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Abstract

Defenses against adversarial examples, such as adversarial training, are typically tailored
to a single perturbation type (e.g., small {o-noise). For other perturbations, these defenses
offer no guarantees and, at times, even increase the model’s vulnerability. Our aim is to
understand the reasons underlying this robustness trade-off, and to train models that are
simultaneously robust to multiple perturbation types.

We prove that a trade-off in robustness to different types of £,-bounded and spatial per-
turbations must exist in a natural and simple statistical setting. We corroborate our formal
analysis by demonstrating similar robustness trade-offs on MNIST and CIFAR10. We pro-
pose new multi-perturbation adversarial training schemes, as well as an efficient attack for the
{1-norm, and use these to show that models trained against multiple attacks fail to achieve
robustness competitive with that of models trained on each attack individually. In particular,
we find that adversarial training with first-order ¢, ¢1 and f2 attacks on MNIST achieves
merely 50% robust accuracy, partly because of gradient-masking. Finally, we propose affine
attacks that linearly interpolate between perturbation types and further degrade the accuracy
of adversarially trained models.

1 Introduction

Adversarial examples [37, 15] are proving to be an inherent blind-spot in machine learning (ML)
models. Adversarial examples highlight the tendency of ML models to learn superficial and brittle
data statistics [19, 13, 18], and present a security risk for models deployed in cyber-physical systems
(e.g., virtual assistants [5], malware detectors [16] or ad-blockers [39]).

Known successful defenses are tailored to a specific perturbation type (e.g., a small £,-ball [25,
28, 42] or small spatial transforms [11]). These defenses provide empirical (or certifiable) robustness
guarantees for one perturbation type, but typically offer no guarantees against other attacks [35,
31]. Worse, increasing robustness to one perturbation type has sometimes been found to increase
vulnerability to others [11, 31]. This leads us to the central problem considered in this paper:

Can we achieve adversarial robustness to different types of perturbations simultaneously?

Note that even though prior work has attained robustness to different perturbation types [25,
31, 11], these results may not compose. For instance, an ensemble of two classifiers—each of which
is robust to a single type of perturbation—may be robust to neither perturbation. Our aim is to
study the extent to which it is possible to learn models that are simultaneously robust to multiple
types of perturbation.

To gain intuition about this problem, we first study a simple and natural classification task,
that has been used to analyze trade-offs between standard and adversarial accuracy [41], and the
sample-complexity of adversarial generalization [30]. We define Mutually Exclusive Perturbations
(MEPs) as pairs of perturbation types for which robustness to one type implies vulnerability to the
other. For this task, we prove that £, and ¢;-perturbations are MEPs and that /..-perturbations
and input rotations and translations [11] are also MEPs. Moreover, for these MEP pairs, we
find that robustness to either perturbation type requires fundamentally different features. The
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Figure 1: Robustness trade-off on MNIST (top) and CIFAR10 (bottom). For a union of
¢p-balls (left), or of £o-noise and rotation-translations (RT) (right), we train models Advmax on
the strongest perturbation-type for each input. We report the test accuracy of Advy,ax against each
individual perturbation type (solid line) and against their union (dotted brown line). The vertical
lines show the adversarial accuracy of models trained and evaluated on a single perturbation type.

existence of such a trade-off for this simple classification task suggests that it may be prevalent in
more complex statistical settings.

To complement our formal analysis, we introduce new adversarial training schemes for multiple
perturbations. For each training point, these schemes build adversarial examples for all perturba-
tion types and then train either on all examples (the “avg” strategy) or only the worst example
(the “max” strategy). These two strategies respectively minimize the average error rate across
perturbation types, or the error rate against an adversary that picks the worst perturbation type
for each input.

For adversarial training to be practical, we also need efficient and strong attacks [25]. We
show that Projected Gradient Descent [22, 25] is inefficient in the ¢;-case, and design a new
attack, Sparse £1 Descent (SLIDE), that is both efficient and competitive with strong optimization
attacks [8],

We experiment with MNIST and CIFAR10. MNIST is an interesting case-study, as distinct
models from prior work attain strong robustness to all perturbations we consider [25, 31, 11|, yet
no single classifier is robust to all attacks [31, 32, 11]. For models trained on multiple £,-attacks
(01,42, s for MNIST, and ¢, £ for CIFARI10), or on both ¢, and spatial transforms [11], we con-
firm a noticeable robustness trade-off. Figure 1 plots the test accuracy of models Advy,.x trained
using our “max” strategy. In all cases, robustness to multiple perturbations comes at a cost—
usually of 5-10% additional error—compared to models trained against each attack individually
(the horizontal lines).

Robustness to £1,f2 and f-noise on MNIST is a striking failure case, where the robustness
trade-off is compounded by gradient-masking [27, 40, 1]. Extending prior observations [25, 31, 23],
we show that models trained against an ¢-adversary learn representations that mask gradients
for attacks in other £,-norms. When trained against first-order ¢;,¢> and f..-attacks, the model
learns to resist {..-attacks while giving the illusion of robustness to ¢; and ¢s attacks. This
model only achieves 52% accuracy when evaluated on gradient-free attacks [3, 31]. This shows
that, unlike previously thought [41], adversarial training with strong first-order attacks can suffer



from gradient-masking. We thus argue that attaining robustness to £,-noise on MNIST requires
new techniques (e.g., training on expensive gradient-free attacks, or scaling certified defenses to
multiple perturbations).

