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Carleson perturbations for the regularity problem

Zanbing Dai, Joseph Feneuil and Svitlana Mayboroda

Abstract. We prove that the solvability of the regularity problem in Lq.@�/ is sta-
ble under Carleson perturbations. If the perturbation is small, then the solvability is
preserved in the same Lq , and if the perturbation is large, the regularity problem is
solvable in Lr for some other r 2 .1; 1/. We extend an earlier result from Kenig
and Pipher to very general unbounded domains, possibly with lower dimensional
boundaries as in the theory developed by Guy David and the last two authors. To be
precise, we only need the domain to have non-tangential access to its Ahlfors regular
boundary, together with a notion of gradient on the boundary.

1. Introduction

1.1. History and motivation

In the last 40 years, and even more in the last 10 years, there have been impressive devel-
opments at the intersection of harmonic analysis, elliptic PDEs, and geometric measure
theory. Their main goal is to understand as much as possible the interaction between geom-
etry of (the boundary of) a domain and bounds on solutions of boundary value problems.

The first important result beyond the complex plane is due to Dahlberg in [13, 14],
and it states that the Dirichlet problem is solvable in L2 whenever the domain is Lips-
chitz. Since then, considerable efforts have been devoted to weakening the conditions on
domains � and theirs boundaries, and to replacing the harmonic functions (that are solu-
tions to ��u D 0) by solutions of elliptic operators in the form L D � div Ar. These
two directions are not independent from each other, because with the help of changes of
variables, we can make @� smoother, and the price to pay is rougher coefficients for the
matrix A.

As far as the Dirichlet boundary value problem is concerned, mathematicians in the
area have a pretty clear picture. When the operator is the Laplacian, the solvability of
the Dirichlet problem in Lp for some large p 2 .1;1/ is equivalent to the fact that the
boundary of the domain @� is uniformly rectifiable of dimension n� 1 (see [23,24] for the
definition) and the domain has sufficient access to the boundary. A non-exhaustive list of
works that helped to arrive to this conclusion includes [4,5,21,43,57]. One cannot replace
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the Laplacian by a general uniformly elliptic operator and still preserve the Lp-solvability
of the Dirichlet problem (see [6, 54]). The uniformly elliptic operators L D � div Ar

that preserve the Lp solvability of the Dirichlet problem fall into two classes. The first
one is the t -independent operators (see for instance [42, 45, 48]), and the second one is
related to Carleson measures, either via perturbations (e.g., [15,32–34], and more recently,
for domains satisfying the capacity condition, [1, 8]), or via the oscillations of A (also
known as Dahlberg–Kenig–Pipher operators, see [28, 51]). Many of the results have been
extended to complex valued elliptic operators and elliptic systems ([26,29,30,41]). For an
interested reader, who is new to this area, a nice and detailed discussion on those topics
can be found in the introduction of [37].

A natural question to ask is whether those results for the Dirichlet boundary value
problem have analogues for other boundary value problems, such as the Neumann problem
and the regularity problem. However, those problems appear to be considerably more
complicated; some results are shown in [2, 3, 31, 41, 46, 49, 50, 60], but they do not go as
far as one would expect, for instance they do not go beyond Lipschitz domains.

In the recent impressive breakthrough [56], Mourgoglou and Tolsa have shown the
solvability of the regularity problem in some Sobolev spaces for the Laplacian on open
bounded domains satisfying the corkscrew condition and with uniformly rectifiable bound-
aries. The key point is the use of an alternative to the classical boundary Sobolev space
(called the Hajłasz–Sobolev spaces) to bypass the lack of connectedness of the bound-
ary of the domains. The importance of the Hajłasz–Sobolev spaces is supported by a
counterexample from the authors, that shows that the result is false when one uses the
classical Sobolev spaces. Mourgoglou and Tolsa complete their article by giving addi-
tional geometric conditions (that we interpret as connectedness on the boundary – like
the validity of a Poincaré inequality on boundary balls) for which the classical Sobolev
spaces and the Hajłasz–Sobolev spaces are the same, which ultimately give the existence
of some non-Lipschitz domains where the regularity problem is solvable for the Lapla-
cian in the classical Sobolev spaces. After the submission of our article, the two new
manuscripts [25] and [55] successfully extended the solvability of the regularity problem
to all the Dahlberg–Kenig–Pipher operators, hence generalizing some results from [31]
and [56].

In our article, we look at the stability of the regularity problem under Carleson per-
turbations [50] on a ball, and we prove that we can extend it in several directions: first
we consider operators which are not necessarily symmetric; second, we extend the geo-
metric setting to uniform domains (which are domains with non-tangential access and
Ahlfors regular boundaries, using as Mourgoglou and Tolsa the Hajłasz–Sobolev spaces);
and third, we allow low dimensional boundaries, which were studied for the Dirichlet
problem by Guy David, Zihui Zhao, Bruno Poggi, and the two last authors (see [18–20,
22, 35–37, 52, 53]). Combined with another paper under preparation ([16]), we ultimately
prove the solvability of the regularity problem on the complement of a Lipschitz graph of
lower dimension.

The purpose of this article is to adapt the method used by Kenig and Pipher in [50] to
a more general setting, by relying on the elliptic theory developed in [22].
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1.2. Introduction to the setting

The aim of this subsection is to introduce results from [19] and [20] and to give basic
definitions adapted to the setting at hand.

As mentioned in the previous subsection, we understand now that we can character-
ize the uniformly rectifiable sets � � Rn of dimension n � 1 via some bounds on the
oscillations of the bounded harmonic functions on � (or the solvability of the Dirich-
let problem), where � D @� and � has enough access to its boundary. Guy David and
the two last authors launched a program to extend this characterization of uniform rec-
tifiability to uniformly rectifiable sets of lower dimension d � n � 2. In this case, the
domain � D Rn n � has plenty of access to its boundary (see Proposition 2.4). However,
a bounded harmonic function in � is also a bounded harmonic function in Rn, and thus
does not “see” the boundary � . For that reason, the authors developed in [19] an elliptic
theory that is adapted to low-dimensional boundaries by using some operators whose coef-
ficients are elliptic and bounded with respect to a weight. Let us give a quick presentation
of this theory.

Consider a domain � � Rn whose boundary is d -dimensional Ahlfors regular, that is,
there exist a measure � supported on @� and C� > such that

C�1
� rd

� �.�.x; r// � C� rd for x 2 @�; r > 0;(1.1)

where �.x; r/ WD B.x; r/\ @� is a boundary ball. If (1.1) holds for some measure � , then
it works also with � 0 WD H d

j@�
, the d -dimensional Hausdorff on @�. The incoming results

would also be true for bounded domains when we ask (1.1) only when r � diam.�/, but
the proof would require splitting cases (even though the two cases are fairly similar) and
we do not tackle it here.

Observe that when d < n� 1, we necessarily have that �DRnn@�, and the domain �

automatically has access to its boundary (see Proposition 2.4). When d � n � 1, we
assume that � satisfies the interior corkscrew point condition and the interior Harnack
chain condition (see Definitions 2.1 and 2.2), which means that � is 1-sided NTA and
hence uniform.

Consider a class of operators L D � div Ar on �, where the coefficients are elliptic
and bounded with respect to the weight w.X/ WD dist.X; @�/dC1�n. To be more precise,
we assume that there exists � > 0 such that

(1.2) �j�j2w.X/ � A.X/� � � and jA.X/� � �j � ��1w.X/j�jj�j; �; �2Rn; X 2�:

If we write A for the rescaled matrix w�1A, then the operators that we consider are in the
form L WD � divŒwAr�, where A satisfies the classical elliptic condition

�j�j2 � A.X/� � � and jA.X/� � �j � ��1
j�jj�j; �; � 2 Rn; X 2 �:(1.3)

A weak solution to Lu D 0 lies in W
1;2

loc .�/ and satisfies
�

�

Aru � r' dm D 0 for ' 2 C1
0 .�/;

where dm.Y / D w.Y /dY .
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The weak solutions to Lu D 0 satisfy De Giorgi–Nash–Moser estimates (interior and
at the boundary). We can also construct a Green function for L, an elliptic measure on @�,
and derive the comparison principle, also known as CFMS estimates. The full elliptic
theory is presented in Subsections 2.3 to 2.6.

There are two fairly standard ways to construct weak solutions. The first one is using
the Lax–Milgram theorem in an appropriate weighted Sobolev space (see Lemma 2.8).
The second one, that will be the one used in the present article, is via the elliptic measure,
which is a collection of probability measures ¹!XºX2� such that, for every compactly
supported continuous function f on @�, the function defined as

(1.4) uf .X/ WD

�
@�

f .x/ d!X .x/

belongs to C 0.�/, and is a weak solution to Lu D 0, and satisfies u � f on @�. Note
that (1.4) will be used to provide a formal solution to²

Lu D 0 in �;

u D f on @�:

We are ready to introduce the Dirichlet boundary value problem.

Definition 1.1 (Dirichlet problem). The Dirichlet problem is solvable in Lp if there exists
C > 0 such that for every f 2 Cc.@�/, the solution uf constructed by (1.4) satisfies

(1.5) kN.uf /kLp.@�;�/ � Ckf kLp.@�;�/;

where N is the non-tangential maximal function defined as

(1.6) N.v/.x/ WD sup

.x/

jvj

and 
.x/ WD ¹X 2 �; jX � xj � 2ı.X/º is a cone with vertex at x 2 @�.

In Definition 1.1, the data f lies in Cc.@�/ instead of Lp.@�; �/, so that we have a
way to construct uf a priori using the harmonic measure. Once we know that (1.5) holds
for any f 2 Cc.@�/, we can construct a posteriori the solutions uf for any f 2Lp.@�;�/

by density, and those solutions will satisfy (1.4) and (1.5).

1.3. Main results

We shall use ı.X/ for dist.X; @�/, w.X/ for ı.X/dC1�n, dm.X/ for ı.X/dC1�ndX ,
and BX for B.X;ı.X/=4/. In this section, we consider two elliptic operators L0 and L1 in
the form Li D � divŒwAir�, where Ai is real, not necessarily symmetric, and uniformly
elliptic (1.3).

We define the disagreement between A0 and A1 as:

a.X/ WD sup
Y 2BX

jE.Y /j; E.Y / WD A0.Y / � A1.Y /:(1.7)
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Assume that ı.X/d�nja.X/j2dX is a Carleson measure, that is, there exists M > 0 such
that �

B.x;r/\�

ja.X/j2
dX

ı.X/n�d
� M rd for x 2 @�; r > 0:(1.8)

The stability of the solvability of the Dirichlet problem under Carleson perturbations
was established in [34] (when � is a ball), [9] and [10] (when � is a uniform domain
in with n � 1-dimensional boundary), [1] and [8] (for domains satistying the capacity
condition), [52] (when � is uniform with lower dimensional boundary), and [37] (1-sided
NTA domains and enough basic bounds on the harmonic measure, a setting that includes
all the previous ones and more). These results are as follows:

Theorem 1.2 ([10, 34, 37, 52]). Let � be a uniform domain, and let L0 and L1 be two
elliptic operators whose coefficients are real, non necessarily symmetric, and uniformly
elliptic in the sense (1.3). Assume that the Dirichlet problem for the operator L0 is solv-
able in Lp0 (see Definition 1.1). If the disagreement (1.7) satisfies the Carleson measure
condition (1.8), then there exists p1 2 .1;1/ such that the Dirichlet problem for L1 is
solvable in Lp1 .

Moreover, there exists "0 > 0 (that depends on p0 and L0/ such that if the Carleson
norm M in (1.8) is smaller then "0, then the Dirichlet problem for L1 is solvable in the
same Lp0 .

We know that if the Dirichlet problem is solvable in Lp , then it is solvable in Lr for
all r 2 .p;1/. In this sense, p1 is a priori larger than p0. The second part of the theorem
says that if the disagreement is small enough, then we can preserve the solvability of the
Dirichlet problem in the same Lp0 space.

Our main theorem addresses this type of perturbations for the regularity problem. The
only forerunner in this case is [50]. However, contrary to [50], here we treat domains
with rough and/or low dimensional boundaries, and operators whose coefficients are not
necessarily symmetric. Let us state exactly what we prove.

Theorem 1.3. Let � be a uniform domain (see Definition 2.3), and let L0 and L1 be two
elliptic operators whose coefficients are real, non necessarily symmetric, and uniformly
elliptic in the sense (1.3). Assume that the Dirichlet problem for the adjoint operator L�

1

is solvable in Lq0

(see Definition 1.1).
If the disagreement (1.7) satisfies the Carleson measure condition (1.8), then for any

f 2Cc.@�/, the two solutions u0;f and u1;f to L0u0;f D 0 and L1u1;f D 0 constructed
by (1.4) satisfy

(1.9) k zN .ru1;f /kLq.@�;�/ � CMk zN .ru0;f /kLq.@�;�/;

where zN is the averaged non-tangential maximal function defined as

(1.10) zN .v/.x/ WD sup
X2
.x/

� 
BX

jvj2 dX
�1=2

:

The two quantities in (1.9) can be infinite, but the left-hand side has to be finite as soon as
the right-hand side is finite. The constant C > 0 depends only on n, the uniform constants
of �, the ellipticity constant �, the parameter q, and the constant in (1.5).
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The above theorem assumes the solvability of the Dirichlet problem for L�
1 . It is not

very surprising, because it can be seen as a partial converse of Theorem 1.5 below. That
is, if the Dirichlet problem for L�

1 is solvable in Lq0

, and if L1 satisfies extra conditions,
then the regularity problem for L1 is solvable in Lq .

We wanted to state the above theorem independently of the notion of regularity prob-
lem. We remark that it can also be used for the Neumann problem, although not directly,
and we leave this question for a future article.

We turn now to the definition of the regularity problem, which is long overdue.

1.4. The regularity problem

Informally speaking, the regularity problem in Lq reduces to a bound on k zN .ruf /kLq.@�/

in terms of the tangential derivatives of uf on the boundary (i.e., in terms of the derivatives
of f ). If @� D Rd is a plane, then we want to show that

(1.11) k zN .ruf /kLq.Rd / � CkrRd f kLq.Rd /;

where here rRd is the classical gradient in Rd . Similarly, on a more complicated bound-
ary, the regularity problem would correspond to the estimate

(1.12) k zN .ruf /kLq.@�;�/ � Ckr@�;qf kLq.@�;�/;

where r@�;q is a notion of (tangential) gradient that may depend on @� and q. If @� D �

is the graph of a Lipschitz function, then we can extend the notion of gradient from Rd

to � , for instance by finding a bi-Lipschitz map �W� ! Rd and define

r�f .x/ WD rRd Œf ı �� ı ��1.x/ for almost every x 2 @�:

On the other hand, let us take @� WD P1 [ P2 to be the union of two low dimensional
planes that do not intersect (and then � D Rn n @�/. We have a well-defined gradient
rP1[P2 on @� (because we have a gradient on planes), and we also have elliptic opera-
tors and solutions thanks to the elliptic theory from [19]. However, since P1 [ P2 is not
connected, rP1[P2f D 0 does not necessarily imply that f is constant on P1 [ P2, and
thus we can never have

(1.13) k zN .ruf /kLq.P1[P2/ � CkrP1[P2f kLq.P1[P2/:

Recall that Theorem 1.3 only requires � to be uniform, and so nothing can stop � from
being very rough (even purely unrectifiable) and not connected. So if we do not want to
lose too much from Theorem 1.3, we would prefer a notion of gradient that exists for any
set, and for any function obtained by restricting the ones from C1

0 .Rn/ to @�.
Fortunately for us, Lipschitz functions exist on every metric space, and a notion of

gradient was derived from it. For a Borel function f W@� ! R, we say that a non-negative
Borel function g is a generalized gradient of f if

(1.14) jf .x/ � f .y/j � jx � yj.g.x/ C g.y// for � -a.e. x; y 2 @�:
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The collection of all generalized gradients is denoted by D.f /. Then for any p � 1, the
space PW 1;p.@�; �/ is the space of Borel functions that have a generalized gradient in Lp ,
and we equip it with the semi-norm

(1.15) kf k PW 1;p.@�;�/ WD inf
g2D.f /

kgkLp.@�;�/:

Hajłasz introduced those spaces in [39], that is why they are often called Hajłasz–Sobolev
spaces. We refer an interested reader to [40] for more information on Sobolev spaces on
general metric spaces.

