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Abstract

This paper studies grading algorithms for randomized exams. In a randomized exam, each student

is asked a small number of random questions from a large question bank. The predominant grading

rule is simple averaging, i.e., calculating grades by averaging scores on the questions each student is

asked, which is fair ex-ante, over the randomized questions, but not fair ex-post, on the realized

questions. The fair grading problem is to estimate the average grade of each student on the full

question bank. The maximum-likelihood estimator for the Bradley-Terry-Luce model on the bipartite

student-question graph is shown to be consistent with high probability when the number of questions

asked to each student is at least the cubed-logarithm of the number of students. In an empirical

study on exam data and in simulations, our algorithm based on the maximum-likelihood estimator

significantly outperforms simple averaging in prediction accuracy and ex-post fairness even with a

small class and exam size.
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1 Introduction

A common approach for deterring cheating in online examinations is to assign students

random questions from a large question bank. This random assignment of questions with

heterogeneous difficulties leads to different overall difficulties of the exam that each student

faces. Unfortunately, the predominant grading rule – simple averaging – averages all question

scores equally and results in an unfair grading of the students. This paper develops a grading

algorithm that utilizes structural information of the exam results to infer student abilities

and question difficulties. From these abilities and difficulties, fairer and more accurate grades

can be estimated. This grading algorithm can also be used in the design of short exams that

maintain a desired level of accuracy.

During the COVID-19 pandemic, learning management systems (LMS) like Blackboard,

Moodle, Canvas by Instructure, and D2L have benefited worldwide students and teachers

in remote learning [20]. The current exam module in these systems includes four steps. In

the first step, the instructor provides a large question bank. In the second step, the system

assigns each student an independent random subset of the questions. (Assigning each student

an independent random subset of the questions helps mitigate cheating.) In the third step,

students answer the questions. In the last step, the system grades each student proportionally

to her accuracy on assigned questions, i.e., by simple averaging.
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While randomizing questions and grading with simple averaging is ex-ante fair, it is not

generally ex-post fair. When questions in the question bank have varying difficulties, then

by random chance a student could be assigned more easy questions than average or more

hard questions than average. Ex-post in the random assignment of questions to students,

the simple averaging of scores on each question allows variation in question difficulties to

manifest as ex-post unfairness in the final grades.

The aim of this paper is to understand grading algorithms that are fair and accurate.

Given a bank of possible questions, a benchmark for both fairness and accuracy is the

counterfactual grade that a student would get if the student was asked all of the questions in

the question bank. Exams that ask fewer questions to the students may be inaccurate with

respect to this benchmark and the inaccuracy may vary across students and this variation

is unfair. This benchmark allows for both the comparison of grading algorithms and the

design of randomized exams, i.e., the method for deciding which questions are asked to which

students.

The grading algorithms developed in this paper are based on the Bradley-Terry-Luce

model [6] on bipartite student-question graphs. This model is also studied in the psychology

literature where it is known as the Rasch model [19]. This model views the student answering

process as a noisy comparison between a parameter of the student and a parameter of the

question. Specifically, there is a merit value vector u which describes the student abilities

and question difficulties and is unknown to the instructor. The probability that student i

answers question j correctly is defined to be

f(ui − uj) =
exp(ui)

exp(ui) + exp(uj)
,

where f(x) = 1
1+exp(−x) , and ui, uj represents the merit value of student i and question j

respectively.

The paper develops a grading algorithm that is based on the maximum likelihood estimator

u
∗ of the merit vector. Compared to simple averaging which only focuses on student in-

degrees and out-degrees, our grading algorithm incorporates more structural information

about the exam result and, as we show, reduces ex-post unfairness.

Results

Our theoretical analysis considers a sequence of distributions over random question assignment

graphs indexed by n and m by setting the number of students to n and number of questions in

the question bank to m ≥ n and assigning dn,m random questions uniformly and independently

to each student. The exam result can be represented by a directed graph, where an edge from

a student to a question represents a correct answer and the opposite direction represents

an incorrect answer. We prove that the maximum likelihood estimator exists and is unique

within a strongly connected component (Theorem 10). Let αn,m = max1≤i,j≤n+m ui − uj be

the largest difference between any pair of merits. We prove that if

exp(αn,m)(n + m) log(n + m)

ndn,m
→ 0 (n, m → ∞),

then the probability that the exam result graph is strongly connected goes to 1 (Theorem 11).

Thus, the existence and uniqueness of the MLE are guaranteed under the model. We also

prove that if exp (2(αn,m + 1)) ∆n,m → 0 (n, m → ∞), where ∆n,m =

√

m log3(n+m)

ndn,m log2( n
m

dn,m)
,

then the MLEs are uniformly consistent, i.e., ∥u
∗ − u∥∞

P
−→ 0 (Theorem 13). These
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theoretical results complement the empirical and simulation results from the literature on

the Rasch model with random missing data. Our analysis is similar to Han et al.’s [15] which

studies Erdös-Rényi random graphs.

Our empirical analysis considers a study of grading algorithms on both anonymous exam

data and numerical simulations. The exam data set consists of 22 questions and 35 students

with all students answering all questions. From this data set, randomized exams with fewer

than 22 questions can be empirically studied and grading algorithms can be compared. Our

algorithm outperforms simple averaging when students are asked at least seven questions. We

fit the model parameters to this real-world dataset and run numerical simulations with the

resulting generative model. With these simulations, we compare our algorithm and simple

averaging on ex-post bias and ex-post error, two notion of ex-post unfairness. For example,

when each of the 35 students answers a random 10 of the 22 questions, we find that the

expected maximum ex-post bias of simple averaging is about 100 times higher than that of

our algorithm. The expected output of simple averaging has about 13% expected deviation

from the benchmark for the most unlucky student, which would probably lead to a different

letter grade for the students, while the deviation is only about 1.6% for our algorithm. In the

same setting, we found that our algorithm achieves a factor of 8 percent smaller ex-post error,

which is a noisier concept of ex-post unfairness. After the decomposition of ex-post error

into ex-post bias and variance, we found that our algorithm achieves a significantly smaller

ex-post bias with the cost of a slightly larger variance of the output, and in combination it

reduces the ex-post error.

