/etReA
r

[, xas@’ = 0,20 wn(2) a5 g
R

+

o0 1
S/etReA/ e—|)\\2z1;
T 0

o = 2] < [+ 12 S 27 @17

Since
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for every x € 2 and z € Q*. Thus it follows that for every 23

/2(|x’ — 2|+ 23+ 23) 2| xuo(2)| d2’
R

< llxuo(# 28) 22, ) / (9] + 3 + 23) "2 dyf’
z ly’|<C2™

L2,()

/ Logm(x' — 2') (|2 — 2| + 23 + 23) 2| xuo(2)| d2’
R2

L2,() (2.18)

1

S llxuo(2, Z3)‘|L3,(R2)2m/4($3 +23)7 %,

where we used f i<alY/+ b)"2dy’ = 2n(—a/(a+b) +log(1 +a/b)) < ca(a/b)® for any a € (0, 1). Therefore,

0 1
/ JINEES
0
m, -3 > A3 /
S 28 o g0 [ @M (s )z, ey dis
0

B o N 1/2
<oF (/ o 2A2 2 d23) [Ixuoll L2 (r2 )
0
1
4

< m _1
S 22 [[xuol (s ) Al

d23
Li/ (52/)

[ a7 =21 2) ()]
R

L3, (Q3)

(2.19)

where we used the Minkowski inequality in the first step. Finally, including the integral in A, we obtain from (2.16),

™ _1 LSt
IPraoc 2y S ) [N AN € 2E ot~
r

and the proof is concluded.

Lemma 2.2 (Estimate for pji nonloc). For everyt > 0, we have

g+

[[P1i,nontoc ()| Lo () Sq =2y || p2at ™,

where q € (0, 3).

Proof of Lemma 2.2. For every x € {2 we use (2.5) to obtain

__ oo e \>\|2z3 ,
m
<2 / / Tl o) d

- mi Z/ . |M223/ X (o ()| d2’ dzs

k=n Qes,,

/ dX\z,xo (Z)(l - X)U‘O(Z) dz
=

£ 30 e Y [Tt [l i ).

k=m+1 QeSy

where we write z = (2', z3) to emphasize the horizontal and vertical components of z and £ € [z, xq], with [z, zq]
denoting the line segment between the points = and z. We also used (2.2) in the first inequality above and (2.1) in
the second. We now apply the Cauchy-Schwarz inequality to the z3-integral to obtain

0 1 1
/ o2z /2 X (2)|uo(2)| dz" dzs < ||e*|>\\2zs||L33(o,oo) ‘
0 R

_1
S AT ol 2

/2 X (25 23)uo (2’ 23)| d2'
R

L2 (0,00)
3

24+
& 2" SIATT [luoll g 2720
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for every Q € Sy, where we applied the Cauchy-Schwarz inequality in the z’-integral in the second inequality.
Substituting this into the above estimate gives

m o0
1 _ 2+q g4
[, 0rman )0 = 0w de| < 2N ol 270 3025 4 3T 24

T k=n k=m+1

p— —4
S 2T N (| s

from which the lemma follows by integrating in A and noting that |\| > k. (]

Lemma 2.3 (Estimate for pioc 1). For everyt > 0, we have

IPocst® g, < Cllult) ey

Proof of Lemma 2.3. This follows directly by the Calder6n-Zygmund estimate applied to each of the two components
of the Neumann kernel (2.8). O

Lemma 2.4 (Estimate for pioc harm). There exists a function 0 depending only on t such that

[Procnasn =1l 5 (.7, 45 aayy < 27 (Il ||t(0 OF +272all g )

forall g > 0.

Recall that we use the abbreviations o = «,, and 8 = 3,,; see (1.8).
Let us briefly comment why we estimate pioc harm i L‘3/ 2 17/ 19 We are interested in estimating a term of the
form f © UPloc,harm (see Lemma 3.3 below) for a given cube Q € C,, for which we can use a bound of the form

llull 372 o IProcharm — O] 3/2; ., where 7/ is the conjugate exponent to . The borderline value of 7 is 9/5 as then
t t

one can obtain ||pioc harm — 9||L?/2L2/5 < HVploc,harmHLfﬂLg/s < |Q|93a(t)?/3 B(t)?/3, by considering the leading

order term only. However, in this case we obtain a power of «(t) on the right-hand side, instead of ||a(| ;»(o,+) for

some p € [1, 00), which makes it impossible to use an ODE-type argument in the a priori bound; note that Lemma 3.4

below requires that p < co. Taking r < 9/5 replaces the L° norm with a high L” norm, which makes it possible
to use an ODE-type argument, but r also cannot be too low. For example taking » = 8/5 one can similarly obtain,

. 7 .
up to the leading order, ||pioc harm — 9||L:,/2L§/5 < ||vploc’harm||Lf/2Li4/23 |Q\Q/3Ha||L/21?o(O L B(£)%/15, while a
Gagliardo-Nirenberg-Sobolev argument for u gives [ul| 5,55 < |Q|q/6||ozH1L51/5}§(o t)ﬂ( )9/16. In this case the total
t—T )

power of 5 is 9/8 > 1, which makes it impossible to absorb it by the dissipation term on the left-hand side of the local
energy inequality. Therefore we choose r = 17/10, as it settles both issues.

Proof of Lemma 2.4. By the Poincaré-Sobolev-Wirtinger inequality (see Theorem I1.6.1 in [Ga]) we have, with 0
depending only on ¢,

leoc,harm( )7 ( )” —(Rs) ~ ||VPIOC harm( )HL%(Ri)’

and thus, using maximal regularity of the Stokes equation in the half-space ([SvW, GS]),

3
oc,harm — 2 S ]P ’ o )
Iprocsarm =017y () 4y ) SIBY oot ®WIy g

3 3
E 2
/ [0 Frgp oo [T O ds
< (@) g
J; (e
t 39
</ (nu(s)nza(w Vu

3 _S.m % %
V(X**u)(s)sz +2 17*”“(5)”L2(Q*H) V(X**U)(S)”L?) ds

6

3
(5> HIZJZ(Q***)

6
u(s)|i§(Q***)) ds.

63 _ 6. 3
()22 (@uery + 27T [u(8) [ 22 ey V'

—3m
+2 27““( )||L2 (Q***)
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Applying Young’s inequality on the last two terms in the integrand, we get

||ploc,harm - ”L?((O B; L%(R )
_ 63,
( )”Lz(Q*H) +2 34*||u(8)||%2(Q*M)) ds

t
< [ (1@ genI¥
0

cor( [ rte) s )

where we used 2™ < |Q***| < 23, and the proof is concluded. O

Lemma 2.5 (Estimate for phonloc,u). We have

<2m+(q 4m|| () 2

[Pnontoc, 1 (t) | L= (0) 3205

foreveryt > 0and q € (0,4).
Proof of Lemma 2.5. We omit the ¢ variable in the notation. Recall that Q* is the union of the neighbors of @), which
is a cover of 2 using cubes from C,,. For x € @Q* and z & Q** we have

|z — xQ|< 2m < gmo—dm, ze Qe Sy k<m,
o — 2t~ 2727, zeQ eSS k>m+1,

102,02 Nu oo (2)| S

|z —2z|* ™ |z
as in (2.1) and (2.2). Thus, for such z, (2.12) gives

@S2y [ M,

k>n QES QﬁQ**

som[gmy 3 / W 303 2 /Q Juf?

k=nQesy k2m+1 Qes,
m
Slullfpa2™ (272 )0 Y 20 4 Y 7 20 ) fuffe 2O
k=n Qes, k2m+1 Qesy,
for any g < 4. ]

Lemma 2.6 (Estimate for phaym,>1)- If T > 0, then

tharm,z 1 HLT((07T);L°° (€2)

va& gm+(g—4)m <22(5 vav”a| 7(1 B ﬂ(T)6+(1+T72’27m+T%2mq (I+g)m )HO‘”LT(O T)>

L 1-75 (0,T)
foreveryr € [1,00), ¢ € (0,3), § € (0,min{1/r,3/4,3q/2}), and v € (0,5/3).
Proof of Lemma 2.6. Recall that by (2.13) we have

I _
Pramz1@,t) = g [ [ [ ()0 =) (Falens) + Pl 9) dz d ds
+

= pa(z,t) + ps(z,1).

