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Abstract. We address the global existence and uniqueness of solutions for the anisotropically reduced
2D Kuramoto-Sivashinsky equations in a periodic domain with initial data u01 ∈ L2 and u02 ∈ H−1+η for
η > 0.

1. Introduction

We address the well-posedness of the anisotropically-reduced Kuramoto-Sivashinsky equation (r-KSE) as

introduced in [LY]

∂tu1 − ν∆u1 + u1∂xu1 + u2∂yu1 = σu1

∂tu2 +∆2u2 + λ∆u2 + u1∂xu2 + u2∂yu2 = 0

∂yu1 = ∂xu2

(1.1)

with the initial data u(0) = u0 and ν, σ, and λ > 0 on the torus [0, 2π]2. This model is constructed from

the velocity formulation of the Kuramoto-Sivashinky equation (KSE)

∂tu1 +∆2u1 +∆u1 + u1∂xu1 + u2∂yu1 = 0

∂tu2 +∆2u2 +∆u2 + u1∂xu2 + u2∂yu2 = 0

∂yu1 = ∂xu2.

The KSE is a well-known model introduced in the 1970s in [Kur,S,T] to address several important physical

problems, particularly flame fronts, ion plasmas, and low dimensional chaos. Key results have been discovered

for the one-dimensional equation, including the global existence, dissipation, and existence of an attractor.

The size of the absorbing ball relative to the size of the domain was found for one-dimension [CEES, I,G,

GO,NST,O]. For further results on one-dimensional regularity of KSE, see [BS,GK,RK,SS,T,TP].

However, the two-dimensional results that are of particular interest for the physical models have proven

more challenging due to the lack of conservation of energy. Additionally, the methods treating KSE as a

perturbation of the Burgers equation as in [I,G,GJO] do not extend to higher dimensions. Nevertheless,

some results have still been achieved. In [AM], the global existence was shown for small initial data on

the torus [0, 2π]2 along with decay and analyticity of solutions. For domains where one dimension is small

relative to the other and for initial data further controlled by the longer scale, global existence was shown

in [ST] using methods inspired by the work on 3D Navier-Stokes by Raugel and Sell [RS1,RS2,RS3] (cf. later

works in [A,HS,KRZ,KZ,H1,H2]). This work was adapted by Molinet in [M1,M2] to show local dissipation

and global existence for a suitably chosen, thin domain. This domain was expanded in [BKRZ, KMa]
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to show that the global solution exists on thin, rectangular domains [0, L1] × [0, L2] under the condition

L2 ≤ 1/CL
3/5
1 with initial data bounded in L2.

The anisotropically-reduced equation was devised to address core difficulties with the two dimensional

problem. In particular, by modifying the model in the first dimension to resemble Navier-Stokes, the

reduced equation acquires something akin to a maximum principle. In [LY], for sufficiently regular initial

data, H1, and L∞ in the first dimension, Larios and Yamazaki proved well-posedness on the torus. They

utilized Galerkin approximation to show local existence and uniqueness followed by energy methods and a

maximum-like principle to prove the global existence.

In this paper, we reduce the required regularity of the initial data for global well-posedness by utilizing

a method involving semi-groups. Namely, we show that for initial data contained in L2 × H−1+η, for

η ∈ (0, 3/2) a unique, strong, global solution exists. This allows for the initial conditions to lie in negative

Sobolev spaces. We first introduce an operator based on semi-groups and the r-KSE. This semi-group

based approach provides a convenient approach to the negative Sobolev spaces, and additionally yields

instantaneous smoothing properties. We then prepare a norm to prove our chosen operator is a closed,

bounded, contraction mapping with respect to it, which ensures local existence of a unique solution. The

norm needs to be selected such that it balances the relative regularity for u1 and u2. Once the correct

choice is made, we ensure the operator is bounded with respect to the norm. The uniform bound and

subsequently continuity of the operator requires control of the norm, which we achieve through local time,

smallness of the norm of the semi-group operator, and by utilizing a large constant to balance the borderline

case. We apply bootstrapping through a similar argument to prove the solution is smooth. With smooth

solutions, we can then utilize the proof for the global existence of a solution as provided in [LY] to show

existence of unique, global solutions past an initial time. Overlapping the two unique solutions ensures

global existence and uniqueness of the solution for all time. At the end, we also provide a summary of a

simpler, alternative proof to the main result of [LY] by utilizing semi-groups to prove local existence instead

of Galerkin approximation for the same initial regularity assumptions.