It should not a big surprise to bring up Hajłasz–Sobolev spaces here, since they have
already been used to study boundary values problems in [44] and recently in [56]. In
the latter article, the authors proved that in bounded domains with .n � 1/-dimensional
uniformly rectifiable boundaries, the solvability in Lp of the Dirichlet problem for the
Laplacian is equivalent to the solvability of the regularity problem, defined below with the
Hajłasz–Sobolev space.

Note that any function f which lies in a Hajłasz–Sobolev space supports a Poincaré
inequality, that is, for any p 2 Œ1;1� and for any boundary ball � D �.x; r/, we have

(1.16) kf � f�kLp.�;�/ � Cp r inf
g2D.f /

kgkLp.�;�/;

where
f� D

 
�

f d�:

The proof of this fact is immediate. Indeed, if g 2 D.f /, we have
 

�

jf � f�j
p d� �

 
�

 
�

jf .x/ � f .y/jp d�.x/ d�.y/

�

 
�

 
�

jx � yjp .g.x/ C g.y//p d�.x/ d�.y/

� Cp

 
�

g.x/p

 
�

jx � yjp d�.y/ d�.x/ � Cp rp

 
�

g.x/p d�.x/;

where we used the symmetry of the roles of x and y between the first and the second line.

Definition 1.4 (Regularity problem). The regularity problem is solvable in Lp if there
exists C > 0 such that for every compactly supported Lipschitz function f , the solution uf

constructed by (1.4) satisfies

(1.17) k zN .ruf /kLp.@�;�/ � Ckf k PW 1;p.@�;�/;

where PW 1;p.@�; �/ is the Hajłasz–Sobolev space defined above, and the maximal func-
tion zN is defined in (1.10).

The regularity problem targets the question whether the oscillations of u can be con-
trolled by the oscillations of its trace, in a similar way that in the Dirichlet problem,
u is controlled by its trace. We replace N by zN because, contrary to uf which lies in
L1

loc.�/ thanks to the Moser estimate (2.7), we can only be certain of the fact that ruf

lies in L2
loc.�/.
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It would be reassuring to know that the Hajłasz–Sobolev spaces are the classical
Sobolev spaces in the basic settings, which is not obvious at first glance. We have indeed:

(1.18)
when @� is a plane or the graph of a Lipschitz function,
PW 1;p.@�; �/ is the classical homogeneous Sobolev space.

The proof of the equivalence1 is a consequence of Lemma 6.5 in [56].
Note also that the Hajłasz–Sobolev spaces contain the compactly supported Lipschitz

functions, so they cannot be too small. Besides, we have the following duality result
between regularity and Dirichlet problems, proven in the appendix.

Theorem 1.5. Let � be a uniform domain, and let L D � divŒwAr� be an elliptic oper-
ator whose coefficients satisfy (1.3).

If the regularity problem (defined with the Hajłasz–Sobolev spaces) for L is solvable
in Lq for some q 2 .1;1/, then the Dirichlet problem for the adjoint L� is solvable in Lq0

,
where 1=q C 1=q0 D 1.

The combination of Theorems 1.2, 1.3, and 1.5 gives the following corollary.

Corollary 1.6. Let � be a uniform domain, and let L0 and L1 be two elliptic operators
whose coefficients are uniformly elliptic in the sense of (1.3). Assume that the disagree-
ment (1.7) satisfies the Carleson measure condition (1.8). Then the following holds.

(1) If there exists q0 2 .1; 1/ such that the regularity problem for the operator L0

is solvable in Lq for any q 2 .1; q0�, then there exists q1 2 .1; 1/ such that the
regularity problem for L1 is solvable in Lq for any q 2 .1; q1�.

(2) If there exists q0 2 .1;1/ such that the regularity problem for the operator L0 is
solvable in Lq0 , and if the Carleson norm M in (1.8) is smaller than "0 (depending
only on q0 and L0/, then the regularity problem for L1 is solvable in the same Lq0 .

Remark 1.7. When the boundary is smooth (flat or Lipschitz), then the Hajłasz–Sobolev
spaces and the regular Sobolev spaces are the same (1.18), and the solvability of the regu-
larity problem for an operator L in Lq immediately implies the solvability of the regularity
problem in Lp , p 2 .1; q�. The proof of this result is the same as that of Theorem 5.2
in [49] (see also [27]), which treats the case of bounded domains with smooth boundary.

However, the proof cannot be directly adapted to our context, because the proof relies
on the properties of Hardy–Sobolev spaces on the boundary, which are not constructed yet
in our setting that uses the generalized gradient.

Proof of Corollary 1.6. Let f 2 Cc.Rn/ and let u0;f and u1;f be the two solutions to
L0u0;f D 0 and L1u1;f D 0 constructed by (1.4). Theorem 1.5 shows that the Dirichlet
problem for L�

0 is solvable in Lq0
0 , and then Theorem 1.2 implies that the Dirichlet prob-

lem for L�
1 is solvable in Lq0

1 for some q0
1 2 Œq0

0;1/. Theorem 1.3 further provides the
estimate

(1.19) k zN .ru1;f /kLq1 .@�;�/ � Ck zN .ru0;f /kLq1 .@�;�/;

where 1=q1 C 1=q0
1 D 1.

1The equivalence is established in a much more general situation, involving uniformly rectifiable sets and
Poincaré inequalities.
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Since q0
1 � q0

0, we have q0 � q1 and hence the regularity problem for L0 is solvable
in Lq1 , that is,

(1.20) k zN .ru0;f /kLq1 .@�;�/ � Ckrf kLq1 .@�;�/:

We combine (1.19) and (1.20) to get that k zN .ru1;f /kq1 � Ckrf kq1 , which concludes
the first part of the corollary.

When M is small, Theorem 1.2 says that we can take q0
1 D q0

0 (hence q1 D q0) in the
above reasoning. The second part of the corollary follows.

1.5. Conditions on the operator implying the solvability in Lp of the regularity
problem

1.5.1. Combination with [16]. In another article [16], we use the perturbation result
from the present article to show that the regularity problem is solvable in L2 for a certain
class of elliptic operators on Rn n Rd , d < n � 1.

Theorem 1.8 (Theorem 1.1 in [16]). Let d < n � 1 and � D Rn n Rd WD ¹.x; t/ 2 Rd �

Rn�d ; t ¤ 0º. Assume that the operator L D � divŒjt jdC1�nAr� satisfies (1.3) and is
such that the matrix A can be written

(1.21) A D B C C ; with B D

�
Bjj 0

0 b Idn�d

�
;

and
�

B.x;r/

�
jt j<r

�
jt jjrBj C jC j

�2 dt dx

jt jn�d
� M rd for x 2 Rd ; r > 0:(1.22)

There exists "0 > 0 depending only on n, d , and the ellipticity constant � such that if
the constant M in (1.22) is smaller than "0, then the regularity problem for L is solvable
in L2.

Thanks to (1.18), the solvability of the regularity problem above means that for any
compactly supported Lipschitz function f on @�, the solution uf constructed by (1.4)
satisfies

k zN .ruf /kL2.Rd / � Ckrt f kL2.Rd /;

where the constant C > 0 depends only on d , n, and �, and where rt is the (tangential)
gradient on Rd .

If the matrix C is not included, Theorem 1.8 can be seen as the higher co-dimensional
analogue of Theorem 5.1 in [31]. The perturbation theory that we developed here allows
us to add such term C to the coefficients of the operator.

The objective of the project that includes both the present article and [16] is to prove
the solvability of the regularity problem when � and L are like those in [18], that is,
when � is the complement of a Lipschitz graph of low dimension.

In domains with codimension 1 boundary, such results are classically obtained by
using a change of variables that turns the Lipschitz domain into Rn

C (if the domain is
unbounded) or a ball (if the domain is bounded). Such gain in regularity on the boundary
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is paid for by less regularity on the coefficients of the elliptic operators L. In the case of
Lipschitz domains with codimension 1 boundary, the change of variable used to flatten
Lipschitz boundaries turns smooth operators like the Laplacian to operators in the form
� div Br with B like in (1.22), see [51]. That is, the perturbation theory is not needed in
this case.

However, the change of variable from [51] is not suitable to flatten Lipschitz graphs of
low dimension, and another change of variable is needed, like the one in [18]. This second
change of variable is almost isometric in the non-tangential direction, and the conjugate
elliptic operator will have coefficients in the form (1.21) and (1.22). Thus we can deduce
from Theorem 1.8 the solvability of the regularity problem on the complement of a small
Lipschitz graph of low dimension.

Corollary 1.9. Let d < n � 1. Let � be the graph of a Lipschitz function '. Consider the
domain � WDRn n� and the operator L˛ D�divDdC1�n

˛ r, where D˛ is the regularized
distance

D˛.X/ WD
��

�

jX � yj�d�˛ dH d .y/
��1=˛

;

H d is the d -dimensional Hausdorff measure, and ˛ > 0.
There exists "0 > 0 that depends only on ˛ and n such that if the Lipschitz constant

kr'k1 is smaller than "0, then the regularity problem for L is solvable in L2, which
means that, for any compactly supported Lipschitz function f on @�, the solution uf

constructed by (1.4) satisfies

k zN .ruf /kL2.�/ � Ckrt f kL2.�/;

where the constant C > 0 depends only on ˛ and n, and where rt is the (tangential )
gradient on � .

Proof. We use the bi-Lipschitz change of variable � constructed in [18]. So the solvability
of the regularity problem for L˛ (defined on Rn n �) in Lq is equivalent to the solvability
regularity problem in Lq for an operator L� D�divŒjt jdC1�nA�r� (defined on Rn nRd ),
where A� satisfies

A� D

�
Bjj 0

0 b Idn�d

�
C C D B C C

and

(1.23)
�

B.x;r/

�
jt j<r

�
jt jjrBj C jC j

�2 dt dx

jt jn�d
� C˛kr'k1rd for x 2 Rd ; r > 0:

The corollary follows now from Theorem 1.8.

1.5.2. Combination with [56]. In uniform domains, Corollary 1.6 and part (a) of Corol-
lary 1.7 in [56]2 give:

2The results in [56] are stronger because they do not require the existence of Harnack chains inside the
domain, like we do.
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Theorem 1.10 ([56]). If � be a bounded uniform domain with a uniformly rectifiable
boundary, then the regularity problem (defined with the Hajłasz–Sobolev spaces) for the
Laplacian is solvable in Lq for any q 2 .1; q0�, where q0 > 1 sufficiently small.

Thanks to Corollary 1.6, we know that the above result can be extended to perturba-
tions of the Laplacian as well.

1.6. Plan of the article

A brief summary of this article is as follows. In Section 2, we state the precise statement
of the assumptions on our domain, and we recall the elliptic theory that shall be needed
for the proof of Theorem 1.3. In particular, we construct the elliptic measure and we link it
to the solvability of the Dirichlet problem. In Section 3, we construct the elliptic measure
and Green function with pole at infinity, which are very convenient tools to deal with
unbounded domains. Section 4 is devoted to the proof of Theorem 1.3, where we shall
follow the strategy of [50] to our more general setting.

In the rest of the article, we shall use A . B when there exists a constant C such that
A � C B , where the dependence of C > 0 into the parameters will be either obvious from
context or recalled. We shall also write A � B when A . B and B . A.

2. Our assumptions and the elliptic theory

2.1. Our assumptions on the domain

In addition to the fact that the boundary @� is d -dimensional Ahlfors regular, see (1.1),
we assume two extra hypotheses on the domain: the interior corkscrew point condition
(quantitative openness) and the interior Harnack chain condition (quantitative connected-
ness).

Definition 2.1 (Corkscrew point condition). We say that � satisfies the corkscrew point
condition if there exists c0 > 0 such that, for any x 2 @� and any r > 0, there exists
X 2 B.x; r/ \ � such that B.X; c0r/ � �.

Such a point X is called the corkscrew point associated to x and r . Sometimes, the
pair .x; r/ will be given by a boundary ball �, that is, we say that X is a corkscrew point
associated to a boundary ball � if X is a corkscrew point associated to x and r where
� D �.x; r/ WD B.x; r/ \ @�.

Definition 2.2 (Harnack chain condition). We say that � satisfies the Harnack chain con-
dition if the following holds. For any K > 1, there exists an integer NK such that for
any X; Y 2 � that satisfies jX � Y j � K min¹ı.X/; ı.Y /º, there exist at most NK balls
B1; : : : BNK

such that
(1) X 2 B1 and Y 2 BNK

,
(2) 2Bi 2 � for 1 � i � NK ,
(3) Bi \ BiC1 ¤ ; for 1 � i � NK � 1.

Definition 2.3 (Uniform domain). We say that � is uniform if � satisfies the corkscrew
point condition and the Harnack chain condition, and if @� is d -Ahlfors regular.
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The constants in (1.1), Definition 2.1, and Definition 2.2 are referred as “the uniform
constants of �”.

Lemmas 11.7 and 2.1 of [19] show that:

Proposition 2.4. Let d < n� 1, and let � D Rn n� . If � D @� is d -dimensional Ahlfors
regular, then � is uniform.

2.2. Quantitative version of absolutely continuity

In this article, we focus on doubling measures on @�, which are non-negative Borel mea-
sures � that satisfy

(2.1) �.2�/ � C��.�/ for any boundary ball � � @�:

Two measures that will be considered in this paper are the Ahlfors regular (hence dou-
bling) measure � and the elliptic measure with pole at infinity ! that will be constructed
in Section 3 and is doubling according to Lemma 3.4. These two measures will be compa-
rable, more precisely, A1-absolutely continuous with each other; the definition is given
below.

Definition 2.5 (A1-absolute continuity). Let �; � be two doubling measures on @�. We
say that � is A1-absolute continuous with respect to � (or � 2 A1.�/, in short) if for
each " > 0, there exists � D �."/ > 0 such that for every surface ball �, and every Borel
set E � �, we have that

�.E/

�.�/
< � H)

�.E/

�.�/
< ":(2.2)

The A1-absolute continuity is related to the following stronger property.