MNIST has sometimes been said to be a poor dataset for evaluating adversarial examples
defenses, as some attacks are easy to defend against (e.g., input-thresholding or binarization
works well for /-attacks [41, 31]). Our results paint a more nuanced view: the simplicity of these
{-defenses becomes a disadvantage when training against multiple £,-norms. We thus believe
that MNIST should not be abandoned as a benchmark just yet. Our inability to achieve multi-¢,
robustness for this simple dataset raises questions about the viability of scaling current defenses
to more complex tasks.

Looking beyond adversaries that choose from a union of perturbation types, we introduce a
new affine adversary that may linearly interpolate between perturbations (e.g., by compounding
{so-noise with a small rotation). We prove that for locally-linear models, robustness to a union of
¢p-perturbations implies robustness to affine attacks. In contrast, affine combinations of ¢, and
spatial perturbations are provably stronger than either perturbation individually. We show that
this discrepancy translates to neural networks trained on real data. Thus, in some cases, attaining
robustness to a union of perturbation types remains insufficient against a more creative adversary
that composes perturbations.

Our results show that despite recent successes in achieving robustness to single perturbation
types, many obstacles remain towards attaining truly robust models. Beyond the robustness trade-
off, efficient computational scaling of current defenses to multiple perturbations remains an open
problem.

The code used for all of our experiments can be  found  here:
https://github.com/ftramer/MultiRobustness

2 Theoretical Limits to Multi-perturbation Robustness

We study statistical properties of adversarial robustness in a natural statistical model introduced
in [41], and which exhibits many phenomena observed on real data, such as trade-offs between
robustness and accuracy [41] or a higher sample complexity for robust generalization [31]. This
model also proves useful in analyzing and understanding adversarial robustness for multiple per-
turbations. Indeed, we prove a number of results that correspond to phenomena we observe on
real data, in particular trade-offs in robustness to different ¢, or rotation-translation attacks [11].

We follow a line of works that study distributions for which adversarial examples exist un-
conditionally [41, 21, 33, 12, 14, 26]. These distributions, including ours, are much simpler than
real-world data, and thus need not be evidence that adversarial examples are inevitable in practice.
Rather, we hypothesize that current ML models are highly vulnerable to adversarial examples be-
cause they learn superficial data statistics [19, 13, 18] that share some properties of these simple
distributions.

In prior work, a robustness trade-off for /., and f2-noise is shown in [21] for data distributed
over two concentric spheres. Our conceptually simpler model has the advantage of yielding results
beyond ¢,-norms (e.g., for spatial attacks) and which apply symmetrically to both classes. Building
on work by Xu et al. [43], Demontis et al. [9] show a robustness trade-off for dual norms (e.g., £oo
and f1-noise) in linear classifiers.

2.1 Adversarial Risk for Multiple Perturbation Models

Consider a classification task for a distribution D over examples = € R? and labels y € [C]. Let
f:R% — [C] denote a classifier and let I(f(x),y) be the zero-one loss (i.e., 1(z)zy)-

We assume n perturbation types, each characterized by a set S of allowed perturbations for
an input x. The set S can be an £,-ball [37, 15] or capture other perceptually small transforms
such as image rotations and translations [11]. For a perturbation r € S, an adversarial example is
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& = = + r (this is pixel-wise addition for ¢, perturbations, but can be a more complex operation,
e.g., for rotations).

For a perturbation set S and model f, we define Raav(f;9) =
E(,y)~p Maxres I(f(x +7),y)] as the adversarial error rate. To extend Ra.qy to multiple
perturbation sets Si,...,S,, we can consider the average error rate for each S;, denoted Ri3%.
This metric most clearly captures the trade-off in robustness across independent perturbation
types, but is not the most appropriate from a security perspective on adversarial examples. A
more natural metric, denoted R,5, is the error rate against an adversary that picks, for each
input, the worst perturbation from the union of the S;. More formally,

gé%/x(fv S1,..., Sn) = RadV(f§ UiSi) » R:‘d,%(ﬁ Sty-.0, Sn) = % El RadV(f§ Si) . (1)

Most results in this section are lower bounds on Riys, which also hold for RZ%E since RIAX >
avg
Radv'

Two perturbation types 57,52 are Mutually FExclusive Perturbations (MEPs), if
REE(f;S1,52) > 1/|C| for all models f (i.e., no model has non-trivial average risk against both

adv
perturbations).

2.2 A binary classification task

We analyze the adversarial robustness trade-off for different perturbation types in a natural statis-
tical model introduced by Tsipras et al. [41]. Their binary classification task consists of input-label
pairs (z,y) sampled from a distribution D as follows (note that D is (d 4 1)-dimensional):

T +y, W.p. po, i.i.d
Yy ~ {_17+1}7 o = Y P-po y Tly...,&d N(ynv 1) ) (2)
-y, w.p. 1 —po

where py > 0.5, N(i1, 02) is the normal distribution and 1 = a/v/d for some positive constant a.

For this distribution, Tsipras et al. [41] show a trade-off between standard and adversarial
accuracy (for o, attacks), by drawing a distinction between the “robust” feature z that small
{o-noise cannot manipulate, and the “non-robust” features x1, ..., x4 that can be fully overridden
by small /.-noise.