In Step 1 below we provide an estimate for p4. Next, in Step 2 we show that || 5| z=@) < Q9273 ||ul|3,2., for
every Q € C,, where Fg is a sum of terms of the form V' ® V' fg which satisfy

m(D)V'® V' /OOO (P(slzs — ysl) + P, 23+ y3)) = (1 = X )v @ w)(y3)) (2, 5) dys = V' @ V' fs,

where v and w denote 2D vectors whose components are chosen among u1, us, and ug (recall (2.10)). We then use
this estimate in Step 3 to prove the required bound on pg.
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Step 1. We show the required estimate for pa .
For x € (2, we have, using (2.5) with m = 2, as well as (2.1) and (2.2),

[, traa@)1 =) Fa(2) 2
]R3

g
<2W/ e—\Al%zs [(1—x)uQu(z)|dz + 272 lan .0 (2)|[u(2)]2 dz
T ey (I€ =2 G+ z8)! wuppVx.
oo JRENEFS
=2 /Qf /]R2 (1€ = 2'| + &3 + 23)* (1= )u @ ufz)] =’ dzg (2.20)

o R ,
2 /0 /R (6= T4 &+t (|~ X @)l dzs

v [ Gl P s
supp Vx«
=2"(I + I + I3),

where & is a point on the line segment joining = and x. We denote the corresponding (pointwise) bound on |p 4| by

PA1 + Pa2 + Pas, i€,
2m [t
paj(x,t) = —/ /e(t_s)Re’\Ij d|M| ds, (2.21)
‘ 2r Jo Jr

forj =1,2,3.
l L m .
For pa; we observe that e~ 12?28 < e=IA22% < 1| \|=72729 apd use (2.1) to obtain

I < 272m )Y 2—‘@2 Z [|u|2+ Z Z 2_4k/~|u\2
)

k=n Qes, " ¢ k>m+1 Qes,,

m
SN T ulF e 2702 2% DT olem R
k=n E>m4+1

S 260742 Y ] 3

Thus (2.21) gives
t
”pAl(t)”LOC(Q) Sfy 2%+(Q—4—2v)ma(t)/ / ‘)\|—’Ye(t—s) Re \ d|)\|d8
0 I

t

< gta—i=2vm () / (t— )L ds
0

< 2ﬁ+(q—4—2v)ma(t)tv

for every t € [0, T, as required.
Next, we bound pao. We set

The assumptions on § and -y guarantee that
1 3 1
a€ (1,2), a == >2b, b > - b>2 and ¢> 7 (2.22)
Y

where 1/a+1/a’ = 1.
Hoélder’s inequality gives that

1
/e(t—s)Rc)\e—|>\|2z3 d|)\| SPI (t — 3)_%2’3 o,
T
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Therefore, using Tonelli’s theorem,

m

~IA% 2
t <2m (t—s)Re A e — Y d /d dI d
prate ) <27 [ [ [0 [ eSO e el dey i ds

2m —?
<, 2" [ (t— %/ / —X)|u® dzs d2' ds.
~P / S B2 |§/7zl| +§3+23) ( X )|u u(z)‘ z3 a4z as

We write R? = | ko Uare st Q', where (' denotes the projection of @ onto R? and Sj, denotes the collection of

(2.23)

projections onto JR?. of the cubes from S, that touch R? . We also set

1

om ,l
Sz t)= [ (t—s)"% — x)lu @ u(z)| dzs d2 ds,
pA2,Q(‘T ) / 8 /// ‘é‘/_zl| +§3+23) ( X )lu U(Z)| z3 az as

so that

Paz(@, )] <27 D" paylant). (2.24)
h2n Qres;,

Letting b’ = b/(b — 1) < 2 we have, for each Q € S,

- _2 2y
/ / lu @ u(z)|z; " dz’ dzg < 28k / zq @ dzs Hu||2LQb,(Q)
o Jo 0 (2.25)

1_ 2
Sao 20772t (Jull T 5 190l o) + 27l g )

S

where we used the Gagliardo-Nirenberg-Sobolev inequality. Thus, for Q € S), with k > m+1, we use (2.1) to obtain,
forany T' > 0,

2

t om -2

1 z
- < t—g) a 3 1— v, d d,d,
pA2’Q_/0( ) /“'/o (|f/—2’|+§3+23)4( Xe)lu ® ulz)] dz; dz ds

which implies

IPa2.6llLr((0,7); (2)

<o 20— )mo(=4+ 7k

Ly(0,T)

t
_% _ 3k
[ =7 (5, IV g, + 2 )R ) ds

T T
12 \mo(—4r2 1 2b=3 _3
Sa 205 )ma(=+ )b (/ (l(s)1 g IV5) 1o )+ 2 H () g ) )
T 2b2;3'r' T
r(2b—3) "
< o(=2)mo(—4+2)kpd e 2
Sa 2(F7F)mg T ] )l gy ds VUGl ) ds
1
_ 3k T "
o (/ lu(s)]123 ) ds ) )

1_2Vmal(—4r2 1 26-3 3 _3
<o 208 mo(—4+3+a)hp s (nan T B(T)F 42 bknaur(m),
L726=37 (0,T)

s

where we used Young’s inequality || f * g/, < ||f|l1]lg]l~ in ¢ in the second inequality (which gives the constraint
a > 1), and Holder’s inequality in ¢ in the third (note that 3r < 2b by (2.22)). For k£ < m we obtain a similar estimate,
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except that o(—4+E+a)k i replaced by 9=4m+(+9)k Thys (2.24) gives

1_2 VmommL —4m S 2 —atg =, i
pazllir (o)) Sap 200~ F)mamrar [ 2-am N ook 1 ™ pl-tri4a)l | o7, p(T)
k=n k>m+1 Lo
Flrm et 37 200 fal o
k=n k>m+1

_ 26-3
< grt(i-dra-tmpd (na 5 B +2i’m||ay<o,m>
L

=yt (ol B+l ).
1—7rd (()’T)

as required. Note that the infinite sum converges since —4 4+ 2/b 4+ ¢ < 0, by (2.22), and for the finite sum in the
second line we use ¢ > 1/b, recalling (2.22).
Finally, we bound pas. First, by (2.5), we have

=2 [ @ sz [ e W )R,
supp Vx« .
where in the second inequality, we used that ||z’ — 2/| + 23 + 23] 2 2™ and |z — zq| < 2™ hold on supp V. (see
(2.1) and (2.2)). Now, we apply the same analysis as for pa2 yielding the same bound on pa3 as we obtained for pa.
The only difference is that here we do not need to sum in @ € C,.

Step 2. We show that, at each time, || f5[1~Q) < |Q|q§72 |w||3 2., for every @ € C,. (Analogously we can obtain

—4
1FelL=(@) S 1QI [lull3z.-)
Note that in this step the sets @, Q*, Q@**, Q*** are not related to {2, but to a fixed cube ). We shall use the estimate

m(D)P(y ,ys)| < —— B (2.26)
| ( ) (y y3)| ~ (|y/|+y3)3+a

where m(D’) is a multiplier (in the y’ variables) that is homogeneous of degree o > —2, see [MMPI, p. 576]. Let
z € @, and suppose that Q) € S,,,. We only consider P(z3 + y3), as the part with P(|z3 — y3|) is similar. We have

> Z3+ Y3 ’ ’
< 1= o)X Lys)| dy' d
IS Y[ s (- v xglu uly )l dy g

QEC,,QeQ**
m
(27030 Yl + Do D 2l
k=nQes, k>m41 Ges,
m
< 2" |ull32.a 2’3’"2 Z 24™ Z Z 2(a—3)k

k=n Qesk k>m+1 Qesk

S 2972w e

(recall (2.10) for the definition of Fiz = V' ® V' fp) where, in the second inequality, we used

z3+ Y3 < 272m7 k <m,
(|2 =y/[+23+y3)® ~ |2m=3F  k>m+1

whenever z € Q and y € Q for some cube Q € S, that is disjoint with @** (which is an analogous claim to (2.1) and

2.2)).
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Step 3. We show that ||pg (t) || L=y S a(t)27+0=5m¢3 for g € (0, 3).
Note that this, together with Step 1, finishes the proof. We have

(e 015 [ [ [ (D00 x|+ 90T

+ |QA7r7xsz(Z)D2X*|) |fB(2,s)| dz d|A|ds.

