Global existence for the stochastic Navier-Stokes equations
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Igor Kukavica, Fanhui Xu, and Mohammed Ziane

ABSTRACT. We consider the stochastic Navier-Stokes equations in T3 with multiplicative white noise.
We construct a unique local strong solution with initial data in LP, where p > 5. We also address the
global existence of solutions when the initial data is small in LP, with the same range of p.

1. Introduction

In this paper we address the global well-posedness of the stochastic Navier-Stokes equation (SNSE)

du(t,z) = vAu(t,z) dt — P((u(t,z) - V)u(t,z)) dt + o(u(t, z)) dW(t), (1.1)

V-u=0, (t,z) € (0,00) x T, (1.2)

u(0,x) = up(x), z €T3, (1.3)

on the 3D torus T? = [—m, 71]3. Here, u is the velocity field of a stochastic flow, v is the viscosity, and P is

the Leray (also called Helmholtz-Hodge) orthogonal projection onto the mean zero divergence-free fields.
The stochastic term o(u)dW(t) denotes an infinite-dimensional and possibly degenerate multiplicative
white noise which is understood in the It6 sense. Note that in the formulation (1.1) the pressure term
has been eliminated by utilization of the projector P.

The stochastic forcing driving the Navier-Stokes equation represents a perturbation during the flow
evolution and thus the SNSE may be argued to be a realistic model for fluids. Consequently, much effort
has been devoted to studying its well-posedness theory; cf. [BT, ZBL1, ZBL2, FRS] for results on
mild solutions of the SNSE with Lévy-type jump noise, and [BCF, CC, DZ, MS] for results on mild
formulation subject to white noise. The existence of a global L? martingale solution to the SNSE with
Stratonovich noise in R? was proven in [MR], and the existence of a martingale solution in L®/¢(0, T; L*),
where d = 2,3, was shown in [BF] for the SNSE with noise that is colored in space.

There are fewer available results on the existence of strong (pathwise) solutions, and most were
established in a Hilbert space setting. For example, within Hilbert setting, [MeS] proved the global
existence of a strong solution for the 2D SNSE with additive white noise. Also, Flandoli [F] proved
the result in the 3D case. For the SNSE with multiplicative noise, Fernando and Sritharan showed in
[FS] the existence of a global strong solution in 2D unbounded domain in Hilbert spaces, while in [GZ)]
Glatt-Holtz and the third author established the existence of a maximal strong solution in a 3D bounded
domain by assuming the H! regularity for the initial data. In [Ki], Kim proved the existence with large
probability of a global strong solution to the SNSE with non-degenerate noise and assuming smallness in
H*(R3).

Inspired by results on the deterministic Navier-Stokes equation in LP Banach spaces [FJR, K], we
aim to find a global L? strong solution to (1.1)—(1.3) in three space dimensions. We show that a unique
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solution exists for small initial velocity. To be precise, we prove
P(7ar < 00) > 1= C ' MTPE[Juollf],

where 75 = inf{t > 0 : ||u(s)|l, > M} and u evolves in LP(Q2, C((0, c0), L?)). Note that we do not impose
any structural assumptions on the multiplicative noise, allowing it to be degenerate. In [BR], Barbu and
Rockner obtained the existence and uniqueness of a global mild solution in L? (3/2 < p < 2) to the
vorticity equation associated with the SNSE. They worked with a convolution-type finite-dimensional
noise and a small initial vorticity. The convolution structure is needed for obtaining a commutative Cy
noise operator, which is essential for transforming the vorticity equation into a random equation. Also,
in [GV], Glatt-Holtz and Vicol used linear noise to treat the 3D stochastic Euler equation.

As has been shown in many existing results, a major obstacle when seeking global solutions is a
combination of a multiplicative noise and the convective nonlinearity (u-V)u. To overcome this difficulty,
authors usually introduce stopping times of ascending u-norms to in a sense linearize this term in a
specified function space. The stopping time argument proves to be a powerful tool for obtaining local
existence, but showing the non-degeneracy of these stopping times is a major problem. In this paper,
we truncate (u - V)u at ||ull, = o for some Jp > 0. To obtain a global solution we use a stochastic
heat equation (SHE) with additive noise (see [R]) to prove the existence of a global solution Then we fix
do > 0 sufficiently small and estimate the probability distribution of e**|[u||} for a small a > 0. We show
that (1.1) agrees with a truncated SNSE for all time on a large part of the probability space if the initial
velocity is small, obtaining thus a global solution to (1.1)—(1.3). To prove the existence of a local strong
solution up to a stopping time, we send § — oo along integer values and use uniqueness of solutions.

Working in a function space of low regularity imposes several challenges. First, we need to obtain a
global LP? solution to the SHE exists and then adapt it to the stochastic truncated SNSE. Considering
that [R] only provides a W™ solution to the SHE (see Chapter 4 of [R]) and the W™ estimate obtained
in [R] does not support the LP convergence of approximating solutions, we extend [R] to obtain a L?
a priori estimate for the SHE. Next, the regularity of the drift function in this LP estimate must be
strictly less than LP, because the drift corresponds to (u - V)u when one relates the truncated SNSE to
the SHE in the fixed point argument, and (u - V)u is less regular than w itself. We utilize the dissipative
term to make such an estimate possible. But at a cost, the use of the dissipative term generates a
non-linear term |V (|u|?/2)|?, which prevents convergence in the strong topology. Hence, we resort to
the weak lower-semicontinuity of Hilbert norms and fulfill the requirement of passing the limit for this
term (cf. Lemma 4.4 below). The third difficulty is due to the structure of (v - V)u and the introduced
truncation. To overcome this, we apply the fixed point iteration twice. The main trick is to to introduce
a square of the cut-off, which allows us to treat the difference via a special splitting (cf. (5.19)—(5.20)
below). Note that a high-regularity truncation on the SNSE is required by the iteration, while a low-
regularity norm is preferable for showing convergence of the iterated solutions. Overall, we are able to
obtain convergence when p > 5. It would be desirable to obtain our theorems in the range p > 3 and for
p > 3 for small data (as in [K] in the deterministic case), but this remains open (for the case of additive
noise, see however [MS]).