2.3 Small 7/, and /; Perturbations are Mutually Exclusive

The starting point of our analysis is the observation that the robustness of a feature depends on
the considered perturbation type. To illustrate, we recall two classifiers from [41] that operate
on disjoint feature sets. The first, f(x) = sign(zg), achieves accuracy po for all £ -perturbations
with € < 1 but is highly vulnerable to ¢;-perturbations of size ¢ > 1. The second classifier,
h(x) = sign(ZfZl x;) is robust to ¢;-perturbations of average norm below E[Z?Zl z;] = O(\Vd),
yet it is fully subverted by a {..-perturbation that shifts the features z1, ..., x4 by £2n = 8(1/\/3)
We prove that this tension between £, and ¢; robustness, and of the choice of “robust” features,
is inherent for this task:

Theorem 1. Let f be a classifier for D. Let So, be the set of {x-bounded perturbations with
€ = 2n, and Sy the set of £1-bounded perturbations with € = 2. Then, R (f; S0, S1) > 1/2.

adv

The proofis in Appendix F. The bound shows that no classifier can attain better Ry% (and thus
max) than a trivial constant classifier f(z) = 1, which satisfies Raav(f; Soo) = Radv(f;51) = 1/2.

adv

Similar to [9], our analysis extends to arbitrary dual norms ¢, and ¢, with 1/p+1/g =1 and
p < 2. The perturbation required to flip the features z1, ..., z, has an £, norm of Q(difé) =w(l)

and an £, norm of Q(difé) = Q(défi) = o(1). Thus, feature z( is more robust than features
Z1,...,%, With respect to the £;,-norm, whereas for the dual £,-norm the situation is reversed.



2.4 Small /,, and Spatial Perturbations are (nearly) Mutually Exclusive

We now analyze two other orthogonal perturbation types, £,.-noise and rotation-translations [11].
In some cases, increasing robustness to £.-noise has been shown to decrease robustness to rotation-
translations [11]. We prove that such a trade-off is inherent for our binary classification task.

To reason about rotation-translations, we assume that the features z; form a 2D grid. We
also let o be distributed as N (y, a™2), a technicality that does not qualitatively change our prior
results. Note that the distribution of the features x1,..., x4 is permutation-invariant. Thus, the
only power of a rotation-translation adversary is to “move” feature xyg. Without loss of generality,
we identify a small rotation-translation of an input « with a permutation of its features that sends
xo to one of N fixed positions (e.g., with translations of +3px as in [11], zy can be moved to
N = 49 different positions).

A model can be robust to these permutations by ignoring the N positions that feature xy can
be moved to, and focusing on the remaining permutation-invariant features. Yet, this model is
vulnerable to £.-noise, as it ignores xg. In turn, a model that relies on feature xg can be robust to
{oo-perturbations, but is vulnerable to a spatial perturbation that “hides” x¢ among other features.
Formally, we show:

Theorem 2. Let f be a classifier for D (with xo ~ N (y,a™2)). Let Soo be the set of oo -bounded
perturbations with € = 2n, and Srr be the set of perturbations for an RT adversary with budget
N. Then, R®(f; Seo, Srr) > 1/2—O(1/v/N) .

adv

The proof, given in Appendix G, is non-trivial and yields an asymptotic lower-bound on R23%.

We can also provide tight numerical estimates for concrete parameter settings (see Appendix G.1).

2.5 Affine Combinations of Perturbations

We defined RI\™ as the error rate against an adversary that may choose a different perturba-
tion type for each input. If a model were robust to this adversary, what can we say about the
robustness to a more creative adversary that combines different perturbation types? To answer
this question, we introduce a new adversary that mixes different attacks by linearly interpolating
between perturbations.

For a perturbation set S and § € [0, 1], we denote 3 - S the set of perturbations scaled down
by 8. For an {,-ball with radius ¢, this is the ball with radius 3 - €. For rotation-translations,
the attack budget N is scaled to 5+ N. For two sets S1, S2, we define Samne(S1,S2) as the set of
perturbations that compound a perturbation 71 € 8-S with a perturbation ro € (1 — ) - S, for
any 8 € [0,1].

Consider one adversary that chooses, for each input, £, or {4,-noise from balls S, and S, for
p,q > 0. The affine adversary picks perturbations from the set Sumne defined as above. We show:

Claim 3. For a linear classifier f(z) = sign(w? z+b), we have R™(f; Sy, Sq) = Rado(f; Saffine)-

adv

Thus, for linear classifiers, robustness to a union of ¢,-perturbations implies robustness to
affine adversaries (this holds for any distribution). The proof, in Appendix H extends to models
that are locally linear within balls S, and S; around the data points. For the distribution D of
Section 2.2, we can further show that there are settings (distinct from the one in Theorem 1) where:
(1) robustness against a union of £, and ¢;-perturbations is possible; (2) this requires the model
to be non-linear; (3) yet, robustness to affine adversaries is impossible (see Appendix I for details).
Our experiments in Section 4 show that neural networks trained on CIFAR10 have a behavior that
is consistent with locally-linear models, in that they are as robust to affine adversaries as against
a union of /,-attacks.

In contrast, compounding /., and spatial perturbations yields a stronger attack, even for linear
models:

Theorem 4. Let f(x) = sign(w’x + b) be a linear classifier for D (with xg ~ N(y,a~2)). Let
Soo be some Uog-ball and Sgr be rotation-translations with budget N > 2. Define Sqmine as above.
Assume wo > w; > 0,Vi € [1,d]. Then Rago(f; Saffine) > RIFE(f; S, SRT)-

adv



Input: Input x € [0, l]d, steps k, step-size v, percentile ¢, £1-bound €
Output: £ =x + 7 s.t. ||r]|; <e

r « 0¢
for 1 <i<kdo
g« VL0, x+r,y)
ei = sign(g:) if |gi| = Py(|gl), else 0
rr+v-eflel;
T <—Hs§(7‘)
end

Algorithm 1: The Sparse ¢; Descent Attack (SLIDE). P,(|g|) denotes the ¢'" percentile
of |g| and IIs: is the projection onto the £;-ball (see [10]).