(2.27)

Using (2.1), (2.2), and (2.5), we get

1
e_‘Alzsz

2 _ < m _ /
/Ri }D q)\,w,xn(z)(l X*)fB(Z’S)| dZNQ Q%: /(;,?(gl_zq +§3+23)5 (1 X*)‘fB(Z7S)|dZ dZ3

2™ _5mZZ/ e M2= fp (2, 5)| d2’ dzs

k= nQeSy
S 3 [l g
k>m+1 QGSk
5 om (/ e—|,\|EZ3 d23> ”u”M?q 9—5m Z2qk + Z q 5)k
0

k>m+1

< 2RI\ " E 2,

Similarly, we have

— 1
/ (IVar 220 () VXa| + @3, 2,00 () DX |) |fB (2, 5)] dz S 277 / e M2 5| (2, 5)| d2' dzs
R

i Q**\Q*
m+2 m+2
<2moom Z Z / _lM2zd|fB(z s)|d2’ dzg < 270|732 Z 20k
k=m—-2Qeg, k=m—2
m+2
SRR fufR e, > 2% S 2MEEDTIm NS [y 3 o
k=m—2

Using these estimates in (2.27), we obtain

t
I8 ()]l o) S alt)2m(+0)-5m / / (=5 ReN| 3|~} g1\[ ds < a(t)2m (0 —Smyd
0 I

and the proof is complete. U

Lemma 2.7 (Estimate for phaym,<1). Foreveryt > 0and g € (0,3), we have
Pharm <1 ()| 2= 0y < 2F @Dty
Recall from (1.8) that a(t) = sup,¢o ||u(s)||?wgq

Proof of Lemma 2.7. By (2.13), we have

1 t
pharm,<1(xa t) = . / / e(tis)A / Q)\(ZIZ'/ - Zla x3, ZS)X*FB(Zv S) dz dX dS,
B 2mi Jo Jr R3
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where I is as in Pharm,>1. As in Lemma 2.1, we use (2.5) to obtain
t [e’e] 1
<10 S [ [ mmer [T e [ (laf— 2y 4 20) 2 P e, )] d sy dlA] ds
0 R2
1
/ ||FB HLOO(Q )/ (t— S)Re/\/ e \>\|2z3/ (|ZI|+$3+Z3)_2dZ/ dzs d‘)\| ds
{lz’|<C2™}
< 2l mtE o (¢ / / (e ‘”Rek/ M (g 1 2g) = dzg d]A| ds
52@*4)@%@@)/ /e(t*S)ReA|>\|*%d|>\| ds
o Jr

-~ t )
< 2(q_4)ﬂ+%a(t)/ (t—s)"3ds
0

5 2(4—4)M+%a(t)t%

for every x € Q2 and t > 0, where in the third inequality we used the estimate || Fp|| @) < Q|5 ||uH trra S
20a=Hm||y|12 , . forevery @ C Q* (recall Step 2 above), as well as the fact Siyi<ally'1+ b) 2dy" < (a/b)Y/4, asin
the proof of Lemma 2.1. ]

3. A PRIORI BOUND

We now establish our main a priori bound for solutions to (1.1) for initial data in Mg;q. We work under the
assumption

0<g<2 (3.1
Recall from (1.8) the notation
ap(t) = sup Hu(s)”?wgq and f,(t) = sup — / / |Vu|?.
5€(0,1] cn Qec, Q5

Note that, for the sake of brevity, we have omitted “ dx ds” in the last integral. We continue this convention below in
the instances that do not cause confusion. Since in Lemma 6.3 below we show that « and 3 are continuous functions
of t, we define «,, (0) = ||uo||M2 -

Theorem 1.4 follows from the followmg statement.
Proposition 3.1 (A priori bound). Assume that (3.1) holds. There exists v > 1 with the following property. Letn € N,

suppose that ug € M Qf, and assume that (u,p) is a local energy solution on R%. x (0, 00) with the initial data ug
such that

an (t) + B(t) < o0,
forallt < oco. Let T' = T,, be the solution of
= b(1+T) ((2a)3T% +(2a)3T75 4 a27%T§> , (3.2)

where b > 0 is a constant and a = ||uo||? Then

M
an (Ty) + Bn(Th) < 2ba, (0).
The claim of Theorem 1.4 follows form Proposition 3.1 by taking 7o = (10)~!, for example. Indeed, in order

to verify the lower bound (1.10) on the solution 7" of (3.2), note that if it is false then T < nd~7°, where d =
max{2~",a'/?} and n = n(I[uollz2.4) € (0,1), and so
1

1=b(1+T) (8a2T% y23a3TTs 4 2’%T%)

3

< 8b(1 +nd " T7)7 (ngdz*% +pis T 4 nsdrm)

< Gy (1+d)°,
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which gives a contradiction if 7) is chosen sufficiently small so that Cvns (2 + [luol| M2 q) <1/2.

Before proving Proposition 3.1, we recall an interpolation-type lemma from [BKT] which enables us to estimate
the cubic term appearing on the right-hand side of the local energy inequality (1.4).

Lemma 3.2. Let u: Ri x (0,T) — R3. Given € > 0, we have

an e <eiers [ G )

t t . (3.3)
a_5 1 2
e/ / |Vu|2+C|Q|§75/ < q/|u(s)|2> ds, t e (0,7),
0 Jo o \|QI% Jo
for any cubeQCRi.
The inequality (3.3) implies
u* < ClQIT 5 |al3s 00 + € QIR al?, 3.4
a7 [ < e el + it s + 10t Flally G4

for every @ € C,, and t > 0, suppressing the dependence of o and 8 on n in the rest of the section. Similarly, one can
show that

) S Q% la ||68 B +[QIF % [la 7, 3.5

Hu||L3((0nf);L ks L31(0,t) L300

We now use the pressure estimates developed in the previous section to deduce a bound on the pressure term appearing
in the local energy inequality (1.4).

Lemma 3.3. Let Q € C,, and let ¢ be such that ¢ =1 on Q, pg = 0 outside Q*, and |Vog| S \Q|’%. Then

t 3 .
| [rneo0 < caita o (ol + lallio, + 1@ lallaan) + Q1 50)

for0 < q<2ande >0, where y > 1.

Proof of Lemma 3.3. We have
t
/ /(pli,loc +pli,nonloc)u : vd)Q
0
1 t 1 t
§|Q\_§/ ||p1i7100||L2(Q*)||UHL2(Q*)d5+|Q|_§/ [[P1i,nontocl| oo (= [lull L1 (@~) ds
0 0
a1 [* _3 P _3
S1Qs [uollpgz.a llullL2(g-ys™ % ds + Q[ [uollpg2.a llullLr(g-ys™ 7 ds (3.6)
0 n 0 n

<lQIs

W\Q

t
_ 1 _3 g_1 1
<1Q) / a(s)s~ 1 ds < [QIE 44 all s,
0

where we used the first two inequalities of (2.15) in the second step.
Next, by the third estimate in (2.15), we may bound

t t t t
//ploc,HuwQs\Qré (// \u|3+// |ploc,H|%)s|Q|-s// uf?
O 0 Q* O Q* * ok k. (3.7)

q 29 _ 4 q q_5
< CdQIFIQIY 3 [lal g0, + clQIF5(5) + QI QI ¢ o 1%,

L2(0t)
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by (3.4). With @ = 0(t) as in (2.15), we write
/ /ploc harm U * V¢Q_/ /ploc harm — 0 'LL V¢Q
S |Q|7§HUHLS((O,t);L%(Q*))leoc’harm 0||L2( Ot LlO (]R3 ))
& o :
t
S1alt (1% ol s + it Bty .
x (llal¥y  BOH +1Q1 Flall s, 80F + Q1 H a4
L (o,t) L3(0,t) L3(0,t)
a =2 253 9 _3 13 5
SIQIFIQI (38 allF2 0, B +1Q1F R lall e )
1 i3 21 _4 5 i 1 _21,13
< (135 all g BOF 4+ 1Q1 15 ) 2, B0 +1QIH 1 lallx0)
where we applied (3.5) in the second inequality. Therefore,
t
/ /ploc,harmu'VQSQ
0
q 2 9
S 10181+ (lall 00 50)F + el 050 + ol g 805
B 2 b lal?
T llalf . B0 + lallsonB®)F + llallf .,
q 3 aq
S QI+ (Jlallis o + lallZe, ) + 1B,
where we used |Q| > 1 to remove |Q|*5 * and other non- -positive powers of |Q)] in the parentheses in the first inequality.
Next,
t . t
[ [ poonocsn- 900 £1017 [ 1u(s) o2 @ lIpwomor () 1 2 s
0 0
t t
a_5 a_5 3
S|Q|3 6/ ”u(S)HLQ(Q*)Hu(S)H?\/ICQquS|Q|2 G/ a2(8)d8 3.9
n 0
2
= Q¥ QIE ol

Using the estimate for pyarm,>1 in (2.15) with r = 3/2, 6 = ¢/6, and v = ¢/12 we have

t
_1
/ / Phasm1 1 Vg S [Q17H [l 0121 @y IPnarm 1l 3
0

1
S |Q| 6 ||u||L3((O t);L2(Q*)) tharm,Zl ”

((0,8);L>=(Q*))

L3 ((0,£),L°(Q"))

1
<|Q|6 GHOZHE% )||Pharm,21||L%((0t);Lm(Q*))
a_5 i a l q _a
SIQtHally (10 I0lE, a0 + (1418101 + Q1) oo )

q

q 1 _1
SonBO + (1+641Q17H) lalls)
—4?410¢-15 18—g e a =5 1 11 3
< C|Q|™ 53 t36—64||a||£3307t)+€‘Q|gﬁ(t) e (1—|—t2|Q| 3) Ha”fsm,t)

q 3 q
CealQIF 1+ 1) (Ialao. + lal Foosy ) +elQI? B,

< 1R all o, 0th (1Q1 ¢ o3
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and, from the last bound in (2.15),

/ /pharm <1U- V¢Q |Q‘ / H’LL ||L1(Q )”pharm <1( )||L°°(Q )dS

t
10 [ ulsgratsist ds £ QI [ ats)tst i @10
0
41 4—13 19 .
S 1QIFIRIF Btk allf g .
and the proof is complete. |

The following lemma contains the necessary barrier statement needed for the a priori bound in Proposition 3.1.