Related Work

The literature on peer grading also compares estimation from structural models and simple

averaging. When peers are assigned to grade submissions, the quality of peer reviews can

vary. Structural models can be used to estimate peer quality and calculate grades on the

submissions that put higher weight on peers who give higher-quality reviews. Alternatively,

submission grades can be calculated by simply averaging the reviews of each peer. The

literature has mixed results. De Alfaro and Shavlovsky [7] propose an algorithm based on

the reputation that largely outperforms simple averaging on synthetic data, and is better

on real-world data when student grading error is not random. Reily et al. [21] and Hamer

et al. [14] also point out that sophisticated aggregation improves the accuracy compared to

simple averaging and also helps to avoid rogue strategies including laziness and aggressive

grading. On the other hand, Sajjadi et al. [23] show that statistical and machine learning

methods do not perform better than simple averaging on their dataset. In contrast, our

result that structural models outperform simple averaging is replicated on several data sets.

We believe this difference with the peer grading literature is due to differences in the degrees

of the bipartite graphs considered. The exam grading graphs are of a higher degree than the

peer-grading graphs.

In psychometrics, item response theory (IRT) considers mathematical models that build

relationships between unobserved characteristics of respondents and items and observed

outcomes of the responses. The Rasch model is a commonly used model of IRT that can be

applied to psychometrics, educational research [19], health sciences [5], agriculture [18], and

market research [4]. Previous simulation studies showed that among different item parameter

estimation methods for the Rasch model, the joint maximum likelihood (JML) method,

and its variants provides one of the most efficient estimates [22], especially with missing

data [25, 8]. In our setting, randomly assignment of questions to students can be seen as a

special case of missing data. With complete data, the condition for the consistency of the

FORC 2023
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maximum likelihood estimators is analyzed [12, 13]. With missing data, though plenty of

work on simulation exists, there is a lack of theoretical work that proves mathematically the

consistency of the maximum likelihood estimators.

The Rasch model can be regarded as a special case of the Bradley-Terry-Luce (BTL)

model [6] for the pairwise comparison of respondents with items by restricting the comparison

graph to a bipartite graph. For the BTL model with Erdös-Rényi graph G(n, pn), the

maximum likelihood estimator (MLE) can be solved by an efficient algorithm [27, 9, 16],

and is proved to be a consistent method in l∞ norm when lim infn→∞ pn > 0 [24, 26], and

recently when pn ≥ log n3

n [15] which is close to the theoretical lower bound of log n
n , below

which the comparison graph would be disconnected with positive probability and there is no

unique MLE.

In this paper, we follow the method of Han et al.’s [15] to prove the consistency of the

Rasch model with missing data, or BTL model with a sparse bipartite graph, when each

vertex in the left part is assigned small number of random edges to the vertices in the right

part. We also propose an extension of the algorithm that reasonably deals with the cases

where the MLE does not exists.

Fowler et al. [10] recently studied unfairness detection of the simple averaging under the

same randomized exam setting and argue that “the exams are reasonably fair”. They use

certain IRT model to fit exams based on their real-world data, and find that the simple

averaging gives grades that are strongly correlated with the students’ inferred abilities. They

also simulate under the IRT model, over random assignment and the student answering

process. The simulation shows that, if given any fixed assignment we consider the absolute

error of the students’ expected performance over their answering process, the average absolute

error over different assignments reaches a 5-percentage bias. We find similar results in our

simulation, and design a method to reduce the corresponding error by a factor of ten. Our

method solves one of their future directions by adjusting grades of the students based on

their exam variant.

All large-scale standardized tests including the Scholastic Aptitude Test (SAT) and

Graduate Record Examination (GRE) are using item response theory (IRT) to generate score

scales for alternative forms [1]. This test equating process can be divided into two steps,

linking and equating. Linking refers to how to estimate the IRT parameters of students

and questions under the model; and equating refers to how to adjust the raw grade of

the students to adapt to different overall difficulty levels in different version of the exam

(e.g. [17]). One of the most popular test equating processes is IRT true-score equating with

nonequivalent-groups anchor test (NEAT) design. In the NEAT design, there are two test

forms given to two population of students, where a set of common questions is contained in

both forms. Linking performs by putting the estimated parameter of the common items onto

the same scale through a linear transformation, since any linear transformation gives the

same probability under the IRT model. Equating performs by taking the estimated ability of

the student from the second form and compute the expected number of accurate answers

in the first form as the adjusted grade. Since these large-scale standardized tests have a

large population of students for each variant of the exam, the above test equating process

works well. Our methods can be viewed as adapting the statistical framework of linking

and equating to the administration of a single exam for a small population of students. In

our randomized exam setting with small scale, however, every student receives a different

form of the exam, thus it is almost impossible to estimate the parameters for every form

separately or to decide an anchor set of question and do the same linking. Our algorithm

uses the concurrent linking that estimates all parameters at the same time based on the

information in all forms. As for equating, we use a similar method of true-score equating,

but compute on the whole question bank instead of one specific form.
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In the problem of fair allocation of indivisible items, Best-of-Both-Worlds (BoBW) fairness

mechanisms (e.g., [2, 11, 3]) try to provide both ex-ante fairness and ex-post fairness to

agents. An ex-ante fair mechanism is easy to be found. For example, giving all items to

one random agent guarantees that every agent receives a 1
n fraction of the total value in

expectation (ex-ante proportionality). However, such a mechanism is clearly not ex-post fair.

Likewise, simple averaging gives every student an unbiased grade ex-ante, but neglects the

different overall difficulty among students ex-post. We propose another grading rule that

evaluates the difficulties of the questions and adjusts the grades according to them, which

achieves better ex-post fairness of the students.

2 Model

Consider a set of students S and a bank of questions Q. A merit vector u is used to describe

the key property of the students and questions. Specifically, for any student i ∈ S, ui

represents the ability of the student; for any question j ∈ Q, uj represents the difficulty of

the question. We put them in the same vector for convenience. The merit vector is unknown

when the exam is designed. Denote wij as the outcome of the answering process. Then

wijs are independent Bernoulli random variables, where wij = 1 represents a correct answer,

wij = 0 represents an incorrect answer, and

Pr[wij = 1] = 1 − Pr[wij = 0] =
exp(ui)

exp(ui) + exp(uj)
= f(ui − uj),

where f(x) = 1
1+exp(−x) . The goal of the exam design is to assign a small number of questions

to each student (task assignment graph), and based on the exam result (exam result graph),

give each student a grade (grading rule) that accurately estimates her performance over

the whole question bank (benchmark). We give a formal description of the task assignment

graph, exam result graph, benchmark, and grading rule below.

▶ Definition 1 (Task Assignment Graph). The task assignment graph G = (S ∪ Q, E) is an

undirected bipartite graph, where the left part of the vertices represents the students and the

right part represents the questions, and an edge between i ∈ S and j ∈ Q exists if and only if

the instructor decides to assign question j to student i.