The paper is organized as follows. In Section 2, we introduce the notation and preliminaries on
stochastic calculus. In Section 3, we state our assumptions and main results. Theorems on the SHE are
collected in Section 4. The global existence and uniqueness of a strong solution to the truncated SNSE
is established in Section 5, where we also obtain the local existence of solutions up to a stopping time.
The global existence of solutions for small data is obtained in Section 6.

2. Notation and Preliminaries

2.1. Basic Notation. Let T € (0, 00]. For a scalar function u = u(t,z) on = [0, T) x T3, we denote
its partial derivatives by d;u = du/dt, d;u = du/dx;, and 8i2ju = 0%u/0z;x;. Also, we denote its gradient
with respect to z by Vu = (dyu,...,dqu), while we write DYu = d"lu/92]* ... 92" for a multi-index
v =(",---,7a) € N§.
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We use C°°(T?) for the set of infinitely differentiable functions on T3 and D’(T3) for the space of
distributions (C*°(T?))’. Note that we have C*°(T?) C LP(T3) C D'(T?) for 1 < p < oo. The usual L?
norms are denoted by || - ||,-

The m-th Fourier coefficient of an L' function f on T? is defined as

Ff(m) = f(m):= . fz)e 2mm gy, m e Z°,

and the corresponding Fourier series (Fourier inversion) of g at x € T? is

(Flg)@) = D g(m)em ™.

meZz3

Recall that F can be extended to D'(T3) and F~1F = Id on D'(T?). For s € R and f € D'(T3), we
denote
Jf@) =D (L An’jm) 2 f(m)ePmme, e T
meZs

and

O f(w)= > |mI*f(m)e*™™ e, weT,

meZ3

and we define W*P(T3) to be the class of functions f € D’(T?) such that

1A llsp =12 fllp <o0s  s€R, p>1

For the L? based spaces, we abbreviate H*(T?) = W#2(T3). Recall that there exists a positive constant
C independent of f such that

1 S
5||f||s,pS 1 £llp + [10°fllp < Cll fls,ps s >0, I<p<oo.
The Leray orthogonal projection P is defined by
d
(Pu);(m) = Z ((5jk — 7;2) up(m), j=12,...,d. (2.1)
k=1
Using the Riesz transforms
0
RJ:_%(_A)_%7 j:172a"'7d7
J

the equation (2.1) for P may be rewritten as

d
(Pu)j(x) =Y (5jx + RjRiur(z),  j=1,2,....d,
k=1

from where
d
((I—P)u)j(x) z—ZRijuk.(z), i=12,...,d
k=1

For convenience we write
WP ={Pf:feWP} (2.2)

sol T

Asusual, C represents a generic positive constant, whose value may increase from line to line, with explicit
dependence indicated when necessary. We consider p fixed, so C' is allowed to depend on p without an
explicit mention.
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2.2. Preliminaries on stochastic analysis. Let (Q, F, (Fi)t>0,P) be a complete probability space
with an augmented filtration (F;):>o generated by a cylindrical Brownian motion W on (F;)i>0. We
assume that W is an H-valued process for some real separable Hilbert space H, which may be infinite
dimensional. Choosing a complete orthonormal basis {ey}r>1 for H, we may formally write W(t,w) =
> k>t Wi(t,w)er, where {W), : k € N} is a collection of mutually independent 1D Brownian motions.

Let ) be another real separable Hilbert space. Denote by 1?(#,)) the set of Hilbert-Schmidt oper-
ators from H to Y, i.e., G € I>(H,)) if and only if G is a linear bounded operator mapping from H to
Y such that

dimH
||G||l22(7—£7y) = Z |Gey[3 < oo.
k=1
In our context, Y denotes either R or R%, and || - ||;2 is used interchangeably for || -[|;2(3,r) and || - ||;2 (3¢ ra)

when there is no risk of confusion. Note that any operator in [2(#,))) is compact and [?(H,)) is a
separable Hilbert space endowed with a scalar product defined by

dimH
(A, B)epuy) == Y (Aey,Bep)y,  A,BeP*(H,D).
k=1

Next, by the Burkholder-Davis-Gundy (BDG) inequality, for G € I>(H,Y) and 1 < p < oo,

t p/2
( sup ) < CE (/ ||GH122(H,)2) dr) .
s€[0,t] 0

Using this fact and letting (J° f)er = J*(fex), we introduce Banach spaces

WP = {f: T3 — 12(H,Y) : fer € WSP(T?) for each k, and / 12 172 30,3y d < oo} ,
T3 '

1/p
||f||wsp:—(/ 1% F 1 .3 ) |

for s > 0and 1 < p < co. Also, WOP is abbreviated as L. Letting (Pf)er, = P(fex), where P is the
Leray projector, we have Pf € WP if f € WP, Define

Wl ={Pf:feWr}
We assume for (1.1) that o maps W_. into W2¥

with respect to the norm

>, where W2 was introduced in (2.2).

3. Assumptions and Main Results

We seek a strong (pathwise) solution to (1.1)—(1.3) in LP(T3) for p sufficiently large. Here, we say a
solution to a stochastic partial differential equation (SPDE) is strong if, with probability one, it satisfies
the SPDE in the distribution sense and it evolves in the designated function space (cf. [GZ, GV, Kr]
and references therein). This notion demonstrates a pathwise behavior rather than a law property, which
distinguishes it from the martingale solution whose probability law fits the equation.

Suppose o and g are (I2(H,R))%valued operators, namely, o and g have d components and each
component is an [2(H,R)-valued. Let A be an operator that is usually unbounded and

u(t, ) = ug(x) —|—/0 (Au(r,z) + f(r,x))dr +/0 (o(u(r, x)) + g(r, m)) dW(r), (3.1)

a d-dimensional stochastic evolution partial differential equation on (Q, F, (F;)i>0,P). Different notions
of solutions are defined as follows.
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DEFINITION 3.1 (Local Strong Solution). A pair (u,7) is a local strong LP solution to (3.1) if 7 is a
positive stopping time P-almost surely, the stochastic process u is adapted with respect to F; and is in

Lr(Q;C([0,7 AT), LP)), and u satisfies
¢ ¢
(u(t):0) = (u0.6)+ [ (Aut) + 7). 0 dr+ [ ((0ulr) +9).0) AW e (h). (32)
for all ¢ € C>°(T3).
The term (Au(r), ¢) is in our application below is interpreted using integration by parts.