Lemma 3.4. Suppose that f € L;.([0,Tp); [0, 00)) satisfies
70 < a+b0+ 07 (1 o0z + 115000 + cllf oo )

wherep,q > 1, p € [1,00), v > 0 and a,b,c > 0. Then
f(t) < 2a,

Jort <min{T, Ty}, where T > 0 is the solution of
a=b(1+T) ((20)PT% + (2a)°T + 2acT7). (3.11)
Observe that T — oo if max{a,c} — 0.
Proof of Lemma 3.4. By (3.11), the function g(t) = 2a satisfies
9(8) 2 a+ 501+ 17 (I91% 0.0y + 19170, + €llgllzrion)

fort € [0, 7], where T1 = min{T, Ty }. The inequality f(¢) < g(¢) for ¢ € [0, T3] then follows by a standard barrier
argument. (]

Proof of Proposition 3.1. Let () € C,. Using the local energy inequality (1.4) with ¢(z,t) = ¢g(x)m, () Where 1.,
is a suitable sequence of functions, and weak continuity in time, we obtain

[ oo +2 [ t [1wutoq < [luo)Foe+ [ t [upaso+ [ t [u? o0, 312

from where, using (3.4) and Lemma 3.3.

Jutoroa+e [ [1wurs

a a E 3 _1 a
< CIQIa(0) + CIQIE (1 + 1) (Jlalds o + ol Fuo +1Q1 Hlallson) +elQI5(0)

4

for all ¢ > 0, where we used the restriction ¢ < 2 to write |Q|5~% < 1. Dividing by |Q|#, taking Supgec, » and
absorbing the last term on the right-hand side, we obtain

3 _n
at) + B(t) < Ca(0) + CL+ 1) (llol a0, + lall oo + 2 F lalison ) (3.13)
where v > 0 is a constant and we used the fact that’|Q\ > 237, The claim now follows from Lemma 3.4, applied with
f(s) =a(s) +B(s),a=Cal0),b=C,c=2"3,p=28,p=3,and § = 3/2, where C is the constant in (3.13).
Note that the definition (3.11) of 7" given by the lemma then becomes (3.2), as required. O

Note that, using the Gagliardo-Nirenberg inequality, we have

G [ S T ) Bt + 1077 el G149

This inequality is used in Section 6 below.
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4. STABILITY

In this section, we prove the stability theorem. In the following, we use the notation
10/ 9)llx = 2max{]|fllx, [lgllx}-

Proof of Theorem 1.5. Consider n € N. Since u( ) ug in M "% and, using (1.7), we have that for any ¢ > 0 there
exists K (n) so that

H’U,((Jk) _ uUHMg,q < €
for all K > K(n). Let T, be given by (3.2) for ||u0||Mg,q, and let 7\ be the same for Huék)”Mg,q_ The above

observation implies that, for sufficiently large k, we have TT(Lk) > T, /2. Since we will ultimately pass to a subsequence,
we ignore the finitely many terms not satisfying Ték) > T,,/2. Hence, we can apply Theorem 1.4 to conclude that 1 (¥)
are uniformly bounded in L*>°(0,T,,/2; L*(B,, N R3.)) N L*(0,T,/2; H* (B, NRY)), where { By, },>1 is a sequence
of expanding balls (e.g. B,, = B(0,n)). Note that T;, is an unbounded, non-decreasing sequence.

We need to show that d;u*) are uniformly bounded in the dual space of L5(0, T}, /2; W, *(B,, N R%)). Let Q be
a cube containing B,, N Ri. Based on local estimates for u(*) and pressure estimates in Section 2, this follows nearly
(k)

loc.harm+ 10T Which we have

identically to [MMP1, p. 561]. The only added work here involves our treatment of p

T /2 *) T /2 o3 2/3
’/ / Dioc, harm (b’ (/ (/ |ploc harm|17/10 d$> dt)
T /2 17 T77'3 %
(VARVAED D
0 Q

Tn/2 ) 9% 2/3
<o ( / ( /Q P el 7/ dw) dt) 1960l s 0,7, 2525882 -
0

where we have used Holder’s inequality in both space and time variables; here ¢ € C§°(By,)3. The terms involving
(k)

ploc harm
uniform bound on 9;u ).

By repeatedly applying the Lions-Aubin lemma and using a diagonalization argument, we obtain that there exists
u: R x (0,00) — R3 such that, for every n € N,

u®) — u  weakly-+ in L=°(0,T,,/2; L*(B, NR3)),
u® — u  weakly in L*(0,T;,/2; H*(B, NR%)),
u®) — u  strongly in L2(0,7T,,/2; L*(B, NRY)),

are uniformly bounded by Lemma 2.4. Hence, following [MMP1, p. 561], we have obtained the claimed

after passing to a subsequence of {u(k) }. By interpolation, the strong convergence can be extended to
u®) — w strongly in L"(0, T;,/2; LP(B,, N R3)), .1
for any p, > 2 such that 2/r + 3/p < 3/2 and p < 6. By (3.14), the convergence in L*(0,7,,/2; L3(B, N R3))

implies

1 (T2 CT,
s o [ < O ol + gl
since this estimate is satisfied by all u(¥) for sufficiently large k.
Note that, since T}, — 0o as n — 0o, the convergence properties listed above on B,, N R%. x (0,7},/2) extend to
any cube ) C Ri and 7" > 0. We next show that for any n € N and T" > 0, letting «,, and (3,, be as in (1.8) for u, we
have o, (T') 4+ 8, (T") < co. By our remark about convergence in () x (0,7, for any Q € C,,,

2
sup ———|lu(s ) <limsup sup
0<s<T |QW3H U koo 0<s<T |Q4/3

which is uniformly bounded in & by the bounds for u(*) in M, C’q. For the gradient terms, the weak convergence implies

1 T 2 1 T (k)2
Vul* <liminf —— / / Vu , 4.3)
|Q|Q/3 /0 /Q | | k—o0 ‘Q|Q/3 o Jo | |

[u™ ()32 (4.2)
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which is again uniformly bounded. We now take a supremum over ) € C,, to obtain the boundedness of o, (T) and
Bn(T).

Given a bounded open set 2 C ]R?jr we define p via the local pressure expansion,

P ‘= Pli,loc T Pli,nonloc + Ploc,H + Ploc,harm T Pnonloc,H + Pharm,<1 + Pharm,>1,

where we use the formulas (2.4), (2.7), (2.11), (2.12), and (2.13) for each of the pressure parts. We similarly define
p("') as the local pressure expansion of each u®) where k > 1, and we set

(k)

p* =p*) —p.

We also use analogous notation for the differences between each part of the local pressure expansion. We now claim
that, for every compact set X C R3 ,

(k) (k) (k) (k)
ploc H> pnonloc H> pharm >1° pharm <1’

o the following parts converge to zero in L?(0,7T’; L*(K)) forp < 3 4. pk) | pk)

li,loc? ph nonloc

o the following parts converge to zero in L2 (0, T; L (K)):

o the sequence pl(fc)’harm is bounded in L?(0,T; L?(K)) for every p < 3/2 and that ||pIOC harmHL $orniiy
0 as k — oo forevery K & Ri (i.e., locally away from the boundary).