2. Main Theorem and Supporting Results

The r-KSE equation

∂tu1 − ν∆u1 + u1∂xu1 + u2∂yu1 = σu1

∂tu2 +∆2u2 + λ∆u2 + u1∂xu2 + u2∂yu2 = 0

∂yu1 = ∂xu2

on the torus T = [0, 2π]2 has been shown in [LY] to have a strong, unique, global solution u = (u1, u2) for

initial data u0 = (u01, u02) ∈ (H1)2 and u01 ∈ L∞. We define a strong solution u as satisfying
∫

T

∂tu1φ1dx+ ν

∫

T

∇u1 · ∇φ1dx+

∫

T

(u · ∇)u1φ1dx = σ

∫

T

u1φ1dx

∫

T

∂tu2φ2dx+

∫

T

∆u2∆φ2dx+ λ

∫

T

∇u2 · ∇φ2dx+

∫

T

(u · ∇)u2φ2dx = 0

for φ = (φ1, φ2) ∈ C∞(T)2 on [0, T ]. In addition, we require

u ∈ Cb((0, T ];H
k(T))2 ∩ Cb([0, T ];L

2(T))× Cb([0, T ];H
−1+η(T)),
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for all k > 0 and η ∈ (0, 3/2) where we define the negative Sobolev spaces H−1+η(T) as the dual space of

H1−η(T) when η < 1. Then, we show that for weaker initial data than in [LY], we still have a strong, global

solution.

Theorem 2.1. For u01 ∈ L2 and u02 ∈ H−1+η where η ∈ (0, 3/2), there exists a unique, strong, global

solution.

For η ≥ 3/2, an argument using boostrapping shows that the same result holds as well. We next recall

known properties of Sobolev spaces that are used in the proof.

Lemma 2.1. Let 0 < s1, s2 ≤ s3 be such that 1+ s3 ≤ s1 + s2 with a strict inequality if s3 = s1 or s3 = s2.

Then, we have

‖uv‖Hs3 . ‖u‖Hs1 ‖v‖Hs2 ,

for u ∈ Hs1 and v ∈ Hs2 .

The Sobolev multiplicative inequality for two dimensions follows directly from Hölder and embedding

inequalities. Furthermore, we have the following well known lemma.

Lemma 2.2. If s ≥ s̃, t > 0, and α ∈ N, then we have

‖e−t(−∆)αf‖Hs . t−
s−s̃

α ‖f‖H s̃ ,

for f ∈ H s̃.

This allows us to interchange between derivatives in space and powers in time. From [W], we recall the

following property.

Lemma 2.3. For f(t) = et∆f0 and f0 ∈ H s̃ where s̃ ∈ R, we have

lim
T→0

sup
0<t≤T

(t
α

2 ‖f(t)‖Hα) = 0,

for α > s̃.

The proof follows from a density argument as in [W]. This helps us to show continuity in borderline

cases.

We suspect that the main theorem continues to hold if we change the domain from the torus T2 to the

whole space R
2 or to a bounded domain Ω with u subject to appropriate boundary conditions. In both of

these cases, what qualities the r-KSE displays comparatively with the KSE remains an open problem.

3. Proof of Main Theorem

The proof of the main theorem utilizes a contraction mapping argument to show existence, uniqueness

and regularity of the solution for local time. Then, due to the smoothness, we can extend by arguments

made in [LY] our local solution to a global solution.

Proof of Theorem 2.1. We begin with proving the local existence of a solution and its uniqueness. Thus,

we define a sequence u(m) = (u
(m)
1 , u

(m)
2 ) such that for m ∈ N0 we have

u(m+1) = etAu0 −

∫ t

0

e(t−s)A(u(m) · ∇u(m))(s)ds+

∫ t

0

e(t−s)AL(u(m))(s)ds (3.1)
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where A = (ν∆,−∆2)T , and L((u1, u2)) = (σu1,−λ∆u2)
T , with the starting term u(0) = etAu0. Further-

more, define the norm

‖(u1, u2)‖X = sup
t≤T

‖u1‖L2 +K sup
t≤T

(

t
α

2 ‖u1‖Hα

)

+sup
t≤T

‖u2‖H−α+ǫ +K sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

where α ∈ [1/2, 1), ǫ ∈ (0, 1], and K ≥ 1 is a large constant to be determined. Denote η = 1−α+ ǫ so that

−α+ ǫ = −1+η. Here, X = Cb((0, T ];H
k(T))2∩

(

Cb([0, T ];L
2(T))× Cb([0, T ];H

−1+η(T))
)

. We claim that

u(m) is uniformly bounded in X by M where M = 8max{1, ‖u01‖L2 , ‖u02‖H−1+η}. To show this, we begin

by considering the base case in an induction argument to find that

‖u(0)(t)‖X ≤ sup
t≤T

‖eνt∆u01‖L2 +K sup
t≤T

t
α

2 ‖eνt∆u01‖Hα + sup
t≤T

‖e−t∆2

u02‖H−α+ǫ

+K sup
t≤T

t
1
4
(2−ǫ)‖e−t∆2

u02‖H2−α .