Definition 2.6 (The reverse Hölder class RHp). Let � and � be two doubling measures
on @� that are absolutely continuous with respect to each other. We say that � 2 RHp.�/ if
there exists a constant Cp such that for every surface ball �, the Radon–Nikodym deriva-
tive k D d�=d� satisfies� 

�

jkjpd�
�1=p

� Cp

 
�

kd� D Cp

�.�/

�.�/
�(2.3)

The A1 and RHp classes satisfy several important properties, which are recalled here.

Theorem 2.7 (Properties of A1 measures; Theorem 1.4.13 of [47], [58]). Let � and � be
two doubling measures on @�, and let � be a surface ball. The following statements hold.

(i) If � 2 A1.�/, then � is absolutely continuous with respect to � on �.

(ii) The class A1 is an equivalence relationship, that is, � 2 A1.�/ implies � 2

A1.�/.

(iii) We have that � 2 A1.�/ if and only if there exist a constant C > 0 and � > 0 such
that for each surface ball � and each Borel set E � �, we have that

�.E/

�.�/
� C

��.E/

�.�/

��

:
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(iv) � 2 A1.�/ if and only if we can find p > 1 such that � 2 RHp.�/, i.e.,

A1.�/ D
[
p>1

RHp.�/:

(v) � 2 RHp.�/ if and only if the uncentered Hardy–Littlewood maximal function with
the measure �, defined as

.M�f /.x/ WD sup
�3x

 
�0

jf j d�;

satisfies the estimate

kM�f kLp0
.@�;�/ � Ckf kLp0

.@�;�/ for f 2 Lp0

.@�; �/;

where p0 is the Hölder conjugate of p, that is, 1=p C 1=p0 D 1.

2.3. The basic elliptic theory

To lighten the notations, in the rest of the article, we shall write ı.X/ for dist.X; @�),
w.X/ for ı.X/dC1�n, dm.X/ for w.X/dX , and BX for B.X; ı.X/=4/. The measure m

is doubling, as shown in Lemma 2.3 of [19], but more importantly, m satisfies some
boundary and interior Poincaré inequalities (see Lemma 4.2 in [19] when d < n � 1,
and Theorem 7.1 in [20] for the statement in any dimension).

The correct function spaces to study our elliptic equations are the weighted Sobolev
space,

(2.4) W WD ¹u 2 L1
loc.�/ W kukW WD krukL2.�;dm/ < C1º;

and the space of traces

(2.5) H WD

°
f W kf kH WD

�
@�

�
@�

jf .x/ � f .y/j

jx � yjdC1
d�.x/d�.y/ < 1

±
:

For these spaces, we can construct a bounded trace operator TrWW !H . By trace operator
we mean that Tr.u/ D u whenever u 2 W \ C 0.�/, which is uniquely defined by the
density of W \ C 0.�/ in W (see Lemma 9.19 in [20]). We shall also need

W0 WD ¹u 2 W; Tr.u/ D 0º;

which is also the completion of C1
0 .�/ with the norm k:kW , and the local versions of W

defined for any open set E � Rn as

Wr .E/ WD ¹u 2 L1
loc.E \ �/; 'u 2 W for all ' 2 C1

0 .E/º:

Note that E is not necessarily a subset of �, and that Wr .Rn/ D W
1;2

loc .�; dm/   W .

We are now ready to talk about weak solutions to LuD0. Recall that LD� div.wAr/

for a matrix A that satisfies (1.3). Let F � � be an open set. We say that u is a weak
solution of Lu D f in F if u 2 Wr .F / and for any ' 2 C1

0 .F /,�
�

Aru � r' dm D 0:

We can always construct a unique weak solution via the Lax–Milgram theorem.
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Lemma 2.8 (Lemma 9.3 of [19]). For any h 2 W �1 WD .W0/� and f 2 H , there exists a
unique u 2 W such that Tr.u/ D f and

�
�

Aru � r' dm D hh; 'iW �1;W0
for ' 2 W0:

Moreover, there exists C > 0, independent of h and f , such that

kukW � C.kf kH C khkW �1/:

Let us now recall several classical results (Caccioppoli’s inequality, Moser’s estimate,
and Harnack’s inequality inside the domain) that will be useful later. Since they are interior
results, that is, where the weight w has no degeneracy, they are direct consequences of the
classical theory. The precise statements can be found in [19] and [20].

Lemma 2.9 (Interior Caccioppoli inequality and Moser estimate). Let B be a ball of
radius r > 0 such that 2B � �, and let u 2 Wr .2B/ be a weak solution to Lu D 0 in 2B .
Then �

B

jruj2 dm � C r�2

�
2B

u2 dm;(2.6)

and

sup
B

juj � C

 
2B

juj dm;(2.7)

where C > 0 depends on the dimensions d and n, and on the elliptic constant �.

The interior Caccioppoli inequality (and the Moser estimate) holds if we replace 2B

by ˛B in (2.6), and the constant C will then depend on ˛ > 1 too. Note also that we can
very well replace a ball by a (Whitney) cube, that is, a cube I 2 Rn for which 2I � �,
and that we can replace dm by dX , since the weight w is non-degenerated on B .

Corollary 2.10. Let B be a ball of radius r > 0 such that 4B � � and let u 2 Wr .2B/

be a weak solution to Lu D 0 in 2B . Then�  
B

jruj2 dX
�1=2

� C

 
2B

jruj dX;

where C > 0 depends on the dimensions d and n, and on the elliptic constant �.

Proof. First, observe that w.X/ � w.Y / for X; Y 2 2B , that is,
�

E
v dm �

�
E

v dX

whenever v is nonnegative and E � 2B . Therefore, if u2B D
�

2B
u dX , then� 

B

jruj2 dX
�1=2

�

� 
B

jr.u � u2B/j2 dX
�1=2

.
1

r

� 
3
2 B

ju � u2B j
2 dm

�1=2

.
1

r

 
2B

ju � u2B j dm .
1

r

 
2B

ju � u2B j dX;

where we invoke successively (2.6) and (2.7) and use the fact that we can replace 2B by
˛B in those inequalities. The lemma follows then from the L1-Poincaré inequality.
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Lemma 2.11 (Harnack inequality). Let B be a ball such that 2B ��, and let u2Wr .2B/

be a non-negative solution to Lu D 0 in 2B . Then

sup
B

u � C inf
B

u;

where C > 0 depends on the dimensions d and n, and on the elliptic constant �.

We also have a version of Lemma 2.9 for a ball B centered at the boundary, and in this
case, the solution u 2 Wr .2B/ has to satisfy Tr u D 0 on 2B \ @�. In order to keep our
article short, we will not present the result explicitly, but it is worthwhile to mention the
Hölder continuity of solutions at the boundary.

Lemma 2.12 (Hölder continuity at the boundary; Lemmas 11.32 and 15.14 in [20]). Let
B WD B.x; r/ be a ball with a center x 2 @� and radius r > 0, and let X be a corkscrew
point associated to .x; r=2/. For any non-negative solution u 2 Wr .B/ to Lu D 0 in
B \ � such that Tr u D 0 on B \ @�, there exists ˛ > 0 such that for 0 < s < r ,

sup
B.x;s/

u � C
� s

r

�˛

u.X/;

where the constants ˛ and C depend on the dimension n, the uniform constants of �, and
the elliptic constant �.

We shall mention quickly that weak solutions are also Hölder continuous inside the
domain, and so the solutions u that satisfy the assumptions of Lemma 2.12 are Hölder
continuous in 1

2
B \ �.

2.4. Elliptic measure

For solutions u 2 W to Lu D 0, we have a maximum principle that states

(2.8) sup
�

u � sup
@�

Tr.u/ and inf
�

u � inf
@�

Tr.u/;

see Lemma 12.8 in [20]. The maximum principle and the Riesz representation theorem
can be used to construct a family of positive regular Borel measures !X on @�, which is
called the elliptic measure.

Proposition 2.13 (Elliptic measure, Lemmas 12.13 and 12.15 in [20]). There exists a
unique collection of Borel regular probability measures ¹!XºX2� on @� such that, for
any continuous compactly supported function f 2 H , the solution uf constructed as

uf .X/ WD

�
@�

f .x/d!X .x/(2.9)

is the solution to Lu D 0 and Tr uf D f given by Lemma 2.8.
Moreover, the construction (2.9) can be extended to all bounded functions on @� and

provides a weak solution to Lu D 0.

Since the elliptic measure is a family of measures, the classical definitions of A1

and RHp should be adapted to fit the scenario of elliptic measure.
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Definition 2.14 (A1 and RHp for elliptic measure). We say that ¹!XºX2� is of class A1

with respect to the measure � , or simply ¹!XºX2� 2A1.�/, if for every " > 0, there exists
� D �."/ > 0 such that for any boundary ball � D �.x; r/ and any E � �, we have

�.E/

�.�0/
< � H) !X0.E/ < ";

where X0 is a corkscrew point associated to �.
We say that ¹!XºX2� 2 RHp.�/, for some p 2 .1;1/, if there exists a constant C � 1

such that for each surface ball � with corkscrew point X0 2 �, we have� 1

�.�/

�
�

.kX0/p d�
�1=p

� C
1

�.�/

�
�

kX0 d�:(2.10)

Let us recall a result from [52] showing that in higher co-dimension, the solvability of
the Dirichlet problem in Lp0

is equivalent to the fact that !X 2 RHp.�/. It is an analogue
of Theorem 1.7.3 of [47].

Theorem 2.15. Let !X be the elliptic measure associated to L, and let p; p0 2 .1;1/ be
such that 1=p C 1=p0 D 1. Then, the following statements are equivalent:
(i) The Dirichlet problem is solvable in Lp , that is, for each f 2 Cc.@�/, the solu-

tion uf constructed by (2.9) satisfies

kN.u/kLp0
.@�;�/ � Ckf kLp0

.@�;�/;

where N.u/ is the non-tangential maximal function – see (1.6) –, and the constant C

is independent of f .

(ii) We have that ! � � and !X 2 RHp.�/ (see Definition 2.14).

2.5. Green functions

The Green function is a function defined on � � � which is morally the solution to
Lu D ıY , where ıY is the Dirac distribution, with zero trace. Its properties are given
below.

Theorem 2.16 (Lemma 14.60 and 14.91 in [20]). There exists a unique function GW� �

� ! R [ ¹C1º such that G.X; :/ is continuous on � n ¹Xº, locally integrable in � for
any X 2 �, and such that for any f 2 C1

0 .�/, the function defined by

(2.11) uf .X/ WD

�
�

G.X; Y /f .Y / dY

belongs to W0 and is a solution to Lu D f in the sense that
�

�

Aruf � r' dm D

�
�

f ' dm for ' 2 W0:

Moreover,

(i) for any Y 2 �, G.:; Y / 2 Wr .Rn n ¹Y º/ and TrŒG.:; Y /� D 0.
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(ii) For Y 2 � and ' 2 C1
0 .�/,

�
�

ArX G.X; Y / � r'.X/ dm.X/ D '.Y /:

In particular, G.:; Y / is a solution to Lu D 0 in � n ¹yº.

(iii) For every Y 2 �, G.:; Y / 2 W 1;2.� n BY ; dm/, and
�

�nBY

jrX G.X; Y /j2 dm.X/ � C ı.Y /�d ;

(iv) For Y 2 � and q 2 Œ1; n=.n � 1//, G.:; Y / 2 W 1;q.2BY /, and� 
2BY

jrX G.X; Y /jq dm.X/
�1=q

� Cq ı.Y /�d :

In the inequalities above, C > 0 depends on n, the uniform constants of �, and the ellip-
ticity constant �, while Cq depends on the same parameters and q.

We only provide a condensed version of Theorem 14.60 from [20]. Indeed, we also
have explicit pointwise bounds on G, but it turns out they are not useful in our article. So
we omit them here.

Lemma 2.17 (Lemma 10.101 of [19]). Let G� be the Green function associated with
the operator L� (defined from the matrix AT /. For any X; Y 2 �; X ¤ Y , we have
G.X; Y / D G�.Y; X/. In particular, the function Y 7! G.X; Y / satisfies the estimates
given in Theorem 2.16.

We need a last technical lemma.

Lemma 2.18. Let X 2 � and ' 2 C1
0 .Rn n ¹Xº/. Then

�
�

AT
rG.X; Y / � r'.Y / dm.Y / D �

�
@�

'.y/ d!X .y/:

Proof. Take � < ı.X/=2 such that B.X; �/ \ supp ' D ;. Construct G
�
�.:; X/ to be the

function in W0 that satisfies

(2.12)
�

�

AT
rG�

�.Y; X/ � r�.Y / dm.Y / D

 
B.X;�/

� dm for � 2 W0

as given by Lemma 2.8 and which was constructed in Section 14 of [20]. As shown in
the proof of Theorem 14.60 from [20], we have that G

��
� .:; X/ converges to G�.:; X/ D

G.X; :/ uniformly on compact sets of � n ¹Xº for a subsequence �� ! 0, and by the
Caccioppoli inequality, we also have that rG

��
� .:;X/ converges to rG�.:;X/DrG.X; :/

in L2
loc.� n ¹Xº/.

Let now u' be the weak solution in W to Lu' D 0 in � with Tr u' D ' given by
Lemma 2.8 . By Proposition 2.13, we have that

�
@�

'.y/ d!X .y/ D u'.X/:
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Since u' 2 W0 is a weak solution to Lu' D 0, we have

(2.13)

�
�

AT
rG�

�.:; X/ � r' dm D

�
�

AT
rG�

�.:; X/ � rŒ' � u' � dm

D

 
B.X;�/

Œ' � u' � dm D �

 
B.X;�/

u' dm

by (2.12) and the fact that ' � 0 on B.X; �/. As previously mentioned, we have the con-
vergence rG

��
� .:; X/ !rG.X; :/ in L2.supp '; dm/, but we also have

�
B.X;�/

u' dm !

u'.X/ because u' is a solution, hence is continuous. The lemma follows from taking the
convergence � ! 0 in (2.13).

2.6. The comparison principle

Theorem 2.19 (Lemma 15.28 of [20]). Let x 2 @� and r > 0, and let X be a corkscrew
point associated to x and r . There exists a constant C > 1 depending on n, d , the uniform
constants of �, and the elliptic constant � such that, for Y 2 � n B.x; 2r/,

(2.14) C�1 rd�1G.Y; X/ � !Y .�.x; r// � C rd�1G.Y; X/:

The next result in line should be the fact that the elliptic measure !X is doubling.
We need the doubling property for the elliptic measure with pole at infinity constructed
in Section 3, but we shall prove this result without going through the fact that the elliptic
measure is itself doubling.

At this point, it is time to introduce the comparison principle. There are two different
versions of it.

Lemma 2.20 (Change of poles, Lemma 15.61 of [20]). Let � WD �.x; r/ be a boundary
ball, and let X be a corkscrew point associated to �. If E � � is a Borel set, then for
Y 2 � n B.x; 2r/,

(2.15) C�1 !X .E/ �
!Y .E/

!Y .�/
� C !X .E/;

where C > 0 depends on n, the uniform constants of �, and the ellipticity constant �.