This result (the proof is in Appendix J) draws a distinction between the strength of affine
combinations of ¢,-noise, and combinations of /., and spatial perturbations. It also shows that
robustness to a union of perturbations can be insufficient against a more creative affine adver-
sary. These results are consistent with behavior we observe in models trained on real data (see
Section 4).

3 New Attacks and Adversarial Training Schemes

We complement our theoretical results with empirical evaluations of the robustness trade-off on
MNIST and CIFAR10. To this end, we first introduce new adversarial training schemes tailored
to the multi-perturbation risks defined in Equation (1), as well as a novel attack for the ¢;-norm.

Multi-perturbation adversarial training. Let
> - Q) — (@) (@)
Radv(f7s) ;glgg(L(f(w +'f’),y ) ;

bet the empirical adversarial risk, where L is the training loss and D is the training set. For a
single perturbation type, Radv can be minimized with adversarial training [25]: the maximal loss
is approximated by an attack procedure A(x), such that max,cs L(f(z +7),y) = L(f(A(x)),y).

For i € [1,d], let A; be an attack for the perturbation set .S;. The two multi-attack robustness
metrics introduced in Equation (1) immediately yield the following natural adversarial training
strategies:

1. “Max” strategy: For each input @, we train on the strongest adversarial example from all
attacks, i.e., the max in R,qy is replaced by L(f( Ak~ (x)),y), for k* = argmax,, L(f(Ax(x)), y).

2. “Avg” strategy: This strategy simultaneously trains on adversarial examples from all attacks.
That is, the max in Raqy is replaced by = 3" | L(f(Ai(x),y)).

The sparse /;-descent attack (SLIDE). Adversarial training is contingent on a strong and
efficient attack. Training on weak attacks gives no robustness [40], while strong optimization
attacks (e.g., [6, 8]) are prohibitively expensive. Projected Gradient Descent (PGD) [22, 25] is a
popular choice of attack that is both efficient and produces strong perturbations. To complement
our formal results, we want to train models on ¢;-perturbations. Yet, we show that the ¢;-version
of PGD is highly inefficient, and propose a better approach suitable for adversarial training.

PGD is a steepest descent algorithm [24]. In each iteration, the perturbation is updated in the
steepest descent direction argmax, <, vT'g, where g is the gradient of the loss. For the £o,-norm,
the steepest descent direction is sign(g) [15], and for €5, it is g/||g||,. For the ¢;-norm, the steepest
descent direction is the unit vector e with e;« = sign(g;+), for i* = argmax; |g;|.



This yields an inefficient attack, as each iteration updates a single index of the perturbation .
We thus design a new attack with finer control over the sparsity of an update step. For ¢ € [0, 1],
let P,(|g|) be the ¢ percentile of |g|. We set e; = sign(g;) if |g;| > P,(|g|) and 0 otherwise,
and normalize e to unit ¢;-norm. For ¢ > 1/d, we thus update many indices of r at once. We
introduce another optimization to handle clipping, by ignoring gradient components where the
update step cannot make progress (i.e., where z; + r; € {0,1} and g; points outside the domain).
To project r onto an ¢1-ball, we use an algorithm of Duchi et al. [10]. Algorithm 1 describes our
attack. It outperforms the steepest descent attack as well as a recently proposed Frank-Wolfe
algorithm for £;-attacks [20] (see Appendix B). Our attack is competitive with the more expensive
EAD attack [8] (see Appendix C).

4 Experiments

We use our new adversarial training schemes to measure the robustness trade-off on MNIST
and CIFAR10.! MNIST is an interesting case-study as distinct models achieve strong ro-
bustness to different ¢, and spatial attacks[31, 11]. Despite the dataset’s simplicity, we show
that no single model achieves strong f.,¢; and {5 robustness, and that new techniques are
required to close this gap. The code used for all of our experiments can be found here:
https://github.com/ftramer/MultiRobustness

Training and evaluation setup. We first use adversarial training to train models on a single
perturbation type. For MNIST, we use ¢1(e = 10), f2(e = 2) and £ (e = 0.3). For CIFARI10
we use log(€ = 5a=) and 1(e = 220). We also train on rotation-translation attacks with +3px
translations and +30° rotations as in [11]. We denote these models Advy, Advs, Adv.,, and Advgr.
We then use the “max” and “avg” strategies from Section 3 to train models Adviax and Advayg
against multiple perturbations. We train once on all £,-perturbations, and once on both £, and
RT perturbations. We use the same CNN (for MNIST) and wide ResNet model (for CIFAR10)
as Madry et al. [25]. Appendix A has more details on the training setup, and attack and training
hyper-parameters.

We evaluate robustness of all models using multiple attacks: (1) we use gradient-based attacks
for all £,-norms, i.e., PGD [25] and our SLIDE attack with 100 steps and 40 restarts (20 restarts
on CIFARI10), as well as Carlini and Wagner’s ¢y-attack [6] (C&W), and an ¢;-variant—EAD [8];
(2) to detect gradient-masking, we use decision-based attacks: the Boundary Attack [3] for ¢3, the
Pointwise Attack [31] for ¢, and the Boundary Attack++ [7] for {; (3) for spatial attacks, we
use the optimal attack of [11] that enumerates all small rotations and translations. For unbounded
attacks (C&W, EAD and decision-based attacks), we discard perturbations outside the £,-ball.