Using Lemma 2.3 and choosing T > 0 to be sufficiently small, we determine

sup
t≤T

t
α

2 ‖eνt∆u01‖Hα ≤
M

8K

and

sup
t≤T

t
1
4
(2−ǫ)‖e−t∆2

u02‖H2−α ≤
M

8K
.

Then, by the prior observations, ‖u(0)‖X ≤ M/2. By the induction hypothesis, assume that ‖u(m)‖X ≤ M .

Then, observe that

‖u(m+1)‖X ≤ ‖etAu0‖X +

∥

∥

∥

∥

∫ t

0

e(t−s)A(u(m) · ∇u(m))ds

∥

∥

∥

∥

X

+

∥

∥

∥

∥

∫ t

0

e(t−s)AL(u(m))ds

∥

∥

∥

∥

X

. (3.2)

Note that the bound on u(m+1) is determined by the bound on the preceding term in the sequence. Thus,

for notational simplicity, we denote u = u(m). Examining the middle term, we observe that it expands as

sup
t≤T

∫ t

0

‖eν(t−s)∆(u1∂xu1)‖L2ds+ sup
t≤T

∫ t

0

‖eν(t−s)∆(∂y(u1u2)− u1∂yu2)‖L2ds

+ sup
t≤T

∫ t

0

‖e−(t−s)∆2

(u1∂xu2)‖H−α+ǫds+ sup
t≤T

∫ t

0

‖e−(t−s)∆2

(u2∂yu2)‖H−α+ǫds

+K sup
t≤T

t
α

2

(
∫ t

0

‖eν(t−s)∆(u1∂xu1)‖Hαds+

∫ t

0

‖eν(t−s)∆(∂y(u1u2)− u1∂yu2)‖Hαds

)

+K sup
t≤T

t
1
4
(2−ǫ)

(
∫ t

0

‖e−(t−s)∆2

(u1∂xu2)‖H2−αds+

∫ t

0

‖e−(t−s)∆2

(u2∂yu2)‖H2−αds

)

.

(3.3)

Neglecting the supremum in time for now, for the first term in (3.3), using Lemmas 2.1 and 2.2, we have
∫ t

0

‖eν(t−s)∆(u1∂xu1)‖L2ds .

∫ t

0

‖eν(t−s)∆
(

∂x(u
2
1)
)

‖L2ds .

∫ t

0

(t− s)−
1
2
(1−(2α−1))‖u2

1‖H2α−1ds

.

∫ t

0

(t− s)−(1−α)‖u1‖
2
Hαds .

∫ t

0

(t− s)−(1−α)s−α(s
α

2 ‖u1‖Hα)2ds

.
(

sup
t≤T

t
α

2 ‖u1‖Hα

)2
∫ t

0

(t− s)−(1−α)s−αds,

(3.4)
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noting that α ∈ [1/2, 1), which ensures 0 ≤ 2α− 1 < α. Thus, we determine that

∫ t

0

‖eν(t−s)∆(u1∂xu1)‖L2ds ≤ CT sup
t≤T

(

t
α

2 ‖u1‖Hα

)2
≤

CTM
2

K2
(3.5)

where CT is a constant depending only on T . The second term in (3.3), containing both u1 and u2, is

bounded by

∫ t

0

‖eν(t−s)∆(∂y(u1u2)− u1∂yu2)‖L2ds .

∫ t

0

(

‖eν(t−s)∆∂y(u1u2)‖L2 + ‖eν(t−s)∆(u1∂yu2)‖L2

)

ds

.

∫ t

0

(

(t− s)−
1
2
(1−α)‖u1u2‖Hα + ‖u1∂yu2‖L2

)

ds

.

∫ t

0

(

(t− s)−
1
2
(1−α)‖u1‖Hα‖u2‖H2−α + ‖u1‖Hα‖∂yu2‖H1−α

)

ds

. sup
t≤T

(

t
α

2 ‖u1‖Hα

)

sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

∫ t

0

(

(t− s)−
1
2
(1−α) + 1

)

s−
α

2 s−
1
4
(2−ǫ)ds,

(3.6)

which implies that we have

∫ t

0

‖eν(t−s)∆(∂y(u1u2)− u1∂yu2)‖L2ds ≤ CT sup
t≤T

(

t
α

2 ‖u1‖Hα

)

sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

≤
CTM

2

K2
. (3.7)

The third term in (3.3) reads

∫ t

0

‖e−(t−s)∆2

(u1∂xu2)‖H−α+ǫds .