Theorem 2.21 (Comparison principle, Lemma 15.64 of [20]). Let x 2 @� and r > 0 be
given, and take X a corkscrew point associated to x and r . Let u; v 2 Wr .B.x; 2r// be
two non-negative, not identically zero, solutions of Lu D Lv D 0 in B.x; 2r/ \ � such
that Tr u D Tr v D 0 on �.x; 2r/. For any Y 2 � \ B.x; r/, one has

C�1 u.X/

v.X/
�

u.Y /

v.Y /
� C

u.X/

v.X/
;

where C > 0 depends only on n, the uniform constants of �, and the ellipticity constant �.

The next corollary is a generalization of Corollary 6.4 of [17]. Even though Corol-
lary 6.4 in [17] is proved for a specific operator L, the proof of it can be adapted to any
uniformly elliptic operator, because it is a direct consequence of Theorem 2.21.
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Corollary 2.22 (Corollary 6.4 of [17]). Under the same assumptions on u and v as in
Theorem 2.21, for all X; Y 2 B.x; �/ \ � and 0 < � < r=4,ˇ̌̌u.X/

u.Y /

v.Y /

v.X/
� 1

ˇ̌̌
� C

��

r

�˛

;

where ˛ > 0 and C > 0 depend also only on n, the uniform constants of �, and the
ellipticity constant �.

3. The Green function and elliptic measure with pole at infinity

The elliptic measure, contrary to what its name suggests, is a collection of measures. This
is pretty inconvenient: every time when we consider the elliptic measure and its properties,
we have to pick a right one from the collection. It would be way more practical to have a
single measure ! that will capture the (interesting) behavior of all the measures ¹!XºX2�.
As we can see in (2.15), taking a pole Y further away from the boundary set E will not
really matter, as long as we rescale accordingly. For bounded domains �, it suffices to pick
a pole X� which is roughly at the middle of the domain in order to have a measure ! WD

!X� from which we can recover many properties that the collection ¹!XºX2� possess.
For unbounded domains, we want to morally take “X� D 1”. This section is devoted to
the construction of the measure !1 – called the elliptic measure with pole at infinity – and
its Green counterpart G1

� , which satisfies (2.14) with “Y D 1”.

Definition 3.1. We say G1
� and !1 are the Green function and the elliptic measure with

pole at infinity3 if G1
� 2 Wr .Rn/4 is a positive solution to L�G1

� D 0 in � with zero
trace, and !1 satisfies

�
�

AT
rG1

� � r' dm D �

�
@�

' d!1; for ' 2 C1
0 .Rn/:

Lemma 3.2 (Existence and uniqueness of G1 and !1). Let � be a uniform domain
and let L be an operator that satisfies (1.3). There exist a Green function and an elliptic
measure with pole at infinity, and they are both unique up to multiplication by a positive
scalar.

Proof. The proof of the following lemma is adapted from Lemma 6.5 of [17]. One key
difference is that we consider a general operator L, which is not necessarily symmetric.

Choose a boundary point x 2 @� (the choice is not important). Pick X0 2 B.x;1/\�

a corkscrew point associated to x and 1, and then for i � 1, pick Xi 2 � n B.x; 2i / to be
a corkscrew point for x and C 2i . For i � 1, we define Gi

�.X/ WD G.Xi ; X/=G.Xi ; X0/,
where G.:; X/ is the Green function of L. Thanks to Harnack’s inequality (Lemma 2.11),
G.Xi ; X1/ > 0 for i > 1. So Gi .X/ is well defined.

3If we want to be accurate, the elliptic measure with pole at infinity is for L while the Green function with
pole at infinity is for its adjoint L�. Indeed, we want to take Y D 1 in G.Y; X/ D G�.X; Y /, that is, when the
pole of the Green function associated to L� is 1.

4Wr .Rn/ is the set W
1;2

loc .�; dm/.
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First, we show the existence of the Green function with pole at infinity. Let Bj WD

B.x; 2j /. Observe that for j < i , one has Xi … 2Bj , so in particular Gi
� is a solution

in 2Bj \ � and hence is Hölder continuous on Bj \ � (see Lemma 2.12). Using the
Hölder continuity, the Harnack inequality (Lemma 2.11), the existence of Harnack chains
(by assumption on the domain), and the fact that Gi

�.X0/ D 1 for all i , we also deduce
that the Gi

� are uniformly bounded on Bj \ �. Thus, the sequence ¹Gi
�ºi>j is uniformly

bounded and uniformly equicontinuous (follows from the Hölder continuity), and by the
Arzelà–Ascoli theorem, there exists a subsequence ¹G

i�
� º that converges uniformly on

Bj \ �. By a diagonal process, we conclude that G
i�
� converges uniformly on all compact

sets of � to a non-negative continuous function G1
� .X/ satisfying G1

� .X0/ D 1.
Using the boundary Caccioppoli inequality (see Lemma 11.15 in [20], analogous of

Lemma 2.9 but at the boundary), we can see that rGi� is a Cauchy sequence in L2.K/

for all compact set K b �, and thus rG
i�
� converges to a function V 2 L2

loc.�; dm/.
Since rG

i�
� converges to both rG1

� and V in the sense of distributions, we deduce that
rG1

� D V , hence G1
� 2 Wr .Rn/.

From the previous paragraph, rG
i�
� converges strongly (hence weakly) to rG1

� in
L2

loc.�/, so we easily have
�

�

AT
rG1

� � r' dm D � lim
i!1

�
�

AT
rGi

� � r' dm D 0(3.1)

whenever ' 2 C1
0 .�/ and i large enough so that Xi is outside of supp '. We deduce

that G1
� is a weak solution to L�G1

� D 0. We can now invoke the Harnack inequality
(together with the existence of Harnack chains and the fact that G1

� .X0/ D 1) to obtain
that G1

� is positive in �.
We claim that G1 is the unique positive solution to the operator L� with zero trace

(up to a positive scalar multiplication). Take another weak solution v 2W.Rn/ to L�v D 0

in � with zero trace and v.X0/ D 1. Applying Corollary 2.22 with Y D X0, one hasˇ̌̌G1
� .X/

v.X/
� 1

ˇ̌̌
� C

��

r

�˛

(3.2)

whenever X 2 �, B.x; �/ 3 X , and r > 4�. There is no limitation to take �=r as small as
we want, hence (3.2) implies that G1

� � v. The uniqueness also proves that, in the Arzelà–
Ascoli theorem, G1

� is the only adherent point of the relatively compact sequence ¹Gi
�º.

So we actually have that
(3.3)

Gi
� WD

G.Xi ; :/

G.Xi ; X0/
converges to G1

� uniformly on compact subsets of � and in Wr .Rn/.

Now, we deal with the elliptic measure !1 with pole at infinity. Let us set !i D

!Xi =G.Xi ; X0/. Theorem 2.19 entails, for i >j , that !Xi .Bj \@�/.2j.d�1/G.Xi ;X
j /,

hence
!i .Bj \ @�/ � C 2j.d�1/ Gi

�.Xj / � Cj ;

because Gi
� converges to G1

� uniformly on compacts. Thus, there exists a measure !1

such that a subsequence !i� converges weakly-* to !1. Lemma 2.18, the convergence
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of rGi
� to rG in L2.�; dm/, and !i�

�
* !1 all together imply that

(3.4)
�

�

AT
rG1

� r' dm D �

�
@�

' d!1:

The uniqueness of !1 follows from the uniqueness of G1 and .3.4/. Moreover, the
uniqueness also shows the convergence of !i (instead of a subsequence), that is,

(3.5) !i �
* !1 and !i .E/ ! !1.E/ for any Borel set E � @�.

The lemma follows.

The Green function and elliptic measure with pole at infinity satisfy the following
CFMS-type estimates (see [7]).

Lemma 3.3. Let X 2 � be a corkscrew point associated to a boundary ball �X WD

�.x; r/. Then

C�1 rd�1 G1
� .X/ � !1.�X / � C rd�1 G1

� .X/:

If moreover E � �X is a Borel set, then

C�1 !X .E/ �
!1.E/

!1.�X /
� C !X .E/;

At last, when Y 2 � n B.x; 2r/, we have

C�1 G.Y; X/ �
G1

� .Y /

!1.�X /
� C G.Y; X/:

In each case, C > 0 depends only on n, the uniform constants of �, and the elliptic
constant �.

Proof. Thanks to the convergences (3.3) and (3.5), the first two results follow directly
from the estimates of Theorems 2.19 and 2.20 respectively. The third one is an easy con-
sequence of Theorem 2.19 and the first two estimates.

Let us show now that the elliptic measure with pole at infinity is doubling.

Lemma 3.4 (Doubling property of !1). There exists C > 0 depending only on n, the
uniform constants of �, and the elliptic constant �, such that

!1.2�/ � C!1.�/ for any boundary ball �:

Proof. By Lemma 3.3, if r� is the radius of �, then

!1.2�/ � .2r�/d�1 G1.X2�/ and !1.�/ � .r�/d�1 G1.X�/;

where X� and X2� are corkscrew points for � and 2� respectively. The lemma follows
from the existence of Harnack chains (since � is uniform) and the Harnack inequality
(Lemma 2.11).
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The measure !1 is convenient, because it allows to capture the A1-absolute conti-
nuity and the reverse Hölder estimates for a collection of measures (see Definition 2.14)
with a single measure (Definitions 2.5 and 2.6).

Lemma 3.5. We have

¹!X
ºX2� 2 A1.�/ ” !1

2 A1.�/;

and
¹!X

ºX2� 2 RHp.�/ ” !1
2 RHp.�/:

Proof. The change of pole estimate (the second one) in Lemma 3.3, Definition 2.14, and
Theorem 2.15 easily give the results.

Corollary 3.6. Let � be a uniform domain, let � be as in (1.1), and let L be the elliptic
operator that satisfies (1.3). Write !1 for the elliptic measure with pole at infinity of L.
For any fixed p 2 .1;1/, the following two statements are equivalent:
• the Dirichlet problem of operator L is solvable in Lp0

, that is, for each f 2 Cc.@�/,
the solution uf constructed by (2.9) satisfies

kN.uf /kLp0
.@�;�/ � Ckf kLp0

.@�;�/;

where C is independent of f ;
• !1 � � and !1 2 RHp.�/.

4. The proof of Theorem 1.3

We recall that we write ı.X/ for dist.X; @�/, w.X/ for ı.X/dC1�n, dm.X/ D w.X/dX ,
and BX for B.X; ı.X/=4/.

For the proof of Theorem 1.3, we will follow the method developed by Kenig and
Pipher in [50]. In this section, L0 and L1 are two operators in the form � divŒwAir� that
satisfy (1.3). Since we assume that the Dirichlet problem for L�

1 is solvable in Lq0

.�/, by
Corollary 3.6, the elliptic measure !1

1;� with pole at infinity satisfies the reverse Hölder
bounds

(4.1)
� 

�

ˇ̌̌d!1
1;�

d�

ˇ̌̌q
d�

�1=q

� Cq

!1
1;�.�/

�.�/
for any boundary ball �:

The notations u0 and u1 are reserved for solutions to L0u0 D 0 and L1u1 D 1 that satisfy
the same trace condition Tr u0 D Tr u1 D f 2 Cc.@�/ \ H . We shall use the quantity
F.X/ defined as

(4.2) F.X/ D

�
�

rY G1.X; Y / � E.Y /ru0.Y / dm.Y / D u1.X/ � u0.X/;

where G1 is the Green function associated to the operator L1 and E WD A0 � A1 is the
disagreement between L0 and L1. One important fact is that F is the difference of u1

and u0, that is,

(4.3) u1.X/ � u0.X/ D F.X/ for almost every X 2 �:



Carleson perturbations for the regularity problem 23

Indeed, we “morally” have that

L1.u1 � u0/ D .L0 � L1/u0 D � div.wEru0/;

and so, using the properties of the Green function and the fact that u1 � u0 has zero trace,

u1.X/ � u0.X/ D �

�
�

G1.X; Y / div.wEru0/.Y / dY

D

�
�

rY G1.X; Y / � E.Y /ru0.Y / w.Y / dY D F.X/:

The actual proof of (4.3) can be found in Lemma 3.18 from [9] (for codimension 1) and
Lemma 7.13 from [52] (for higher codimension).

We assume that the disagreement satisfies the Carleson measure condition

(4.4)
�

B.x;r/\�

sup
Y 2BX

jE.Y /j2
dX

ı.X/n�d
� M rd for any x 2 @� and r > 0:

The condition (4.4) is well adapted to the non-tangential maximal function zN because of
the Carleson inequality

(4.5)
�

@�

��

.x/

jE.Y /j2 j�.Y /j2
dY

ı.Y /n

�q=2

d�.x/ . Mk zN .�/k
q
Lq ;

which is proved as Lemma 2.1 in [11] in the case where the boundary is flat (but the proof
easily extends to our setting).

Similarly to the method found in [50], the plan of the proof is as follows:
(1) Lemma 4.1:

k zN .F /kq .
�

�

rF.Z/ � Eh.Z/ dZ;

where Eh is constructed by duality to have the above estimate (and so depends on F

and q).
(2) Lemma 4.6:

�
�

rF.Z/ � Eh.Z/ dZ . Mk zN .ru0/kqkS.v/kq0 ;

where v is the solution to L�
1v D div Eh with Tr.v/ D 0.

(3) Lemma 4.7 and Corollary 4.8:

kS.v/kq0 . kN.v/kq0 C k zN .ırv/kq0 C kM!.T .Eh//kLq0 .@�;�/;

where M! is the Hardy–Littlewood maximal function with respect to the measure
! WD !1

1;�, and where T .Eh/ is defined in (4.13) and looks a bit like a square func-
tional.
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(4) Lemma 4.10:

kN.v/kq0 C k zN .ırv/kq0 . kM!.T .Eh//kLq0 .@�;�/:

(5) By the property (v) of Theorem 2.7,

kM!.T .Eh//kLq0 .@�;�/ . kT .Eh/kLq0 .@�;�/:

(6) Lemma 4.4:
kT .Eh/kq0 . 1:

(7) Items (1) to (6) prove that, for f 2 Cc.@�/ \ H ,

k zN .rF /kLq.@�;�/ � Ck zN .ru0/kLq.@�;�/;(4.6)

that is, by (4.3),

k zN .ru1/kLq.@�;�/ � Ck zN .ru0/kLq.@�;�/;(4.7)

which is the desired result.
The constants in this section are independent of f and depend on L0 and L1 (and

hence on u0 and u1) only via the ellipticity constant � and the reverse Hölder constants q

and Cq from (4.1). The dependence in M will only appear in Lemma 4.6 and will be
explicitly written.

4.1. Notation

We start this section by giving the definition of cones that we shall use. The basic cones
are simply 
.x/ WD ¹X 2 �; jX � xj < 2ı.X/º, but it will be also convenient for us to
use cones constructed from Whitney cubes.