For each model, we report accuracy on 1000 test points for: (1) individual perturbation types;
(2) the union of these types, i.e., 1 — R2*; and (3) the average of all perturbation types, 1 — RoE.
We briefly discuss the optimal error that can be achieved if there is no robustness trade-off. For
perturbation sets Sy, ... Sy, let R1,..., R, be the optimal risks achieved by distinct models. Then,
a single model can at best achieve risk R; for each S;, i.e., OPT(RLE) = L Y  R;. If the errors

adv/ — n
are fully correlated, so that a maximal number of inputs admit no attack, we have OPT(RX{X) =
max{R1,...,Rn}. Our experiments show that these optimal error rates are not achieved.

Results on MNIST. Results are in Table 1. The left table is for the union of ¢,-attacks,
and the right table is for the union of ¢, and RT attacks. In both cases, the multi-perturbation
training strategies “succeed”, in that models Adv,ye and Advp,ax achieve higher multi-perturbation
accuracy than any of the models trained against a single perturbation type.

The results for £, and RT attacks are promising, although the best model Advy,, only
achieves 1 — RI2* = 83.8% and 1 — R2% = 87.6%, which is far less than the optimal values,

adv

IKang et al. [20] recently studied the transfer between £oo, 1 and £2-attacks for adversarially trained models on
ImageNet. They show that models trained on one type of perturbation are not robust to others, but they do not
attempt to train models against multiple attacks simultaneously.
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Table 1: Evaluation of MNIST models trained on /., ¢; and ¢ attacks (left) or ¢, and
rotation-translation (RT) attacks (right). Models Adv.,, Advy, Advs and Advgr are trained
on a single attack, while Adv,ye and Advyax are trained on multiple attacks using the “avg” and
“max” strategies. The columns show a model’s accuracy on individual perturbation types, on the
union of them (1 — RXM{X), and the average accuracy across them (1 — R ). The best results
are in bold (at 95% confidence). Results in red indicate gradient-masking, see Appendix C for a

breakdown of all attacks.

Model Acc. Yo 0, lo 1—RIX™ 1-—RYE Model Acc. ¢ RT 1—RDTE 1 —-R¥E

adv adv adv
Nat 99.4 0.0 124 85 0.0 7.0 Nat 99.4 0.0 0.0 0.0 0.0
Adve 99.1 91.1 121 11.3 6.8 38.2 Adve 99.1 914 0.2 0.2 45.8
Adv,y 98.9 0.0 78.5 50.6 0.0 43.0 Advgr 99.3 0.0 94.6 0.0 47.3
Adv, 98.5 0.4 68.0 71.8 0.4 46.7 Advavs 99.2 88.2 86.4 82.9 87.3
Advavg 97.3 T76.7 539 58.3 49.9 63.0 Advmax 98.9 89.6 85.6 83.8 87.6
Advmax 97.2 71.7 62.6 56.0 52.4 63.4

1 — OPT(R2>) = min{91.4%,94.6%} = 91.4% and 1 — OPT(RLS) = (91.4% + 94.6%) /2 = 93%.
Thus, these models do exhibit some form of the robustness trade-off analyzed in Section 2.

The ¢, results are surprisingly mediocre and re-raise questions about whether MNIST can
be considered “solved” from a robustness perspective. Indeed, while training separate models to
resist £1,f5 or £, attacks works well, resisting all attacks simultaneously fails. This agrees with
the results of Schott et al. [31], whose models achieve either high ¢, or ¢ robustness, but not
both simultaneously. We show that in our case, this lack of robustness is partly due to gradient

masking.

First-order adversarial training and gradient masking on MNIST. The model Adv,,
is not robust to ¢; and /s-attacks. This is unsurprising as the model was only trained on /-
attacks. Yet, comparing the model’s accuracy against multiple types of ¢; and ¢y attacks (see
Appendix C) reveals a more curious phenomenon: Adv., has high accuracy against first-order
{1 and ls-attacks such as PGD, but is broken by decision-free attacks. This is an indication of
gradient-masking [27, 40, 1].

This issue had been observed before [31, 23], but an explanation remained illusive, especially
since £o.-PGD does not appear to suffer from gradient masking (see [25]). We explain this phe-
nomenon by inspecting the learned features of model Adv,, as in [25]. We find that the model’s
first layer learns threshold filters z = ReLU(a - (z — €)) for a > 0. As most pixels in MNIST are
zero, most of the z; cannot be activated by an e-bounded ¢..-attack. The ¢,-PGD thus optimizes
a smooth (albeit flat) loss function. In contrast, ¢1- and ¢y-attacks can move a pixel z; = 0 to
&; > € thus activating z;, but have no gradients to rely on (i.e, dz;/dz; = 0 for any z; < €). Fig-
ure 3 in Appendix D shows that the model’s loss resembles a step-function, for which first-order
attacks such as PGD are inadequate.

Note that training against first-order ¢; or ¢s-attacks directly (i.e., models Advy; and Advy
in Table 1), seems to yield genuine robustness to these perturbations. This is surprising in that,
because of gradient masking, model Adv, actually achieves lower training loss against first-order
{1 and fs-attacks than models Advy; and Advs. That is, Adv; and Advy converged to sub-optimal
local minima of their respective training objectives, yet these minima generalize much better to
stronger attacks.