∫ t

0

‖u1∂xu2‖L2ds .

∫ t

0

‖u1‖Hα‖∂xu2‖H1−αds

. sup
t≤T

(

t
α

2 ‖u1‖Hα

)

sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

∫

s−
α

2 s−
1
4
(2−ǫ)ds.

(3.8)

Thus, we find that

∫ t

0

‖e−(t−s)∆2

u1∂xu2‖H−α+ǫds ≤
CTM

2

K2
. (3.9)

The fourth term in (3.3) is estimated as

∫ t

0

‖e−(t−s)∆2

∂y(u
2
2)‖H−α+ǫds .

∫ t

0

‖u2
2‖H1−α+ǫds .

∫ t

0

‖u2‖
2
H2−αds

. sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)2
∫ t

0

s−
1
2
(2−ǫ)ds,

(3.10)

where we again used Lemmas 2.1, 2.2 and ǫ ≤ 1. Therefore, we can bound the term as

∫ t

0

‖e−(t−s)∆2

∂y(u
2
2)‖H−α+ǫds ≤ CT sup

t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)2
≤

CTM
2

K2
. (3.11)

To bound the remaining four terms in (3.3) we note that

t
α

2 . (t− s)
α

2 + s
α

2 . (3.12)
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We use arguments in (3.4) to find that

Kt
α

2

∫ t

0

‖eν(t−s)∆(u1∂xu1)‖Hαds

≤ CK

∫ t

0

(

(t− s)
α

2 + s
α

2

)

(t− s)−
α

2 (t− s)−(1−α)‖u2
1‖H2α−1ds

≤ CK

∫ t

0

(

(t− s)
α

2 + s
α

2

)

(t− s)−(1−α

2
)s−α‖u1‖

2
Hαds

≤ CK sup
t≤T

(

t
α

2 ‖u1‖Hα

)2

×

∫ t

0

(

(t− s)−(1−α

2
)s−

α

2 + (t− s)−(1−α)s−α
)

ds.

(3.13)

As in (3.6), we observe the sixth term is bounded as

Kt
α

2

∫ t

0

‖eν(t−s)∆(∂y(u1u2)− u1∂yu2)‖Hαds

≤ CK sup
t≤T

(

t
α

2 ‖u1‖Hα

)

sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

×

∫ t

0

(

s−
α

2 + (t− s)−
α

2

)(

(t− s)−
1
2
(1−α) + 1

)

s−
1
4
(2−ǫ)ds.

(3.14)

Recalling (3.8) for the seventh term, we find that

Kt
1
4
(2−ǫ)

∫ t

0

‖e−(t−s)∆2

u1∂xu2‖H2−αds

≤ CK sup
t≤T

(

t
α

2 ‖u1‖Hα

)

sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

×

∫ t

0

(

(t− s)
1
4
(2−ǫ) + s

1
4
(2−ǫ)

)

s−
α

2 s−
1
4
(2−ǫ)(t− s)−

1
4
(2−α)ds

≤ CK sup
t≤T

(

t
α

2 ‖u1‖Hα

)

sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

×

∫ t

0

(

(t− s)−
1
4
(ǫ−α)s−

1
4
(2−ǫ) + (t− s)−

1
4
(2−α)

)

s−
α

2 ds.

(3.15)

For the eighth term, combining Lemmas 2.1 and 2.2 with (3.10), we observe that

1

2
Kt

1
4
(2−ǫ)

∫ t

0

‖e−(t−s)∆2

∂y(u
2
2)‖H2−αds ≤ CK

∫ t

0

(

(t− s)
1
4
(2−ǫ) + s

1
4
(2−ǫ)

)

(t− s)−
1
4 ‖u2

2‖H2−αds

≤ CK

∫ t

0

(

(t− s)
1
4
(2−ǫ) + s

1
4
(2−ǫ)

)

(t− s)−
1
4 ‖u2‖

2
H2−αds

≤ CK sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)2
∫ t

0

((

(t− s)
1
4
(2−ǫ) + s

1
4
(2−ǫ)

)

(t− s)−
1
4 s−

1
2
(2−ǫ)

)

ds

≤ CK sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)2
∫ t

0

(

(t− s)
1
4
(1−ǫ)s−

1
2
(2−ǫ) + (t− s)−

1
4 s−

1
4
(2−ǫ)

)

ds

(3.16)

noting that 2 − α > 1 ensures that Lemma 2.1 applies. In each case, the sum of the exponents under

the integral is greater than or equal to −1. Therefore, these four terms can be bounded by CTM
2/K
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using (3.13)–(3.16). Lastly we consider the linear term in (3.2) where we have the inequality
∫ t

0

‖e(t−s)AL(u)‖Xds .

