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—— Abstract

This paper studies grading algorithms for randomized exams. In a randomized exam, each student
is asked a small number of random questions from a large question bank. The predominant grading
rule is simple averaging, i.e., calculating grades by averaging scores on the questions each student is
asked, which is fair ex-ante, over the randomized questions, but not fair ex-post, on the realized
questions. The fair grading problem is to estimate the average grade of each student on the full
question bank. The maximum-likelihood estimator for the Bradley-Terry-Luce model on the bipartite
student-question graph is shown to be consistent with high probability when the number of questions
asked to each student is at least the cubed-logarithm of the number of students. In an empirical
study on exam data and in simulations, our algorithm based on the maximum-likelihood estimator
significantly outperforms simple averaging in prediction accuracy and ex-post fairness even with a
small class and exam size.
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1 Introduction

A common approach for deterring cheating in online examinations is to assign students
random questions from a large question bank. This random assignment of questions with
heterogeneous difficulties leads to different overall difficulties of the exam that each student
faces. Unfortunately, the predominant grading rule — simple averaging — averages all question
scores equally and results in an unfair grading of the students. This paper develops a grading
algorithm that utilizes structural information of the exam results to infer student abilities
and question difficulties. From these abilities and difficulties, fairer and more accurate grades
can be estimated. This grading algorithm can also be used in the design of short exams that
maintain a desired level of accuracy.

During the COVID-19 pandemic, learning management systems (LMS) like Blackboard,
Moodle, Canvas by Instructure, and D2L have benefited worldwide students and teachers
in remote learning [20]. The current exam module in these systems includes four steps. In
the first step, the instructor provides a large question bank. In the second step, the system
assigns each student an independent random subset of the questions. (Assigning each student
an independent random subset of the questions helps mitigate cheating.) In the third step,
students answer the questions. In the last step, the system grades each student proportionally
to her accuracy on assigned questions, i.e., by simple averaging.
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While randomizing questions and grading with simple averaging is ex-ante fair, it is not
generally ex-post fair. When questions in the question bank have varying difficulties, then
by random chance a student could be assigned more easy questions than average or more
hard questions than average. Ex-post in the random assignment of questions to students,
the simple averaging of scores on each question allows variation in question difficulties to
manifest as ex-post unfairness in the final grades.

The aim of this paper is to understand grading algorithms that are fair and accurate.
Given a bank of possible questions, a benchmark for both fairness and accuracy is the
counterfactual grade that a student would get if the student was asked all of the questions in
the question bank. Exams that ask fewer questions to the students may be inaccurate with
respect to this benchmark and the inaccuracy may vary across students and this variation
is unfair. This benchmark allows for both the comparison of grading algorithms and the
design of randomized exams, i.e., the method for deciding which questions are asked to which
students.

The grading algorithms developed in this paper are based on the Bradley-Terry-Luce
model [6] on bipartite student-question graphs. This model is also studied in the psychology
literature where it is known as the Rasch model [19]. This model views the student answering
process as a noisy comparison between a parameter of the student and a parameter of the
question. Specifically, there is a merit value vector u which describes the student abilities
and question difficulties and is unknown to the instructor. The probability that student ¢
answers question j correctly is defined to be

exp(u;)
Wi — ) = )
Tl =) = ) + explw)
where f(z) = m, and u;, u; represents the merit value of student ¢ and question j
respectively.

The paper develops a grading algorithm that is based on the maximum likelihood estimator
u* of the merit vector. Compared to simple averaging which only focuses on student in-
degrees and out-degrees, our grading algorithm incorporates more structural information
about the exam result and, as we show, reduces ex-post unfairness.

Results

Our theoretical analysis considers a sequence of distributions over random question assignment
graphs indexed by n and m by setting the number of students to n and number of questions in
the question bank to m > n and assigning d,, ,, random questions uniformly and independently
to each student. The exam result can be represented by a directed graph, where an edge from
a student to a question represents a correct answer and the opposite direction represents
an incorrect answer. We prove that the maximum likelihood estimator exists and is unique
within a strongly connected component (Theorem 10). Let c, m = maxi<; j<nim Ui — U; be
the largest difference between any pair of merits. We prove that if

exp(n,m)(n + m)log(n + m)
N, m

-0 (n,m — 00),

then the probability that the exam result graph is strongly connected goes to 1 (Theorem 11).
Thus, the existence and uniqueness of the MLE are guaranteed under the model. We also

prove that if exp (2(an,m + 1)) Ay — 0 (n,m — o0), where A, ,,, = \/mlog3(”+m)

N, m log? (2 dp,m )’

then the MLEs are uniformly consistent, i.e., [[u* — | 0 (Theorem 13). These
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theoretical results complement the empirical and simulation results from the literature on
the Rasch model with random missing data. Our analysis is similar to Han et al’s [15] which
studies Erdos-Rényi random graphs.

Our empirical analysis considers a study of grading algorithms on both anonymous exam
data and numerical simulations. The exam data set consists of 22 questions and 35 students
with all students answering all questions. From this data set, randomized exams with fewer
than 22 questions can be empirically studied and grading algorithms can be compared. Our
algorithm outperforms simple averaging when students are asked at least seven questions. We
fit the model parameters to this real-world dataset and run numerical simulations with the
resulting generative model. With these simulations, we compare our algorithm and simple
averaging on ex-post bias and ex-post error, two notion of ex-post unfairness. For example,
when each of the 35 students answers a random 10 of the 22 questions, we find that the
expected maximum ex-post bias of simple averaging is about 100 times higher than that of
our algorithm. The expected output of simple averaging has about 13% expected deviation
from the benchmark for the most unlucky student, which would probably lead to a different
letter grade for the students, while the deviation is only about 1.6% for our algorithm. In the
same setting, we found that our algorithm achieves a factor of 8 percent smaller ex-post error,
which is a noisier concept of ex-post unfairness. After the decomposition of ex-post error
into ex-post bias and variance, we found that our algorithm achieves a significantly smaller
ex-post bias with the cost of a slightly larger variance of the output, and in combination it
reduces the ex-post error.

Related Work

The literature on peer grading also compares estimation from structural models and simple
averaging. When peers are assigned to grade submissions, the quality of peer reviews can
vary. Structural models can be used to estimate peer quality and calculate grades on the
submissions that put higher weight on peers who give higher-quality reviews. Alternatively,
submission grades can be calculated by simply averaging the reviews of each peer. The
literature has mixed results. De Alfaro and Shavlovsky [7] propose an algorithm based on
the reputation that largely outperforms simple averaging on synthetic data, and is better
on real-world data when student grading error is not random. Reily et al. [21] and Hamer
et al. [14] also point out that sophisticated aggregation improves the accuracy compared to
simple averaging and also helps to avoid rogue strategies including laziness and aggressive
grading. On the other hand, Sajjadi et al. [23] show that statistical and machine learning
methods do not perform better than simple averaging on their dataset. In contrast, our

result that structural models outperform simple averaging is replicated on several data sets.