DEFINITION 3.2 (Maximal Strong Solution). A pair (u, ) is said to be a maximal strong LP solution
to (3.1) if there exists an increasing sequence of stopping times 7,, with 7,, T 7 a.s. such that each pair
(u,7,) is a local strong solution,

sup ||u(t)||p—|—/ /|V(|u(t)|p/2)|2dxdt<oo,
0 T3

0<t<r,

and

sup [[u(®)llp + / / IV (u()P/2)[? dad = oo
0<t<rt 0 T3
on the set {T < T}.

For the local existence, we assume

Znoz e = (/ los (o) dx) " <l + 1) (33

and
lefn ()[[Le < Cllu—|lp. (3.4)

The following statement is the main result on the local existence of strong solutions.

THEOREM 3.1. (Local strong solution up to a stopping time) Let p > 5 and ug € LP(Q; LP). Then
there exists a unique mazimal strong solution (u, ) to (1.1)—(1.3) such that

E | sup [ju(s ||p—|—/ Z/ 18 (|uj (s, 2)[P/?)|? deds < CE[[luolb + 1],

0<s<T

where C' > 0 is a constant depending on p.

The theorem is proven at the end of Section 5 below.
In the next statement, we address the global existence of solutions, for which we impose, in addition
o (3.4), a superlinearity assumption

Z lloi(u)l[Lr < €ollullp, (3.5)

where ¢y > 0.

THEOREM 3.2. (Global strong solution for small data) Suppose that (3.4) and (3.5) hold with ¢y €
(0,1] sufficiently small. Let (u,T) be the solution provided in Theorem 3.1. For every e € (0,1] there
exists § > 0 such that if

Efljuollp] < 9, (3.6)
then
P(r=00)>1—c¢.

The proof of Theorem 3.2 is given in Section 6.
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4. Stochastic heat equation on the torus

In this section, we prove the global existence of an LP solution to the stochastic heat equation
du(t,z) = Au(t,x) dt + f(t,x) dt + g(t,x) dW(t), (4.1)
u(0,2) = up(x) a.s., te (0,T), z€T? (4.2)
on T¢, where d € N. The white noise W was introduced above, the drift f is a predictable process
evolving in WP the noise coefficient g takes values in 1?(H,R), and ug is Fo-measurable.

Using the terminology in [R], the equation (4.1) is super-parabolic. Also, the a priori estimates for
Theorems 4.1.2 and 4.1.4 in [R] remain true on the torus without change. Thus if ug € L¥' (Q; W™?"),
feLl(Qx[0,T),Wmr) and g € L (Q x [0,T), W™?") for some m € N and p/ > 2, then there exists
we LV (Q x [0,T); Cyeard W) satisfying (4.1)-(4.2) in the sense of (3.2). If in addition (m — k)p > d,
then v has a version that belongs to C’g #([0,T) x T*) P-almost surely. This conclusion of global existence

relies on a high regularity of the forcing term, which needs to be relaxed to apply to the Navier-Stokes
equations.

THEOREM 4.1. Let 2 < p < 0o and 0 < T < oco. Suppose that ug € LP(Q, LP(T%)), f € LP(Q x
[0,T), W=LP(T9)), and g € LP(2 x [0, T),LP(T?)), where

providedd > 2 or1 < q < pifd = 1. Then there exists a unique mazimal solution u € L¥(; C([0,T), LP))

o (4.1)-(4.2) such that
sup |u(t, )2 + / / V(|u(t,z p/2)|2dxdt]
0<t<T

T T
||7Lo||§i+A Hf(tv')||111,th+A lg= ()L dt],

Recall that we use the notation

9@y = [ L) s ) d

Introduce the standard convolution function p € C§°(R?) such that suppp C {z € R?: |z| < 7/2}
and [5, p(x) dz = 1. Assume also that p is nonnegative and radial. Set p. = e=%p(-/e).
The next lemma is needed when approximating the forcing term in (4.1).

LEMMA 4.2. Let g € (1,00). If f € W=L4(T?), then f * p. — f in W™H4(T9) as e — 0.

E

(4.4)
< CE

where C' > 0 depends on p.

PROOF OF LEMMA 4.2. The mapping S = —A + [ is a Banach space isomorphism S: W14(T%) —
W~14(T4), which commutes with the convolution operator. Thus the statement follows by applying S
o(S7Yf)xpe— S71f in Wha, O

REMARK 4.3. Note that the above proof implies that if f € LP(Q x [0,T), W~=1P), then f * p. — f
in LP(Q x [0,T), W—1P),
The following lemma is essential when passing to the limit in the inequality (4.4).
LEMMA 4.4. Letp > 2. If
Up — u in LP(Q; L([0,T), LP)) as n — oo

and
V(|[tn(w, t,2)|P'?) are uniformly bounded in L*(2 x [0,T), L?), (4.5)
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t uy, (w, t, )P/ |2 da N wlw. t.2)1P"2) 2 do
/O/W\WI n(w,t,2)["7)[ drdt >E[/0 /W|V(\(,t, )| )ddt]. (4.6)

PROOF OF LEMMA 4.4. First, there exists a subsequence {uy, tren of {un tnen such that

then

liminf E

n—r0o0

IimE
k

T
/ |V(|un(w,t,x)|p/2)2dxdt] . (4.7)
0o Jre

T
/ |V(|unk(w,t,x)|p/2)|2dxdt] — liminfE
0 Td n
Observe that, by (4.7), it suffices to prove (4.6) for a subsequence of {uy, }r. For simplicity of notation,
relabel {un, }r as {un }n. Note that |u,|P/? — [ulP/? in L?(Q; L>([0,T), L?)) and thus also
unl?/? — |ufP/? in L*(Q x [0,T), L?).
By (4.5), we may pass to a subsequence and assume that