The models Advaye and Advyax that are trained against o, £1 and ¢s-attacks also learn to use
thresholding to resist {.-attacks while spuriously masking gradient for ¢; and fs-attacks. This is
evidence that, unlike previously thought [41], training against a strong first-order attack (such as
PGD) can cause the model to minimize its training loss via gradient masking. To circumvent this
issue, alternatives to first-order adversarial training seem necessary. Potential (costly) approaches
include training on gradient-free attacks, or extending certified defenses [28, 42] to multiple per-
turbations. Certified defenses provide provable bounds that are much weaker than the robustness



Table 2: Evaluation of CIFAR10 models trained against /., and /; attacks (left) or /.,
and rotation-translation (RT) attacks (right). Models Adv.,, Adv; and Advgr are trained
against a single attack, while Advaye and Advmax are trained against two attacks using the “avg”
and “max” strategies. The columns show a model’s accuracy on individual perturbation types, on
the union of them (1 —R™*), and the average accuracy across them (1 —R25%). The best results
are in bold (at 95% confidence). A breakdown of all ¢; attacks is in Appendix C.

Model Acc. /lo b 1—RI> 1-—RYE Model Acc. los RT 1 —RD2 1 - R¥E

adv adv adv
Nat 95.7 0.0 0.0 0.0 0.0 Nat 95.7 0.0 59 0.0 3.0
Adve 92.0 71.0 164 16.4 44.9 Adve 92.0 71.0 89 8.7 40.0
Adv,y 90.8 53.4 66.2 53.1 60.0 Advgr 94.9 0.0 82.5 0.0 41.3
Advaye 91.1 64.1 60.8 59.4 62.5 Advavg 93.6 67.8 78.2 65.2 73.0
Advmax 91.2 65.7 62.5 61.1 64.1 Advmax 93.1 69.6 75.2 65.7 72.4

Table 3: Evaluation of affine attacks. For models trained with the “max” strategy, we eval-
uate against attacks from a union Sy of perturbation sets, and against an affine adversary that
interpolates between perturbations. Examples of affine attacks are in Figure 4.

Dataset Attacks acc. on Sy acc. on Saffine

MNIST /¢ & RT 83.8 62.6
CIFAR10 /o & RT 65.7 56.0
CIFARI0 /Y & {4 61.1 58.0

attained by adversarial training, and certifying multiple perturbation types is likely to exacerbate
this gap.

Results on CIFAR10. The left table in Table 2 considers the union of ¢, and ¢; perturbations,
while the right table considers the union of /., and RT perturbations. As on MNIST, the models
Adv,ye and Advy,ax achieve better multi-perturbation robustness than any of the models trained
on a single perturbation, but fail to match the optimal error rates we could hope for. For ¢; and £.-
attacks, we achieve 1 — R = 61.1% and 1 —R*® = 64.1%, again significantly below the optimal

adv adv

values, 1 —OPT(R2*) = min{71.0%, 66.2%} = 66.2% and 1—OPT(R.%) = (71.0%+66.2%) /2 =

68.6%. The results for £, and RT attacks are qualitatively and quantitatively similar. 2
Interestingly, models Advays and Advmax achieve 100% training accuracy. Thus, multi-

perturbation robustness increases the adversarial generalization gap [30]. These models might

be resorting to more memorization because they fail to find features robust to both attacks.

Affine Adversaries. Finally, we evaluate the affine attacks introduced in Section 2.5. These
attacks take affine combinations of two perturbation types, and we apply them on the models
Adviax (we omit the £,-case on MNIST due to gradient masking). To compound ¢, and ¢;-noise,
we devise an attack that updates both perturbations in alternation. To compound /., and RT
attacks, we pick random rotation-translations (with +38px translations and +305° rotations),
apply an {-attack with budget (1 — 3)e to each, and retain the worst example.

The results in Table 3 match the predictions of our formal analysis: (1) affine combinations
of £, perturbations are no stronger than their union. This is expected given Claim 3 and prior
observations that neural networks are close to linear near the data [15, 29]; (2) combining of £«
and RT attacks does yield a stronger attack, as shown in Theorem 4. This demonstrates that
robustness to a union of perturbations can still be insufficient to protect against more complex
combinations of perturbations.

2An interesting open question is why the model Advayg trained on 4o and RT attacks does not attain optimal
average robustness RZZ;% Indeed, on CIFARI10, detecting the RT attack of [11] is easy, due to the black in-painted
pixels in a transformed image. The following “ensemble” model thus achieves optimal R:‘f] (but not necessarily
optimal R): on input &, return Advgrr (@) if there are black in-painted pixels, otherwise return Adveo (€). The

fact that model Advayvg did not learn such a function might hint at some limitation of adversarial training.



5 Discussion and Open Problems

Despite recent success in defending ML models against some perturbation types [25, 11, 31],
extending these defenses to multiple perturbations unveils a clear robustness trade-off. This tension
may be rooted in its unconditional occurrence in natural and simple distributions, as we proved
in Section 2.

Our new adversarial training strategies fail to achieve competitive robustness to more than one
attack type, but narrow the gap towards multi-perturbation robustness. We note that the optimal
risks R22* and R5® that we achieve are very close. Thus, for most data points, the models are
either robust to all perturbation types or none of them. This hints that some points (sometimes
referred to as prototypical examples [4, 36]) are inherently easier to classify robustly, regardless of
the perturbation type.