We believe this difference with the peer grading literature is due to differences in the degrees
of the bipartite graphs considered. The exam grading graphs are of a higher degree than the
peer-grading graphs.

In psychometrics, item response theory (IRT) considers mathematical models that build
relationships between unobserved characteristics of respondents and items and observed
outcomes of the responses. The Rasch model is a commonly used model of IRT that can be
applied to psychometrics, educational research [19], health sciences [5], agriculture [18], and
market research [4]. Previous simulation studies showed that among different item parameter
estimation methods for the Rasch model, the joint maximum likelihood (JML) method,
and its variants provides one of the most efficient estimates [22], especially with missing
data [25, 8]. In our setting, randomly assignment of questions to students can be seen as a
special case of missing data. With complete data, the condition for the consistency of the
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maximum likelihood estimators is analyzed [12, 13]. With missing data, though plenty of
work on simulation exists, there is a lack of theoretical work that proves mathematically the
consistency of the maximum likelihood estimators.

The Rasch model can be regarded as a special case of the Bradley-Terry-Luce (BTL)
model [6] for the pairwise comparison of respondents with items by restricting the comparison
graph to a bipartite graph. For the BTL model with Erdés-Rényi graph G(n,p,), the
maximum likelihood estimator (MLE) can be solved by an efficient algorithm [27, 9, 16],
and is proved to be a consistent method in I, norm when liminf, o p, > 0 [24, 26], and
recently when p,, > % [15] which is close to the theoretical lower bound of 105 " below
which the comparison graph would be disconnected with positive probability and there is no
unique MLE.

In this paper, we follow the method of Han et al’s [15] to prove the consistency of the
Rasch model with missing data, or BTL model with a sparse bipartite graph, when each
vertex in the left part is assigned small number of random edges to the vertices in the right
part. We also propose an extension of the algorithm that reasonably deals with the cases
where the MLE does not exists.

Fowler et al. [10] recently studied unfairness detection of the simple averaging under the
same randomized exam setting and argue that “the exams are reasonably fair”. They use
certain IRT model to fit exams based on their real-world data, and find that the simple
averaging gives grades that are strongly correlated with the students’ inferred abilities. They
also simulate under the IRT model, over random assignment and the student answering
process. The simulation shows that, if given any fixed assignment we consider the absolute
error of the students’ expected performance over their answering process, the average absolute
error over different assignments reaches a 5-percentage bias. We find similar results in our
simulation, and design a method to reduce the corresponding error by a factor of ten. Our
method solves one of their future directions by adjusting grades of the students based on
their exam variant.

All large-scale standardized tests including the Scholastic Aptitude Test (SAT) and
Graduate Record Examination (GRE) are using item response theory (IRT) to generate score
scales for alternative forms [1]. This test equating process can be divided into two steps,
linking and equating. Linking refers to how to estimate the IRT parameters of students
and questions under the model; and equating refers to how to adjust the raw grade of
the students to adapt to different overall difficulty levels in different version of the exam
(e.g. [17]). One of the most popular test equating processes is IRT true-score equating with
nonequivalent-groups anchor test (NEAT) design. In the NEAT design, there are two test
forms given to two population of students, where a set of common questions is contained in
both forms. Linking performs by putting the estimated parameter of the common items onto
the same scale through a linear transformation, since any linear transformation gives the

same probability under the IRT model. Equating performs by taking the estimated ability of
the student from the second form and compute the expected number of accurate answers
in the first form as the adjusted grade. Since these large-scale standardized tests have a
large population of students for each variant of the exam, the above test equating process
works well. Our methods can be viewed as adapting the statistical framework of linking
and equating to the administration of a single exam for a small population of students. In
our randomized exam setting with small scale, however, every student receives a different
form of the exam, thus it is almost impossible to estimate the parameters for every form
separately or to decide an anchor set of question and do the same linking. Our algorithm
uses the concurrent linking that estimates all parameters at the same time based on the
information in all forms. As for equating, we use a similar method of true-score equating,
but compute on the whole question bank instead of one specific form.
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In the problem of fair allocation of indivisible items, Best-of-Both-Worlds (BoBW) fairness
mechanisms (e.g., [2, 11, 3]) try to provide both ex-ante fairness and ex-post fairness to
agents. An ex-ante fair mechanism is easy to be found. For example, giving all items to
one random agent guarantees that every agent receives a % fraction of the total value in

expectation (ex-ante proportionality). However, such a mechanism is clearly not ex-post fair.

Likewise, simple averaging gives every student an unbiased grade ex-ante, but neglects the
different overall difficulty among students ex-post. We propose another grading rule that
evaluates the difficulties of the questions and adjusts the grades according to them, which
achieves better ex-post fairness of the students.

2 Model

Consider a set of students S and a bank of questions ). A merit vector u is used to describe
the key property of the students and questions. Specifically, for any student i € S, u;
represents the ability of the student; for any question j € @, u; represents the difficulty of
the question. We put them in the same vector for convenience. The merit vector is unknown
when the exam is designed. Denote w;; as the outcome of the answering process. Then
w;;s are independent Bernoulli random variables, where w;; = 1 represents a correct answer,
w;; = 0 represents an incorrect answer, and

exp(u;)

P o =1l=1—-P ij — Y| =
rfw;; = 1] rfwij = 0] exp(u;) + exp(u;)

= f(ui —uy),
where f(z) = m. The goal of the exam design is to assign a small number of questions
to each student (task assignment graph), and based on the exam result (exam result graph),
give each student a grade (grading rule) that accurately estimates her performance over
the whole question bank (benchmark). We give a formal description of the task assignment
graph, exam result graph, benchmark, and grading rule below.

» Definition 1 (Task Assignment Graph). The task assignment graph G = (S UQ, E) is an
undirected bipartite graph, where the left part of the vertices represents the students and the
right part represents the questions, and an edge between i € S and j € Q exists if and only if
the instructor decides to assign question j to student i.

» Definition 2 (Exam Result Graph). The exam result graph G' = (SUQ, E') is a directed
bipartite graph constructed from the task assignment graph G. All directed edges are between
students and questions. For any edge (i,7) € G in the task assignment graph, where i € S
and j € Q, if student i answers question j correctly in the exam, i.e., we observe that w;; =1,
there is an edge i — j in G'; if the answer is incorrect, i.e., we observe that w;; = 0, there is
an edge j — 1 in G'. For other student-question pairs that do not occur in the task assignment
graph G, there is also no edge between them in the exam result graph G'.

To evaluate different exam designs and grading rules, we propose the following benchmark.

» Definition 3 (Benchmark). In an ideal case where we know the distribution over the outcome
of the answering processes wy;s, the instructor would measure the students’ performance by
their expected accuracy on a uniformly random question in the bank. Formally, the benchmark
for any student i’s grade is

opt; = Eju(q)[wij] |Q| Z f(u (1)
JjeqQ

7:5

FORC 2023



7:6

Fair Grading Algorithms for Randomized Exams

The benchmark is an ideal way to grade the student if the instructor has complete
information on all answering processes. On the other hand, when the instructor only observes
one sample of each w;; involved in the exam, we will use a grading rule to grade the students.