V(|tn (w, t,2)|P/?) — g weakly in L*(Q x [0,T), L?) as n — oo,

T
/ lg|? dzdt
0o Jre

by the weak lower-semicontinuity of the Hilbert norm. In order to obtain (4.6), we only need to prove
that g and V(|u|P/?) agree as elements in L?(Q x [0, T), L?). To prove this, let ¢ € C*°(T?) be arbitrary.
Then, for all j =1,...,d, we have

(97, 2) = 1im(9; (|unl”’?), o) = = lim(Jun["'*,850) = —(Jul"’?,80) = (9 (|ul"’*), ),

where (-, -) represents the inner product on L?(Q x [0, T), L?). Thus we obtain that g and V(|u[P/?) agree
in L2(Q x [0,7T), L?), as claimed. O

for some g € L*(Q x [0,T), L?), which also implies

T
liminf E / / IV (|tn (w, t, 2)|P/?)|? dadt
0o J1e

n— oo

>E

PrOOF OF THEOREM 4.1. Denote uj = ug*pe, f© = f*pe, and g° = g*p.. By Young’s convolution
inequality and the Sobolev embedding, we have uf € v (Q; Wm’p/) and f€ € L”,(Q x [0,T), W""pl) for
meNand 2 < p/ < qaswell as g° € LP' (Q x [0,T),W™") for m € N and 2 < p/ < co. Note that
w5 — g in LP(Q, IP), f(t,) — f(t,) in LP(Qx [0, T), W=19), and g°(t,) — g(t, ) in L*(2x [0, ), 1?)
as € — 0. Now, consider

du®(t,x) = Auf(t,x) dt + (¢, z) dt + g°(t, ) AW (), (4.8)
u®(0,2) = uo( ) a.s. (4.9)
Clearly, assumptions of Theorem 4.1.4 in [R] are fulfilled. Therefore, there exists u® € LP(Q2x[0,T), W™P)
satisfying (4.8)—(4.9) in the sense of Definition 3.1. By Corollary 4.1.4 in [R], u® has a modification that
belongs to Cg’”([O,T] x T4) P-a.s. if m > n + d/p. We shall choose m sufficiently large and use the

continuously differentiable modification for u°.
Applying the Ité formula to h(y) = |y|P with y = u®(¢,z) and p > 2, we get

e (O = [us]? +p / () P20 () (A (r) + () dr + p / [ () P20 () g% (r) WY,

P [ 21 0 et
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We integrate both sides of the equation with respect to x and apply the stochastic Fubini theorem
obtaining

lu* @)l = llusl; +p /0 /T NP2 () (Aut(r) + °(r)) dadr
v /0 /T [ ()"~ (r)g° (r) dwdW, (4.10)

-1 t - _
*% / / Jus ()72 15 ()12 daedr.
0 JTd

For the dissipative term, we have

p [ P ) A () de

(4.11)
4(p—1
= p(p—1 / P2 Vs ()P de = — 22— 1) / V| P2 da.
p Td
It then follows from (4.10) and (4.11) that
e (5 + / L, 19 ) P dwar
< E|lP + / € p—2, € £ d d
<l [ ][, We@Pe o) o) de) dr )
t
APl dodr | [ [ 10 0P g ) o,
= ||u8||,’; + 1+ I + Is.
With ¢’ = q/(q — 1), we have
I < Ol fo () —1alllur P20 [l1,q0 < O 1, luP720% g + [V ([P 2uf) [l ), (4.13)
where, recall, we allow that C' depends on p throughout. Note that
P20, < OllfuP2ufllg + CIIV ([0 P20 |- (4.14)
Since [, u® = 0, we have, as in [KZ]|, a Poincaré type inequality
s [P~2uf g < IV (ufP~2u) |4 (4.15)
when p, ¢ € (1,00). In [KZ, Lemma 3] the inequality
e Pl < CIV (I P~Hle (4.16)
was proven, but the same proof works for (4.15) as well. By (4.13), (4.14) and (4.15), we have
I < Ol (r)ll-1qllle P~?uf g < CIFE () -1,a IV (1 [P20) |- (4.17)
Now, note that
CHV(|us‘p—2us)”q/ < C|||u5|p/2*1V(|u5|p/2 || < CH|us‘p/271H_Hv(ms‘p/z)nz
e|(p—2)/2 us p/2 p/21(P—2)/p e|p/2 (418)
= Ol 1822, 19 (72 |z = Clllue /212 19 72)],
where 1/7+1/2=1/¢, i.e
1 1 1
r. 1t 4.19
T + q 2 ( )

(The assumptions on the exponents p and ¢ imply ¢ > 2.) It is easy to check that the condition (4.3)
implies
9 < T(p—2) - 2d 7
P d—2
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when d > 2, and thus we get from (4.18) and the Gagliardo-Nirenberg inequality
[wllrp-2)/p < Cllwlly™* [ Vawlls,
where o = d(1/2 — p/7(p — 2)), with w = |[uf|P/?, we get

us 1 2 e 1 —2
CIIV (|u =2l < Clllus P2 8 2P v (fus|er2) |5 e =27, (4.20)

From (4.17)—(4.20), we thus obtain

(1—a 2 1+a(p—2
12<c| / 172 ) gl P21 s 2P (s P12 @2

, (4.21)
<o [ IV Qu P ar 45 sup futt g+ Cs [ LI i
0 0<r<t 0

with § > 0 arbitrarily small, where we applied Young’s inequality in the last step. Next, for the term I
n (4.12), we write

plp—1 e\ IP=2][ E e e
f= P20 [ 2 ) do < 8l ()l + ol (I

Finally, we consider the last term in (4.12). Using Minkowski’s inequality, we have

T 2 1/2
E / dr
0 12

r 1/2

<E </OT ( [l )2 ) () dm>2 dr)

-E ( [ ([ ot dx)>

r 1/2
< | (s o [ ([ meorr i) ),
rel0,T]
where we abbreviated 2 = [?(H,R?). Therefore,

. 5 1/2
E / dr
0 12
<E < sup |[lu®(r \”/2/ (/ u () P2l g% (r) I dx))
rel0,T]