So we construct a family of Whitney cubes W . We use the following convention: if
Q 2 D is a dyadic cube in Rn, then `.Q/ denotes its diameter and

�Q WD ¹X 2 Rn; dist.X; Q/ � .� � 1/`.Q/º for � � 1:

In particular, if Q� is the dyadic parent of Q, then Q� � 2Q. We say that the dyadic
I 2 D in Rn belongs to W if I is a maximal dyadic cube with the property that 10I � �.
As such, a cube I 2 I satisfies

(4.8) 10I � � and 20I \ @� ¤ ;:

We define then 
d .x/ as the union of the Whitney cubes that intersect ¹X 2 �; jX � xj <

3ı.X/º, that is, if

Wx WD ¹I 2 W ; jX � xj < 3ı.X/ for one X 2 I º;

then

(4.9) 
d .x/ WD
[

I2Wx

I:
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4.2. Duality and the function h

The first step is to use duality to write k zN .rF /kq as an integral against a function. Since
we do not know a priori that k zN .rF /kq is finite, for the rest of the section, we choose a
compact subset K of � and we define the truncated (localized) function zN as

zNK.rF / WD sup
X2
.x/

1K.X/
� 

BX

jrF j
2 dY

�1=2

:

The quantities zNK.rF /.x/ – for x 2 @� – and k zNK.rF /kq are all finite, and this is
only a consequence of the fact that F D u1 � u0 2 W

1;2
loc .�/. We shall obtain bounds

on k zNK.rF /kq that are independent of K, hence a bound on k zN .rF /kq thanks to the
monotone convergence theorem.

Lemma 4.1. Let q > 1 and let K b �. There exist a compact set K 0 b @�, a bounded
vector function Ę 2 L1.�;Rn/ with kĘk1 D 1, a non-negative function ˇ.:; x/ 2 L1.�/

with
�

�
ˇ.X; x/dX D 1 for all x 2 @�, and a non-negative function g 2 Lq0

.@�/ with
kgkLq0 .@�/ D 1, such that

(4.10) k zNK.rF /kLq � C

�
�

rF.Z/ � Eh.Z/ dZ;

where C depends only on n and �, and where Eh is defined as

(4.11) Eh.Z/ WD

�
K

Ę.Z/ 12BX
.Z/

�
K0\8BX

ˇ.X; x/g.x/ d�.x/
dX

ı.X/n
�

Remark 4.2. The function Eh, as well as the functions g and ˇ, depend on the compact K.
It is necessary to guarantee the a priori finiteness of all k zNK.rF /kLq , and so of all the
quantities we shall manipulate in the future. Moreover, the function Eh is compactly sup-
ported and bounded by a constant that depends on K (see Lemma 4.3), which will make
future manipulations of Eh easier. However, the constants in the core results of this section
(Lemmas 4.1, 4.4, 4.6, 4.7, 4.9) shall never depend on K, so that the bound that we obtain
on k zNK.rF /kLq will be transmitted to k zN .rF /kLq .

Proof. First, recall that F is just u1 � u0, see (4.3), so we can use the reverse Hölder
inequality for the gradient (see Corollary 2.10) to obtain that

zNK.rF /.x/ � Cƒ
zN 1

K.rF /.x/ for x 2 @�;

where
zN 1

K.rF / WD sup
X2
.x/

1K.X/

 
2BX

jrF j dY:

Of course, this also gives that

k zNK.rF /kq . k zN 1
K.rF /kq :
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The rest of the proof relies on duality. Since Lq0

.@�;�/ is the dual space of Lq.@�;�/

and zN 1
K.rF / is non-negative, we have

k zN 1
K.rF /kq D sup

0�g2Lq0

kgkq0D1

�
@�

zN 1
K.rF /g d�:

We are able to select a g 2 Lq0

with g � 0 and kgkq0 D 1 such that

k zNK.rF /kq . k zN 1
K.rF /kq � 2

�
@�

zN 1
K.rF /g d�:

By density, we can even take g to be continuous and compactly supported. We set K 0 to
be the support of g and we obtain

k zNK.rF /kq .
�

K0

zN 1
K.rF /g d�:

Since L1 is the dual of L1, for each x 2 @�, we have

(4.12) zN 1
K.rF /.x/ D sup

kˇ.:;x/kL1.�/D1

�
K

� 
2BX

jrF j dZ
�

ˇ.X; x/ 1
.x/.X/ dX:

It also means that we can find a function ˇ � 0 which satisfies
�

�
ˇ.X; x/dX D 1 for all

x 2 @�, and such that

k zNK.rF /kq .
�

K0

zN 1
K.rF /g d�

.
�

K0

g.x/

�
K

� 
2BX

jrF j dZ
�

ˇ.X; x/ 1
.x/.X/ dX d�.x/

.
�

K

��
2BX

jrF j dZ
���

K0\8BX

ˇ.X; x/g.x/ d�.x/
� dX

ı.X/n
I

the last line is due to Fubini’s theorem, since X 2 
.x/ is equivalent to x 2 @� \ 8BX .
We now take Ę D rF =jrF j and, by Fubini’s theorem again, we have

k zNK.rF /kq

.
�

K

��
�

rF.Z/ � Ę.Z/ 12BX
.Z/ dZ

���
K0\8BX

ˇ.X; x/g.x/ d�.x/
� dX

ı.X/n

D

�
�

rF.Z/ �
��

K

�
K0\8BX

Ę.Z/ 12BX
.Z/ ˇ.X; x/g.x/ d�.x/

dX

ı.X/n

�
dZ

D

�
�

rF.Z/ � Eh.Z/ dZ:

The lemma follows.

In the previous construction, we made sure that Eh is nice enough, that is, bounded and
compactly supported, as shown in the next result.
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Lemma 4.3. The function Eh defined in (4.11) is bounded and compactly supported.

Proof. Since Z 2 2BX , we have ı.Z/=2 � ı.X/ � 2ı.Z/. Combined with j Ęj � 1, we
deduce

j Ehj . ı.Z/�n

�
K0

g.x/ d�.x/

�
K

ˇ.X; x/ dX � CK0 :

So the function Eh is indeed bounded.
It is also compactly supported because, in order for Eh to be non-zero, we need Z 2 2BX

with X 2 K. And that is possible only when Z is in a compact set that is slightly bigger
than K.

We want now to bound the integral
�

�
rF � EhdZ. However, as one can expect, a lot

of information is hidden in Eh. Why do we use the quantity Eh? Because, even if Eh depends
on F (and K), we are able to bound it independently of F (and K), as shown in the lemma
below. We define first T .Eh/ as

(4.13) T .Eh/.x/ WD
X

I2Wx

`.I /n�d sup
I

j Ehj;

where Wx is the collection of Whitney cubes that intersect 
3.x/ WD ¹x 2 �; jX � xj <

3ı.X/º and `.I / is the side-length of I , which is equivalent to dist.I; @�/. To build
intuition, we observe that if the supremum was replaced by a L1-average, then T .Eh/.x/

would be essentially
�


d .x/
j EhjdX=ı.X/d , that is, the integration of j Ehj over the radial

direction(s).

Lemma 4.4. We have

kT .Eh/kLq0 .@�;�/ � Cq0 ;

where q is the one of Lemma 4.1 and is used to construct Eh.

Proof. We first remove Ę from the estimate on Eh, because we will not be able to do any-
thing with it, so we have

(4.14)
j Eh.Z/j �

�
�

12BX
.Z/

�
8BX

ˇ.X; x/g.x/ d�.x/
dX

ı.X/n

D

�
@�

g.x/
��

�

12BX
.Z/ ˇ.X; x/ 1
.x/.X/

dX

ı.X/n

�
d�.x/:

Pick a Whitney cube I 2 W . Construct I � as

I �
WD ¹X 2 �; there exists Z 2 I such that Z 2 2BXº:

Check that I � is a Whitney region larger than I , but still has a finite overlapping. So if
bI .x/ denotes

�
I� ˇ.X; x/dX , we have the nice control

(4.15)
X
I2W

bI .x/ . 1 for any x 2 @�
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because, by definition,
�

�
ˇ.X; x/dX D 1 for any x 2 @�. We take now Z 2 I , in this

case, any X that satisfies Z 2 2BX lies in the Whitney region I �, which implies that
ı.X/ � `.I /. So (4.14) becomes

sup
2I

j Ehj � `.I /�n

�
@�\103I

g.y/bI .y/ d�.y/:

We inject this bound in the expression of T .Eh/ to obtain

(4.16) T .Eh/.x/ �
X

I2Wx

`.I /�d

�
@�\103I

g.y/bI .y/ d�.y/:

We compute then the Lq0

-norm of T .Eh/ by duality. Let � 2 Lq.@�; �/ be any non-
negative function such that k�kq D 1. We claim that

(4.17)
�

@�

T .Eh/.x/ �.x/ d�.x/ . 1;

which is exactly what we need to conclude the lemma. We use the bound (4.16) and then
Fubini’s theorem to write�

@�

T .Eh/.x/ �.x/ d�.x/ .
�

@�

�.x/
X

I2Wx

`.I /�d

�
@�\103I

g.y/bI .y/ d�.y/d�.x/

.
�

@�

g.y/
X

I2Wx

bI .y/ 1103I .y/ `.I /�d

�
@�\103I

�.x/ d�.x/d�.y/;

where the last line holds because I 2 Wx implies x 2 1000I (we are not trying to be
optimal here). Let M� denote the Hardy–Littlewood maximal function with respect to the
d -dimensional Ahlfors measure � . Since y 2 103I , we easily have

1y2103 `.I /�d

�
@�\103I

�.x/ d�.x/ . M� .�/.y/

and hence �
@�

T .Eh/.x/ �.x/ d�.x/ .
�

@�

g.y/
X
I2W

bI .y/M� .�/.y/ d�.y/

.
�

@�

g.y/M� .�/.y/ d�.y/;

by (4.15). We invoke now Hölder’s inequality and the Lq-boundedness of the operator M�

to deduce �
@�

T .Eh/.x/ �.x/ d�.x/ . kgkLq0 .@�;�/ kM� .�/kLq.@�;�/

. kgkLq0 .@�;�/ k�kLq.@�;�/ D 1

because, by definition, kgkq0 D 1 and k�kq D 1. The claim (4.17) and the lemma follow.
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4.3. The solution v

Our goal is to bound the expression
�

�
rF � Eh dZ from (4.10). However, this expression

is lacking derivatives. Indeed, the techniques employed here rely on integration by parts,
that is, moving gradients and derivatives from one term to another, with errors that can be
controlled. So the more terms with derivatives we have, the more possibilities we get. That
is why we introduce v, which is essentially the solution to the inhomogeneous Dirichlet
problem ´

L�
1v D div Eh in �;

Tr.v/ D 0 on @�;
(4.18)

where Eh is the one constructed in Lemma 4.1.
We shall ultimately use two distinct representations of v. So we need to prove that

those two definitions of v coincide, which is very classical in the bounded codimension 1
case but more delicate in our context (which allows higher codimensional boundaries, and
the elliptic theory is not as developed).

We write G1 for the Green function associated to L1 as defined in Theorem 2.16. We
define v on � as

(4.19) v.X/ WD �

�
�

rZG1.Z; X/ � Eh.Z/ dZ;

which is well defined because Eh.Z/ is bounded and compactly supported (see Lemma 4.3)
and rZG�

1 .X; :/ D rZG1.:; X/ 2 Lr
loc.�/ for r sufficiently close to 1 (see items (iii)-(iv)

of Theorem 2.16).

Lemma 4.5. The function v.X/ constructed in (4.19) lies in W0 and satisfies
�

�

AT
1 rv � r' dm D �

�
�

Eh � r' dX for ' 2 W0:

Proof. The idea of the proof is: if Eh were smooth, there would be no difficulty. Thus, as
expected, we mollify Eh and we check that we can take all the desired limits.

We construct the mollifier by using a non-negative radial function � 2 C1
0 .Rn/ sup-

ported in B.0; 1/ and satisfying
�

Rn � D 1, and then we define �".Z/ WD "�n�."�1Z/ for
" > 0 and Z 2 �. We set Eh" WD

Eh � �" 2 C1
0 .�/. The fact that Eh" is compactly supported

in � is true only for small " > 0 (but it does not matter since we intend to take limits)
because Eh is already compactly supported in the first place.

We fix p 2 .n; 1/, so that rZG1.Z; X/ is locally in Lp0

(see item (iv) in Theo-
rem 2.16). Note for later that

(4.20) Eh" ! Eh in Lp.�/;

which is a classical result and essentially equivalent to the density of smooth functions
in Lp .
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We define

(4.21) v".X/ WD �

�
�

rZG1.Z; X/ � Eh".Z/ dZ D

�
�

G1.Z; X/ div.Eh"/.Z/ dZ:

Since now div.Eh"/ 2 C1
0 .�/, by (2.11) (and Lemma 2.17), we have that v" is the function

of W0 that satisfies

(4.22)
�

�

AT
1 rv" � r' dm D

�
�

div.Eh"/' dX D �

�
�

Eh" � r' dX for ' 2 W0:

In addition, we also know the following convergences.

(1) We can pass the limit as " ! 0 in the expression
�

�
rG1.:; X/ � Eh" dZ, because

rG1.:; Z/ 2 L
p0

loc.�/, all the h" are supported in the same compact subset of �,
and Eh" converges to Eh in Lp.�/ (see (4.20)). So we deduce v" ! v pointwise (and
thus in the distribution sense).

(2) The functions div.Eh"/ converge to div.Eh/ in W �1. Indeed, if K b � is a compact set
that contains the support of all the h" and p 2 .2;1/, then

k div.Eh"/ � div.Eh/kW �1 D sup
k'kW0

�1

ˇ̌̌�
�

.Eh � Eh"/ � r' dX
ˇ̌̌

� kEh � Eh"kLp kr'kLp0
.K/ � CK kEh � Eh"kLp ! 0 as " ! 0:

(3) The previous convergences combined with the Lax–Milgram theorem (Lemma 2.8)
imply that v" converges in W0.

The combination of three convergences shows that

(4.23) v" ! v in W0;

so in particular, v 2 W0 and we also have
�

�

AT
1 rv � r' dm D �

�
�

Eh � r' dX for ' 2 W0

by taking the limit in (4.22). The lemma follows.