These convergence properties guarantee that (u, p) satisfies the Navier-Stokes equations (1.1) in the sense of distribu-
tions on R? as well as the local energy inequality (1.4) for non-negative test functions ¢ € C°(R3 x [0, 00)). Indeed,
using the above convergence modes (of u¥) and of each part of the pressure function) the only nontrivial convergence

is
t t
/ /pl(cI)CC) harm & k) : v¢ — / /ploc,harmu . V(b,
0 0

for each ¢ > 0 and each nonnegative ¢ € C2° (@ x [0, 00)). For this, let K & @ be such that supp ¢(s) C K for
all s, fixe >0, and let K € R?. be such that

-1
HU” (K\K)X(O t)) — (2||(ploc harm’plOC harm)”L%(KX(O,t))) .
Then

[ <l < [ [ =)+ [ [ J -

(k) (k)

< HUJHL%((K\K)X 0t))||(p P19+ llullpaorslp™ = pll 19 Ex) T [ —ull 1 llp ) it
(k) _ (k) _
+C(Hp p||L13(K><(0 t))+H“ “”L%‘)
<e€

for sufficiently large k, as required, where for brevity we omitted the notation “loc, harm” and we set L¢ = LI(K X
(0,1)).

Moreover, the local pressure expansion for u (recall Definition 1.1(6)) then follows for every open and bounded
Q C ]R3 by the uniqueness argument as in (2.14). The remaining properties of local energy solutions (i.e., that
u(t) — wup in L2 and that u(t) is weakly continuous in L2 ) can be proven using well-known techniques, see
e.g. [KS, KwT]. Finally, since we have shown (u, p) satisfies the assumptions of Theorem 1.4, the asserted a priori
bounds now follows by applying Theorem 1.4 to (u, p).

We now fix K € Ri and prove the convergence properties for the pressure listed above.

For Diiloc and Pli,nonloc, W€ have

1Bt ()l z2000) S 1™ = woll eyt ™
and
158 homtoe Dl 1) Sk ug” = woll gzt 5,
as in Lerr}lmas 2.1 and 2.2. Since u(() ) up € M2, it follows that pl(ik) — pi € LP(0,T; L(Q)) for every T' < 00
and p < 3.
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The local part of the pressure is expanded into the harmonic and the Helmholtz parts. For the Helmholtz part, we
have

T T
_(k 3
/0 proc),H(t)HZ; dtS/ [(u® @ u® —ueu)@) dt

3(®3) 0 3 (@)

N vl

3 3
S ||(UvU(k))||23(0,T;L3(Q***))H“(k) o “”23(0,T;L3(Q***))’

where the first inequality follows as in Lemma 2.3. The right-hand side vanishes as £ — oo for every T' < oo by (4.1).
Thus p{") ;1 — Ploc,n € L¥2(0, T3 L¥/*(Q)).

We next treat ﬁl(c’f C) harm- FOr other pressure components, we are able to refer heavily to the work in Section 2. This

term requires a different approach. We have

1

ploc,harm(x7t) =pA+pB:= i

t
/ /e(tis)A /3 ax(2' — 2,23, 23) - (Fa(z, s) + Fp(2,5)) dz dX ds,
0oJr RZ

where, recalling (2.11), F4 is a 2D vector function whose components are sums of terms of the form 0; (Xaxtlpuy) =:
0;fa, where j, k.l € {1,2,3}, and Fg(z,s) = Fp(#, #3, s) is a sum of 2D vectors of the form
m(D")V' ® V’/ ((P( |23 = ysl) + P(, 23 + y3)) * (xsv @ w)(y3)) (2, 5) dys
0
= V' ® fB(z,s),

where v and w denotes various 2D vectors whose components are chosen among w1, uz, or us; also, m(D’) denotes
a multiplier in the horizontal variable z’ that is homogeneous of degree 0, and P(¢,t) = e €'l ie., P is the

2D Poisson kernel. Thus, using |[m(D")P(-,s)||z1(r2) S 1, which is a consequence of (2.26) and |y3| Sq 1, we
obtain

1f8(2", 23, 8) | L2, (r2) S@ IV (Xt @ W) (5) | Lo g2

for every z3 > 0, s > 0, p > 1. Thus, by (2.5), we get

t ) N
HpB(t)HLP(Ri) < / / e(t—s) Re X / e IAZ 23
0o Jr 0

t [e%) 1
5/0 ||VI(X**U®w)(S)HLP(R§r)Ae(t_S)RCA/O e—‘)\|223 |‘(x3_|_23)—1”L£3(0’00) ng dlA‘ ds

/ (|o" — 2| + 23 + 23) 3 fB(2,5) d2’ dzs
R2

L?, (R?)

d|\ ds

P
L,

t [e%s} 1 4l
f,/ ”v/(x**v(g)w)(s)HLP(Ri)/e(tfs) Re)\/ e*\)x|2z323 +5 dzs d|)\| ds
0 T 0

t
SAHVQMU®W@WMM%AW”WMMFﬁdeS

1-2p

t
S [ IV G © )6 = )5 s,
“4.4)

1
where we used [, (|y'| +a) 2 dy’ S a'and [T e Mot du < IA|=*%". Thus

_ 3
”pBHLP((]Ri)X(QT)) S HV'(X**U ® w)(S)HLl((&T);LP(Ri’r))T s

Note that we have

T
IV (v @ w) ()l L1 0,7y, (02 SQA (Il 2o IVu(s)l|2(@e++) ds + NullZLz 0,1y 120wy
S llull

2
La(omyin 5 ey IV Ul @22 @)+ ullz0.1yizor e
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which is bounded due to (4.1) for p < 3/2. Thus both pg and p{¥’, k > 1, are bounded in L?(0, T; L?(K)), for every
p < 3/2. On the other hand, on a set K = K’ x K3 compactly embedded in R3,

t 00 1
B ot 5 S [ TGP = WPl gy [T [ e S g 4 20) 2 s ] as
z 0 r 0

L2 (K)

t
<k / 1u® ()2 u(s) ]| 5 / (= ReA |\ 1=} ]3] ds
0 Lz(Q***) l"

t
< NP~ P g enn (= 5) 7 ds
J -

for every z3 € K3 and t > 0, where the first inequality follows in the same way as the first two inequalities in (4.4),
except that we now put both derivatives from V' ® V’ onto g, (rather than one onto ¢, and one onto (y..v ® w)), and
the second inequality follows simply by bounding 3 + 23 =, 1. Thus

—(k) L1, (K (o\12 2
1851 5 0.0.23 iy S5 TSP = 1al) P L3 0.1y.13 (greey)

for every T' > 0, which vanishes in the limit £ — oo due to (4.1).
For ]’)Xc), we have that fgc) converges to f in L3 ((0,7); L3 (R3.) by (4.1); recall that f4 is a sum of the term of the
form X..tytim, I,m = 1,2, 3, and fx(qk) is defined analogously. For every t € (0,7'), T > 0, and every ¢ € (3/2,5/3),

t oo 1
HPA(t)H 5 S/ /e(tfs)Rc)\ / efl)\‘223
L2 (K) 0 r 0
t
SK}Q/ /e(t—s)ReA
0 T

t 00 1 1
< e(t—s) Re)\/ e_|/\‘§z3z_§ fA 23,8 3 dzz d|\| ds
NK‘/O A 0 3 || ( 3 )HLE/(RQ) 3 | ‘

¢ _ 11
S [ 15O lasg) [ M ANE ) ds

d\| ds
L3

ng

/ (2" — 2|+ 23 + 23) 3 fa(z, s) d2’
RQ

3
L2 (R?)

dzs|| d|A| ds

L2, (Ks)

ROV -1
| e ) )
0

3
LZ (2

¢ 1 7
S [ a6 gagey, ¢ = )37 F s,
0
where ¢’ € (5/2, 3) is the conjugate exponent to ¢. Therefore, we have the required estimate

1 _ 1
1Al 2 (0.0y.03 (1)) SEQua T2l fallLaco,ryiza@e))
for any ¢ € (3/2,5/3) (we can choose any such ¢), and similarly for pff). By replacing f4 by flgk) — fa we also

2l

obtain the convergence ||ﬁf4 3 — 0, as required.

L3 (0.1):L3 (K)
The nonlocal components are ﬁnlgﬂoc s pl(l];)rm >, and ﬁl(lgm <. The first of these is similar to the case of R? in

[BK, BKT], but we include the details to illustrate the main approach. We set

T
Ap = sup sup||(u(t), ul®) (,5))”?”227 B = sup sup |Q|f§/ / (\Vu(k)|2 + |Vu‘2) .
te(0,T) k ¢ k QecC 0 JQ

Note that although the statement of Theorem 1.5 is for M 2’q, due to Mc2’q Cc M 2’2, we also have uniform bounds for
Ar and Br.
Recalling the details of the proof of Lemma 2.5, we have

(k) (B) () —
P en@ 0 Sk S0 / [u®(2) @ ul®(z) 4u(z)®u(2)\ dZJr/ u® @ u®) @ u|ds
’ I>M Geg, ” @ |z — 2] Qu

S Ar Z 2~ —l—/ [u® @ u® -y @ u| dz
I>M M
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for every z € K, where M € N is such that 2/ >> dist(K, 0), and Qs = ngM UQeSk Q. Since the series above

can be estimated by 272M

/ ||pn0nlocH ||L°° K)ds < - +CK/ / |u(k) @ u®) — uQu|dz ds<e
Qwm(0)

for any preassigned €, where we have taken large k in the last inequality. Due to the uniform bounds of both
pfl]:’))nl ez and Ponloc,rr in L°(0,T; L>°(K)), due to Lemma 2.5, we obtain the required convergence ﬁfff;)nloc u—0
in L3/2(0, T; L*/*(K)).