∫ t

0

‖eν(t−s)∆σu1‖L2ds+

∫ t

0

‖e−(t−s)∆2

λ∆u2‖H−α+ǫds

+ t
α

2

∫ t

0

‖eν(t−s)∆σu1‖Hαds+ t
1
4
(2−ǫ)

∫ t

0

‖e−(t−s)∆2

λ∆u2‖H2−αds

. sup
t≤T

(

t
α

2 ‖u1‖Hα

)

∫ t

0

(

s−
α

2 + (t− s)
α

2 s−
α

2 + 1
)

ds

+ sup
t≤T

(

t
1
4
(2−ǫ)‖u2‖H2−α

)

∫ t

0

(

(t− s)−
ǫ

2 s−
1
4
(2−ǫ) + (t− s)−

1
2

)

ds,

(3.17)

which we can bound by M/12 by the induction hypothesis and choosing T appropriately small. So, combin-

ing (3.4)–(3.11) with our bounds on (3.13)–(3.17) and choosing K ≥ 12CT max{1,M} we determine, with

the bounds on the initial data and re-introducing supremums for t ≤ T , that the equation

‖u(m+1)‖X ≤ ‖etAu0‖X +

∫ t

0

‖e(t−s)A(u · ∇u)‖Xds+

∫ t

0

‖e(t−s)AL(u)‖Xds

≤
M

2
+

5M

12
+

M

12
= M

holds. Therefore, we conclude by induction that ‖u(m)‖X ≤ M for all m ∈ N0.

Regarding continuity, we claim that if

u(m) ∈ Cb([0, T ];L
2)× Cb([0, T ];H

−α+ǫ)

and
(

t
α

2 u
(m)
1 , t

2−α

4 u
(m)
2

)

∈ Cb([0, T ];H
α)× C([0, T ];H2−α),

then u(m+1) also resides in these spaces. We assume the second term to equal zero at t = 0. We omit the

proof for continuity for T > 0 since the argument is analogous to the one at T = 0. To prove continuity at

T = 0, we examine the inequalities

‖u
(m+1)
1 (t)− u

(m+1)
1 (0)‖L2 ≤ ‖eνt∆u01 − u01‖L2 +

∫ t

0

‖eν(t−s)∆(u1∂xu1 + u2∂yu1 + σu1)‖L2ds (3.18)

and

‖u
(m+1)
1 (t)− u

(m+1)
1 (0)‖H−α+ǫ

≤ ‖e−t∆2

u02 − u02‖H−α+ǫ +

∫ t

0

‖e−(t−s)∆2

(u1∂xu2 + u2∂yu2 + λ∆u2)‖H−α+ǫds
(3.19)

with

t
α

2 ‖u
(m+1)
1 (t)− u

(m+1)
1 (0)‖Hα ≤ t

α

2 ‖eνt∆u01‖Hα + t
α

2

∫ t

0

‖eν(t−s)∆(u1∂xu1 + u2∂yu1 + σu1)‖Hαds (3.20)

and

t
1
4
(2−ǫ)‖u

(m+1)
2 (t)− u

(m+1)
2 (0)‖H2−α

≤ t
1
4
(2−ǫ)‖e−t∆2

u02‖H2−α + t
1
4
(2−ǫ)

∫ t

0

‖e−(t−s)∆2

(u1∂xu2 + u2∂yu2 + λ∆u2)‖H2−αds.
(3.21)
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Considering the bounds in (3.4) and (3.13), we observe that for terms involving only u1, the sum of the

exponents under the integrals in the bounds is equal to −1, and thus the integrals are constants in time.

By Lemma 2.3, these upper bounds decrease to zero when T converges. In (3.6)–(3.10) and (3.14)–(3.17)

the sum of the time exponents is strictly greater than −1, so these integrals integrate to tδ for some δ > 0,

which also converges to zero as T converges to zero. Combined with initial conditions being bounded in

L2 ×H−α+ǫ, we conclude that the right hand sides of (3.18)–(3.21) each decrease to 0 as T decreases to 0.