We showed that first-order adversarial training for multiple £,-attacks suffers from gradient
masking on MNIST. Achieving better robustness on this simple dataset is an open problem. An-
other challenge is reducing the cost of our adversarial training strategies, which scale linearly in
the number of perturbation types. Breaking this linear dependency requires efficient techniques for
finding perturbations in a union of sets, which might be hard for sets with near-empty intersection
(e.g., o and #1-balls). The cost of adversarial training has also be reduced by merging the inner
loop of a PGD attack and gradient updates of the model parameters [34, 44], but it is unclear how
to extend this approach to a union of perturbations (some of which are not optimized using PGD,
e.g., rotation-translations).

Hendrycks and Dietterich [17], and Geirhos et al. [13] recently measured robustness of classifiers
to multiple common (i.e., non-adversarial) image corruptions (e.g., random image blurring). In
that setting, they also find that different classifiers achieve better robustness to some corruptions,
and that no single classifier achieves the highest accuracy under all forms. The interplay between
multi-perturbation robustness in the adversarial and common corruption case is worth further
exploration.
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A Experimental Setup

MNIST. We use the CNN model from Madry et al. [25] and train for 10 epochs with Adam
and a learning rate of 1073 reduced to 10~* after 5 epochs (batch size of 100). To accelerate
convergence, we train against a weaker adversary in the first epoch (with 1/3 of the perturbation
budget). For training, we use PGD with 40 iterations for ¢, and 100 iterations for ¢; and ¢s.
For rotation-translations, we use the attack from [11] that picks the worst of 10 random rotation-
translations.

CIFAR10. We use the same wide ResNet model as [25]. We train for 80k steps of gradient
descent with batch size 128 (205 epochs). When using the “avg” strategy for wide ResNet models,
we had to halve the batch size to avoid overflowing the GPU’s memory. We accordingly doubled
the number of training steps and learning rate schedule. We use a learning rate of 0.1 decayed by
a factor 10 after 40k and 60k steps, a momentum of 0.9, and weight decay of 0.0002. Except for
the RT attack, we use standard data augmentation with random padding, cropping and horizontal
flipping (see [11] for details). We extract 1,000 points from the CIFAR10 test as a validation set
for early-stopping.

For training, we use PGD with 10 iterations for ¢.., and 20 iterations for ¢;. 3 For rotation-
translations, we also use the attack from [11] that trains on the worst of 10 randomly chosen
rotation-translations.

B Performance of the Sparse /;-Descent Attack

In Figure 2, we compare the performance of our new Sparse #1-Descent Attack (SLIDE) for different
choices of gradient sparsity. We also compare to the standard PGD attack with the steepest-descent
update rule, as well as a recent attack proposed in [20] that adapts the Frank-Wolfe optimization

30ur new attack ¢1-attack, described in Section 3, has a parameter ¢ to controls the sparsity of the gradient
updates. When leaving this parameter constant during training, the model overfits and fails to achieve general
robustness. To resolve this issue, we sample ¢ € [80%,99.5%] at random for each attack during training. We also
found that 10 iterations were insufficient to get a strong attack and thus increased the iteration count to 20.
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algorithm for finding /;-bounded adversarial examples. As we explained in Section 3, we expect
our attack to outperform PGD as the steepest-descent vector is too sparse in the ¢;-case, and we
indeed observe a significant improvement by choosing denser updates.

The subpar performance of the Frank-Wolfe algorithm is also intriguing. We believe it is due
to the attack’s linearly decreasing step-size (the k! iteration has a step-size of O(1/k), see [20] for
details). While this choice is appropriate for optimizing convex functions, in the non-convex case
it overly emphasizes the first steps of the attack, which intuitively should increase the likelihood

of landing in a local minima.
30 1 _—é

2 %7 % 20 — 85% 99%
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Figure 2: Performance of the Sparse /;-Descent Attack on MNIST (left) and CIFAR10
(right) for different choices of descent directions. We run the attack for up to 1,000 steps
and plot the evolution of the cross-entropy loss, for an undefended model. We vary the sparsity
of the gradient updates (controlled by the parameter ¢), and compare to the standard PGD
attack that uses the steepest descent vector, as well as the Frank-Wolfe ¢;-attack from [20]. For
appropriate ¢, our attack vastly outperforms PGD and Frank-Wolfe.
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C Breakdown of /,-Attacks on Adversarially Trained Models

Tables 4 and 5 below give a more detailed breakdown of each model’s accuracy against each ¢,
attack we considered. For each model and attack, we evaluate the attack on 1,000 test points and
report the accuracy. For each individual perturbation type (i.e., £, ¢1, £2), we further report the
accuracy obtained by choosing the worst attack for each input. Finally, we report the accuracy
against the union of all attacks (1 — RI*) as well as the average accuracy across perturbation
types (1 —R3S).