▶ Definition 2 (Exam Result Graph). The exam result graph G′ = (S ∪ Q, E′) is a directed

bipartite graph constructed from the task assignment graph G. All directed edges are between

students and questions. For any edge (i, j) ∈ G in the task assignment graph, where i ∈ S

and j ∈ Q, if student i answers question j correctly in the exam, i.e., we observe that wij = 1,

there is an edge i → j in G′; if the answer is incorrect, i.e., we observe that wij = 0, there is

an edge j → i in G′. For other student-question pairs that do not occur in the task assignment

graph G, there is also no edge between them in the exam result graph G′.

To evaluate different exam designs and grading rules, we propose the following benchmark.

▶ Definition 3 (Benchmark). In an ideal case where we know the distribution over the outcome

of the answering processes wijs, the instructor would measure the students’ performance by

their expected accuracy on a uniformly random question in the bank. Formally, the benchmark

for any student i’s grade is

opti = Ej∼U(Q)[wij ] =
1

|Q|

∑

j∈Q

f(ui − uj). (1)

FORC 2023
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The benchmark is an ideal way to grade the student if the instructor has complete

information on all answering processes. On the other hand, when the instructor only observes

one sample of each wij involved in the exam, we will use a grading rule to grade the students.

▶ Definition 4 (Grading Rule). In an exam, the instructor gives a grade for each student

based on the exam result graph. A grading rule is a mapping g : G′ → R
S from the exam

result graph to the grades for each student.

One interpretation of the grade is as an estimation of the benchmark, i.e., students’

expected accuracy on a uniformly random question in the bank, which combines the two

important criteria of fairness and accuracy. To evaluate the exam design, we compare the

performance of the grading rule to the benchmark and aggregate the error among all students.

Specifically, there are three stages of the exam design, before the randomization of the task

assignment graph, after the randomization of the task assignment graph and before the

student answering process, and after the student answering process. In each stage, we might

care about the maximum or average unfairness among students.

▶ Definition 5 (Ex-ante Bias). For a given algorithm alg, the ex-ante bias for student i is

defined as the mean square error of the algorithm’s expected performance compared to the

benchmark, over a random family G of task assignment graphs, i.e., (EG∼GEw[algi] − opti)
2
.

▶ Definition 6 (Ex-post Bias). For a given algorithm alg and a fixed task assignment graph G,

the ex-post bias for student i is defined as the mean square error of the algorithm’s expected

performance compared to the benchmark on G, i.e., (Ew[algi] − opti)
2
.

▶ Definition 7 (Ex-post Error). For a given algorithm alg, a fixed task assignment graph G,

and a fixed realization of the student answering process w, the ex-post error for student i is

defined as the mean square error of the algorithm’s performance compared to the benchmark

on G and w, i.e., (algi − opti)
2
.

By definition, ex-ante bias takes expectation over both random graphs and the noisy

answering process, ex-post bias takes expectation over the noisy answering process, while

ex-post error directly measures the error. Thus ex-post error is harder than ex-post bias

which is harder than ex-ante bias to achieve.

▶ Example 8 (Simple Averaging). Simple averaging is a commonly used grading rule in

exams. It calculates the average accuracy on the questions the student receives. Formally,

given a exam result graph G′, the simple averaging grades student i by

avgi =
deg+

i

deg−
i + deg+

i

=

∑

j 1(i,j)∈E′

∑

j 1(i,j)∈E
, (2)

where deg+ and deg− represents the outdegree and indegree of the vertex in G′, respectively.

▶ Theorem 9. The simple averaging is ex-ante fair over any family of bipartite graphs G

that is symmetric with respect to the questions, i.e., its ex-ante bias is 0.

Proof.

∀i, EG∼GEw [avgi] = EG∼GEw

[

∑

j 1(i,j)∈E′

∑

j 1(i,j)∈E

]

= EG∼GEw

[

∑

j wij1(i,j)∈E
∑

j 1(i,j)∈E

]

=EG∼G

[

∑

j E[wij ]1(i,j)∈E
∑

j 1(i,j)∈E

]

=
∑

j

E[wij ]EG∼G

[

1(i,j)∈E
∑

j 1(i,j)∈E

]

= opti. ◀
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In other words, simple averaging can be seen as an ex-ante unbiased estimator of the

benchmark. However, ex-post, i.e., on one specific task assignment graph, simple averaging

is unfair. Intuitively, some unlucky students might be assigned harder questions and receive

a significantly lower average grade than the benchmark, and the opposite happens to some

lucky students. We will visualize this phenomenon in Figure 2 in Section 5.3.1.

Based on the above definitions, we now formalize the procedure and goal of the exam

grading problem.

i. The instructor chooses a task assignment graph G.

ii. The students receive questions according to G and give their answer sheet back, thus

the instructor receives the exam result graph G′.

iii. The instructor uses a grading rule g to grade the students based on G′.

iv. The grade g(G′) should have a small maximum (average) ex-post bias or ex-post error.

3 Method

In this section, we propose our method for the exam grading problem. According to our

formalization of the problem, any method contains two parts: generating the task assignment

graph G, and choosing the grading rule g. We describe each of them respectively.

3.1 Task Assignment Graph

To generate the task assignment graph, we independently assign each student d different

questions u.a.r. from the question bank.

3.2 Grading Rule

Recall that a grading rule maps from an exam result graph G′ to a vector of probabilities.

In contrast with simple averaging which only considers the local information (the in-degrees

and out-degrees of the students), we use structural information of the exam result graph

for analysis. Our grading rule is an aggregation of a prediction matrix h ∈ [0, 1]S×Q,

where hij represents the algorithm’s prediction on the probability that student i answers

correctly question j. The grade for student i will be the average of hijs over all j ∈ Q,

i.e. algi = 1
|Q|

∑

j∈Q hij . We use u⇝ v to represent the existence of a directed path in G′

that starts with u and ends with v, and u ⇝̸ v for nonexistence. The algorithm classifies

the elements hijs into four cases: existing edge (i, j) ∈ E, same component i⇝ j ∧ j ⇝ i,

comparable components i⇝ j ⊕ j ⇝ i, and incomparable components i ⇝̸ j ∧ j ⇝̸ i.

Existing Edge

For (i, j) ∈ E, we observe wij from the exam result graph G′, hence hij = wij .

Same Component

For student i ∈ S and question j ∈ Q satisfy i⇝ j ∧ j ⇝ i, they are in the same strongly

connected component in G′. We make all predictions in the component simultaneously, by

inferring the student abilities and question difficulties from the structure of the component.