Finally, we claim that the sequence u(m) is contracting. Considering for n ∈ N0, we observe that

‖u(m+1) − u(m)‖X ≤

∥

∥

∥

∥

∫ t

0

e(t−s)A(u(m) · ∇u(m) − u(m−1) · ∇u(m−1))ds

∥

∥

∥

∥

X

+

∥

∥

∥

∥

∫ t

0

e(t−s)A(L(u(m))− L(u(m−1)))ds

∥

∥

∥

∥

X

.

(3.22)

Expanding out the norms, we find another eight terms analogous to (3.3). Thus, by using similar arguments

to (3.4) and neglecting the supremum in time, we have for the first term
∫ t

0

‖eν(t−s)∆(u
(m)
1 ∂xu

(m)
1 − u

(m−1)
1 ∂xu

(m−1)
1 )‖L2ds

.

∫ t

0

(t− s)α−1‖(u
(m)
1 − u

(m−1)
1 )(u

(m)
1 + u

(m−1)
1 )‖H2α−1ds

.

∫ t

0

(t− s)α−1‖u
(m)
1 − u(m−1)‖Hα‖u

(m)
1 + u

(m−1)
1 ‖Hαds

. sup
t≤T

(

t
α

2 ‖u
(m)
1 − u

(m−1)
1 ‖Hα

)

sup
t≤T

(

t
α

2 ‖u
(m)
1 + u

(m−1)
1 ‖Hα

)

∫ t

0

(t− s)α−1s−αds,

(3.23)

which we may bound by CT ‖u
(m)−u(m−1)‖X/K2 allowing the implicit constants to depend on M. Referring

to (3.6), we find for the second term that
∫ t

0

‖eν(t−s)∆(u
(m)
2 ∂yu

(m)
1 − u

(m−1)
2 ∂yu

(m−1)
1 )‖L2ds

=

∫ t

0

‖eν(t−s)∆
(

∂y(u
(m)
1 u

(m)
2 − u

(m−1)
1 u

(m−1)
2 )− (u

(m)
1 ∂yu

(m)
2 − u

(m−1)
1 ∂yu

(m−1)
2 )

)

‖L2ds

.

∫ t

0

(t− s)−
1
2
(1−α)‖(u

(m)
1 u

(m)
2 − u

(m−1)
1 u

(m−1)
2 )‖Hαds

+

∫ t

0

‖u
(m)
1 ∂yu

(m)
2 − u

(m−1)
1 ∂yu

(m−1)
2 ‖L2ds,

and by adding and subtracting terms and factoring, we conclude that the last expression equals
∫ t

0

(t− s)−
1
2
(1−α)‖u

(m)
2 (u

(m)
1 − u

(m−1)
1 )− u

(m−1)
1 (u

(m)
2 − u

(m−1)
2 )‖Hαds

+

∫ t

0

‖(∂yu
(m)
2 (u

(m)
1 − u

(m−1)
1 ) + u

(m−1)
1 ∂y(u

(m)
2 − u

(m−1)
2 ))‖L2ds

.

∫ t

0

(t− s)−
1
2
(1−α)

(

‖u
(m)
2 ‖H2−α‖u

(m)
1 − u

(m−1)
1 ‖Hα + ‖u

(m−1)
1 ‖Hα‖(u

(m)
2 − u

(m−1)
2 )‖H2−α

)

ds

+

∫ t

0

‖(∂yu
(m)
2 ‖H1−α‖u

(m)
1 − u

(m−1)
1 ‖Hα + ‖u

(m−1)
1 ‖Hα‖∂y(u

(m)
2 − u

(m−1)
2 ))‖H1−αds
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where we applied Lemma 2.1. We can then bound this by the equation

sup
t≤T

(

t
α

2 ‖u
(m)
1 − u

(m−1)
1 ‖Hα

)

∫ t

0

(t− s)−
1
2
(1−α)s−

α

2 s−
1
4
(2−ǫ)ds

+ sup
t≤T

(

t
1
4
(2−ǫ)‖u

(m)
2 − u

(m−1)
2 ‖H2−α

)

∫ t

0

s−
α

2 s−
1
4
(2−ǫ)ds.

(3.24)

The second term may then be bounded by CT ‖u
(m)−u(m−1)‖X/K2. We refer to (3.10) for the fourth term

to deduce that
∫ t

0

‖e−(t−s)∆2

∂y((u
(m)
2 )2 − (u

(m−1)
2 )2)‖H−α+ǫds .