» Definition 4 (Grading Rule). In an exam, the instructor gives a grade for each student
based on the exam result graph. A grading rule is a mapping g: G' — RS from the exam
result graph to the grades for each student.

One interpretation of the grade is as an estimation of the benchmark, i.e., students’
expected accuracy on a uniformly random question in the bank, which combines the two
important criteria of fairness and accuracy. To evaluate the exam design, we compare the
performance of the grading rule to the benchmark and aggregate the error among all students.
Specifically, there are three stages of the exam design, before the randomization of the task
assignment graph, after the randomization of the task assignment graph and before the
student answering process, and after the student answering process. In each stage, we might
care about the maximum or average unfairness among students.

» Definition 5 (Ex-ante Bias). For a given algorithm alg, the ex-ante bias for student i is
defined as the mean square error of the algorithm’s expected performance compared to the
benchmark, over a random family G of task assignment graphs, i.e., (Eg~gEylalg;] — opti)2.

» Definition 6 (Ex-post Bias). For a given algorithm alg and a fized task assignment graph G,
the ex-post bias for student i is defined as the mean square error of the algorithm’s expected
performance compared to the benchmark on G, i.e., (E,[alg;] — opti)z.

» Definition 7 (Ex-post Error). For a given algorithm alg, a fized task assignment graph G,
and a fixed realization of the student answering process w, the ex-post error for student i is
defined as the mean square error of the algorithm’s performance compared to the benchmark
on G and w, i.e., (alg; — opt;)>.

By definition, ex-ante bias takes expectation over both random graphs and the noisy
answering process, ex-post bias takes expectation over the noisy answering process, while
ex-post error directly measures the error. Thus ex-post error is harder than ex-post bias
which is harder than ex-ante bias to achieve.

» Example 8 (Simple Averaging). Simple averaging is a commonly used grading rule in
exams. It calculates the average accuracy on the questions the student receives. Formally,
given a exam result graph G’, the simple averaging grades student ¢ by

B deg;” i Yager
deg; +degi > lujer’

(2)

avg;

where deg™ and deg™ represents the outdegree and indegree of the vertex in G’, respectively.

» Theorem 9. The simple averaging is ex-ante fair over any family of bipartite graphs G
that is symmetric with respect to the questions, i.e., its ex-ante bias is 0.

Proof.

Viv EGNQEUJ [ani] = EGNQEU) = EGNQEUJ

> Lager > Wil jer
> Liger > Liger

=Eg~g lzy i) (M)EE] = Z]E[Wij]Eng l( A)EE ] = opt;. <
J

> Liger > Liger
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In other words, simple averaging can be seen as an ex-ante unbiased estimator of the
benchmark. However, ex-post, i.e., on one specific task assignment graph, simple averaging
is unfair. Intuitively, some unlucky students might be assigned harder questions and receive
a significantly lower average grade than the benchmark, and the opposite happens to some
lucky students. We will visualize this phenomenon in Figure 2 in Section 5.3.1.
Based on the above definitions, we now formalize the procedure and goal of the exam
grading problem.
i. The instructor chooses a task assignment graph G.
ii. The students receive questions according to G and give their answer sheet back, thus
the instructor receives the exam result graph G'.
iii. The instructor uses a grading rule g to grade the students based on G'.
iv. The grade g(G’) should have a small maximum (average) ex-post bias or ex-post error.

3 Method

In this section, we propose our method for the exam grading problem. According to our
formalization of the problem, any method contains two parts: generating the task assignment
graph G, and choosing the grading rule g. We describe each of them respectively.

3.1 Task Assignment Graph

To generate the task assignment graph, we independently assign each student d different
questions u.a.r. from the question bank.

3.2 Grading Rule

Recall that a grading rule maps from an exam result graph G’ to a vector of probabilities.

In contrast with simple averaging which only considers the local information (the in-degrees
and out-degrees of the students), we use structural information of the exam result graph
for analysis. Our grading rule is an aggregation of a prediction matrix h € [0,1]5%%,
where h;; represents the algorithm’s prediction on the probability that student i answers
correctly question j. The grade for student ¢ will be the average of h;;s over all j € @,
ie. alg;, = ﬁ ZjEQ hij. We use u ~ v to represent the existence of a directed path in G’
that starts with v and ends with v, and u ~ v for nonexistence. The algorithm classifies
the elements h;;s into four cases: existing edge (4, ) € E, same component i ~» j A j ~» i,
comparable components i ~ j @ j ~ 4, and incomparable components i ~v4 j A j ~ i.

Existing Edge

For (i,7) € E, we observe w;; from the exam result graph G’, hence h;; = w;;.

Same Component

For student 7 € S and question j € @ satisfy ¢ ~ j A j ~~ i, they are in the same strongly
connected component in G'. We make all predictions in the component simultaneously, by

inferring the student abilities and question difficulties from the structure of the component.

Formally, denote V' as the vertex set of the component. From Theorem 10, the strong

connectivity guarantees the existence of the maximum likelihood estimators (MLEs) u* € R

We can use a minorization—maximization algorithm from [16] to calculate the MLEs and
set hi; = f(uj — uj) for any missing edge (i, ) between students and questions inside this
component.

77
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Comparable Components

W.lo.g., we assume i ~ j and j ~ i, thus every directed path between those two vertices
starts with the student and ends with the question, showing strong evidence of a correct
answer. In other words, considering the strongly connected components they belong to, the
component that contains the student has a “higher level” in the condensation graph of G’
and can reach the component that contains the question, i.e., they belong to comparable
components in the condensation graph. In this case, we set h;; = 1. Similarly, if j ~» ¢ and
i+ 7, weset hyj =0

Incomparable Components

For a student ¢ and question j that satisfy i ~4 j A j ~4 1, i.e., in incomparable components,
we use the average of the predictions in the above three cases as the prediction for h;;.

4 Theory

In this section, we show several properties of our algorithm. Due to the limited space, we
will defer most detailed proofs to Appendix A. Recall that the Bradley-Terry-Luce model
describes the outcome of pairwise comparisons as follows. In a comparison between subject i
and subject j, subject ¢ beats subject j with probability

B exp(u;) B o
Dij = eXp(ui) —i—eXp(uj) - f(?h u])a
where u = (uy ..., Un1m) Tepresents the merit parameters of n + m subjects and f(x) =

H—T;(—o:)' We consider the Bradley-Terry-Luce model under a family of random bipartite
task assignment graphs B(n, m, d, ). Specifically, a task assignment graph G(LU R, E) with
n vertices in L and m vertices in R, where n < m, is constructed by linking d,, ,,, different
random vertices in R to each left vertex in L, i.e., L is regular but R is not.