Formally, denote V ′ as the vertex set of the component. From Theorem 10, the strong

connectivity guarantees the existence of the maximum likelihood estimators (MLEs) u
∗ ∈ R

V ′

.

We can use a minorization–maximization algorithm from [16] to calculate the MLEs and

set hij = f(u∗
i − u∗

j ) for any missing edge (i, j) between students and questions inside this

component.

FORC 2023
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Comparable Components

W.l.o.g., we assume i⇝ j and j ⇝̸ i, thus every directed path between those two vertices

starts with the student and ends with the question, showing strong evidence of a correct

answer. In other words, considering the strongly connected components they belong to, the

component that contains the student has a “higher level” in the condensation graph of G′

and can reach the component that contains the question, i.e., they belong to comparable

components in the condensation graph. In this case, we set hij = 1. Similarly, if j ⇝ i and

i ⇝̸ j, we set hij = 0

Incomparable Components

For a student i and question j that satisfy i ⇝̸ j ∧ j ⇝̸ i, i.e., in incomparable components,

we use the average of the predictions in the above three cases as the prediction for hij .

4 Theory

In this section, we show several properties of our algorithm. Due to the limited space, we

will defer most detailed proofs to Appendix A. Recall that the Bradley-Terry-Luce model

describes the outcome of pairwise comparisons as follows. In a comparison between subject i

and subject j, subject i beats subject j with probability

pij =
exp(ui)

exp(ui) + exp(uj)
= f(ui − uj),

where u = (u1 . . . , un+m) represents the merit parameters of n + m subjects and f(x) =
1

1+exp(−x) . We consider the Bradley-Terry-Luce model under a family of random bipartite

task assignment graphs B(n, m, dn,m). Specifically, a task assignment graph G(L∪R, E) with

n vertices in L and m vertices in R, where n ≤ m, is constructed by linking dn,m different

random vertices in R to each left vertex in L, i.e., L is regular but R is not.

Given a task assignment graph G, denote A as its adjacency matrix. For any two subjects

i and j, the number of comparisons between them follows Aij ∈ {0, 1}. We define A′
ij as the

number of times that subject i beats subject j, thus A′
ij + A′

ji = Aij = Aji. In other words,

A′ is the adjacency matrix of the exam result graph G′. Based on the observation of G′, the

log-likelihood function is

L(u) =
∑

1≤i ̸=j≤n+m

A′
ij log pij =

∑

1≤i ̸=j≤n+m

A′
ij log f(ui − uj). (3)

Denote u
∗ = (u∗

1, u∗
1, . . . , u∗

n+m) as the maximum likelihood estimators (MLEs) of u. Since

L is additive invariant, w.l.o.g. we assume u1 = 0 and set u∗
1 = 0. Since (log f(x))′ = 1 − f(x)

the likelihood equation can be simplified to

n+m
∑

j=1

A′
ij =

n+m
∑

j=1

Aijf(u∗
i − u∗

j ), ∀ i. (4)

4.1 Existence and Uniqueness of the MLEs

Zermelo [27] and Ford [9] gave a necessary and sufficient condition for the existence and

uniqueness of the MLEs in (4).
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Condition A

For every two nonempty sets that form a partition of the subjects, a subject in one set has

beaten a subject in the other set at least once.

To provide an intuitive understanding of Condition A, we show its equivalence to the

strong connectivity of the exam result graph G′. Then we state our theorem on when

Condition A holds.

▶ Theorem 10. Condition A holds if and only if the exam result graph G′ is strongly

connected.

Proof. Condition A says that for any partition (V1, V2) of the vertices L ∪ R, there exists an

edge from V1 to V2 and also an edge from V2 to V1. If G′ is strongly connected, Condition

A directly holds by the definition of strong connectivity. Otherwise, if G′ is not strongly

connected, the condensation of G′ contains at least two SCCs. We pick one strongly connected

component with no indegree as V1 and the remaining vertices as V2, then there is no edge

from V2 to V1, i.e., Condition A fails. ◀

▶ Theorem 11 (Existence and Uniqueness of MLEs). If

exp(αn,m)(n + m) log(n + m)

ndn,m
→ 0 (n, m → ∞), (5)

where αn,m = max1≤i,j≤n+m ui − uj is the largest difference between all possible pairs of

merits, then Pr [Condition A is satisfied] → 1 (n, m → ∞).

To prove Theorem 11, we analyze the edge expansion property (Lemma 12) of the task

assignment graph G and take a union bound on all valid subsets to bound the probability

that G′ fails Condition A.

▶ Lemma 12 (Edge Expansion). Under condition (5),

Pr

[

∀S ⊂ V, s.t. |S| ≤
n + m

2
,

|∂S|

|S|
>

ndn,m

2(n + m)

]

→ 1 (n, m → ∞),

where ∂S = {(u, v) ∈ E : u ∈ S, v ∈ V \ S} for the task assignment graph G(V, E).

4.2 Uniform Consistency of the MLEs

Based on condition (5), Theorem 11 shows the existence and uniqueness of the MLEs. In this

part, we give an outline of the proof for the uniform consistency of the MLEs (Theorem 13).

▶ Theorem 13 (Uniform Consistency of MLEs). If

exp (2(αn,m + 1)) ∆n,m → 0 (n, m → ∞), (6)

where ∆n,m =
√

m log3(n+m)
ndn,m log2( n

m
dn,m)

, then the MLEs are uniformly consistent, i.e., ∥u
∗ −

u∥∞
P

−→ 0.

▶ Corollary 14 (Rates). In the case where αn,m = O(1), and dn,m = Ω
(

m log3(n+m)
n

)

, with

probability 1 − 2(n + m)−2, we have

∥u
∗ − u∥∞ = O

(

log n

log( n
m dn,m)

√

m log(n + m)

ndn,m

)

.
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Denote εi = u∗
i − ui as the estimation error of the maximum likelihood estimators.

Since we assume u1 = 0 and set u∗
1 = 0, we have ε1 = u∗

1 − u1 = 0. Consider the two

subjects with the most negative estimation error and the most positive estimation error

i = arg min
i

εi ≤ ε1 = 0, i = arg max
i

εi ≥ ε1 = 0, and their corresponding error ε = min
i

εi,

ε = max
i

εi, then we have ∥u
∗ − u∥∞ = max{−ε, ε} ≤ ε − ε. The goal is to identify a specific

number D, such that more than half εis are at most ε + D, and more than half εis are at

least ε − D. Then at least one subject is on both sides, thus ε − ε is bounded by 2D.