T
Iy |UE(T)|p_2||g(t,x)||l22dmdt]
0 Td

T
[ [ ot v
0 Td

[u® (r) P~ (r)g° (r) d

Td

(4.22)
1/2

[us ()P~ (r)g° (r) da

Td

/2

+CE

IA

1
—E | sup ||[uf(r)|]?
N Lemn Il

+ CE +C,

1
—E | sup [[u(r)||2
4p Le[o,:r] )l
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where we used Young’s inequality and the sublinearity assumption (3.3) in the last step. Note that the
far right side is finite by (4.1.21) in [R]. Thus, from the BDG inequality

t
E | sup / |uf (r)|P~2u (r)g° (r) dzdW,
tefo,7] [Jo J1d (4.23)
1 e P 4 € p
< 4—IE sup [u(r)[5| + CE lg®(r)lILe dr| -
P rel0,T 0

Now, setting § in (4.21) to be sufficiently small, taking the supremum over ¢ € [0,7] on both sides of
(4.12), and then compute the expectation, we obtain

& L:[%PT] <||u€(t)||§+;/0t /T V(|u€(7‘)|p/2)|2dxdr)]

T
+Ef[lugllp] + CE /0 (g + IIQE(T)Ilﬁp)dT] ,

1
< QE[ sup_ [ (1)
ref0,T]

which implies

T
E | sup [lu*()[5| < 2E[[uGl}] + CE / (Ife(f")||’il,q+||g€(7‘)||€p)d7“1 (4.24)
t€[0,T] 0
and
1 T /2412
—E / / V(|u® (r)|P dxdr
SEL[ [ weer)
1 c » 1 clp r £ p € P
< 7B | sup [ut(n)lp| + SE[llu5l7] + CE (fEIZ1,q + " (L) dr] -
r€[0,T] 0

In summary,

T
E[sup IIuE(t)II£+/ / IV(Ius(r)l””)Idedr]

t€[0,T] 0 Td
(4.25)

< CE

T
lugliy +/O (ferZy g + IIQE(T)llﬁL’p)dr] :
Note that (4.24) does not depend on €. Thus, we may apply the same procedure to u® — u® and obtain

E | sup [u(t) —u (1)]}

t€[0,T]

< CE

T
IIUS—US,II%L/O (2 ) = 171 + gs(r)—ge/(r)l’ﬁp)drl-

Since each u® is in LP(; C(]0,T), L?)) and they converge in LP(92; L°°([0,T), L?)), they have a limit in
Lr(Q; C(]0,T), LP)), and there exists a subsequence u®" converges to that limit in L°°([0,7T"), L?) almost
surely. We shall denote this limit by w and prove that it is a strong LP solution to (4.1)—(4.2). Indeed,
since

(W (), 6) = (u &) + / (Dl (r) + £(r)), ) dr + / (6°(r), 6) dW(r), (tw)-ae.,
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for all ¢ € C°°(T?) and all € > 0, by the Holder inequality and the dominated convergence theorem, we
have

(u™ (1), ¢) = (ug", @) = (u(t), ¢) — (uo, d)

and

/O((UE"(T),AQS)+(f5"(7“),¢))d7’—>/0 ((u(r), Ag) + ((r), ¢)) dr

for a.e. (t,w) as n — oo. By the BDG inequality,

- 1/2
<E (/0 ||(g€”(r)—g(r)7¢)||l22 dr) —0asn— oo.

E | sup

t€[0,T]

/0 (¢ (r) — g(r), ) AW (r)

This implies that for a further subsequence, which we still denote by u~, the following holds.

[ erarant) 2= [ (g, 0)dwe), (twrae.
0 0

Using Lemma 4.4 and letting n — oo in (4.25), we obtain (4.4).
Suppose u1, uz are two strong LP solutions to (4.1)—(4.2). Then v := u; — ug satisfies

dv(t,z) = Av(t,x) dt
v(0,2) =0 a.s.
on [0,7] x T¢. Then v = 0 P-a.s. O

For convenience we also state the vector-valued version of the previous theorem. Thus, consider(4.1)—
(4.2) on T¢ but with u, f, g, and ug RP-valued, where D € N. Then, under the assumptions of
Theorem 4.1, we have

0<t<T

D T
B | sup Jutt)E+Y / / IV (Juy (¢, 2)[/2) ? drd
—J0 Td
= (4.26)

T D T
< CE (ol + [ 15N gat+ 30 [ [l a) oy dat
j=1

5. Stochastic Truncated Navier-Stokes Equation

From here on, we restrict ourselves to the space dimension 3, although all the theorems can be
adjusted to any dimension d > 2. Also, with a constant §y > 0, which is not necessarily small, denote
by ¢: [0,00) — [0, 1] a decreasing smooth function such that ¢ =1 on [0,d/2] and ¢ = 0 on [§y, o). In
addition, we assume

foltn) = 9(ta)] < Tl —tal, 1t >0
We consider a stochastic Navier-Stokes equations truncated by this function, which reads
du(t,z) = Au(t,z) dt — o(||lu(t)|l,)*P ((u(t,z) - V)u(t,z)) dt
o (lul)],)2 (ut, 2)) WD),
V-u(t,xz) =0, (t,x) € (0,T) x T3

u(0,2) = up(x) a.s., r e T?

(5.1)
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where o is (I2(H,R))3-valued, ug € LP(2; LP) is Fo-measurable with p > 5, and V - ug = 0. Our goal in
this section is to find the unique global solution for (5.1) by applying a fixed point argument.

THEOREM 5.1. Let p > 5 and ug € LP(Q; LP). For every T > 0, there exists a unique solution
we LP(Q;C([0,T), L)) to (5.1) such that

e
E | sup ||u(3,-)||§; + E / / \V(|u‘7~(s,x)‘p/2)|2 dxds| < CE[HuOHg} +Cpr. (5.2)
T —~ Jo Jr3
J

0<s<
In order to solve (5.1), we use the iteration algorithm
A — 2™ dt = [ )" )P (" - Vs
+o(lu™ ) e(lut D)o (u1) dW(t),

Voul™ =0, (tz)e(0,T)xT? >3
u™(0) = ug as., z €T3,
where u(? is the strong solution to
du® (t,z) — Au® (¢, z) dt = 0,
V- uO(t,z) =0, (t,r) € (0,T) x T3,
u®(0,2) = up(x) as., €T
Utilizing the results from the previous section, we conclude that u(®) € LP(Q;C([0,T), L)), and
T 0
= | sup, 16+ 3 [ 190700000 ] < CBlfol) (5.4