Given a task assignment graph G, denote A as its adjacency matrix. For any two subjects
i and j, the number of comparisons between them follows A;; € {0,1}. We define Aj; as the
number of times that subject i beats subject j, thus A}, + A%, = A;; = Aj;. In other words,
A’ is the adjacency matrix of the exam result graph G’. Based on the observation of G’, the

log-likelihood function is

L(u) = Z Ajjlogpij = Z Ajjlog f(u; — uy). (3)
1<i#j<n+m 1<iZj<n+m
Denote u* = (uf,uj,...,u,,) as the maximum likelihood estimators (MLEs) of u. Since

L is additive invariant, w.l.0.g. we assume u; = 0 and set uj = 0. Since (log f(x)) =1— f(z)
the likelihood equation can be simplified to

n+m n+m

Z Ajj = Z Aij f(uj —uj),V i @
Jj=1 j=1

4.1 Existence and Uniqueness of the MLEs

Zermelo [27] and Ford [9] gave a necessary and sufficient condition for the existence and
uniqueness of the MLEs in (4).
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Condition A

For every two nonempty sets that form a partition of the subjects, a subject in one set has
beaten a subject in the other set at least once.

To provide an intuitive understanding of Condition A, we show its equivalence to the
strong connectivity of the exam result graph G’. Then we state our theorem on when
Condition A holds.

» Theorem 10. Condition A holds if and only if the exam result graph G’ is strongly
connected.

Proof. Condition A says that for any partition (V1, V2) of the vertices L U R, there exists an
edge from V7 to V5 and also an edge from V5 to Vi. If G’ is strongly connected, Condition
A directly holds by the definition of strong connectivity. Otherwise, if G’ is not strongly
connected, the condensation of G’ contains at least two SCCs. We pick one strongly connected
component with no indegree as V; and the remaining vertices as V5, then there is no edge
from V5 to V7, i.e., Condition A fails. <

» Theorem 11 (Existence and Uniqueness of MLEs). If

exp(ap,m)(n + m)log(n +m)
Nndy, m

=0 (n,m— 00), (5)
where Qup m = MaX1<i j<nt+m Ui — Uj 15 the largest difference between all possible pairs of
merits, then Pr[Condition A is satisfied -1 (n,m — o).

To prove Theorem 11, we analyze the edge expansion property (Lemma 12) of the task
assignment graph G and take a union bound on all valid subsets to bound the probability
that G’ fails Condition A.

» Lemma 12 (Edge Expansion). Under condition (5),

n+m |8S| ndnm
P .t < :
r(VSCV, st |S] < =5, S| 7 2(n+m)

where 0S = {(u,v) € E:u e S,v e V\S} for the task assignment graph G(V, E).

=1 (n,m — o0),

4.2 Uniform Consistency of the MLEs

Based on condition (5), Theorem 11 shows the existence and uniqueness of the MLEs. In this
part, we give an outline of the proof for the uniform consistency of the MLEs (Theorem 13).

» Theorem 13 (Uniform Consistency of MLEs). If

exp (2(an,m + 1)) Apm =0 (n,m — 00), (6)

Tog? . . .
where A, = 1) —""08 (dm) ypen the MLEs are uniformly consistent, i.e., ||u* —
’ ndp,m log (Tndn,nl) ’ ’ ’

wlos — 0.

» Corollary 14 (Rates). In the case where oy, m = O(1), and dy m = (M), with
probability 1 — 2(n +m)~2, we have

logn mlog(n +m)
F— ) =0 .
lw* — ul <log(jjldn,m) -
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Denote &; = u — u; as the estimation error of the maximum likelihood estimators.
Since we assume u; = 0 and set uj = 0, we have ¢ = u] —u; = 0. Consider the two
subjects with the most negative estimation error and the most positive estimation error

1= arg rnln €, <e1=0,1=arg maxg; > e1 = 0, and their corresponding error £ = IIllIl Ei)

= rnax €;, then we have ||u* — uHOO = max{—¢,8} <Z—g. The goal is to identify a spec1ﬁc
number D, such that more than half ¢;s are at most € + D, and more than half ¢;s are at
least € — D. Then at least one subject is on both sides, thus € — ¢ ib bounded by 2D.

To identify D, we check a sequence of i 1ncreasmg numbers {Dk} o, and the two corres-
ponding growing sets {Bk}k mm and {Bk}k " that contains the SubJects w1th estimation
errors Dy-close to € and € respectively. Under careful choice of K, ,, and {Dk} g s we will
show that By and Bk, , both contain more than half subjects.

The main dlfﬁculty is show1ng the growth of {B,}, "Om and {Bk} w0~ We prove this
by considering the local growth of the sets, i.e., N(By) N By, and N(Bk) N Bit+1. By
symmetry, we only consider B;. Lemma 15 analyzes the generation of the random task
assignment graphs and shows a vertex expansion property that describes the growth of the
neighborhoods N(B,). Lemma 16 starts with any vertex i in By, analyzes the first order
equations of the MLE to exclude the vertices that are in the neighborhoods N({i}) and but
are not in By, |, and gives a lower bound on the size of N({i}) N Bj41. Finally, we jointly
consider all vertices in B, and provide a lower bound on the size of N(B,) N B, which
shows the growth rate of B, and finishes the proof.

Definition of Notations

Knm =2 [&) - 1-‘ is the number of steps of the growth.

log(dn,m
Cnym = w is a lower bound on f/(z) for |z| < apm + 1.
- gy N B
Qo = S 2 m ) lglgcfg";ld"””) is a lower bound on the local growth rate VAN B,y (‘{N}(){C})"“ =L of vertex
1€ By,
Znm = %ﬁwm) is the deviation used in the Chernoff bound.

n,m

The sequence of numbers {Dk} w0 1s set to be

4k 2m1
Dy = \/(mog(n+TrL) for k=0,1,..., Ky m—1,

Cmm 1- Zn,m)ndmm

Dg

o P (1 - Z’nﬂn)ndn,m ’

B SOKn’m\/ 2mlog(n 4+ m)
Cn,m

The two growing sets { B, k} v and {B k} oo which contains the subjects with estimation
error Dy-close to € and € respectlvely are defined as

B, ={j:e; —e< D},

By, Z{jig—é‘j < Dy}
» Lemma 15 (Vertex Expansion). Regarding the task assignment graph G(L U R,E) ~
B(n,m,dpm), for a fized subset of left vertices X C L with | X| < %, w.p. 1 — (n + m)~4XI

it holds that
1< X] < mfdnm, B > (1= 20m) (1= 221X) d, s

If |X| > m/dn,m; ‘anix)‘ >1—zpm— e L.
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For a fized subset of right vertices Y C R with |Y| < 2, w.p. 1 — (n+ m)~*¥1 it holds that

IF1<|Y| < m/dym, INOY)| (1= Zp.m) (1 _ M) ”dﬂ;

Y] m m
N(Y 1
If Y| > m/dp m, NG| Ez IR Znm —€ .
. .. 2m1 .
In above inequalities, zn m = %mm) as previously defined.
n,m

» Lemma 16 (Local Growth of B,). Forn and m large enough, k < K,, ,, and a fized subject
i € By, it holds w.p. 1 —2(n +m)~* that
ka < Kn,m - 17 |N({Z}) mEk—&-1| Z qnﬂn|N({i})

Cn,m log(Edn m)

7

where ¢ m = STos and ¢ m = w as previously defined;
if k= Kpm—1, [IN({i}) N Byya| > GIN{D)]-

4.3 Analysis of Our Algorithm

Our algorithm uses the MLEs to predict the student’s performance within the component.