To identify D, we check a sequence of increasing numbers {Dk}
Kn,m

k=0 , and the two corres-

ponding growing sets {Bk}
Kn,m

k=0 and {Bk}
Kn,m

k=0 that contains the subjects with estimation

errors Dk-close to ε and ε respectively. Under careful choice of Kn,m and {Dk}
Kn,m

k=0 , we will

show that BKn,m
and BKn,m

both contain more than half subjects.

The main difficulty is showing the growth of {Bk}
Kn,m

k=0 and {Bk}
Kn,m

k=0 . We prove this

by considering the local growth of the sets, i.e., N(Bk) ∩ Bk+1 and N(Bk) ∩ Bk+1. By

symmetry, we only consider Bk. Lemma 15 analyzes the generation of the random task

assignment graphs and shows a vertex expansion property that describes the growth of the

neighborhoods N(Bk). Lemma 16 starts with any vertex i in Bk, analyzes the first order

equations of the MLE to exclude the vertices that are in the neighborhoods N({i}) and but

are not in Bk+1, and gives a lower bound on the size of N({i}) ∩ Bk+1. Finally, we jointly

consider all vertices in Bk and provide a lower bound on the size of N(Bk) ∩ Bk+1, which

shows the growth rate of Bk and finishes the proof.

Definition of Notations

Kn,m = 2
⌈

log n
log( n

m
dn,m) − 1

⌉

is the number of steps of the growth.

cn,m =
exp(−(αn,m+1))

4 is a lower bound on f ′(x) for |x| ≤ αn,m + 1.

qn,m =
cn,m log( n

m
dn,m)

5 log n is a lower bound on the local growth rate
|N({i})∩B

k+1
|

|N({i})| of vertex

i ∈ Bk.

zn,m =
√

32m log(n+m)
ndn,m

is the deviation used in the Chernoff bound.

The sequence of numbers {Dk}
Kn,m

k=0 is set to be

Dk =
4k

cn,m

√

2m log(n + m)

(1 − zn,m)ndn,m
for k = 0, 1, . . . , Kn,m − 1,

DKn,m
=

80Kn,m

c2
n,m

√

2m log(n + m)

(1 − zn,m)ndn,m
.

The two growing sets {Bk}
Kn,m

k=0 and {Bk}
Kn,m

k=0 which contains the subjects with estimation

error Dk-close to ε and ε respectively are defined as

Bk = {j : εj − ε ≤ Dk},

Bk = {j : ε − εj ≤ Dk}.

▶ Lemma 15 (Vertex Expansion). Regarding the task assignment graph G(L ∪ R, E) ∼

B(n, m, dn,m), for a fixed subset of left vertices X ⊂ L with |X| ≤ n
2 , w.p. 1 − (n + m)−4|X|

it holds that

If 1 ≤ |X| < m/dn,m,
|N(X)|

|X| > (1 − zn,m)
(

1 −
dn,m|X|

m

)

dn,m;

If |X| ≥ m/dn,m,
|N(X)|

m > 1 − zn,m − e−1.



J. Chen, J. Hartline, and O. Zoeter 7:11

For a fixed subset of right vertices Y ⊂ R with |Y | ≤ m
2 , w.p. 1 − (n + m)−4|Y | it holds that

If 1 ≤ |Y | < m/dn,m,
|N(Y )|

|Y | > (1 − zn,m)
(

1 −
dn,m|Y |

m

)

ndn,m

m ;

If |Y | ≥ m/dn,m,
|N(Y )|

n > 1 − zn,m − e−1.

In above inequalities, zn,m =
√

32m log(n+m)
ndn,m

as previously defined.

▶ Lemma 16 (Local Growth of Bk). For n and m large enough, k < Kn,m and a fixed subject

i ∈ Bk, it holds w.p. 1 − 2(n + m)−4 that

if k < Kn,m − 1, |N({i}) ∩ Bk+1| ≥ qn,m|N({i})|,

where qn,m =
cn,m log( n

m
dn,m)

5 log n and cn,m =
exp(−(αn,m+1))

4 as previously defined;

if k = Kn,m − 1, |N({i}) ∩ Bk+1| ≥ 75
81 |N({i})|.

4.3 Analysis of Our Algorithm

Our algorithm uses the MLEs to predict the student’s performance within the component.

Based on the consistency of the MLEs, we show the ex-post error of our algorithm.

▶ Theorem 17. When Condition A is satisfied, the exam result graph is strongly connected.

In this case, the MLE is unique and we have (algi − opti)
2

≤ 1
4 ∥u − u

∗∥2
∞.

Next we discuss the performance of our algorithm on several extreme cases of the task

assignment graph. For example, the extremely sparse cases when N({i}) is mutually disjoint

for each student i or each student receives only d = 1 question. Another example is that the

task assignment graph is a complete bipartite graph. In all of the above cases, our algorithm

gives the same grade as simple averaging.

▶ Theorem 18. When the task assignment graph satisfies that N(i) is mutually disjoint for

each student i or each student receives only d = 1 question, our algorithm gives the same

grade as simple averaging.

Proof. In both cases, the exam result graph satisfies that every SCC is a single point, thus

the algorithm’s output totally relies on cross-component predictions. For each student, the

comparable components for each student are exactly the questions that student receives.

Thus the algorithm gives the same prediction as the student’s correctness on those questions.

The prediction for remaining questions is the average accuracy on the assigned questions by

the algorithm’s rule for incomparable components. Therefore, the algorithm’s grade for the

student is exactly the same as simple averaging. ◀

▶ Theorem 19. When the task assignment graph is a complete bipartite graph, our algorithm

gives the same grade as simple averaging.

Proof. In this case, the output of the algorithm only relies on existing edges. It directly

follows that the algorithm gives the same grade as simple averaging. ◀

5 Experiments

5.1 Real-World Data

We use the anonymous answer sheets from a previously administered exam with |S| = 35

students and |Q| = 22 questions. The task assignment graph of the exam is a complete

bipartite graph, i.e., each student is assigned with all questions. The corresponding exam

result graph happens to be strongly connected, thus we are able to infer student abilities
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A Omitted Proofs

A.1 Proof of Lemma 12

Proof. Consider any subset of vertices S with size r ≤ n+m
2 . Denote X = S ∩ L, Y =

S ∩ R, |X| = x, thus |Y | = r − x, |L \ X| = n − x, |R \ Y | = m + x − r. ∂S is a random

variable that can be expressed as |∂S| =
∑

u∈X

∑

v∈R\Y Auv +
∑

u∈L\X

∑

v∈Y Auv, where

A is the adjacency matrix of the task assignment graph G. Recall that the task assignment

graph G is generated by linking dn,m random different vertices in R to each vertex in