We need to prove that at each step n, there exists a unique solution u(™ € LP(Q; C([0,T), L?)) to (5.3),
which is uniformly bounded in an consistent manner with (5.4). Thus we first consider the equation

du — Audt = —p([[ullp)e((|v]l,)P ((v - V)v) dt + @([[ullp)e(v]lp)o(v) dW(2),
V-u=0, (t,x) € (0,T) x T3, (5.5)
u(0) = uy, a.s., x €T3,

where v is divergence-free and satisfies

0<t<T

T
E| sup |\v(t,-)||g+z/o AS|V(|U(t,x)|p/2)\2dxdt < CE[[Juo|lZ) + Cr. (5.6)
J

In order to solve (5.5), we employ the iteration procedure
dut™ — Au™ dt = ([P ) e([|v],)P((v - V)v) dt
+o([ul"Vlp)e([v]lp)o (v) dW(2),
V-u™ =0, (t,x)e(0,T)x T3

u(")(O) = uy, a.s., x € T3,

(5.7)

for v which is divergence-free and satisfies (5.6). Note that u(™) in (5.7) is not the same as in (5.3).

We shall prove the existence by obtaining an exponential rate of convergence for the fixed point
iteration and by claiming that a sequence of random variables converges to zero a.s. if their expectation
approaches zero rapidly. Thus, we will need the following auxiliary result.
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LEMMA 5.2. Let &, be a sequence of nonnegative random variables such that E[E,] < n™, forn € N,
where n € (0,1). Then, &, — 0 almost surely.

PROOF OF LEMMA 5.2. Denote the probability event {w € Q : &,(w) > 1/m} by A?. If £, (w) does
not go to zero as n — oo, then w € Ujs_; N5, Uge A*. For each fixed m € N,

> PAY) <m > Elé] < oo,

then P(limsup,,_,., A7) = 0 by the Borel-Cantelli Lemma. Hence,
P(Upe_y Mo URe AR = liin P(limsup A7) =0

n—oo

This ends the proof. O

REMARK 5.3. This conclusion can be extended from expectation and the probability measure to
integration with respect to any finite measure. In particular, the integration on Q x [0,7] with respect
to the product measure.

For convenience, we abbreviate
™ =o([u™l,), neN
v = ¢([|v]lp),

in the rest of the section. The next lemma asserts uniform boundedness of (™, which is needed in the
fixed point argument.

LEMMA 5.4. Letp > 5 andn € N. Suppose ug € LP(Q; LP) and assume that for each j € {1,2,...,n},
there exists a sufficiently small time T > 0 and a unique solution u(™ € LP(; C([0,T), LP)) to the initial
value problem (5.5), where v satisfies (5.6). Then,

T
E| sup [u™t)z+3 / / [V (juf™ (1, 2)P?) dadt | < Cpr + CE[Juol].  (5.8)
0<t<T 5 Jo Jrs

PROOF. We apply Theorem 4.1 (cf. the inequality (4.26)) to the equation
duE—n) - Aug-n) dt = —p" "V, (P((v- V)v))j dt

(5.9)
+ o Vo) dW(t), xeT?  j=1,2,3.
We write the first term on the right side of (5.9) as
— Z w("_l)govai (P (viv))j dt.
In order to apply (4.26), we need to estimate (assuming [ < p)
t t
C | [ 1oVl as] < CE | [ ooV fulzlolf as
’ ¢ ’ ¢ (5.10)
<ce| [ oV lulploly ] < cspe| [ oD fulas
0 0
where 5
/4
—— < q< 5.11
p+1 =P (5.11)
and
1 1 1
4 ==,
r 1l q
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For the last step in (5.10) we require
I<p (5.12)

and then use ¢, [[v|[F < CéFp,. When we consider below the differences of iterates (cf. (5.21)-(5.22)
below), we need a stronger inequality

r <p. (5.13)
For the sake of exposition, we fix the exponents at this point as

g=Bp+mno)/(p+1)and r=1=2q. (5.14)

The parameter ng > 0 is chosen so that
3
D + 1o <
p+1

P, (5.15)

which is possible when p > 5. It remains to estimate the last term in (5.9) (cf. (4.26)), i.e.,

t t
E [/ / ™ Vo ()1 5 dazds} < c/ eo(Jol2 + 1) ds < C(t + 1),
0 JT 0

using sub-linear growth of the noise (3.4), and we obtain (5.8). O

LEMMA 5.5. Let p > 5 and suppose that ug € LP(Q; LP). Then there exists t € [0,T) such that the
initial value problem (5.5), where v satisfies (5.6), has a unique solution u € LP(Q; C([0,t), LP)), which
satisfies

t
E | sup |\u(s)HZ+Z// |V(\uj(s.,a:)|p/2)‘2dg;ds SCE[HuUHZ]—f—Ct. (5.16)
7 Jo Jrs

0<s<t

PROOF OF LEMMA 5.5. We employ the fixed point argument on the iteration (5.7). The difference
2 = (1) — () gsatisfies

e\ — A2V dt =370 fydt + g dW(E),  j=1,2,3, (5.17)

where
fii = (@™ = 0" D)o, P(vi0))
and
g5 = (" = ") o0 (v) AW ().
In addition to (5.17), we have

V-2 =0 (tz)e(0,T)x T
2M(0)=0as., z T

Note that

C C C
o™ = oD < ™l = lu® D p| < =l —u D = =207, (5.18)
do do do
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Now, we apply (4.26). The second term on the right side of (4.26) is estimated as

t t
n n— ¢ "
CE| [ 6™ = D) ,vmustgas| < B | [ el gzl ds
0

t
<CE [/ T ds}
0

t t
< Cs45,E [/ ||Z(n—1)||gds] + 0E Z/ \V(|Z](_"*1)(s7x)|p/2)|2 dads
0 7 Jo Jrs

< Css,tE | sup Hz("_l)Hgds

s€[0,t]

t
R Z/o V(" )l ) dads |
J

where we used (5.12) and (5.13) in the second inequality. For the third term in (4.26), we estimate

t t
CE U / lgCt, @)z 30 dmds} < Cs,E U / [ESa dmds]
0 Td ’ 0 Td

t t
< Ci5E [/ llz("—”HidS]”E > / V(=" (s, 2) /) dads
0 j 0 T3

< C5$50 tE

S

sup Hz("_l)Hgds
€[0,4]

t
R Z/o V(" ) ) dads
J

This concludes the proof of existence of a fixed point for (5.5) on [0,¢] in LP.L°LP N LELYL3P if t > 0
is sufficiently small. We denote this fixed point by u. Observing the exponential rate of convergence,
we apply Lemma 5.2 and also obtain ¢(||u(™ (t)|,) — ¢(|lu(t)||,) for a.e.-(w,t). Then, we obtain that
u is indeed a solution to (5.7) by applying the dominated convergence theorem. By Lemma 4.4, (5.16)
holds. O