Based on the consistency of the MLEs, we show the ex-post error of our algorithm.

» Theorem 17. When Condition A is satisfied, the exam result graph is strongly connected.
In this case, the MLE is unique and we have (alg; — opt;)? < Tlw — w2,

Next we discuss the performance of our algorithm on several extreme cases of the task
assignment graph. For example, the extremely sparse cases when N ({i}) is mutually disjoint
for each student i or each student receives only d = 1 question. Another example is that the
task assignment graph is a complete bipartite graph. In all of the above cases, our algorithm
gives the same grade as simple averaging.

» Theorem 18. When the task assignment graph satisfies that N (i) is mutually disjoint for
each student i or each student receives only d = 1 question, our algorithm gives the same
grade as simple averaging.

Proof. In both cases, the exam result graph satisfies that every SCC is a single point, thus
the algorithm’s output totally relies on cross-component predictions. For each student, the

comparable components for each student are exactly the questions that student receives.
Thus the algorithm gives the same prediction as the student’s correctness on those questions.

The prediction for remaining questions is the average accuracy on the assigned questions by
the algorithm’s rule for incomparable components. Therefore, the algorithm’s grade for the
student is exactly the same as simple averaging. |

» Theorem 19. When the task assignment graph is a complete bipartite graph, our algorithm
gives the same grade as simple averaging.

Proof. In this case, the output of the algorithm only relies on existing edges. It directly

follows that the algorithm gives the same grade as simple averaging. <

5 Experiments

5.1 Real-World Data

We use the anonymous answer sheets from a previously administered exam with |S| = 35
students and |Q| = 22 questions. The task assignment graph of the exam is a complete
bipartite graph, i.e., each student is assigned with all questions. The corresponding exam
result graph happens to be strongly connected, thus we are able to infer student abilities
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and question difficulties (Figure 1). Below we study results from counterfactual subgraphs
with real exam answers and from data generated according to the model with the inferred
abilities and difficulties.

—_
(=

[ Students
£227 Questions

1N o e
IS > %

Fraction of Data

e
)

0.01—
-3 -2 -1 0 1 2
Merit Value

Figure 1 Empirical Cumulative Distribution of Merit Value. We analyze all students and
questions under the Bradley-Terry-Luce model and show the empirical cumulative density function
of inferred student abilities and question difficulties. The abilities ranges from -1.486 to 1.149 while
the difficulties ranges from -3.090 to 2.099.

5.2 Algorithms
Simple Averaging

The grade for student i is its average correctness on assigned questions. See the formal
definition in Example 8.

Our Algorithm

The grade for student 7 is an aggregation of the algorithm’s prediction on her performance
on each question. All predictions can be classified into four cases, including existing edges
(keep the fact as prediction), same component (maximum likelihood estimators), comparable
components (answer in line with the path direction) and incomparable components (heuristic
as simple averaging). See the formal definition in Section 3.2.

5.3 Ex-post Bias

5.3.1 Simulation 1: A Visualization of Simple Averaging’s Ex-post
Unfairness

We compare the ex-post bias (Definition 6) between our algorithm and simple averaging
given a fixed random task assignment graph. We use inferred parameters of all 35 students
and 22 questions according to Figure 1. The task assignment graph is generated with degree
d = 10, i.e. each student is assigned 10 random questions from the whole question bank. The
exam result graph is repeatedly generated according to the model.

Figure 2 shows the performance of two algorithms. The left plot corresponds to our
algorithm and the right plot corresponds to simple averaging. In each plot, there are 35
confidence intervals, each corresponding to the difference between the student’s expected
grade and her benchmark, i.e. E,[alg;] — opt,. The confidence intervals in the left plot
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are significantly closer to 0, compared to the right plot, which visualizes the intuition that
students are facing different overall question difficulties under the random assignment and
simple averaging fails to adjust their grades. Instead, our algorithm infers the question
difficulties and the student abilities and adjusts their grades accordingly, largely reducing
the ex-post bias.

0.15 0.15

0.10 0.10 ‘

=4
S
53

0.00 |||||||||||||||||||||||||||||H|I||

0.00 I | \ |

Our Grade - Benchmark
Avg Grade - Benchmark

0051 | | |

—0.10 -0.10 |

—0.15 —0.15
[ 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Student Index Student Index

(a) Ex-post Grade Deviation of Our Algorithm.  (b) Ex-post Grade Deviation of Simple Averaging.

Figure 2 A Visualization of the Ex-post Grade Deviation with Degree Constraint d = 10.

5.3.2 Simulation 2: The Effect of the Degree Constraint

We compare the expected maximum ex-post bias, i.e., Eq [maxie s (Eylalg;] — opti)2 and the

expected average ex-post bias, i.e., EgE;y(s) {(Ew [alg;] — opti)2] between our algorithm
and simple averaging. We use inferred parameters of all 35 students and 22 questions
according to Figure 1. For each degree constraint d from 1 to 22, we repeatedly generate
task assignment graphs, i.e. each student is assigned d independent questions from the whole
question bank. For each task assignment graph, the exam result graph is repeatedly generated
according to the model.

Figure 3 shows two algorithms’ expected maximum ex-post bias (Figure 3a) and expected
average ex-post bias (Figure 3b) under different degree constraints, where our algorithm (blue
curve) outperforms simple averaging (red curve) on every degree constraint d. Our algorithm’s
expected ex-post bias with the degree constraint d = 5 is close to simple averaging’s with
the degree constraint d = 20, which means our algorithm can ask 15 fewer questions to each
student to achieve the same grading accuracy as simple averaging.

5.4 Ex-post Error and Bias-Variance Decomposition

In this part, we are investigating the expected average ex-post error (Definition 7), i.e.,
EcEE,[(alg; — opt;)®]. Through bias-variance decomposition (the proof is deferred to
Appendix A), we relate the ex-post error to the ex-post bias and the variance in the algorithm
performance.