L. Thus for different u1 ̸= u2 ∈ L, Au1· is independent with Au2·, while for a fixed

u ∈ L, Au· is chosen randomly without replacement. Chernoff bound applies under such

conditions, i.e., Pr
[

|∂S| ≤ 1
2E [|∂S|]

]

≤ exp
(

−E[|∂S|]
8

)

. Then we lower bound E[|∂S|] by

E[|∂S|] =
dn,m

m (|X||R \ Y | + |L \ X||Y |) =
dn,m

m

(

2x2 + (m − n − 2r)x + nr
)

. For the case

where m − n − 2r ≤ 0, i.e., r ≥ m−n
2 , we have

E[|∂S|] =
dn,m

m

(

2x2 + (m − n − 2r)x + nr
)

≥
dn,m

m

(

−
(m − n − 2r)2

8
+ nr

)

=
dn,mr

m

(

−
1

2
r −

1

8

(m − n)2

r
+

1

2
(n + m)

)

≥
dn,mr

m

(

−
n + m

4
−

1

4

(m − n)2

n + m
+

1

2
(n + m)

)

=
ndn,mr

n + m

For the case where m − n − 2r > 0, i.e., r < m−n
2 , we have

E[|∂S|] =
dn,m

m

(

2x2 + (m − n − 2r)x + nr
)

≥
ndn,mr

m
≥

ndn,mr

n + m
.
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Thus for any fixed set S with size r ≤ n+m
2 ,

Pr

[

|∂S| ≤
dn,mnr

2(n + m)

]

≤ Pr

[

|∂S| ≤
1

2
E [|∂S|]

]

≤ exp

(

−
E[|∂S|]

8

)

≤ exp

(

−
ndn,mr

8(n + m)

)

.

Finally, by union bound,

Pr

[

∀S ⊂ V, s.t. |S| ≤ n,
|∂S|

|S|
>

ndn,m

2(n + m)

]

= 1 − Pr

[

∃S ⊂ V, s.t. |S| ≤ n,
|∂S|

|S|
≥

ndn,m

2(n + m)

]

≥1 −

(n+m)/2
∑

r=1

(

n + m

r

)

exp

(

−
ndn,mr

8(n + m)

)

≥ 1 −

(n+m)/2
∑

r=1

exp

(

−
ndn,mr

8(n + m)
+ r log(n + m)

)

≥1 −

(n+m)/2
∑

r=1

exp

(

−
ndn,mr

16(n + m)

)

≥ 1 − exp

(

−
ndn,m

16(n + m)
+ log(n + m)

)

≥ 1 − exp

(

−
ndn,m

32(n + m)

)

The third-to-last inequality and the last inequality hold when dn,m > 32(n+m) log(n+m)
n . Note

that condition (5) implies (n+m) log(n+m)
ndn,m

→ 0 (n, m → ∞) since αn,m ≥ 0. Thus for large

enough n and m,

Pr

[

∀S ⊂ V, s.t. |S| ≤ n,
|∂S|

|S|
>

ndn,m

2(n + m)

]

≥ 1 − exp

(

−
ndn,m

32(n + m)

)

→ 1 (n, m → ∞).

◀

A.2 Proof of Theorem 11

Proof. For an edge between vertex i and j in the task assignment graph G, i.e. Aij = 1, the

corresponding directed edge in the exam result graph G′ goes from i to j with probability

Pr[A′
ij = 1] = f(ui − uj) ≤ max1≤i,j≤n+m f(ui − uj) ≤ 1

1+exp(−αn,m) ≤ 2− exp(−αn,m). By

Lemma 12, under condition (5), Pr
[

∀S ⊂ V, s.t. |S| ≤ n, |∂S|
|S| >

ndn,m

2(n+m)

]

→ 1 (n, m →

∞). Now consider any subset of vertices S ⊂ V s.t. |S| = r ≤ n+m
2 . The probabil-

ity that all edges between S and V \ S go in the same direction in G′ is no more than

2
(

2− exp(−αn,m)
)

ndn,m

2(n+m) . Thus by union bound, the probability that Condition A holds is at

least 1 − 2
∑

1≤r≤(n+m)/2

(

n+m
r

)

2−
exp(−αn,m)ndn,m

2(n+m) ≥ 1 − 2

(

(

1 + 2−
exp(−αn,m)ndn,m

2(n+m)

)n+m

− 1

)

,

which converges to 1 when n, m → ∞ under condition (5). ◀

A.3 Proof of Lemma 15

Proof. Before proving the vertex expansion property of the task assignment graph

B(n, m, dn,m), we first bound the vertex degree by Chernoff bound and union bound,

∀ i ∈ R, Pr

[

(1 − zn,m)
ndn,m

m
≤ |N({i})| ≤ (1 + zn,m)

ndn,m

m

]

≥ 1 − (n + m)−4, (7)

where zn,m is defined above as zn,m =
√

32m log(n+m)
ndn,m

→ 0 (n, m → ∞) under condition (5).

We define another family of random bipartite graph B̃. Each graph in B̃(n, m, dn,m)

contains n vertices in the left part, m vertices in the right part, and assigns dn,m random

neighbors to each vertex in the left part (multi-edges are allowed). For any X ⊂ L, it’s easy to

see that |N(X)| in G ∼ B(n, m, dn,m) stochastically dominates |N(X)| in G ∼ B̃(n, m, dn,m).
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Thus it’s sufficient to prove the theorem under B̃(n, m, dn,m). On the other hand, counting

|N(X)| under B̃(n, m, dn,m) is the same random process as counting the number of non-empty

bins after independently throwing dn,m|X| balls u.a.r. into m bins. By linearity of expectation

over every bin, we know E[|N(X)|] = m
(

1 −
(

1 − 1
m

)dn,m|X|
)

.

We need several lower bounds of E[|N(X)|] here. With the fact of x
2 ≤ 1 −

exp(−x) ≤ x, ∀ 0 ≤ x < 1, we have E[|N(X)|] = m
(

1 −
(

1 − 1
m

)dn,m|X|
)

≥

m
(

1 − exp
(

−
dn,m|X|

m

))

≥
dn,m|X|

2 . Therefore, using Azuma’s inequality, we can lower

bound |N(X)|, i.e.,

Pr [|N(X)| ≤ (1 − zn,m)E[|N(X)|]] ≤ exp
(

−
z2

n,m(E[|N(X)|])2

2dn,m|X|

)

≤ (n + m)−4|X|. Also, when

|X| < m/dn,m, we have
(

1 −
(

1 − 1
m

)dn,m|X|
)

≥
dn,m|X|

m

(

1 −
dn,m|X|

m

)

, thus with probab-

ility 1 − (n + m)−4|X|, |N(X)| ≥ (1 − zn,m)E[|N(X)|] ≥ (1 − zn,m)dn,m|X|
(

1 −
dn,m|X|

m

)

;

Similarly when |X| ≥ m/dn,m , we have
(

1 −
(

1 − 1
m

)dn,m|X|
)

≥ 1 − e−1, and |N(X)| ≥

(1 − zn,m)E[|N(X)|] ≥ (1 − zn,m)
(

1 − e−1
)

m ≥
(

1 − zn,m − e−1
)

m.