PROOF OF THEOREM 5.1. Consider the iteration (5.3), i.e.,

du(™ — Aut™ dt = —p™ pT=DP (W™D . T)ur=D) gt
+ oM Vo (u=) aW(t),
V.u™ =0, (t,x)e(0,T)x T3

u™(0) = uo, a.s., r e T?.

Lemma 5.5 implies the existence of a unique maximal solution u(™, which satisfies
0<t<T

T
E | sup ||u(n)(t, )||§ + Z/o /T?’ |V(\u§n) (t,x)|P/2)|2dxdt < Cprs, + C’IE[HuOHg].
J

In order to apply the fixed point technique, we consider the difference

o™ = () _ )
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for which
dv™ — Ap™ gs + (<p<n+1><p<n>p((u<n> V)u™) — oM pr=Dp (D). V)u(nm)) ds
— (Sp(n+1>(p(n)g(u<n)) _ gp<"><p("—1>a(u<”—1>)) dW(s),
Vo™ =0, (s,z) € (0,t) x T?,
0™ (0) =0 as.
We rewrite the first equation as
do\” — Ao\ dt = 8, fiy dt + g;dW(t),  j=1,2,3,
where
fig = = ("D (M) = oD ("™ Y) )
= —M (D) _ M)y (n) (n) — M (M — =Dy, En) (n) (5.19)

(n)w(n—l)v(n 1) (n) _w(n)w(n—l)ugn—l)vﬁn—l)

f(z) f(3) f(4)

and

g9j = ((,0("+1)90(")0(u(”)) _ <p(n)go(n71)a(u("7l)))
= —pM (M) _ Mg (M) — M) (M) — (=) (3, ()

— My (nfl)( (u™) — U(u(nfl)))

2 3
()+g§)+g§)

We first apply (4.26) on all the terms on the far right side of (5.19). Now, choose the exponents ¢, r, and
s as in (5.11)—(5.15). Regarding the first term in (5.19), we have

-1 (n), (n)
B[ [ 1501 as] < B[ [ 000 - o0l as
S [ 1 e as (521
0

<3
t

< OSSR [/ ||v(")||£ds}
0

D) = o] < = Jul D — ™ ] < =t —ul, = = o™,
do do do

(5.20)

by

as in (5.18), and where we also used (5.12) and (5.13) in the last inequality in (5.21). As in (5.21), we

have
t t
E[/ If(z’lzds] < CSEE [/ ||u<"—1>|gds].
0 0

t t t
E[/ ||f<3>|gds]+EU |f(4)||§ds] < C&E [/ ||u(n1>||gds]. (5.22)
0 0 0

Summarizing (5.21), (5.22), and (5.22), we get

t
e[ [ sy gcé,éoﬂalsup e
0

s€[0,t]

Similarly,

+Cs5,tE

S o™ IIP]
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Now, we turn to the three terms in (5.20). For the first one, we have

t
0 JTd

t
< CE {/ / (M2 (D) — HM)P|| oy (n))”l2 o dmds]
0 Jrd

¢ (5.23)
< ()32 {1y 12 (14 (17
< SE (@™ )P B ([ut™ ][ + 1) dxds
60 0 Td P P
t
<cu| [ [ o]
0 Td
and similarly,
t t
CE U/ ||g(2)(t7g;)||f2(H,Rd)dzds]+C’E [// ||g(3)(t,x)||f2(H)Rd)dxds}
0 Jrd 0 Jrd (5.24)

t
< CyE [/ [ |v<“>||z]

We may summarize (5.23) and (5.24) as

CE {/ / llg(t, HP(H Ra) da:ds] < Cs5,tE l sup Hv(n—l)”g

s€[0,t]

Therefore, we obtain the existence of a unique fixed point u of (5.1) in LP L LENLP LY L3P on [0, S], where
S > 0 is a sufficiently small constant. Since each u(™ € LP(Q;C([0,S), LP)), so is u. By Lemma 5.5,

(™ (s), 6) = (o, &) + / (™ (), Ag) dr
3 [ I 0) ,6)
—~ Jo
J

+ / (D), ) dW (), (s,w)-ac.

0

for all ¢ € C>(T?). The exponential convergence rate and Remark 5.3 implies that ¢(||u™ (s)]|,),
o(|[u™V(s),) = e(lu(s)|p) for a.e. (s,w). Together with the divergence free condition, the Hélder
inequality, and the dominated convergence theorem, we get

/O (@™ (1), Ap)dr + 3 /0 (6™ DPLI D) 5.6y dr
J

-/ ((u(r), AG) + (¢*P(uny)., 8)) dr
0

for a.e. (s,w) as n — oo. Also, by the BDG inequality and assumptions on o,

s 1/2
<E </ 1™ Do) = p?o(u), 9)||7 d?“)
0

Moreover, the right side goes to zero exponentially fast as n — co. This implies that

E | sup

s€0,5)

/0 (oM Do (D) — Po(u), ¢) dW(r)

S

/S(w(")w(”*l)a(u("*”),¢) dW(r) === | (PP0(u),9)dW(r),  (s,w)-a.e.

0 0
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Using Lemma 4.4 and letting n — oo in (5.16), we obtain that u solves (5.1). It is standard to obtain
the uniqueness from the contraction argument and for the sake of brevity, we omit the details.