We return to the estimate of the non-tangential maximal function. Recall that at this
point, we want to bound

�
�
rF � Eh dZ. The next step will involve the square function

of v, which is defined as

(4.24) S.v/.x/ WD
��


.x/

jrvj2
dY

ı.Y /n�2

�1=2

:

Even though the next lemma is an analogue of Corollary 2.9 in [50], we provide here
an alternative proof which is self contained (up to some basic results on the Green func-
tions) and does not rely on taking the limit of a sequence of elliptic operators with smooth
coefficients.
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Lemma 4.6. Recall that M is the constant in (4.4). We have
�

�

rF � Eh dZ � CMk zN .ru0/kLq.@�/ kS.v/kLq0 .@�/;

where the constant depends only on the constant in (4.5). Hence, thanks to Lemma 4.1,

k zNK.rF /kLq.@�/ . Mk zN .ru0/kLq.@�/ kS.v/kLq0 .@�/:

Proof. We claim that

(4.25)
�

�

rF � Eh dZ D

�
�

Eru0 � rv dm:

To see how (4.25) proves our lemma, we first observe that for any positive function �

on �, by Fubini’s theorem,
�

@�

��

.x/

�.X/
dX

ı.X/n�1

�
d�.x/ &

�
�

�.X/ı.X/�d �.8BX \ @�/ dm.X/

&
�

�

�.X/ dm.X/

because, if Ox is such that jX � Oxj D ı.X/, then �.8BX / � �.�. Ox; ı.X/// & ı.X/d

by (1.1). As a consequence, by successively applying the Cauchy–Schwarz inequality
and the Hölder inequality, the claim (4.25) implies
�

�

rF � Eh dZ �

�
�

jEj jru0j jrvj dm .
�

@�

��

.x/

jEj jru0j jrvj
dX

ı.X/1�n

�
d�.x/

.
��

@�

��

.x/

jEj2 jru0j
2 dX

ı.X/n

�q=2

d�.x/
�1=q

kS.v/kLq0 .@�:

The lemma follows then from the Carleson inequality (4.5).
So it remains to show the claim (4.25). Formally, the claim is just a permutation of

integrals, that is, by using the definition (4.2) of F.X/ and (4.19), one has
�

�

rF � Eh dX D

�
�

F div.Eh/ dX

D

�
�

�
�

rY G1.X; Y / � E.Y /ru0.Y / div.Eh/.X/ dm.Y /dX

D

�
�

E.Y /ru0.Y / � r
��

�

G1.X; Y / div.Eh/.X/ dX
�

dm.Y /

D

�
�

Eru0 � rv dm:

However, the assumptions of Fubini’s theorem are not satisfied, so the justification will
end up being way more delicate.

The issue mainly comes from the Green function G1, which has a degeneracy when
Z D Y that we cannot control very well. So instead, we shall use approximation of the
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Green function. We use the same mollifier as the previous lemma. Let � 2 C1
0 .Rn/ sup-

ported in B.0; 1/ and satisfying
�

Rn � D 1, and then define ��.Z/ WD ��n�.��1Z/ for
� > 0 and Z 2 �. We also construct a cut-off function '� 2 C1

0 .�/ such that '�.Z/ D 0

if ı.Z/ < 2�, '�.Z/ D 1 if ı.Z/ > 4�, and jr'�j � ��1. Check that the map � 2 W0 !

�� � .'� �/.Z/ lies in W �1 D .W0/� for all � > 0 and all Z 2 �. By the Lax–Milgram
theorem (see Lemma 2.8), for each � > 0 and X; Y 2 �, we can construct5 G�.:; Y / and
G�

� .:; X/ as the only functions in W0 such that

(4.26)
�

�

A1rZG�.Z; Y / � r�.Z/ dm.Z/ D �� � .'� �/.Y / for � 2 W0;

and similarly,

(4.27)
�

�

A1r�.Z/ � rZG�
� .Z; X/ dm.Z/ D �� � .'� �/.X/ for � 2 W0:

The combination of the two above lines easily gives the nice identity

(4.28)
G�.X; Y / WD Œ�� � .'�G�

� /.:; X/�.Y / D Œ�� � .'�G�/.:; Y /�.X/

D

�
�

A1rG�.Z; Y / � rG�
� .Z; X/ dm.Y /:

Note that the identity implies that the function G� lies in W0 and is smooth both in X

and Y , which will make G� a nice tool for the next lines. We define v" as in (4.21) and

v";�.Y / WD �

�
�

rX G�.X; Y / � Eh".X/ dX:

We plug in G�.:; Y / as the test function in (4.22) to get

v";�.Y / D

�
�

AT
1 rv" � rG�.:; Y / dm D �� � .'�v"/.Y /

by (4.26). By (4.23), we have that v" ! v in W0, and a classical convolution result yields
that v";� converges to v0;� WD �� � .'�v/ in W0 (as " ! 0 and uniformly in �). The fact
that rv0;� ! rv in L2 is also well known. So by a diagonal argument, the function

v";".Y / D �

�
�

rX G".X; Y / � Eh".X/ dX D hdiv.Eh/; G".:; Y /iW �1;W0

converges to v in W0 as " ! 0. The same proof gives that

F";".X/ WD

�
�

G�
" .Y; X/ '".Y / div.�" � .Eru0//.Y / dm.Y /

D hdiv.Eru0/; G".X; :/iW �1;W0

converges to F in W0.

5from here and forward, we drop the index 1 on G, since any Green function will always be associated
to L1 or L�

1 .
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All these convergences show that the claim (4.25) would be proven once we establish
that

(4.29)
�

�

rF";" �
Eh dX D

�
�

Eru0 � rv";" dm

for any " > 0. Observe that if we replace �� by �� � �� in (4.26) and (4.27), then we replace
G�.Z; Y / by .�� � G�.Z; ://.Y / and G�

� .Z; X/ by .�� � G�
� .Z; ://.X/. We deduce that

we can make G�.Z; Y / and G�
� .Z; X/ as smooth as we want in the second variable, and

hence quantities like rY .rX G�/.X; Y / make perfect sense and lie in L1
Y .L2

X /. From
these remarks and (4.28), the identity (4.29) is just a permutation of integrals and two
differentiations under the integral symbol.

4.4. The S <N estimate

The aim of this subsection is to bound kS.v/kq by the non-tangential maximal function
of v, ırv, and a term that depends on T .Eh/ defined in (4.13).

For the first time, we shall use (4.1), but in a weaker form (see Theorem 2.7) which
says that there exist C; � > 0 such that

(4.30)
!1

1;�.E/

!1
1;�.�/

� C
��.E/

�.�/

��

and
�.E/

�.�/
� C

�!1
1;�.E/

!1
1;�.�/

��

for any boundary ball � � @� and any Borel set E � �.
In the next lemma, M! and M� are the Hardy–Littlewood maximal functions for the

elliptic measure ! WD !1
1;� and for the Ahlfors regular measure � . Moreover, S� and zN�

are respectively the square function and the averaged non-tangential maximal function,
but defined with a wider cone 
�.x/ D ¹X 2 �; jX � xj < C�ı.X/º. The value C� of
the aperture does not matter much, and will be chosen to match our purpose in the next
proof. The important and well-known facts are

(4.31) kN�.u/kp . kN.u/kp; k zN�.u/kp . k zN .u/kp; and kS�.u/kp . kS.u/kp;

for every p 2 .0; 1/ and every u for which the considered quantities make sense (the
constants depends on p but not u). The proof of (4.31) – in the case @� D Rn – can be
found in Chapter II, equation (25) of [59] for the non-tangential square function, and in
Proposition 4 of [12] for the square function. Although the proof is written when @�DRn,
it can be easily extended to all doubling metric spaces.

Lemma 4.7. For the function v constructed in (4.19), define the set

(4.32) Eˇ˛ WD ¹N�.v/ C zN�.ıjrvj/ C M!.T .Eh// > ˇ˛º � @�:

There exist �; ˇ0 > 0 such that for all ˛ > 0 and ˇ 2 .0; ˇ0/, we have

�¹x 2 @�; S.v/.x/ > 2˛ and M� .1Eˇ˛
/.x/ � 1=2º � Cˇ��¹S�.v/ > ˛º;(4.33)

where C is independent of ˛ and ˇ.
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The above “good-�” argument entails the following Lp bounds.

Corollary 4.8. For any p > 0, we have
�

@�

jS.v/jp d� � C

�
@�

jN.v/ C zN .ıjrvj/ C M!.T .Eh//jp d�:

Proof of Corollary 4.8. Let Eˇ˛ be the set defined in Lemma 4.7. Recall that the Hardy–
Littlewood maximal operator M� is bounded from L1 to weak-L1. Then

�¹M� .1Eˇ˛
/ > 1=2º .

�
@�

1Eˇ˛
d� D �.Eˇ˛/:(4.34)

According to Lemma 4.7, we have, for ˇ � ˇ0, that

(4.35)
�¹S.v/ > 2˛º � �¹M� .1Eˇ˛

/ > 1=2º C �¹S.v/ > 2˛; M� .1Eˇ˛
/ � 1=2º

� �¹M� .1Eˇ˛
/ > 1=2º C Cˇ��¹S�.v/ > ˛º:

The last two computations imply, for any p > 0, that
�

@�

jS.v/jp d� D c

� 1

0

˛p�1�¹S.v/ > 2˛ºd˛

� Cˇ�

� 1

0

˛p�1�¹S�.v/ > ˛º d˛ C C

� 1

0

˛p�1�.Eˇ˛/ d˛

� Cˇ�

�
@�

jS�.v/jp d� C
C

ˇp

°�
@�

j zN�.v/C zN�.ıjrvj/CM!.Tp.Eh//jp d�
±

� C 0ˇ�

�
@�

jS.v/jp d� C
C 0

ˇp

°�
@�

j zN .v/ C zN .ıjrvj/ C M!.Tp.Eh//jp d�
±

(4.36)

by (4.31). Choose ˇ �ˇ0 small enough so that C 0ˇ� � 1=2. Hence, we can hide the square
function of the last inequality of (4.36) to the left-hand side. The corollary follows.

Proof of Lemma 4.7. Fix ˛ > 0. Define

� WD ¹S�.v/ > ˛º and � 0
WD ¹S.v/ > 2˛; M� .1Eˇ˛

/ � 1=2º:

Take any surface ball � of radius r . It suffices to show that there exists a constant C such
that for any surface ball � that intersects @� n � , we have

(4.37) !1
1;1.F / � C ˇ2 !1

1;�.�/;

where F WD � 0 \ �. Indeed, the bound (4.30) - which comes from the Lq0

-solvability of
the Dirichlet problem for L�

1 - immediately turns (4.37) into

(4.38) �.F / � C ˇ� �.�/:

Why is (4.38) enough? Because we can construct a Whitney decomposition of � in the
following way. For any x 2 � , we can build the boundary ball �x WD�.x;dist.x;�c/=40/.
Since the radius of a ball �x that intersects a compact subset of � is uniformly bounded
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(depending on the compact), the Vitali covering lemma allows us to obtain a non-over-
lapping sub-collection ¹�xj

º of ¹�xº for which
S

j 5�xj
D � . Each ball 50�xj

intersects
@� n � and so, if Fj D � 0 \ 50�xj

, we have by (4.38),

�.� 0/ �
X

j

�.Fj / � Cˇ� �.50�j / � C 0ˇ� �.�j / � C 0ˇ� �.�/;

which is the desired bound (4.33).
Step 1. Let � be a surface ball of radius r that contains a point x� 2 @� n � , i.e., a

point satisfying S�.v/.x�/ � ˛. We write F WD � \ � 0.
Observe that for any x 2 � and X 2 
.x/ n B.x; r/, we have

jX � x�j � jX � xj C jx � x�j < 2ı.X/ C 2r < 2ı.X/ C 2jX � xj < 6ı.X/:

Consequently, 
.x/ n B.x; r/ � 
�.x/ as long as the aperture C� � 6 (which we choose
as such). So if S r .v/.x/ is a truncated square function defined as

S r .v/.x/ WD
��


.x/\B.x;r/

jrvj2
dY

ı.Y /n�2

�1=2

;

then we easily have

jS r .v/.x/j2 � jS.v/.x/j2 � jS�.v/.x�/j2 � ˛2; for x 2 F;

that is,

S r .v/.x/ � ˛; for x 2 F:(4.39)

Step 2. In the sequel, to lighten the notation, we shall write ! for !1
1;�, the elliptic

measure with pole at infinity associated to L�
1 . In a similar way, G.Y / will denote the

Green function with pole at infinity associated to L1. Both of them are linked together by
Lemma 3.3. Let �F be the saw-tooth region over F defined as �F WD

S
x2F 
.x/. Then

!.F / �
1

˛2

�
F

jS r .v/j2 d! �
1

˛2

�
F

�

.x/\B.x;r/

jrvj2
dY

ı.Y /n�2
d!.x/(4.40)

�
1

˛2

�
�F \¹ı.Y /�rº

jrvj2 !.B.Y; 2ı.Y // \ @�/
dY

ı.Y /n�2
�

If y 2 @� is a point such that jY � yj D ı.Y /, then

(4.41) !.B.Y; 2ı.Y // \ @�/ � !.�.y; ı.Y // � ı.Y /d�1G.Y /

by the doubling property of ! (Lemma 3.4) and then Lemma 3.3. We use the above esti-
mate in (4.40) to obtain

!.F / .
1

˛2

�
�F \¹ı.Y /�rº

jrvj2 G
dY

ı.Y /n�d�1
�
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Let us recall that dm.Y / D ı.Y /dC1�ndY . Together with the ellipticity of matrix AT
1 ,

we have

!.F / .
1

˛2

�
�F \¹ı.Y /�rº

AT
1 rv � rv G dm:(4.42)

Choose a cut-off function �F 2 C1.Rn/ such that, 0 � �F � 1, �F � 1 on �F ,
and �F is supported on a larger saw-tooth region �3

F WD
S

x2F 
3.x/, with 
3.x/ WD

¹X 2 �; jX � xj < 3ı.X/º. In addition, we can always pick the cut-off function �F so
that jr�F .Y /j . 1=ı.Y /. Pick another smooth function �r such that 0 � �r � 1, �r � 1

when ı.Y / � r and �r � 0 when ı.Y / � 2r and jr�r j � 2=r . Define ‰ D �F �r . Then
we have

jr‰.Y /j .
1D1.Y /

ı.Y /
C

1D2.Y /

ı.Y /
;(4.43)

where D1 WD ¹Y 2 �3
F n �F ; ı.Y / � 2rº and D2 WD ¹Y 2 �3

F ; r � ı.Y / � 2rº. By the
product rule, the term (4.42) can be rewritten as

!.F / .
1

˛2

�
�

AT
1 rv � rv .G‰/ dm

D
1

˛2

��
�

AT
1 rv �rŒvG‰�dm �

�
�

AT
1 rv �rG.v‰/dm �

�
�

AT
1 rv �r‰.Gv/dm

�
DW

1

˛2
.I C II C III/:

The lemma will be proven once we show that I, II and III are all bounded by C.˛ˇ/2!.�/.