_(k) .
For Pharm,>1> We write

we can choose M sufficiently large so that

‘pharm >1| < pAl) +p5%2) +pA3 + |p
as in the proof of Lemma 2.6, except that now we apply a cutoff at z3 = 1, instead of z3 = 2™ in the z3 integral (recall

(2.20)). For example, for EX? we have for x € K that

(k)|

_(k
[ (2, 1)]
t (t—2) o 0 e—\M%zB *) * ) 4.5)
< e / / 1=y )™ @u™ —u®ul(z) d2' dzs d|A| ds,
K/O/F 1 R2(|§’—Z’\+§3+23)4( Xl () sd|A|

where £ belongs to the line segment between x and x g, which is a fixed point inside K. Denote by I the double
integral in (4.5) with respect to the variables z’ and z3. As in Lemma 2.6 (recall the calculation below (2.21)), we have

1
3 1o
e~MZ2 < |\|732, which gives

1 ®) @ u®) —u @ ul(2)
I<wx N2 2—41/ 2 )\"/ 1= (o)l d
Sk 2 (uf =+ RBP4 2 QM( e T G e

I>M Qes,
1 _ _1 .
Sk INTEAT Y 278 4 A E u® 0 u® —u @ ull g,
I>M

SIAT2A7272M 1 072 [u® @ u® — @ | i@

for large M, where we used (2.1) in the first inequality. Inserting this into the above integral in A and s leads to

t
1) (6| oo () S 12 Ap272M 4 / (t — )75 [u™ — w12 (up) | (s u™) | 2y ds.

Thus, applying Young’s inequality for the convolution in time we obtain
_(k _
P 20y aey S Ar272M o sup (u(s), () 2@ 1) = ullz2(@uex 0
which converges to 0 (by first choosing large M and then large k).

For pgu) , we have, similarly to (2.23),

t 1 -3
_(k) _s 23 *®) o (k) .
z,t)| < / t—s “’/ / 1— x| @ u¥(2) —u@u(z)|dzs d2’ ds,
ol se [e-ob [ [t ()~ u u(2) dzy
3

and, similarly to (2.25) considered in the case a = 42, o’ = 10,6 = 3, b= 3,7 = 2, we have, for every Q€ S,

1 1
*) @ ) — =5 4y (k) _
/0 /Q|u ®u U@z dz' dzs S JJu™ @ u u®u||L2(Q)

2m m S 1
< 287 (1, w9 o (Vs TuB) 2 ) + 27" N )2, ) S 257 ((ArBr)? + Ar)
Using Young’s inequality for the convolution in time, we thus obtain

[i2% IILQ((OT)L(X,(K)) SKT((ATBT)%+AT) S omim 4 Oyllu® @ u® —u@ul|
m>M

L3 (0.1):L% (@Qu))’

where, for the first term, we used (|¢' — 2/| + &3+ 2z3) = 2™ for z € Q € S,, form > M (recall (2.1)); for the second
term, we used the first step in the inequality above. We now choose M sufficiently large, and then a large k to obtain
the required convergence.
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For ﬁf@ we have, using (2.21),

[A1Z 23
k ) Re e
a0 s [ o [ e 9u e~ we ] de
supp VX«

<K/ J AN AN 90 5) —u S u(s)l .

t
S =) u® @u®(s) —ueuls)|, g,.. ds,
/0 L3 Q™)

which gives ||p,4 (k) 3l 3 — 0 by applying Young’s inequality for the convolution in time.

~(k)

L2 ((0,T); L2( )
, recalling (2.27), we write

t
|ﬁ§§><x,t)|5/ /eu—s)m/
0 T Ri

where F (deﬁned in the same way as F'p in Step 2 of the proof of Lemma 2.6, but with v ® u replaced by
u®) ® u(k) — u ® u), can be estimated by

As for pp

Do (2)(1 = X FS) (2,8)| dz d|A| ds,

F ()] S@ 27 Ar + Cu[[u® © u® —u@ ull 11y 4.6)

for any fixed Q C R2, and z € Q, where M > 0 large enough so that Q C Q) /2- This can be obtained by an easy
modification of Step 2 of the proof of Lemma 2.6 by separating the integration region into Qs and the rest, as above.
We then obtain

S e -3 — k
) (2, 1) // (= ReX 3 =3 [ 5757 272 5 (5) |y + CLIlFL (5) l1e@uy | I ds,

I>L Qes,

< / (t—s)"2 (AT Z 274+ CLAr2™ + CLOM ™ @ uM(s) —u® u(5)||L1(QM)> ds,
0 I>L

where, in the second line, we have used the estimate HFl(f) (=@ S |Q|~3 Az (from Step 2 of the proof of
Lemma 2.6) in the summation, and have assumed that M > 2L in order to use (4.6). This gives

_(k) < —4L -M (k) (k) _
15713 (0,71 10y S AT2T + CLAT2™H 4 CLOM @ u™ —u@ull g 7018 g,y
which provides the required convergence by first choosing large L, then M and k.

Finally, for the remaining component of the nonlocal pressure, ﬁ}(l’;)rm <1» We have

~(k)
pharm <1

e(t—s)ReA/ (@ — z',x3,z3)X*Fg“)(z,s)’dz d\ds
Ry

t
gK/O /Fe@S>R“|F]g’f)(s)||Lm(Q*)/Q lga (2 — 2,23, 23)| dz d|\| ds

for every 2 € K. Thus noting that fQ* lga (2’ — 2/ 23, 23)| dz Sq- [y e "\|2z3z i dzs < |A\[F (recall (2.5) and
(2.18)) and using (4.6) gives

t
ﬁéz)rm’<1($,t)‘ ,SK / (t — S)_% (ATQ_M + CMHu(k) ® u(k)(s) —u® U(S)HLl(QM)) ds,
B 0

where M is chosen in analogy to prior cases. This implies the convergence thdrm <1 HL2 (O.T):L>=(K)) — 0, as

required.
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5. EXISTENCE

In this section we apply the stability result of Section 4 to obtain the existence of a global weak solution when
Uy € Mg 2 and of scaling invariant solutions when u is additionally scaling invariant. Note that ug € Mg 2 implies
Up,3

We start with the general case.

z5=0 = 0.

Proof of Theorem 1.3. Let uék) € C§°(R3) be divergence-free, satisfy ué’f§|z3:0 = 0 and be such that uék) —
ug € MC2 2, By the Leray-Hopf theory, we obtain global-in-time finite energy solutions u*) and pressure p(*) in the
Leray-Hopf class satisfying the local energy inequality (see [Tsai2, Chapter 3] for an exposition on the Leray-Hopf
weak solutions on Ri; the local energy inequality is not included for ]R‘j_ in [Tsai2] but follows as a consequence
of the construction by adapting ideas from [MMP1].) Since these solutions satisfy the global energy inequality,
ar(t) + Br(t) < oo for every t > 0, where ay, and j, are the quantities corresponding to (1.8) for u(*). These
solutions are also local Leray solutions in the sense of [MMP1], and, following [MMP1, Proposition 3.1], satisfy the
local pressure expansion tailored to C and C,,. Hence, these solutions satisfy the a priori bounds in Theorem 1.4 for
q = 2. The asserted global solution exists due to Theorem 1.5. (|

We now address Theorem 1.6. For our foundation, we use the scaling invariant solutions of [BT2]. These belong
to the energy perturbed class which we now recall.

Definition 5.1 (EP-solutions to (1.1)). The vector field u defined on Ri x (0, 00) is an energy perturbed solution to
(1.1), abbreviated ‘EP-solution,’ with divergence-free initial data ugy € L3’°°(Ri) if

| (o = (9090 - - vu ) ds =0,

forall f € {f € C§°(R3 x (0,00)) : V- f =0}, we have
u— Sug € L>(0,T; L*(R3)) N L*(0,T; H'(R3)),
foranyT > 0, and

Jim ) = Suo() a2 =0

where Sug(t) € L*>(0, oo; L3’°°(Ri)) is the solution to the time-dependent Stokes system with initial data vy and
zero boundary value.