Note that the time ¢t chosen above is deterministic and positive; denote this time by t*. Let n* be a
positive integer such that T'/n* < t*. Denote t; = iT/n* for i € {0,1,...,n*}. Applying the existence
and uniqueness inductively on [t;,t;41], i € {0,1,...,n*}, we obtain a strong solution to (5.1) on [0, T]
and (5.2) holds. O

PROOF OF THEOREM 3.1. For n =1,2,..., denote by u(™ the solution of the truncated SNSE (5.1)
with §g = n. Also, introduce the stopping times

. n n
T = 1nf{t >0 [u™ )], > 5}.

By uniqueness, the sequence is non-decreasing a.s. and u(™ = u(™ on the set {7(™) < §y/2} N {r(® <
80/2} a.s. Let 7 = lim,, 7,,. Also, for any integer n € N, define u = u(™ on the set {7 > 2n}. Tt is easy
to check that (u,7) satisfies all the required properties. O

6. Global solution and energy decay
The truncated stochastic Navier-Stokes equations read
du(t,z) = Au(t,z) dt — o(||lu(t)|l,)*P ((u(t,z) - V)u(t,z)) dt
+o(llu(®)]lp) %o (ult, 2))dW (),
V- u(t,z) =0, (t,x) € (0,T) x T3,

u(0,z) = up(x) a.s., z €T3

(6.1)

Note that in the previous section, we have proved the global well-posedness of this initial value problem.
Recall that dp > 0 and that ¢: [0,00) — [0,1] is a decreasing smooth function with ¢ = 1 on [0, /2]
and ¢ =0 on [dg, 00). In addition, we assumed

C
[p(tr) = pt)| < -fts —tal, 1,82 2 0.

We shall set 6o > 0 sufficiently small. Note that when ||ul|, is below d¢/2, the initial value problem
(1.1)—(1.3) coincides with this cut-off model. Hence, an estimate of the likelihood that |lul, exceeds dy/2
determines the time of existence for the solution to (1.1)—(1.3). The next result is essential for estimating
that likelihood.

THEOREM 6.1. Let p > 5. Then the global solution v € LP(€; C(]0,T), L)) to (6.1) satisfies

E | sup e™[lu(t)]?

< CE[lluol[p],
te[0,00)

provided a, dy, €9 > 0 are sufficiently small constants.

Note that the constant €y > 0 is in the condition (3.5).

PROOF. Applying the Tt6-Wentzel formula to F;(t) = e ||u;(t)||%, for a fixed i € {1,2,3}, we obtain

d(e[|lui(t)[I) = ae™|lui ()1} dt + e d(]|us(®)][})- (6.2)
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Utilizing the It6 expansion in the proof of Lemma 4.4 (cf. (4.12)) and (6.2), we have
Ap-1) [
ol + 2 e [ a2 dads

= Juoill? — p / s g2 / P2 V)u); deds

+p/ as 2/ w2 w05 (u) dedW
1) s 4 p—2 2 ' as p
+72 @7 | JuilPllos(w)|liz deds +a [ e [uils)]; ds.
0 T3 0

(6.3)

Now, choose ¢,r,1 as in (5.11)—(5.15) and 7 as in (4.19). Using integration by parts, we have

peatw2

/1r3 i (8) [P~ 2w (8) (P (u - V)u); dz

=Y [ 00 ) Plusy) do

< Ce" G|V (Jui()P"*) 2l il P22 il
< Cooe™ ||V (Jus () 2l wil =272 | il

using (5.12) and (5.13) and ¢||ul|, < dp in the last step. As in the proof of Theorem 4.1 above, we get

at, 2

e t w; (8)P 2wy (s u-V)u;) dxds
pert?| [ )PP (- ) dad

t
/ MZIIV Jui(£)P'2) H2d8+Czs5“/ e lu(s)l; ds,
0

where 6 > 0 is arbitrary and where x > 0 is a constant depending on p. Note that the first term on the
right side may be absorbed in the dissipative term if § > 0 is sufficiently small. Also, using the Poincaré
type inequality

(6.4)

o212 < CIV (0 lP/)]2, (6.5)

for v such that [,,vdz = 0, as in (4.16), the second term in (6.4) may also be absorbed if dy > 0 is
sufficiently small. Regarding the fourth term in (6.3), we use the superlinearity assumption on the noise
(3.5) and obtain

oDt [ P2l do < O o ulo)l

Note that the last term in (6.3) may also be absorbed in the dissipative part if a > 0 is sufficiently small
constant (independent of p). Combining the estimates above and absorbing the second, fourth, and fifth
terms on the right-hand side of (6.3), we arrive at

1 a 1 K as
SOl + 5 [ e I9usts) )| ds
0
t
<l + [ [ el deds +pee? [ )P o)) deaw,
0 JT3 T3
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since 4(p — 1)/p > 1/2. Hence,

+|[ t 9 ()P s

/Or 932 /TS i (8) [P~ 2w (s) o () . ] '

For the last term in (6.6), we apply the same approach as in (4.22)—(4.23), except that we use the
assumption (3.5). We thus obtain

/O e 2/ i (5)1P~2ui(s) s (w) < CseoE M saQIIu(s)llﬁ';ds}

Using also (6.5), by taking eg > 0 sufficiently small, the right-hand side may be absorbed in the left side
of (6.6). Therefore,

E | sup e [lu;(8)[|D
rel0,t]

(6.6)

< 2 [|lui (0) 2] + pE | sup

rel0,t]

pE | sup

ref0,t]

[Sup e [lu(r |p+/ “SZHV |us(s)[P/?)|[5 ds | < CE[[luo|1],
rel0,T
whence
E sup )6‘"||u(7’)||§+/0 e > IV (lui(s)P?)[I5 ds | < CE[]uoll?],
re|0,00 i
and the proof is concluded. t

Now, we are ready to prove the main theorem on the global existence of solutions for small data.

PROOF OF THEOREM 3.2. Let €, dp,a > 0 be as in Theorem 6.1. Assume that (3.6) holds for some
6 > 0. By Markov’s inequality, we have

do C Cé
P ( sup_ e u(t)] > 2) < SElluolf) < 5
t€[0,00) 0
The assertion is then obtained by choosing § > 0 sufficiently small. (]
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