Step 3. The term I. As we want to use Lemma 4.5, we need to check that vG‰ 2 W0.
We have that v 2 W0 (also by Lemma 4.5). Thanks to the elliptic theory recalled in Sec-
tion 2, we also have that v is Hölder continuous close to the boundary (when we are outside
the support of Eh) and G‰ 2 W0 \ L1.�/. So in order to get that vG‰ 2 W0, we only
need to explain why v 2 L1

loc.�/. The control of solutions for inhomogeneous Dirichlet
problem was not done in [19], but that is fine, because we only require local boundedness
inside the domain, so we can use the result from the classical (unweighted) theory, which
can be found in Theorem 8.17 of [38]. Now, we apply Lemma 4.5, which entails that

I D �

�
�

Eh � r.vG‰/ dY

D �

�
�

Eh �rv .G‰/ dY �

�
�

Eh �rG .v‰/ dY �

�
�

Eh �r‰.vG/ dY WD I1 C I2 C I3:

By the definition of F � � 0, for any x 2 F , we have M� .1Eˇ˛
/.x/ � 1=2. Thus,

for any surface ball �0 � @� which contains such a point x 2 F , we necessary have
�.�0 \ Eˇ˛/=�.�0/ � 1=2. This implies that �.�0 \ Ec

ˇ˛
/=�.�0/ > 1=2. The A1-

absolute continuity (4.30) yields then

!.�0
\ Ec

ˇ˛/=!�.�0/ � c > 0:(4.44)
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The comparison (4.41) now entails that

j I1j �

�
�3

F

j Ehj jrvjG dY .
�

�3
F

j Ehj jrvj!.�.y; ı.Y ///ı.Y /1�d dY;(4.45)

where we recall that y is a point on the boundary such that jY � yj D ı.Y /. Since �3
F is

a sawtooth region over F , there exists a constant C0 (C0 D 4) such that for all Y 2 �3
F ,

F \ �.y; C0 ı.Y // ¤ ;:

Thus, by (4.44),

!.�.y; ı.Y /// � !.�.y; C0 ı.Y /// . !.Ec
ˇ˛ \ �.y; C0 ı.Y ///:(4.46)

Together with (4.46), (4.45) becomes

j I1j .
�

�3
F

j Ehj jrvj
!.Ec

ˇ˛
\ �.y; C0 ı.Y ///

ı.Y /d�1
dY(4.47)

.
�

Ec
ˇ˛

\C 0
0�

��

3.x/

jrvj j Ehj

ı.Y /d�1
dY

�
d!.x/:

Recall that 
3.x/� 
d .x/, which is used in the construction of T .Eh/ in (4.13). By Hölder’s
inequality,

�

3.x/

jrvj j Ehj

ı.Y /d�1
dY .

X
I2Wx

� 
I

ı jrvj j Ehj dY
�

`.I /n�d(4.48)

.
X

I2Wx

� 
I

ı2
jrvj2 dY

�1=2� 
I

j Ehj2 dY
�1=2

`.I /n�d . zN�.ıjrvj/.x/ T .Eh/.x/

if we choose the aperture C� of the cone 
�.x/ that defines zN� big enough so that I �


�.x/ for all I 2 Wx . When x 2 Ec
ˇ˛

, we have zN�.ıjrvj/.x/ � ˇ˛. Therefore, if x0 is
any point in Ec

ˇ˛
\ C 0

0� (if the set is empty, then I1 D 0 and there is nothing to prove),
then (4.47) can be further continued as

(4.49) j I1j . .ˇ˛/

�
Ec

ˇ˛
\C0�

T .Eh/ d! . .ˇ˛/!.C0�/ M!.T .Eh//.x0/ . .ˇ˛/2 !.�/;

thanks to the doubling property of ! (Lemma 3.4) and the fact that M!.Tp.Eh//.x0/ � ˇ˛

for x0 2 Ec
ˇ˛

.
The term I3 is very similar to I1. Indeed, in I1, we only use the fact that 0 � ‰ � 1 and

is supported in ��
F . For I3, we use the fact that jr‰j . 1=ı and is supported in ��

F , and
we use N�.v/ instead of zN�.ıjrvj/. So with the same reasoning as of I1, we also have

(4.50) j I3j . .ˇ˛/2 !.�/:
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The term I2 is slightly more different from I1 than I3 is, so we shall write a bit more.
Observe that I2 is the same as I1 once you replace rv by vrG=G. So similarly to (4.47),
we have that

(4.51) j I2j .
�

Ec
ˇ˛

\C 0
0�

��

3.x/

v jrGj j Ehj

Gı.Y /d�1
dY

�
d!.x/:

Then analogously to (4.48), we get that

(4.52)
�


3.x/

v jrGj j Ehj

Gı.Y /d�1
dY .

X
I2Wx

� 
I

v
ı jrGj

G
j Ehj dY

�
`.I /n�d

.
X

I2Wx

� 
I

v2 dY
�1=2� 

I

ı2jrGj2

G2
dY

�1=2

sup
I

j Ehj `.I /n�d :

Since G is a positive solution to L1, the Harnack inequality (Lemma 2.11) and the Cac-
ciopoli inequality (Lemma 2.9) entail that

(4.53)
 

I

ı2jrGj2

G2
dY �

ı.XI /2

G.XI /2

 
I

jrGj
2 dm .

1

G.XI /2

 
2I

G2 dm � 1;

whenever XI is any point in I . So the bound (4.52) becomes
�


3.x/

vjrGjj Ehj

Gı.Y /d�1
dY .

X
I2Wx

� 
I

v2 dY
�1=2

`.I /n�d sup
I

j Ehj . N�.v/.x/T .Eh/.x/:

We use this last estimate in (4.51) and we conclude that

(4.54) j I2j . .ˇ˛/2 !.�/:

Step 4. Carleson estimates for jr‰j. As we shall see, the terms II and III will only
involve ‰ via its gradient. So it will be useful to have good estimates on ıjr‰j, or on
1D1[D2 (which is bigger by (4.43)). We aim to prove that

(4.55) M� WD

�
C 0

0�

� X
I2Wx

sup
I

.1D1[D2/
�

d!.x/ � C!.�/;

where C 0
0 is the constant on the right-hand side of (4.47).

Even if the inequality (4.55) is presented in an unusual way, the result is fairly classi-
cal. Let us sketch it. By simply switching the integral and the sum, we have

M� �

X
I2W

I\D1¤;

!.�I / C
X
I2W

I\D2¤;

!.�I / WD M1 C M2;

where �I WD �.�I ; 200`.I // for a point �I 2 100I \ @� that will be chosen later. If I

intersects D2, then `.I / � dist.I; �/ � r : there is a uniformly bounded amount of those
cubes, and we also have !.�I / � !.�/. We deduce

M2 WD

X
I2W

I\D2¤;

!.�I / . !.�/
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as desired. As for J1, we use the fact that we have some freedom on the choice of �I . If
I \ D1 � ¹XI º ¤ ;, then we choose �I 2 @� such that j�I � XI j D ı.XI / WD rI . Note
that we necessary have rI � 60`.I /, so �I 2 100I . Recall that XI 2 D1 means that there
exists xI 2 F such that jXI � xI j < 3ı.XI / D 3jXI � �I j but jXI � xj � 2jXI � �I j for
all x 2 F . Consequently,

(4.56) 10`.I / � rI � dist.�I ; F / � 4rI :

When I \ D1 ¤ ;, we define Q�I D �.�I ; `.I // using the �I that we constructed and
satisfies (4.56). Notice that the collection ¹ Q�I º is finitely overlapping, because if x 2 Q�I ,
then `.I / � dist.x; F / and I � B.x; 62`.I //, and there can be only a uniformly finite
Whitney cubes with this property. We conclude by writing

M1 WD

X
I2W

I\D1¤;

!.�I / .
X
I2W

I\D1¤;

!. Q�I / . !

� [
I2W

I\D1¤;

Q�I

�
� !.C 00

0 �/ . !.�/:

The first and the last inequalities above hold because of the doubling property of !

(Lemma 3.4), the second inequality is due to the finite overlap of ¹ Q�I º, and the third
one is a consequence of the fact that all �I (and thus Q�) are included in a dilatation of �

when I intersects D1.
Step 5. The terms II and III. Let us talk about III first. We can repeat the strategy devel-

oped in Step 3 for I1. We use the fact that ır‰ � 1D1[D2 and dm.Y / D ı.Y /dC1�ndY ,
and similarly to (4.47), we have

(4.57) jIIIj .
�

Ec
ˇ˛

\C 0
0�

��

3.x/

jrvjv 1D1[D2

ı.Y /n�1
dY

�
d!.x/:

Yet,
�


3.x/

jrvjv 1D1[D2

ı.Y /n�1
dY �

X
I2Wx

�
I

jrvjv 1D1[D2

ı.Y /n�1
dY

.
X

I2Wx

� 
I

ı2
jrvj2 dY

�1=2� 
I

v2 dY
�1=2

sup
I

.1D1[D2/

. zN�.ıjrvj/.x/ N�.v/.x/
X

I2Wx

sup
I

.1D1[D2/

� .˛ˇ/2
X

I2Wx

sup
I

.1D1[D2/

when x 2 Ec
ˇ˛

. We conclude that

jIIIj . .˛ˇ/2

�
C 0

0�

� X
I2Wx

sup
I

.1D1[D2/
�

d!.x/ . .˛ˇ/2 !.�/

by (4.55) and the doubling property of ! (Lemma 3.4).
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For II, we want to use the fact that G is a solution to L1, so we write

II D �

�
�

rv � A1rG.v‰/ dm

D �
1

2

�
�

r.v2‰/ � A1rG dm C

�
�

v2A1rG � r‰ dm DW II1 C II2:

The discussion at the beginning of Step 3 shows that v 2 W0 \ L1.supp ‰/. So v2‰ lies
in W0 and it is compactly supported in Rn. Consequently, v2‰ is a valid test function
for G, and thus II1 D 0. Hence it remains to bound II2, which is actually similar to III.
Following again the same strategy, replacing jrvj by vjrGj=G in the argument of III, we
have

j II2j .
�

Ec
ˇ˛

\C 0
0�

��

3.x/

v2 jrGj 1D1[D2

Gı.Y /n�1
dY

�
d!.x/;

and when x 2 Ec
˛ˇ

,

�

3.x/

v2jrGj1D1[D2

Gı.Y /n�1
dY .

X
I2Wx

� 
I

ı2jrGj2

G2
dY

�1=2� 
I

v4dY
�1=2

sup
I

.1D1[D2/

. jN�.v/.x/j2
X

I2Wx

sup
I

.1D1[D2/ � .˛ˇ/2
X

I2Wx

sup
I

.1D1[D2/;

where we used (4.53) for the second inequality. With a similar reasoning as the one used
on III, we conclude that

jIIj D jII2j . .˛ˇ/2 !.�/

thanks to (4.55). The lemma follows.

4.5. Bounds on N.v/ and QN .ırv/

In order to finish the proof Theorem 1.3, we need to bound N.v/ and zN .ırv/ by T .Eh/.
We shall observe first that the bound on zN .ırv/ is just a consequence of the bound on
N.v/ because of the following Caccioppoli-type inequality.

Lemma 4.9. For any X 2 �, we have

(4.58)
� 

BX

ı2
jrvj2 dX

�1=2

.
��

2BX

jvj2 dX
�1=2

C ı.X/n�d
� 

2BX

j Ehj2 dY
�1=2

;

where v is constructed in (4.19).

Proof. Take X 2 � and construct a cut-off function ‰ 2 C1
0 .�/ such that 0 � ‰ � 1,

‰ � 1 on BX , ‰ � 0 outside 2BX , and jr‰j . 1=ı.X/. By the ellipticity of AT , we have

T WD

�
�

jrvj2 ‰2 dm .
�

�

AT
1 rv � rv ‰2 dm(4.59)

D

�
�

AT
1 rv � rŒv‰2� dm �

�
�

AT
1 rv � r‰ ‰v dm DW T1 C T2:
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We want to use the fact that v is a solution to L�
1v D div Eh. Observe that v‰2 lies in W0,

hence it is a valid test function, because v 2 W0 lies in L1
loc (we refer to the discussion at

the beginning of Step 3 of the proof of Lemma 4.7) and ‰ 2 C1
0 . Lemma 4.5 entails

T1 D �

�
�

Eh � r.v‰2/ dY D �

�
�

Eh � rv ‰2 dY �

�
�

Eh � r‰ ‰v dY

.
�
ı.X/n�d�1

�
�

j Ehj2‰2dY
�1=2 h� �

�

jrvj2 ‰2 dm
�1=2

C

��
�

jvj2 jr‰j
2 dm

�1=2i
by the Cauchy–Schwarz inequality and dm.Y / � ı.X/dC1�ndY when Y 2 supp ‰ �

2BX . We use the fact that ‰ is supported on 2BX and jr‰j . 1=ı.X/ to further have

(4.60) jT1j .
�
ı.X/n�d�1

�
2BX

j Ehj2 dY
�1=2 h

T 1=2
C ı.X/�1

��
2BX

jvj2 dm
�1=2i

Similarly, T2 is bounded using the Cauchy–Schwarz inequality and the properties of ‰ by

(4.61) jT2j . T 1=2 ı.X/�1
��

2BX

jvj2 dm
�1=2

:

Finally, by applying the estimates (4.60) and (4.61) to (4.59), we deduce that T .
A1=2T 1=2 C A, where

A WD ı.X/�1

�
2BX

jvj2 dX C ı.X/n�d�1

 
2BX

j Ehj2 dY:

Since all the quantities that we considered are finite, this bound on T self improves to
T . A. The lemma follows easily.

Lemma 4.10. Let v be the weak solution constructed in (4.19). Then

N.v/ C zN .ıjrvj/ � C M!.T .Eh//;(4.62)

where M! is the Hardy–Littlewood maximal function with respect to ! WD !1
1;�, the ellip-

tic measure with pole at infinity associated to L�
1 .

Proof. Fix x0 2 @� and then X 2 
�.x0/, where 
�.x/ is a cone with a bigger aperture
so that

S
Y 2
.x/ 2BY � 
�.x/. We want to show that

(4.63) j Eh.X/jı.X/n�d . M!.T .Eh//.x0/:

and

(4.64) v.X/ . M!.T .Eh//.x0/:

Indeed, once these two estimates are proven, then the bound zN .ıjrvj/ . M!.T .Eh// will
follow thanks to Lemma 4.9. The bound (4.63) is also fairly immediate. Take x such that
jX � xj D ı.X/, and check that X 2 
.y/ for any y in a small boundary ball �.x;cı.X//.
Hence, we easily have j Eh.X/jı.X/n�d � T .Eh/.y/ for y 2 �.x; cı.X// by definition
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of T .Eh/, and �.x; cı.X// � �.x0; Cı.X// for C large enough depending only on the
aperture of 
�.x0/. The inequality (4.63) follows.

It remains to show (4.64). By definition,

v.X/ WD �

�
�

rY G.Y; X/ � Eh.Y / dY;

where G.Y; X/ is the Green function with pole at X associated to L1. We shall treat
differently the cases where Y is close to X and far from X . We define SX as the union
of Whitney cubes I 2 W (constructed in Subsection 4.1) for which 3I 3 X . The function
v.X/ can be decomposed as

(4.65) v.X/ D�

�
�nSX

rY G.Y;X/ � Eh.Y /dY �

�
SX

rY G.Y;X/ � Eh.Y /dY WD zv C v0:

Step 1. Bound on zv. By definition of SX , we have

(4.66)

jzv.X/j D

ˇ̌̌̌ X
I2W
X…3I

�
I

rY G.Y; X/ � Eh.Y / dY

ˇ̌̌̌

�

X
I2W
X…3I

��
I

jrY G.Y; X/j2 dY
�1=2��

I

j Eh.Y /j2 dY
�1=2

.
X
I2W
X…3I

`.I /�1
��

2I

G.Y; X/2 dY
�1=2��

I

j Eh.Y /j2 dY
�1=2

by Hölder’s inequality, and then by Caccioppoli’s inequality (see Lemma 2.9, that we can
use because G.:; X/ is a solution on 2I ).