Energy perturbed solutions have played a role in several recent papers on the existence and regularity theory for
the Navier-Stokes equation. Most relevantly, the construction of self-similar solutions in [BT1] led naturally to this
structure. Additionally, Barker and Seregin [BS] used such solutions to show that, on the half-space, the L? norm must
become infinite at a potential singularity, extending a result of [S1] from the whole-space. Energy perturbed solutions
and a modified argument compared to [S1] were needed in [BS] because the local Leray theory had not been extended
to the half-space. This has since been achieved in [MMP1]. Later the a priori estimates from [BS] were extended to
construct global weak solutions on the whole-space and analyze regularity and uniqueness issues for initial data in
scaling critical spaces [SS, BSS, AB]. Some of these ideas have been extended to the half-space in [TP].

The main theorem of [BT2] is the following.

Theorem 5.2 ([BT2)). If ug € L3’°°(R3_) is SS (resp. A\-DSS), is divergence-free and such that ug 3|z,=0 = 0, then
there exists an EP-solution uw on R3. x [0, o) with initial data o, which is SS (resp. A\-DSS). Moreover, u(z1, x2,0,t) =
0 for almost every t > 0.

Our proof of Theorem 1.6 is by stability using the solutions of Theorem 5.2 as approximations. To connect these
. . . . . °r2,2 .
with a scaling invariant datum in M;’* we need the following lemma.

Lemma 5.3. Assume ug € MC22 is A-DSS, is divergence-free and such that ug 3|g,—0 = 0. Then there exists a

sequence {uék)} C L**(R3) so that ugf3)|x3:0 =0, all uék) are \-DSS, divergence-free and ugk) — ug in M2 If

(k)
0

ug is self-similar, then uy’ can also be taken to be self-similar.

The proof of this is similar to the proof of [BT3, Lemma 4.1] and the details are omitted.
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Proof of Theorem 1.6. Concerning the solutions of Theorem 5.2, it is an easy exercise to check that they are local
energy solutions. Indeed, Sug is smooth and decays in the sense that it belongs to £2,__, where we adopt the notation
of [MMP1]. The L? part also enjoys this decay. This is a sufficient condition for  to have the local pressure expansion
which follows by adapting [MMP1, Proof of Proposition 3.1] to C and C,,. Additionally, the quantities «,, and 3,
defined in (1.8) are finite for solutions of Theorem 5.2, a claim we now justify. Let u be an energy perturbed solution.

Then u — Sug € L* (0,7 L*(R3)) N L?(0,T; H'(R3.)). On the other hand, it can be shown that, for any ¢ > 0,

t
sup [|Suo(s)[|% 2.2 + sup % / / |V Sug|? dz ds < oo,
s€[0,1] ¢ QeC, |Q|F Jo Jg

by approximating ug in Mgf by elements of C'2° and then extending analogous estimates for the solutions of the
Stokes equations with the approximated initial data to Sug as in our proof of Theorem 1.5—see (4.2) and (4.3). Taken
together, this shows that u = (u — Sug) + Swuy satisfies (1.8).

Based on this, the solutions from Theorem 5.2 satisfy the conditions of Theorem 1.5.

Given ug, from Lemma 5.3 we obtain a sequence u(()k) which converges to ug in M, c2 2, By Theorem 5.2 we obtain
for each k a global EP-solution «(*). These solutions and data satisfy the assumptions of Theorem 1.5. Hence, there
exists a local energy solution v for initial data uo which is a limit of (*) in the sense given in the proof of Theorem 1.5.
This convergence is sufficient to guarantee v is DSS. The argument is identical when u is self-similar. (]

6. EVENTUAL REGULARITY

The goal of this section is to prove Theorem 1.7, which asserts regularity in a parabolic region with an arbitrarily
small leading coefficient.
Let 0 < ¢ < 1, and suppose that

Ug € Mg’q,
and assume that w is a local energy solution with initial data u. As in (1.8) we set
1 t
ap(t) = sup Hu(s)”i{z,q and [(,(t) = sup —1/ / |Vu|?.
5€[0,¢] Cn Qec, |Q|F Jo Jo

Assume that o (t) + 51 (t) < oo forall 0 < ¢ < co. This implies that, for every n € Nand 0 < ¢ < oo,
an(t) + Bn(t) < oo.

Observe that o, (0) — 0 as n — oo by (1.7).
In the proof of Theorem 1.7, we shall use the following version of the Gronwall lemma.

Lemma 6.1. Suppose that f: [0,Ty] — [0, 00) is a nonnegative increasing continuous function, which satisfies

10 <af©+ (1+ 1) (70 +asar),

where p > 1. There exists € > 0, depending on a and p such that if f(0) < ¢, then f(t) < 4af(0) fort € [0, Tp].

Proof of Lemma 6.1. The proof is obtained by the barrier argument, comparing the solution f(¢) with 4af(0). O

Another important ingredient in the proof of Theorem 1.7 is the following estimate on the pressure term in the
energy inequality.

Lemma 6.2. Let q € (0,1] and n € N. If ug and u are as above, then

1 t 2 1
ot o [ pu 60 < Canto)+ (L@ (Gon () + Clont) + 8.0 ©.1)
forall Q € C,.

Proof of Lemma 6.2. In this proof we write & = «,, and 8 = (3,, for brevity. We also set
t

Fo '
QI3
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From (3.6), we have
Fo(0)%a(t)? <

//phloc +p11nonloc)u Vd)Q <C|Q| 5ta

ST
2
/—\
\/
N
Q2
—~
~
~
Nl=
I
Q

Q¥
By (3.7), we have

t
|Q1|3/ /pHu vms\@r*// W < QI () B + QI a(r)’

= 11QI"F a()18(t) T + QT a(t)?,

where we also used (3.14). Next, by (3.8),

1 t
|Q|z3;/0 /ploc,harmU'V¢Q
9
68 4 ‘Q| 34t48 Ha”LB Ot))

q—2 253
slo™ (twﬂuaHLsm,ﬂB()
1 1
QI [lall i 0,0 BOF + QI H 12 |lalls(o) )

1 13 21
x (¢t lall g o B0 + |

S Q1T (1 +D)(a) + B(1)?,

where we used that «(t) is nondecreasing in the second inequality.
3
2

From (3.9), we have
L[ Voo SIQIEFlal?,  <IQIEHia()
—_— u - «
|Q‘% pnonloc,H Q ~ L% (O,t) ~
For pharm,>1 We take » = 3/2 in Lemma 2.6 to obtain
t’Y”Ole 3(1-8)
2-35

_2y LiA-1
B +(1+01QIT7 +12(Q)| 3)||0<|L%<0,t>>

i 2115 0 S 10175 (115 -,
S1Q1 (1015 05 a(t) 280 + (1 +31Q 5t a(h))
S1Q15 ¢ (alt) + B(1) (1 +(tH1QI7 2 4 e

6.2)

for any g € (0 3), 6 € (0,min{2/3,3¢/2}) and v € (0,6/3). This gives
o / /pharm>1u Voo S1Q73 ;'||pharm,21||L§((07t)7LOC(Q))||UHL3((Ot) L1(Q))
SIQITEHQIT (ol + B0 (1+ (@I wedial ) @il Fy
<IQI%‘%(a(ﬁ+,6’(t))%t(1+(t%IQI‘%)2”‘2‘S+t2IQ\ )
=1Ql" (o NEE(14 P 41
)
2

S (a(t) +B(1))2(1+1)2,
where, in the last step, we have chosen v = §/6 with § € (0, min{2/3, 3¢/2}) sufficiently small so that 1+~v—¢ > 0

(S

Finally, we use (3.10) to obtain
/ / Prarm <1 4= Vo S QIFHelt fallfy ) <1017 ¥ a()

QI

Summing the above inequalities, we obtain (6.1), as required
Before the proof of Theorem 1.7, we also need the following fact

Lemma 6.3. Let u be as above. Then o, + B, is a continuous function of t



GLOBAL EXISTENCE FOR THE NAVIER-STOKES EQUATIONS IN THE HALF-SPACE 31

Proof of Lemma 6.3. The proof is similar to [BK, Proof of Lemma 3.2]. We only sketch the continuity of «, on [0, T,
where T" > 0 is fixed, as the argument for f3,, is simpler. First, for every ) € Cy, the function sup,¢g 4 /. o lul?¢ is
continuous in t. The rest follows by

lim sup sup / lu(-,t)?¢ =0

n—=o%0 gee,Ql>2m \Q|3 t€[0,T]

by finding m € N such that T}, in Theorem 1.4 satisfies T,,, > T and by applying (1.7) and Theorem 1.4 with
m — 00. 0

We are now ready to prove the main theorem on eventual regularity.