The proof for Y ⊂ R is almost the same except that it’s sufficient to use Chernoff

bound rather than Azuma’s inequality since the independence among the subjects in N(Y ),

to have E[|N(Y )|] = n

(

1 −
(

1 − |Y |
m

)dn,m

)

≥ n
(

1 − exp
(

−
dn,m|Y |

m

))

≥
ndn,m|Y |

2m . Using

Chernoff bound, we can lower bound |N(Y )|, i.e., Pr [|N(Y )| ≤ (1 − zn,m)E[|N(Y )|]] ≤

exp
(

−
z2

n,mE[|N(Y )|]

2

)

≤ (n + m)−4|Y |. Thus when |Y | < m/dn,m, with probability 1 −

(n + m)−4|Y |, |N(Y )| ≥ (1 − zn,m)E[|N(Y )|] ≥ (1 − zn,m)
ndn,m|Y |

m

(

1 −
dn,m|Y |

m

)

; when

|Y | ≥ m/dn,m, with probability 1 − (n + m)−4|Y |, |N(Y )| ≥ (1 − zn,m)E[|N(Y )|] ≥ (1 −

zn,m)
(

1 − e−1
)

n ≥
(

1 − zn,m − e−1
)

n. ◀

A.4 Proof of Lemma 16

Proof. Pick a subject i ∈ Bk. For any task assignment graph G and its adjacency matrix

A, the corresponding adjacency matrix A′ of the exam result graph is a random variable

of A. Specifically, for any Aij = 1, A′
ijs are independent Bernoulli random variables with

probability f(ui − uj) to be 1. In other words, E[A′
ij ] = Aijf(ui − uj). By Chernoff bound,

Pr
[∣

∣

∣

∑

j A′
ij −

∑

j Aijf(ui − uj)
∣

∣

∣
≥
√

2|N({i})| log(n + m)
]

≤ 2(n + m)−4.

Below we use the above inequality and some analysis of function f to count the number of

subjects in N({i}) ∩ Bk+1. The fact we use about function f is f ′(x) = exp(−x)
(1+exp(−x))2 ≤ 1

4

and f ′(x) ≥
exp(−(αn,m+1))

(1+exp(−(αn,m+1)))2 ≥
exp(−(αn,m+1))

4 = cn,m, ∀|x| ≤ αn,m + 1. Thus for another

subject j such that εj ≤ εi, by mean value theorem, we have f
(

u∗
i − u∗

j

)

− f (ui − uj) =

f ′(ξij) (εi − εj) ≤ 1
4 (εi − ε) ≤ Dk

4 , where ξij ∈
[

ui − uj , u∗
i − u∗

j

]

.

Similarly, for a subject j with εj > εi + Dk+1 − Dk, we have f (ui − uj) − f
(

u∗
i − u∗

j

)

=

f ′(ξ′
ij) (εj − εi) ≥ cn,m(Dk+1 − Dk), where ξ′

ij ∈
[

u∗
i − u∗

j , ui − uj

]

.

Since ui − uj − DKn,m
≤ ui − uj − (εj − εi) = u∗

i − u∗
j ≤ ξ′

ij ≤ ui − uj , and DKn,m
→ 0 as

n, m → ∞ under condition (6), |ξ′
ij | is bounded by αn,m + 1 when n and m is large enough,

thus f ′(ξ′
ij) ≥ cn,m. Therefore, on the one hand,
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∑

εj>εi

Aij

(

f(ui − uj) − f(u∗
i − u∗

j )
)

=
∑

j

Aij

(

f(ui − uj) − f(u∗
i − u∗

j )
)

−
∑

εj≤εi

Aij

(

f(ui − uj) − f(u∗
i − u∗

j )
)

≤
√

2N({i}) log(n + m) +
1

4
Dk

∑

εj≤εi

Aij .

(8)

On the other hand,

∑

εj>εi

Aij

(

f(ui − uj) − f(u∗
i − u∗

j )
)

≥
∑

εj>εi+Dk+1−Dk

Aij

(

f(ui − uj) − f(u∗
i − u∗

j )
)

≥cn,m(Dk+1 − Dk)
∑

εj>εi+Dk+1−Dk

Aij .
(9)

Combining (8) and (9), we have

|N({i}) ∩ Bk+1| ≥
∑

u∗

j
−uj≤u∗

i
−ui+Dk+1−Dk

Aij ≥
cn,m(Dk+1−Dk)−

√

2m log(n+m)
(1−zn,m)ndn,m

cn,m(Dk+1−Dk)+ 1
4 Dk

|N({i})|.

For k < Kn,m − 1,
cn,m(Dk+1−Dk)−

√

2m log(n+m)
(1−zn,m)ndn,m

cn,m(Dk+1−Dk)+ 1
4 Dk

|N({i})| ≥ qn,m|N({i})|.

For k = Kn,m − 1,
cn,m(Dk+1−Dk)−

√

2m log(n+m)
(1−zn,m)ndn,m

cn,m(Dk+1−Dk)+ 1
4 Dk

|N({i})| ≥ 75
81 |N({i})|. ◀

A.5 Proof of Theorem 13

Proof of Theorem 13. Denote Xk = Bk ∩ L and Yk = Bk ∩ R. We inductively prove the

following fact, for n and m large enough, with probability 1 − (n + m)−2,

for 1 ≤ k ≤ Kn,m − 2, and k is odd, |Xk|, |Yk| ≥
(

n
m dn,m

)(k−1)/2
;

for 1 ≤ k ≤ Kn,m−2, and k is even, |Xk| ≥
(

n
m

)k/2
d

(k−1)/2
n,m and |Yk| ≥

(

n
m

)k/2−1
d

(k−1)/2
n,m ;

for k = Kn,m − 1, |Xk|, |Yk| ≥ m
dn,m

;

for k = Kn,m, |Xk| > n
2 , |Yk| > m

2 .