∫ t

0

‖(u
(m)
2 − u

(m−1)
2 )(u

(m)
2 + u

(m−1)
2 )‖H1−α+ǫds

.

∫ t

0

‖u
(m)
2 − u

(m−1)
2 ‖H2−α‖(u

(m)
2 + u

(m−1)
2 )‖H2−αds

. sup
t≤T

(

t
1
4
(2−ǫ)‖u

(m)
2 − u

(m−1)
2 ‖H2−α

)

sup
t≤T

(

t
1
4
(2−ǫ)‖u

(m)
2 + u

(m−1)
2 ‖H2−α

)

∫ t

0

s−
1
2
(2−ǫ)ds,

(3.25)

which is also bounded by CT ‖u
(m)−u(m−1)‖X/K2. A similar result holds for the third term using (3.8). By

using arguments found in (3.13)–(3.17), we can also bound the last four terms by CT ‖u
(m)− u(m−1)‖X/K.

Finally, the linear term in (3.22) is also bounded by 1/12 for small T by arguments analogous to (3.17).

By choosing K ≥ 12CT , the constants can be made small. These new choices of K and T are made such

that they still satisfy the choices made for uniform boundedness. Therefore, using (3.22)–(3.25) with the

analogous results for the remaining terms, and combining with our choices of K and T , we have

‖u(m+1) − u(m)‖X ≤
1

2
‖u

(m)
1 − u(m−1)‖X .

Therefore, the sequence is contracting, and u(m) converges by the Contraction Mapping Theorem to a

unique, local solution to (1.1), which we denote as u. Since the solution is a fixed point, we furthermore

have the solution satisfying

u ∈ Cb([0, T ];L
2)× Cb([0, T ];H

−α+ǫ)

and

(

t
α

2 u1, t
2−α

4 u2

)

∈ Cb([0, T ];H
α)× C([0, T ];H2−α).

By using bootstrapping, we can repeat the above arguments to show that u ∈ Cb((0, T ], H
k(T))2 for

k > 0. Thus, the local solution is strong.

Up to this point, we have shown the existence of a strong, unique solution on [0, T ]. To prove the solution

is global, we choose t0 = T − δ for some δ ∈ (0, T ). We have shown that u(t0) ∈ Hk(T)2 for k > 0, which

satisfies the initial condition regularity requirements of [LY]. Thus, we have a unique, global solution ũ with

initial condition ũ(t0) = u(t0). Since u = ũ on [t0, t0 + δ] by uniqueness the solution u is global. �

For completeness, we also provide a summary of an alternative proof to the main theorem of [LY] using

semi-groups instead of Galerkin approximation. In [LY], it was found using approximations that when

u01 ∈ L∞ and u0 ∈ (H1)2, a strong, unique, local solution exists. This was then extended to a global
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solution using a maximum principle. Under the same assumptions, we define the sequence as in (3.1), but

utilize a new space-time norm

‖u‖X = sup
t≤T

‖u‖H1 + sup
t≤T

(

t
1
2 ‖u1‖H2

)

+ sup
t≤T

(

t
1
4 ‖u2‖H2

)

to prove the sequence is uniformly bounded with respect to the X-norm. The techniques to prove this

have to be adapted however, as while we have stronger regularity, we also have lower exponents under the

integral. Attempting to proceed as before results in the sum of the exponents under the integrals being

less than −1. The primary alteration to our argument is to use the stronger assumptions on our initial

conditions to put less weight onto the higher regularity norms. We expand u(m+1) in a similar manner to

(3.2) to find that

‖u(m+1)‖X ≤ ‖etAu0‖X +

∥

∥

∥

∥

∫ t

0

e(t−s)A(u(m) · ∇u(m))ds

∥

∥

∥

∥

X

+

∥

∥

∥

∥

∫ t

0

e(t−s)AL(u(m))ds

∥

∥

∥

∥

X

.

Therefore, denoting u = u(m), we find that the center term expands as

sup
t≤T

∫ t

0

‖eν(t−s)∆(u1∂xu1)‖H1ds+ sup
t≤T

∫ t

0

‖eν(t−s)∆(∂y(u1u2)− u1∂yu2)‖H1ds

+ sup
t≤T

∫ t

0

‖e−(t−s)∆2

(u1∂xu2)‖H1ds+ sup
t≤T

∫ t

0

‖e−(t−s)∆2

(u2∂yu2)‖H1ds

+ sup
t≤T

t
1
2

(
∫ t

0

‖eν(t−s)∆(u1∂xu1)‖H2ds+

∫ t

0

‖eν(t−s)∆(∂y(u1u2)− u1∂yu2)‖H2ds

)

+ sup
t≤T

t
1
4

(
∫ t

0

‖e−(t−s)∆2

(u1∂xu2)‖H2ds+

∫ t

0

‖e−(t−s)∆2

(u2∂yu2)‖H2ds

)

.