Proof of Theorem 1.7. By (3.14), we have
a7l [ S el 00 Qi a0 (63

for all Q € C,,, from where

= [ - Voo S QI 015,01 + 101" 00!

= QI QI an(®) 180 + (11QI7H)IQIT an(t)?.
Note that the both terms on the right-hand side are dominated by the right-hand side of (6.1) by ¢ < 1. Thus,
applying Lemma 6.2 and (6.4) in the energy inequality (3.12), and estimating the linear term |Q|~%/3 fot [ |ul*Apg
by a constant multiple of t|Q|~2/3a, (t), we get

n(t) + Bu(t) < Can(0) + (1 + ms|cz|—%)2 (émn(t) + Ba(®) + Clam(t) + ﬁn(t))3) (6.5)

for some o > 1, since the term ¢|Q| ™ a, () is also dominated by the right-hand side of (6.5).
We now fix

Q% (6.4)

2
= [q; 1} (6.6)
(in particular A € (2/3,1]), and let v € (0, 1/2] be sufficiently small so that
22n/\ 22n/\ N
U ((=27,2")° NRY) x <4W — > > {(w,t) ER3 x (0,00) : t > eolz|?* + M} 6.7)

n>no
for ng = 1, where M > 0 is a constant independent of the choice of A. By letting M depend on ny we see that then
(6.7) holds for all ng > 1. With € € (0, 1] to be determined, we find ng € N such that
vo2?m > 9 and an(0) <e for n > ng.

(Recall (1.7) that o, (0) — 0 as n — o0.) For every n > ng we consider Q € Sn , i.e.,, Q € C, with the

side-length 2", and
22n>\

t= .
vo

Due to our choice of ny we see that t|Q|~2/3 < 1. Moreover, applying Lemma 6.1 with f(t) = ., (t) 4+ 8, (t), which
is continuous by Lemma 6.3, we obtain that
an(8) + Bn(s) Se, 0<s<t, n>ng,
if € > 0 is sufficiently small. Note also that, having fixed ny we have also fixed M > 0 in (6.7). We show below that
there exists 6(¢) such that
1 1 3¢+6-91 3
¥||UH%3((0¢);L3(Q)) +—[lp—0(t )” : (eord @) StOR e, (6.8)

for all n > ng. This, (6.7), and the boundary partial regularlty criterion due to Seregin et al [SSS, Theorem 1.1] shows
that fixing € sufficiently small gives regularity of (u, p), together with an upper bound

2—3X

Juz, )] < 5t

74 9+2
+55

1 1.7
2 = €31 8
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in {(z,t) € @ x (0,00) : t > eg|z|** + M}, which proves Theorem 1.7. We note that the regularity criterion in
[SSS] requires the integrability condition

Vp,D2u€ L2 ((0,00) Llic(R ))v

loc

which is the content of Lemma 6.4 stated next.
It remains to verify (6.8). For the velocity field, we use (6.3) to estimate

1 q9— q— q—
;||U||ia((o,t>;m(@)) ('Q +1QI= ) €% ~ (tg = +t3“3) e S t 4*&6%7 (6.9)
where we used
Q| ~ t7. (6.10)
For the local linear part of the pressure, pii 10c, We use Holder’s inequality and the first inequality in (2.15) to get
<1+2
Q Q 3¢+6—9)\ 3
lel locH < anh 1oc||2 | | ~t 8A €2,
L3 (4t:L3 (@) LE (L) LQ(Q)) t8
where we used (6.10). Similarly, we have
a+2
] QI 5 sen
1,nonloc < 1,nonloc < 2 Nt 2.
”pl el HETDAIO) [Pt non ”Lz(( sne@) Yt ‘
By the third inequality in (2.15) and (6.9), we have
1 3 3\ 3
—|Ip1oc 2 < t IS €2,
WPl s ooy
Next, by the fourth inequality in (2.15), we have
QI
— _ 2 < _ 2
t”ploc’harm ”Lg (0):L3 Q) "~ t ’ ” 2((0,6):L 15 (Q))

$+% ¢ i
5|Q|t(té§8+|Qf§’i)eg:<|Qt +1QI= )3

ﬂ_,’_ 3 _ 63 3g—3 3 3q+6 9N 3
~ [t TT7Ix "68 4 ¢ 4x 2§t €2,

where we used (6.6), along with ¢ < 1 in the last step. By the fifth inequality in (2.15), we have

1 <19l \QI $
2 2 €2
”pnonloeH”L Fomedan S ”p“"““”HHL Honme@) e
:@Eigwfxt%%

Using inequality (6.2) with v = 6/6, § = ¢/8, and noting that t|Q|~2/3 = 227(4=1/3 /5 gives

Nfw

LP—L | S1QI (@) + Aa(0)F (14 QI+ ¢h1Q1H)

LE((0,):L3 (Q

_?q
< Q= (t|Q|f%> Peb mboho Bl <R,
Finally, by the last inequality in (2.15), we get

|Q| 3 q_7 9
m m < 278t16¢
”ph“‘ <1”L2 Ooppday > ¢ IPhe <1”L2 (Bt.0L(Q) ~ <l

which completes the proof of (6.8). ]

Lemma 6.4 (Integrability of Vp and D?u). For any local energy solution (u,p), we have

Vp, DQU S L%((tmT) IOC(R?) ))
SforeveryT > 0andty € (0,T).
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The lemma can be proven using local boundary regularity of the Stokes system, due to [S2]. However, a more
direct proof can be obtained using the representation formulae (2.4)—(2.13) of the pressure function as well as maximal
parabolic regularity. We present this argument for the sake of completeness.

Proof of Lemma 6.4. Let ) C R‘j_ be a bounded open set. We review the pressure estimates (2.15) and observe that the
gradients of each nonlocal part of the pressure, i.e., Vpii locs VPnonloc,H» YV Pharm,>1, belong to L3 ((to, T); L3 (),
as the derivative falling onto the kernel ¢, only improves the estimate (since we obtain faster decay on the pointwise
bound on ¢ (2.5)). For the local parts, we obtain the required regularity by reexamining their estimates from (2.15),
as follows.

For pii 10c, We argue as in (2.16)—(2.19), with the L? norms replaced by L%, to obtain

8
9

00 1 c(2)
||VP1i,loC(t)||Lg(Q) SJ / etRe)\/ e_p“QZsHXUO(', ZS)HL% (/ ($3 + 2’3)_% dl‘g) ng dl/\‘
r 0 0

2!

A > NT 2y —2 H
S lhaollze [ et ( Ja d) apy
r 0
= lxuoll 2 / e ReX|\| =5 ]|
I

S lxuoll 2t 3¢,

where we used the Cauchy-Schwarz inequality in the second inequality.
For pioc,harm, We argue as in (2.17) to obtain

||vploc,harm||L%(( ) < ||IPV . (X**u & u)H 3

<
Lj((O,T);L%(]Ri)) ~§2 Oén(T) + Bn(T),

9
. T ] 3
0,T);L& (RS

where the dependence on {2 is via the cutoff function ..

The estimate on Vpjocu follows by direct calculation and Calderén-Zygmund estimates, and the estimate on
VPharm,<1 follows in the same way as Vpy; 10 above, by observing that || x.EF'5(t)|| 12 Sq an(T) forevery t € (0,T)
(which can be obtained in the same way as Step 2 of the proof of Lemma 2.6) and by integration in time. This gives

HVpha,m,Sl(t)HL%(Q) <q an(T)t3, and so VPharm,<1 € L3 ((to, T); L¥(Q)), as required.

In order to get the integrability assertion for D?u, let ¢ € C3°(R%. x (0, 00)) be arbitrary. Then we have
Or(ug) — Aug) = f, 6.11)

where f = —¢u - Vu — ¢Vp + w(0rp — Ag) — 2V¢ - Vu. By the first part of the proof, we have ¢Vp €
L3(([0,00); LE (R2)). Also, ¢pu - Vu € L2 ((0,00); L5 (R3)) since u € LY, ((0,00); L7 (R2)) and

loc

Vu e L2 _((0,00); LQ(@)) Using also the local square integrability of v and Vu, we get f € L3 ([0, 00); L& (@))

loc

Applying the maximal parabolic regularity (see Section D.5 in [RRS], for example) to the equation (6.11) with
zero initial data, we obtain D2(u¢) € L3 ([0, 00); L¥ (R3)). By local square integrability of u, Vu, this implies

¢D*u € L2([0,00); L%(@)) and since ¢ was an arbitrary test function supported in @ x (0,00), the proof is
complete. ]
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