We will use the following fact,

|Yk+1| ≥ |N(Xk) ∩ Bk+1| = |N(Xk)| − |N(Xk) ∩ Bk+1|

≥|N(Xk)| −
∑

i∈Xk

|N({i}) ∩ Bk+1| = |N(Xk)| −
∑

i∈Xk

(

|N({i})| − |N({i}) ∩ Bk+1|
)

, (10)

and similarly |Xk+1| ≥ |N(Yk) ∩ Bk+1| ≥ |N(Yk)| −
∑

i∈Yk

(

|N({i})| − |N({i}) ∩ Bk+1|
)

, to

show the growth of Xk and Yk respectively.

We only consider n and m large enough. Since i ∈ B0, w.l.o.g. we assume |X0| = 1. if X0

contains other subjects, we take a subset with size 1. Then by fact (10), (7) and Lemma 16,

we know with probability 1 − 4(n + m)−4 that |Y1| ≥ |N(X0) ∩ Bk+1| ≥ qn,m|N(X0)| > 0.

For 1 < k ≤ Kn,m − 2, and odd k, we prove inductively. We assume |Xk| =
(

n
m dn,m

)(k−1)/2
.

If Xk is larger, we pick any subset with size
(

n
m dn,m

)(k−1)/2
. Fact (10) show that

|Yk+1| ≥ |N(Xk)| −
∑

i∈Xk

(

|N({i})| − |N({i}) ∩ Bk+1|
)

.

By Lemma 15 and union bound over all subset of L with size
(

n
m dn,m

)(k−1)/2
, it holds

with probability 1 − (n + m)−3|Xk| that, |N(Xk)| > (1 − zn,m)
(

1 −
dn,m|Xk|

m

)

dn,m|Xk|.
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By Lemma16 and union bound over all possible subject i ∈ Xk, it holds with probability

1 − 2(n + m)−3 that, ∀i ∈ Xk, |N({i}) ∩ Bk+1| ≥ qn,m|N({i})|.

Therefore, with probability 1 − 3(n + m)−3 we have

|Yk+1| ≥ |N(Xk)| −
∑

i∈Xk

(

|N({i})| − |N({i}) ∩ Bk+1|
)

≥ |N(Xk)| − (1 − qn,m)
∑

i∈Xk

|N({i})|

≥(1 − zn,m)

(

1 −
dn,m|Xk|

m

)

dn,m|Xk| − (1 − qn,m)dn,m|Xk|

≥|Xk|
(

m

n
dn,m

)1/2

(

(

n

m

)1/2

(qn,m − zn,m)d1/2
n,m − (1 − zn,m)

(

n
m

dn,m

)3/2
|Xk|

n

)

≥|Xk|
(

m

n
dn,m

)1/2
(

(

n

m

)1/2

(qn,m − zn,m)d1/2
n,m − 1

)

where the last inequality holds because we assume |Xk| =
(

n
m dn,m

)(k−1)/2
. Finally, under

condition (6), we have for large enough n and m,
(

n
m

)1/2
(qn,m − zn,m)d

1/2
n,m − 1 ≥

(

n
m

)
1
2 ,

thus |Yk+1| ≥ d
1/2
n,m|Xk|. The same calculation applies to the case of 1 < k ≤ Kn,m − 2 and

even k. Similarly, we can prove for 1 < k ≤ Kn,m − 2, |Xk+1| ≥ n
m (dn,m)

1/2
|Yk|. Therefore,

we finish the proof for all k < Kn,m.

Similarly for k = Kn,m and large enough n and m, with probability 1 − 4(n + m)−3,

|YKn,m | ≥ |N(XKn,m−1)| −
∑

i∈XKn,m−1

(

|N({i})| − |N({i}) ∩ BKn,m
|
)

≥ |N(XKn,m−1)| −
(

1 −
75

81

)

∑

i∈XKn,m−1

|N({i})| ≥ (1 − zn,m − e
−1)m −

6

81
m >

m

2
.

The same proof applies for |XKn,m
|. To summarize, with probability 1−(n+m)−2, |XKn,m

| >

n/2 and |YKn,m
| > m/2, thus |BKn,m

| > (n + m)/2. By symmetry, |BKn,m
| > (n + m)/2

with probability 1 − (n + m)−2. Then with probability 1 − 2(n + m)−2, at least one

subject i ∈ BKn,m
∩ BKn,m

lies in both BKn,m
and BKn,m

. By definition, subject i satisfies

εi − ε ≤ DKn,m
and ε − εi ≤ DKn,m

, thus ∥u
∗ − u∥∞ ≤ ε − ε ≤ 2DKn,m

, which tends to 0

under condition (6). ◀

A.6 Proof of Theorem 17

Proof. When the exam result graph is strongly connected, the algorithm calculates the

MLEs u
∗ and gives student i a grade of algi = 1

|Q|

∑

j∈Q f(u∗
i − u∗

j ), while the ground truth

probability of answering a random question correctly is opti = 1
|Q|

∑

j∈Q f(ui − uj). Thus

we have

|algi − opti| =

∣

∣

∣

∣

∣

1

|Q|

∑

j

f(u∗

i − u
∗

j ) −
1

|Q|

∑

j

f(ui − uj)

∣

∣

∣

∣

∣

≤
1

|Q|

∑

j

∣

∣f(u∗

i − u
∗

j ) − f(ui − uj)
∣

∣

=
1

|Q|

∑

j

∣

∣f
′(ξij)

∣

∣ |εi − εj | ≤
2

n
∥u − u

∗∥∞

∑

j

∣

∣f
′(ξij)

∣

∣ ≤
1

2
∥u − u

∗∥∞,

where the third-to-last equality is because of the mean value theorem, the next-to-last

inequality is because |εi − εj | ≤ 2∥u − u
∗∥∞, and the last inequality is because |f ′(x)| ≤ 1

4 .

Thus (algi − opti)
2

≤ 1
4 ∥u − u

∗∥2
∞. ◀
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A.7 Proof of Theorem 20

Proof. We prove a stronger argument of the decomposition for any fixed student i and any

fixed task assignment graph G,

∀i, G, Ew[(algi − opti)
2
] = Ew[(algi − Ew[algi] + Ew[algi] − opti)

2
]

= (Ew[algi] − opti)
2

+ Ew[(algi − Ew[algi])
2
] + 2Ew[(algi − Ew[algi]) (Ew[algi] − opti)]

= (Ew[algi] − opti)
2

+ Ew[(algi − Ew[algi])
2
] + 2 (Ew[algi] − opti)Ew[(algi − Ew[algi])]

= (Ew[algi] − opti)
2

+ Ew[(algi − Ew[algi])
2
]. ◀
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