(3.26)

We then, for brevity, consider the second term, which is of highest order. Using Hölder and Agmon’s

inequalities, the second term satisfies

∫ t

0

‖eν(t−s)∆u2∂yu1‖H1ds .

∫ t

0

(t− s)−
1
2 ‖u2∂yu1‖L2ds

.

∫ t

0

(t− s)−
1
2 ‖u2‖

1
3

L2‖∇u2‖
2
3

L2‖∇u1‖
2
3

L2‖∆u1‖
1
3

L2ds

. sup
t≤T

‖u2‖H1 sup
t≤T

‖u1‖
2
3

H1 sup
t≤T

(

t
1
2 ‖u1‖H2

)
1
3

∫ t

0

(t− s)
1
2 s−

1
6 ds.

Thus, we have

∫ t

0

‖eν(t−s)∆u2∂yu1‖H1ds ≤ CT ‖u‖
2
X , (3.27)

where CT decreases to 0 with T . We observe that the base case is bounded by M/2 using Lemma 2.2, for

some M > 0. Since the remaining terms from (3.26) all proceed similarly, using (3.27), and assuming by

induction, the prior step is bounded by M , we find that

‖u(m+1)‖X ≤ CTM
2.
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Thus, ‖u(m)‖X ≤ M for T sufficiently small such that CT ≤ 1/M . Continuity follows using arguments as

in (3.18)–(3.21). To prove that the sequence is contracting, we observe that
∫ t

0

‖eν(t−s)∆(u
(m)
2 ∂yu

(m)
1 − u

(m−1)
2 ∂yu

(m−1)
1 )‖H1ds

.

∫ t

0

(t− s)−
1
2

(

‖∂yu
(m)
1 (u

(m)
2 − u

(m−1)
2 )‖L2

+ ‖u
(m−1)
2 ∂y(u

(m)
1 − u

(m−1)
1 ))‖L2

)

ds

.

∫ t

0

(t− s)−
1
2

(

‖∂yu
(m)
1 ‖L3‖u

(m)
2 − u

(m−1)
2 ‖L6 + ‖u

(m−1)
2 ‖L6‖∂y(u

(m)
1 − u

(m−1)
1 )‖L3

)

ds

.

∫ t

0

(t− s)−
1
2

(

‖∇u
(m)
1 ‖

2
3

L2
‖∆u

(m)
1 ‖

1
3

L2
‖u

(m)
2 − u

(m−1)
2 ‖

1
3

L2
‖∇(u

(m)
2 − u

(m−1)
2 )‖

2
3

L2

+ ‖u
(m−1)
2 ‖

1
3

L2
‖∇u

(m−1)
2 ‖

2
3

L2
‖∇(u

(m)
1 − u

(m−1)
1 )‖

2
3

L2
‖∆(u

(m)
1 − u

(m−1)
1 )‖

1
3

L2

)

ds,

which follows from Lemma 2.2, Hölder and Agmon’s inequalities. This can be bounded by
(

sup
t≤T

(

‖u
(m)
1 ‖H1

)
2
3 sup
t≤T

(

t
1
2 ‖u

(m)
1 ‖H2

)
1
3 sup
t≤T

‖u
(m)
2 − u

(m−1)
2 ‖H1

+ sup
t≤T

‖u
(m−1)
2 ‖H1 sup

t≤T
‖u

(m)
1 − u

(m−1)
1 ‖

2
3

H1
sup
t≤T

(

t
1
2 ‖u

(m)
1 − u

(m−1)
1 ‖H2

)
1
3
)

∫ t

0

(t− s)−
1
2 s−

1
6 ds

from which we conclude that the term is bounded by

δ(T )M‖u(m) − u(m−1)‖X ,

where δ(T ) may be made small for T close to 0. Thus, using analogous results for the remaining terms

from the expansion (3.26), we conclude the sequence is contracting for T sufficiently small. Therefore using

the Contraction Mapping Principle, we conclude the existence of a unique, strong solution on the torus

for local time. Using bootstrapping, the definition of strong solution is satisfied locally. This provides an

alternative to the Galerkin approximations for existence of local, strong solutions. In order to obtain the

global solution we then proceed as in [LY] by showing that the boundedness of ‖u1‖L∞ achieved through a

maximum principle implies that the solution does not blow up in the H1 norm.
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