» Theorem 20 (Bias-Variance Decomposition).
EGEE,[(alg; — Opti)Q] = EGE;[(Ey[alg;] — Opti)Q] + EGE;E,[(alg; — Ey [algi])2]~

With the same setting in Section 5.3.1, we show the expected average ex-post error of our
algorithm and simple averaging in Table 1. Our algorithm achieves a factor of 8 percent
smaller ex-post error in total. But after the decomposition, we can see that our algorithm
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0.06
—e— Ours —e— Ours
020 -e- Avg oos -~ Avg
2 g
a a
o015 g 004
E &
P
g oo :E;POAOZ
: 3
= % 0.02
3 g
g.0.0S §'
5] =001
*e-s, TS
0.00 P S 0.00 I X
0 5 10 15 20 0 5 10 15 20
Degree Constraint Degree Constraint
(a) Expected Maximum Ex-post Bias. (b) Expected Average Ex-post Bias.

Figure 3 Expected Aggregated Ex-post Bias v.s. Degree Constraint. The scale of expected
average ex-post bias is about 4 times smaller than the scale of expected maximum ex-post bias.

achieves a factor of 99 percent smaller ex-post bias with the cost of a factor of 10 percent
larger variance. In practice, students will only take the exam once, so inevitably the variance
of the algorithm would contribute to the total error. Our algorithm does not focus on how
to reduce variance over the noisy answering process, instead, it focuses on the expected
performance of the algorithm, i.e., it makes the ex-post bias much closer to zero. To verify
that our algorithm does not increase the variance too much, we also run the simulation under
“the worst case” of our algorithm, i.e., all students have the same abilities and all questions
have the same difficulties. In this setting, our algorithm faces the risk of over-fitting, while
simple averaging works perfectly. In Table 2, we can see that both algorithms achieve ex-post
biases close to 0, and our algorithm has a factor of 1.6 percent larger variance than simple
averaging which is the main contribution to the difference in ex-post errors.

Table 1 Bias-Variance Decomposition in the Table 2 Bias-Variance Decomposition in the
setting of real-world parameters. setting of all-the-same parameters.
Ex-post Variance | Ex-post Ex-post Variance | Ex-post
Bias Error Bias Error
Ours 0.00004 | 0.0188 0.0188 Ours 0.0000500 | 0.0254 0.0255
Avg 0.00331 | 0.0170 0.0203 Avg 0.0000493 | 0.0250 0.0250
Ours-Avg | -0.00327 | 0.0018 -0.0015 Ours-Avg | 0.0000007 | 0.0004 0.0005

5.5 Real-World Data Experiment: Cross Validation

We cannot repeat an exam in real world and check the ex-post bias of the algorithms. Thus,
we sample part of the data we have as a new exam result graph, and use them to predict the
students’ actual average on the data. We randomly split the real-world data into training
data and test data. Specifically, for a fixed student sample size d; and a degree constraint ds,
in each repetition, we randomly sample d; students and randomly choose ds questions and
corresponding answers for each student independently as the training data, use our algorithm
(Ours) and simple averaging (Avg) to predict every student’s average accuracy on the whole
question bank, and calculate the mean squared error. Formally, the mean squared error MSE

2
is defined as MSE = E y ¢ [ﬁ Yics (algi - ﬁ Yico wij) ] , where X is the training set,

S is the sampled student set, alg; is student i’s grade given by the algorithm and w;; is the
correctness of student i’s answer to question j.
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In Figure 4a, we fix the student sample size d; = 35, i.e., S =5 and change the degree
constraint dy from 1 to 22 and show the curve of the logarithm of MSE. Our algorithm
performs better than simple averaging when the degree constraint ds is larger than 5 and
has a factor of 16% to 20% smaller MSE compared to simple averaging when the degree
constraint ds is larger than 10. In Figure 4b, we consider for every possible student sample
size dy, what the smallest degree constraints ds is for our algorithm to perform better than

simple averaging. It provides a reference for choosing the grading rule in different situations.

13 —e— Compared to Avg
-2
12
-3
“,E 11
1.25 -4 E 10
£ g
25 E 9
g" =
S N
i 7
-8 6
0.0 2.5 5.0 7.5 100 125 150 175 200 5 10 15 20 25 30 35
Degree Constraint Student Sample Size
(a) Logarithm of MSE v.s. Degree Constraint. (b) Threshold v.s. Student Sample Size.

Figure 4 Cross Validation.

6 Conclusions

We formulate and study the fair exam grading problem under the Bradley-Terry-Luce model.
We propose an algorithm that is a generalization of the maximum likelihood estimation
method. To theoretically validate our algorithm, we prove the existence, uniqueness, and the
uniform consistency of the maximum likelihood estimators under the Bradley-Terry-Luce
model on sparse bipartite graphs. Our algorithm significantly outperforms simple averaging
in numerical simulation. On real-world data, our algorithm is better when the students
are assigned a sufficient number of questions (i.e., on sufficiently long exams). We provide
guidelines for how to choose the grading rule given certain number of students and a fixed
exam length.

Our model in this paper mainly considers true-or-false questions, which can be extended to
multiple-choice questions and to the case where it can be assumed that students would guess
if they cannot solve a question. Our model treats student abilities and question difficulties
as one-dimensional, which can be extended to a multi-dimensional model that takes different
topics into account. Another potential extension of the model is to introduce different groups
of students, so each question might have different difficulties for each group and we could ask
for fairness across groups. Our method to treat missing edges across comparable components
— which predicts 0 or 1 — needs to be improved, especially in the low-degree environment (i.e.,
short exam lengths where the exam result graph is unlikely to be strongly connected). Also,
it would be important to provide a simple and clear explanation to students for practical
use.
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A  Omitted Proofs
A.1 Proof of Lemma 12

Proof. Consider any subset of vertices S with size r < "'5’". Denote X = SNL,Y =
SNR,|X|==a,thus [Y|=r—2,|[L\X|=n—2,|R\Y|=m+2z—r. IS is a random
variable that can be expressed as [0S = -, cx > pepy Auv T 2 yer\ x 2vey Auv, Where
A is the adjacency matrix of the task assignment graph G. Recall that the task assignment
graph G is generated by linking d,, ,, random different vertices in R to each vertex in
L. Thus for different u; # us € L, A,,. is independent with A,,., while for a fixed
u € L, Ay is chosen randomly without replacement. Chernoff bound applies under such
conditions, i.e., Pr[|0S| < 1E[|0S]]] < exp (—@) . Then we lower bound E[|0S|] by
E[|0S|] = 2 (IX[|[R\ Y|+ [L\ X||Y]) = %2 (222 4 (m — n — 2r)a + nr) . For the case

m—-n

where m —n —2r <0, i.e, r >

, we have

E[|0S]] = d”# (22° + (m —n — 2r)z + nr)

dpm { (m—n—2r)2 dopmr (1 1(m—n)? 1
>— — = X" 7
_m( 8 o m T8 7 Talmtm
AT n+m 1(m-n)? 1 nd, mr
> s _ R - — Ly
-~ m ( 4 4 n+m +2(n+m) n+m