We want now to estimate G.Y; X/. Pick a point YI in I . By the Harnack inequality
(Lemma 2.11), we have G.Y; X/ � G.YI ; X/ for all Y 2 2I . So (4.66) becomes

(4.67) jzv.X/j .
X
I2W
X…3I

`.I /n�1G.YI ; X/ sup
I

j Ehj:

Our next objective is (4.68). We give the details, but a reader who is an expert in the
elliptic theory may want to skip them. First, we shall introduce several notations. For
j � 1, let us denote by �j WD �.x0; 2j ı.X// the boundary balls and Xj the corkscrew
points associated to �j . It is also fair to pick X1 WD X . We partition W into

S
j�1 Wj ,

where
W1 WD ¹I 2 W ; jYI � X j � 2ı.X/º;

and for j � 2,

Wj WD ¹I 2 W ; 2j�1ı.X/ < jYI � X j � 2j ı.X/º:
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Observe that we can find an integer a that depends only on n and the aperture of 
�.x0/

such that we have

2I 2 B.x0; 2jCa ı.X// for I 2 Wj , j � 1,

and 2I \ B.x0; 2j�a ı.X// D ; for I 2 Wj , j � 2:

So, for each j � 1, we take j� to be the biggest value for which Xj� stays within
B.x0; 2j�a�1ı.X//, and j� D 1 if there are none, and we take jC to be the smallest value
for which XjC is outside B.x0;2jCaC1/. Note that by construction, jj �j�jCjj �jCj.1.
When I 2 Wj , the function G.YI ; :/ is a solution on B.x0; 2jCaı.X//. Therefore, the
Hölder continuity at the boundary (Lemma 2.12) entails that

G.YI ; X/ . 2�j˛ G.YI ; Xj�/:

Our choice of Xj� and XjC allows the construction of a Harnack chain of balls of (uni-
formly) finite length that links Xj� to XjC and avoids BYI

. So by the Harnack inequality
(Lemma 2.11), the above estimate is equivalent to

G.YI ; X/ . 2�j˛ G.YI ; XjC/:

Lemma 3.3 implies now that

G.YI ; XjC/ �
G.YI /

!.�j /
;

where G is the Green function with pole at infinity associated to L1. If �I WD �.�I ; `.I //

(with �I such that jYI � �I j D ı.YI /), we have by Lemma 3.3 that

G.YI / � `.I /1�d !.�I /:

Altogether, our discussion of G.YI ; X/ proves that

(4.68) G.YI ; X/ . 2�j˛ `.I /1�d !.�I /

!.�j /
when I 2 Wj :

We inject our estimate (4.68) in (4.67) to obtain that

jzv.X/j .
X
j�1

2�j˛

!.�j /

X
I2Wj

!.�I / `.I /n�d sup
I

j Ehj:

Since x 2 �I implies that I 2 Wx , by Fubini’s theorem, we have thatX
I2Wj

!.�I /`.I /n�d sup
I

j Ehj .
�

C�j

T .Eh/.x/ d!.x/

and thus, thanks to the doubling property of ! (Lemma 3.4),

jzv.X/j .
X
j�1

2�j˛

 
C�j

T .Eh/ d! . M!.T .Eh//.x0/;

which is our desired bound on zv.
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Step 2. Bound on v0. It remains to bound the term
�

SX
rY G.Y;X/ � Eh.Y /dY in (4.65).

Since dY � ı.X/n�d�1 dm.Y / on SX , the bound (iv) of Lemma 2.16 shows that
�

SX

jrY G.Y; X/j dY . ı.X/n�d�1

�
SX

jrY G.Y; X/j dm.Y / . ı.X/n�d :

Therefore, we have
jv0.X/j .

X
I2W
3I3X

`.I /n�d sup
I

j Ehj:

For each I 2 W , we can pick any point YI 2 I as before and then yI such that jYI � yI j D

ı.YI /. It is fairly easy to see that I 2 Wx for all x 2 �.yI ; c`.I //, with c small enough
independent of I , and thus `.I /n�d supI j Ehj � T .Eh/.x/ for x 2 �.yI ; c`.I //. From this
we infer that

`.I /n�d sup
I

j Ehj �

 
�.yI ;c`.I //

T .Eh/ d!:

If X 2 3I \ 
�.x0/, we necessary have �.yI ; c`.I //��.x0;C `.I // for C large enough.
By the doubling property of ! (Lemma 3.4), we obtain

`.I /n�d sup
I

j Ehj .
 

�.x0;C `.I//

T .Eh/ d! � M!.T .Eh//.x0/:

Since the number of Whitney cubes I 2 W for which 3I 3 X is (uniformly) finite, we can
conclude that

jv0.X/j . M!.T .Eh//.x0/

as desired. The lemma follows.

A. The regularity problem implies the Dirichlet problem

This section is devoted to the proof of Theorem 1.5. We shall follow closely the proof of
Theorem 5.4 in [49]. Note that when the operator is the Laplacian and the domain does
not have Harnack chains, this result was proved by Mourgoglou and Tolsa as Theorem 1.5
in [56]. Since the existing literature does not cover operators more general than the Lapla-
cian, we decided to rewrite a proof in our context.

In all this section, we assume that � is a uniform domain (see Definition 2.3), and that
L D � divŒwAr� is an elliptic operator satisfying (1.3).

The following Poincaré inequality will needed.

Lemma A.1. For any ˛ 2 Œ0; 1/, any x 2 @�, any r > 0, and a function u 2 W.B.x; 2r//

satisfying Tr.u/ � 0 on �.x; 2r/, we have

(A.1)
�

B.x;r/\�

ju.Y /j2 ı.Y /˛ dm.Y / � C˛r2

�
B.x;2r/\�

jru.Y /j2 ı.Y /˛ dm.Y /;

where C˛ depends on (the uniform constants of ) � and ˛.
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Proof. Define dm0.X/ WD ı.X/˛ dm.X/ on �, and then check that the triple .�; m0; �/

satisfies the assumptions (H1) to (H6) from [20]. The result is then a consequence of
Theorem 7.1 in [20].

Lemma A.2. Let u 2 W be a non-negative weak solution to Lu D 0 such that Tr.u/ � 0

on �.x; r/. Then, for each X 2 � such that jX � xj � ı.X/ � r , we have

(A.2)
u.X/

r
�

� 
B.x;r=2/\�

jru.Y /j2 dm.Y /
�1=2

. zN�.ru/.x/:

Here zN� is defined with cones 
�.x/ WD ¹X 2 �; jX � xj � C �ı.X/º of large aperture.
Besides, C � and the implicit constants in (A.2) depend only on the uniform constants of �

and the constants in jX � xj � ı.X/ � r .

Proof. Step 1. We have that

(A.3) r2

 
B.x;r=2/\�

jru.Y /j2 dm.Y / . u.X/2:

Indeed, since Tr.u/ D 0 on �.x; ı.X//, the above bound is due to two basic results
from [20]: Lemma 11.15 (Caccioppoli’s inequality at the boundary) and Lemma 15.14,
which, used in this order, give that

r2

 
B.x;r=2/\�

jru.Y /j2 dm .
 

B.x;3r=4/\�

ju.Y /j2 dm . ju.X/j2:

Step 2. We claim that for any ˛ 2 Œ0; 1/, we have

(A.4) u.X/2 . r2�˛

 
B.x;r=2/\�

jru.Y /j2 ı.Y /˛ dm.Y /:

Let X 0 2 � \ B.x; r=8/ be such that ı.X 0/ � r ; such point exists because � satisfies
the corkscrew point condition (see Definition 2.1). Thanks to the Harnack chain condition
(Definition 2.2) and the Harnack inequality (Lemma 2.11), we have u.X/ � u.Y / for any
Y 2 BX 0 . So we obtain that

u.X/2 .
 

BX 0

ju.Y /j2 dm � r�˛

 
BX 0

ju.Y /j2ı.Y /˛ dm

. r�˛

 
B.x;r=4/\�

ju.Y /j2 ı.Y /˛ dm . r2�˛

 
B.x;r=2/\�

jru.Y /j2 ı.Y /˛ dm.Y /;

where we used the Poincaré inequality (Lemma A.1), and we can because Tr.u/ D 0 on
�.x; r=2/.

Step 3. Conclusion. The equivalence in (A.2) is the combination of (A.3) and (A.4) for
˛ D 0. It remains to prove the second bound in (A.2), that is,

(A.5)
� 

B.x;r=2/\�

jru.Y /j2 dm.Y /
�1=2

. zN�.ru/.x/;
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but this bound is an immediate consequence of

(A.6)
�

B.x;r=2/\�

jru.Y /j2 dm.Y / .
�

B.x;r=2/\�;

1ı.Y />"�r jru.Y /j2 dm.Y /;

where "� is a small constant that depends only on the uniform constants of �, because the
right-hand side of (A.6) is bounded by j zN�.ru/.x/j2 if C � is large enough (depending
on "�).

In order to establish (A.6), observe that (A.3) and (A.4) give that
�

B.x;r=2/\�

jru.Y /j2 dm.Y / . r�˛

�
B.x;r=2/\�

jru.Y /j2 ı.Y /˛ dm.Y /

and thus�
B.x;r=2/\�

jru.Y /j2 dm.Y / � C."�/˛

�
B.x;r=2/\�

1ı.Y /�"�r jru.Y /j2 dm.Y /

C C

�
B.x;r=2/\�

1ı.Y />"�r jru.Y /j2 dm.Y /:

We choose ˛ D "�=2 > 0 such that C."�/˛ � 1=2, so that we can hide the integral over
B.x; r=2/ \ � \ ¹ı.Y / � "�rº in the left-hand side. The claim (A.6) and thus the lemma
follow.

We are know ready for the proof of Theorem 1.5.

Proof of Theorem 1.5. Suppose that the regularity problem (defined using Hajłasz–Sobo-
lev spaces) for L is solvable in Lq . Let !� be the harmonic measure with pole at infinity
associated to L�, that is defined in Definition 3.1. By Corollary 3.6, in order to show the
Dirichlet problem for L� is solvable in Lq0

, it suffices to show !� � � and k WD d!�=d�

satisfies the reverse Hölder inequality of order q.
Step 1. Thanks to the Ahlfors regularity of @�, for any boundary ball �, there exists K

(that depends only on the constant C� in (1.1) such that K� n 3� ¤ ;.
Let � WD �.x; r/ be a surface ball on @�. We construct f on @� as

(A.7) f .y/ WD max
°
0; 1 �

dist.y; K� n 3�/

r

±
:

Note that f is a non-negative function with f � 0 on 2� and @� n .K C 1/� and f � 1

on K� n 3�. The function f is Lipschitz, and if we define g on @� as g D
1
r
1.KC1/�,

we easily have that
jf .y/ � f .z/j � jy � zj.g.y/ C g.z//:

We deduce that g is a generalized (or Hajłasz upper) gradient of f , and thus the Hajłasz–
Sobolev norm of f satisfies

(A.8) kf k PW 1;q � C rd=q�1;

where C depends only on the Ahlfors regular constant C� .
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Let u be defined from f as in (1.4), that is,

u.X/ WD

�
@�

f .y/ d!X
L .y/:

Let X0 2 � be a corkscrew point for �, then

(A.9) u.X0/ � 1:

Indeed, the upper bound is 1 and comes from the fact that !X is a probability measure.
The lower bound comes from the non-degeneracy of the harmonic measure: since by def-
inition of K, the set K� n 3� is non-empty, we can take y 2 K� n 3�, and then Y0 a
corkscrew point of �.y;r/. The non-degeneracy of the harmonic measure (see for instance
Lemma 15.1 in [20]) gives that u.Y0/ & 1, because f is nonnegative and f � 1=2 on
�.y; r=2/. But Y0 and X0 can be linked by a Harnack chain, so the Harnack inequality
(Lemma 2.11) entails that u.X0/ & 1 as well.

Step 2. In this step, we claim that for any y 2 �.x; r/, any 0 < s < r=2, and any
z 2 �.y; s/,

(A.10)
!�.�.y; s//

�.�.y; s//
�

!�.�.x; r//

rd�1
zN�.ru/.z/:

Let G.:; :/ and G1 be the Green function and the Green function with pole at infinity
respectively; in particular, G.:; Y / and G1 are solutions to Lu D 0. Both G1 and u.:/

are non-negative solutions for which Tr.u/ D Tr.G1/ D 0 on 2�, so by the comparison
principle (Theorem 2.21) and (A.9), we have,

(A.11)
u.Y /

G1.Y /
�

u.X0/

G1.X0/
�

1

G1.X0/
for Y 2 B.x; 3r=2/ \ �:

In addition, according to Lemma 3.3,

(A.12) G1.X0/ � r1�d !�.�.x; r//:

Then combining (A.11), (A.12) and Lemma 3.3 again, we obtain

u.Y /

ı.Y /
�

G1.Y /

ı.Y /

rd�1

!�.�.x; r//
�

!�.�.y; s//

sd

rd�1

!�.�.x; r//
;(A.13)

where s � ı.Y / and jY � yj . s. So if at the contrary we choose any y 2 � and 0 < s <

r=2, we take Y 2 B.y; s/ \ � to be such that ı.Y / & s, (A.13) and Lemma A.2 entail

(A.14)
!�.�.y; s//

sd
�

!�.�.x; r//

rd�1

u.Y /

ı.Y /
�

!�.�.x; r//

rd�1
N�.ru/.z/:

The claim (A.10) follows for the Ahlfors regularity of � .
Step 3. Assume that E � � and �.E/ D 0. Since !� is Borel regular, we have

that !�.E/ D inf V �E
V open

!�.V /. For each open set V , we cover it by the balls ¹By WD
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B.x;dist.y;@�nV //ºy2V , and using Vitali’s covering lemma, we find a sequence ¹yiºi2V

such that Byi
are not overlapping while 5Byi

covers V . By using (A.10) on the balls 5Byi
,

we find that

!�.5Byi
/ �

!�.�.x; r//

rd�1

�
Byi

zN�.ru/.z/ d�.z/;

and then

!�.V / �
!�.�.x; r//

rd�1

�
V

zN�.ru/.z/ d�.z/:

Since we assume that the regularity problem is solvable in Lq , the function zN .ru/ lies
in Lq.@�; �/, and so by (4.31), the function N�.ru/ lies in Lq.@�; �/. We invoke the
Borel regularity of � to deduce that

!�.E/ D inf
V �E
V open

�
V

zN�.ru/ d� D

�
E

zN�.ru/ d� D 0:

We conclude that !� � � .
Step 4. We have shown that !� � � , and therefore the Radon–Nykodym derivative

k WD d!�=d� exists. Moreover, (A.10) implies for any y 2 � that

k.y/ WD lim
s!0

!�.�.y; s//

�.�.y; s//
. zN�.ru/.y/:

As a consequence,� 
�

kqd�
�1=q

.
!�.�.x; r//

rd�1

� 
�

jN�.ru/jq d�
�1=q

.
!�.�.x; r//

rd�1
r�d=q

k zN�.ru/kLq.@�;�/:

But by using successively (4.31), the solvability of the regularity problem in Lq , and (A.8),
we obtain

k zN�.ru/kLq.@�;�/ . k zN .ru/kLq.@�;�/ . kf k PW 1;q . rd=q�1:

The two last computations show that� 
�

kqd�
�1=q

.
!�.�/

rd
�

!�.�/

�.�/

because � is a d -dimensional Ahlfors regular measure. We proved that k 2 RHq , as
desired, which concludes the theorem.
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