For the case where m —n — 2r > 0, i.e., r < ™= we have

E[|0S]] = dn.m (22% + (m —n —2r)z +nr) > ndnm? -, Mnm

m m — n4+m’
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Thus for any fixed set S with size r < "+Tm7
Pr||0S| < ——| <Pr [|0S| < zE[|9S]|]| < —— < - .
f 105 < 52| < e os] < yE (o] < exp (<212 ) < oxp (- tnnt
Finally, by union bound,
0S| _ ndum | _ 195] | _ndnm

(n4+m)/2 n d (n4+m)/2 d
n m Nan,m7T Nan, m7T
>1 - el LS B __onml 1
> Z ( , >exp< 8(n+m))_ Z exp< 8(n+m)+r og(n+m)>

r=1 r=1

(n+m)/2
ndnp, mT ndn.m ndn,m
>1- _ MnmT ) 5 exp (- dmm >1—exp [ lmm
21- ) e ( 16(n + m)) =1 -exp ( T6(n + ) losn+ m)) ZL-exp ( 32(n + m))

r=1

The third-to-last inequality and the last inequality hold when d,, ,,, > w. Note
(n+m);og(n+m) =0

that condition (5) implies
enough n and m,

(n,m — 00) since ay, m > 0. Thus for large

|aS| ndn m
VS CV, st |S| < —_—>
CcV, st |S] <m, 5] >2(n+m)

nd"L m
>1— ___nm .
1 exp( 20n )>—>1 (n,m — o0)

<

Pr

A.2 Proof of Theorem 11

Proof. For an edge between vertex ¢ and j in the task assignment graph G, i.e. A;; = 1, the
corresponding directed edge in the exam result graph G’ goes from i to j with probability
Pr{A}; = 1] = f(ui — ;) < maxi<ij<ntm f(ui = u)) € tropiay < 27 9PCm). By

Lemma 12, under condition (5), Pr [VS CcV, st.|S| <n, % > 27(ls+m)} -1 (n,m—
00). Now consider any subset of vertices S C V s.t. |S| = r < 2£™. The probabil-

ity that all edges between S and V' \ S go in the same direction in G’ is no more than

ndn,m

2 (2_ eXp(_a”vm)) 2o | Thus by union bound, the probability that Condition A holds is at

ntm _EXP(*an,nL)ndn.?n _eXP(*an,'m)“rdn,m ntm
least 1 — 2 > (Mty2T T e > 1 =2 (14277 2eEm -1,
T
1<r<(n+m)/2

which converges to 1 when n,m — oo under condition (5). <

A.3 Proof of Lemma 15

Proof. Before proving the vertex expansion property of the task assignment graph
B(n,m,dy m), we first bound the vertex degree by Chernoff bound and union bound,

Ny, m

VieR, Pr|(l—zym) <|IN{#D)] <1+ znvm)nd:l’m} >1—(n+m)™* (7)

where z, ,,, is defined above as z, , = \/%mm) — 0 (n,m — o) under condition (5).

We define another family of random bipartite graph B. Each graph in B(n, m, dp.m)
contains n vertices in the left part, m vertices in the right part, and assigns d, ,, random
neighbors to each vertex in the left part (multi-edges are allowed). For any X C L, it’s easy to
see that |N(X)| in G ~ B(n, m, d,, ) stochastically dominates |N(X)| in G ~ B(n,m, dp m).
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Thus it’s sufficient to prove the theorem under B(m m, dp,m). On the other hand, counting
|N(X)| under B(n, m, dy,_ ) is the same random process as counting the number of non-empty
bins after independently throwing d,, ,,,| X | balls u.a.r. into m bins. By linearity of expectation

over every bin, we know E[|N(X)|] =m (1 -(1- i)d"’m‘xl).

m

We need several lower bounds of E[|N(X)|] here. With the fact of § < 1 —
exp(—z) < z, V0O < z < 1, we have E[|[N(X)|]] = m(l—(l—i)d"”’""m) >

m -

dn,m

m (1 — exp (f m‘Xl) > d"%lx‘. Therefore, using Azuma’s inequality, we can lower

bound |N(X)], i.e.,

2 2
PrINCO| < (1= 2 m)EINCON] < exp (— 2 FCON0) < (4 ) ~#X1. Also, when
| X| < m/dym, we have (1 -(1- %)d"‘m‘xv > d"’:,‘L‘X‘ (1 - d”’:,lL‘X‘), thus with probab-

ility 1= (4 m) X1, [N(XO)] 2 (1= 20, BINOI 2 (1= 20,m)dn | X (1 - 22X
Similarly when |X| > m/d,, ., , we have (1 -(1- %)d”’m‘m) >1—e ! and [IN(X)| >
(1= zpm)E[NX)] > (1= 2nm) 1= )m>(1—2zpm —e ) m.

The proof for Y C R is almost the same except that it’s sufficient to use Chernoff
bound rather than Azuma’s inequality since the independence among the subjects in N(Y),

to have E[[N(Y)|] = n (1 — (1 — %)dn’m> >n (1 — exp (— d”””‘”)) > dnmlY] Using

m = 2m
Chernoff bound, we can lower bound |[N(Y)l, i.e., Pr{IN(Y)| < (1 — z,m)E[NY)|]] <

2L EINO)] 4y . NN
exp S < (n+m) . Thus when |Y| < m/d, m, with probability 1

(n 4+ m) Y INW)| 2 (1 = 20m EIND)]] 2 (1= zg) 222l (1 - 222l0): when

m
Y| > m/d,, m, with probability 1 — (n 4+ m)~*VI |IN(Y)| > (1 — 2z, ,)E[[N(Y)|] > (1 —
Zom) (L—e ) n> (1-zpm —e!)n. <

A.4 Proof of Lemma 16

Proof. Pick a subject i € B,,. For any task assignment graph G and its adjacency matrix
A, the corresponding adjacency matrix A’ of the exam result graph is a random variable
of A. Specifically, for any A;; =1, A;js are independent Bernoulli random variables with
probability f(u; —u;) to be 1. In other words, E[A};] = Aj; f(u; — u;). By Chernoff bound,

Pr |32, 4); = X, A f(ui = w;)| = V2AIN{iH)ogln + m)] < 2(n+m)~*
Below we use the above inequality and some analysis of function f to count the number of

subjects in N({i}) N By ,;. The fact we use about function f is f'(z) = % <1

= Cpm, V|x| < @ m + 1. Thus for another

and f(2) > ol (uatils, > o0 tl)
subject j such that ¢; < ¢;, by mean value theorem, we have f (u;k — u;‘) — flu—uy) =
F(&ij) (ei —€5) < X (e — €) < BE, where & € [u; — uj,u —u}].

Similarly, for a subject j with €; > &; + Dy41 — Dy, we have f (u; —u;) — f (u} — u;) =
f'(&;) (ej —€i) = cnm(Dr+1 — Di), where &, € [uy — ui,uq — uj].

Since u; —u; — Dk, ,, <u; —u; — (g5 — &) = uf —uj <& <u; —uj, and Dp,, . — 0 as

n,m — oo under condition (6), |¢/;| is bounded by ay, », + 1 when n and m is large enough,
thus f'(£;;) > cnm. Therefore, on the one hand,
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Z Aij (f(Uz —uj) — flu;y — U;))

Ej>Eq

:ZAij (f(uz_u7)_fu —uj Z AU —u])—f(uf—u;)) (8)

g;<g;

<V2N({i})log(n + m) + ka > Aij.

ej<ei

On the other hand,

> Ay (f(ui —uy) = fluf —uj)) > > Ay (f(ug = uy) — flui —uj))

€;>e; e;>ei+Dry1—Dg

(9)
>Cnm(Dr+1 — Dy) > Agj.-
€j>€;+Dr+1—Dg
Combining (8) and (9), we have
NG 0 By 5 P A I
NN B,.,| > > ‘ I YY)
k+1 Wty <ut w4 Dy~ Dy vJ ¢n,m(Di+1—Dy)+3 D
enom (Dip1=Di) = | 2 2550 _ _
For b < K = 1t N2 anm N (D)
C7L,nL(Dk+1_Dk)_ (12_7271?55;1::;:?7” 3 75 .
For k= Ky — 1, o VTS ()] = BN «

A.5 Proof of Theorem 13

Proof of Theorem 13. Denote X, = B, N L and Y, = B, N R. We inductively prove the
following fact, for n and m large enough, with probability 1 — (n + m)~2,
for 1 <k < Ky — 2, and k is odd, | Xg|, |Ve| > (Zdpm) "%
for1 <k < K, ,,—2, and k is even, |Xk| > (2 )k/Q d(k D/2 and [Vi| > (%)kﬂ_l dﬁ{f;f)/z;
for k = Kym — 1, |Xk| [YVi| > 77;
for k = Kn,'rm |Xk‘ > |Yk| > 5
We will use the following fact

Yir] > IN(Xi) O By = IN(X3)| = [N(Xi) 0 Byp
>IN(X)l — S INH) N Byl = INXD)| = S (IN{ih] = IN{i}) N Bypy ), 10

i€Xy, ieXy
and similarly [ Xp1] > [N(Ya) 0 Bypa| = [IN(Ya)| = Xiey, (IN(D)] = [IN({i}) N Byya), to
show the growth of X and Y} respectively.

We only consider n and m large enough. Since i € B, w.l.o.g. we assume |Xy| = 1. if X
contains other subjects, we take a subset with size 1. Then by fact (10), (7) and Lemma 16,
we know with probability 1 — 4(n 4+ m)~* that [Y1| > [N(Xo) N By, 1| > gnm|N(Xo)| > 0.
For 1 < k < K,, ,, — 2, and odd k, we prove inductively. We assume | Xj| = ( d, m)(k_l)/z.
If X}, is larger, we pick any subset with size (%dn,m)(k D2 Fact (10) show that
Yirr| = IN(Xe)| = Xiex, (INHDI = IN{i}) N By )

By Lemma 15 and union bound over all subset of L with size (ﬂdn m)(k D72 , it holds
with probability 1 — (n 4+ m) 31Xl that, |N(X.)| > (1 — z,.m) ( D] X | ) dpm| Xkl

m
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By Lemmal6 and union bound over all possible subject ¢ € Xy, it holds with probability
1 —2(n+m)~? that, Vi € Xy, |[N({i}) N Bji1| = qnm|N{i})].
Therefore, with probability 1 — 3(n + m)~3 we have

Virs| = IN(X0) = D (INGED = IN{EH N By l) 2 IN(XO)| = (1= gam) > IN(})]

i€Xy i€ X}

dn,m|X
2(1 — Zn’m) (1 — ’T)’|Lk> dn,m|Xk‘ - (1 - qn,m)dn,m|Xk‘

3/2
m 1/2 n\ 1/2 Zdn,m | X%|
21Xl () (() = 20 = (1 = 2y )1

m n

1/2 1/2
21X (2 ) ((”) (qn,mznmdﬂil)

m

where the last inequality holds because we assume | Xj| = (" dnm)(k_l)/2

m

. Finally, under
condition (6), we have for large enough n and m, (%)1/2 (Gnm — Zn,m) i/?n -1> (%)%,
thus |Yi41| > d,lL{fn|Xk\. The same calculation applies to the case of 1 < k < K, ,,, — 2 and
even k. Similarly, we can prove for 1 <k < Ky, — 2, [ Xpp1| > 2 (dnm)l/2 |Yk|. Therefore,
we finish the proof for all k < K, 1.

Similarly for k = K, ,,, and large enough n and m, with probability 1 — 4(n +m)~3,

Vicwul 2 INKre )l = >0 (INQEDI = INGD N B, 1)

iGXKan71

> N )l = (1-2) 30 INGDI2 (= 20— m— om > 2.

ieXKn,'mfl

The same proof applies for [ X, .|. To summarize, with probability 1—(n+m)~2, [ Xk, | >
n/2 and |Yk, .| > m/2, thus B | > (n+m)/2. By symmetry, Bk, .| > (n+m)/2
with probability 1 — (n + m)~2. Then with probability 1 — 2(n + m)~2, at least one
subject i € Bi N Bk, ,, lies in both By and By, ,,. By definition, subject i satisfies
ei—e< Dk, . and & — ¢i < Dk, ., thus ||u* — oo <E—g< 2Dk, ,,, which tends to 0
under condition (6). <

nmn‘

A.6 Proof of Theorem 17

Proof. When the exam result graph is strongly connected, the algorithm calculates the
MLEs u* and gives student ¢ a grade of alg, = @ ZjeQ f(uj —uj), while the ground truth

probability of answering a random question correctly is opt, = ﬁ > jeQ f(u; — uj;). Thus
we have

lalg; — opt,| = Kl?'zj:f(uf —uj) — @Zj:f(ui —uy)| < 6122]: | Flul =) = Flui — )]
:ﬁz |/ (&) les = &l < %Hu —u'l Z |/ &)] < %Hu—u*”oo,

where the third-to-last equality is because of the mean value theorem, the next-to-last

inequality is because |e; — €| < 2||u — u*||o, and the last inequality is because |f'(z)| < 1.

Thus (alg; — opt;)* < 1w — w4 <
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A.7 Proof of Theorem 20

Proof. We prove a stronger argument of the decomposition for any fixed student ¢ and any
fixed task assignment graph G,

Vi, G, Ey|(alg; — opt;)’] = Ey[(alg; — Ey[alg;] + Ey[alg;] — opt;)’]
2

= (Eulalg,] — opt,)” + Ey|(alg; — Eylalg;])?] + 2E,[(alg; — Ey[alg,]) (Ey[alg,] — opt;)]
= (Ew[alg,] — opt,)” + Eu|(alg; — Eulalg,])’] + 2 (Ew[alg;] — opt;) Ey[(alg; — Eualg;))]
= (Eylalg,] — ) +Eu[(alg; — Eyla lgz])Q] <
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