Table 4: Breakdown of all attacks on MNIST models. For /., we use PGD and the
Boundary Attack++ (BAPP) [7]. For ¢;, we use our new Sparse ¢1-Descent Attack (SLIDE),
EAD [8] and the Pointwise Attack (PA) [31]. For /3, we use PGD, C&W [6] and the Boundary
Attack (BA) [3].

lo a0 £
Model Acc. PGD BAPP All{,, SLIDE EAD PA All¢; PGD C&W BA All/l, 1-—-RIH: 1-RIE
Nat 99.4 0.0 13.0 0.0 13.0 188 721 124 11.0 104 31.0 8.5 0.0 7.0
Advee  99.1 91.1 98.5 91.1 66.9 584 15.0 12.1 781 784 14.0 11.3 6.8 38.2
Adv, 98.9 0.0 43.5 0.0 78.6 810 91.6 785 53.0 520 69.7 50.6 0.0 43.0
Adva 98.5 0.4 78.5 0.4 70.4 69.3 89.7 68.0 747 745 817 T71.8 0.4 46.7
Advayg 973 T76.7 98.0 76.7 66.3 624 68.6 539 777 723 64.6 583 49.9 63.0
Advmax 972 717 98.5 1.7 72.1 700 69.6 62.6 757 71.8 59.7 56.0 52.4 63.4

Table 5: Breakdown of all attacks on CIFAR10 models. For /., we use PGD. For /1, we
use our new Sparse {1-descent attack (SLIDE), EAD [8] and the Pointwise Attack (PA) [31].

loo I
Model Acc. PGD All/¢,, SLIDE EAD PA All/4 1-—RLL 1-— R‘:(Vi%
Nat 95.7 0.0 0.0 0.2 0.0 29.6 0.0 0.0 0.0
Adve 92.0 71.0 71.0 19.4 17.6 52.7 16.4 16.4 44.9
Adv, 90.8 53.4 53.4 66.6 66.6 84.7 66.2 53.1 60.0
Advayg 91.1 641 64.1 61.1 61.5 81.7 60.8 59.4 62.5
Advmax 91.2  65.7 65.7 63.1 63.0 83.4 62.5 61.1 64.1

D Gradient Masking as a Consequence of /,.-Robustness on
MNIST.

Multiple works have reported on a curious phenomenon that affects the £,,-adversarially trained
model of Madry et al. [25] on MNIST. This model achieves strong robustness to the ¢, attacks
it was trained on, as one would expect. Yet, on other £,-norms (e.g., ¢1 [8, 31| and ¢> [23, 31]),
its robustness is no better—or even worse—than for an undefended model. Some authors have
referred to this effect as overfitting, a somewhat unfair assessment of the work of [25], as their

model actually achieves exactly what it was trained to do—mnamely resist /.-bounded attacks.

Moreover, as our theoretical results suggest, this trade-off may be inevitable (a similar point was
made in [21]).

The more intriguing aspect of Madry et al.’s MNIST model is that, when attacked by ¢; or ¢
adversaries, first-order attacks are sub-optimal. This was previously observed in [31] and in [23],
where decision-based or second-order attacks vastly outperformed gradient descent for finding ¢4
or {5 adversarial examples. Li et al. [23] argue that this effect is due to the gradients of the
adversarially trained model having much smaller magnitude than in a standard model. Yet, this
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Figure 3: Gradient masking in an ¢, -adversarially trained model on MNIST, evaluated
against (;-attacks (left) and /¢2-attacks (right). The model is trained against an {o.-PGD
adversary with € = 0.3. For a randomly chosen data point x, we compute an adversarial pertur-
bation rpgp using PGD and rgr using a gradient-free attack. The left plot is for ¢;-attacks with
€ = 10 and the right plot is for /o-attacks with € = 2. The plots display the loss on points of the
form & := x + « - rpgp + B - rar, for «, 8 € [0,¢]. The loss surface behaves like a step-function,
and gradient-free attacks succeed in finding adversarial examples where first-order methods failed.

fails to explain why first-order attacks appear to be optimal in the {,-norm that the model was
trained against.

A natural explanation for this discrepancy follows from an inspection of the robust model’s
first layer (as done in [25]). All kernels of the model’s first convolutional layer have very small
norm, except for three kernels that have a single large weight. This reduces the convolution to
a thresholding filter, which we find to be of one of two forms: either ReLU(« - (z — 0.3)) or
ReLU(a - (x — 0.7)) for constant o > 0.* Thus, the model’s first layer forms a piece-wise function
with three distinct regimes, depending on the value of an input pixel x;: (1) for z; € [0,0.3], the
output is only influenced by the low-weight kernels. For z; € [0.3,1], the ReLU(« - (z — 0.3))
filters become active, and override the signal from the low-weight kernels. For z; € [0.7,1], the
ReLU(a - (z — 0.7)) filters are also active.

As most MNIST pixels are in {0,1}, {.-attacks operate in a regime where most perturbed
pixels are in [0, 0.3]U[0.7, 1]. The model’s large-weight ReLUs thus never transition between active
and inactive, which leads to a smooth, albeit flat loss that first-order methods navigate effectively.

For ¢, and /5 attacks however, one would expect some of the ReLUs to be flipped as the attacks
can make changes larger that 0.3 to some pixels. Yet, as most MNIST pixels are 0 (the digit’s
background), nearly all large-weight ReLUs start out inactive, with gradients equal to zero. A
first-order adversary thus has no information on which pixels to focus the perturbation budget on.

Decision-based attacks sidestep this issue by disregarding gradients entirely. Figure 3 shows
two examples of input points where a decision-based attack (Pointwise Attack for ¢; [31] and
Boundary Attack for ¢5 [3]) finds an adversarial example in a direction that is orthogonal to the
one explored by PGD. The loss surface exhibits sharp thresholding steps, as predicted by our
analysis.

When we explicitly train against first-order ¢; or ¢ adversaries (models Adv; and Advsy in Ta-
ble 1, left), the resulting model is robust (at least empirically) to ¢ or ¢ attacks. Note that model
Adv, actually achieves higher robustness to £2-PGD attacks than Advs (due to gradient-masking).
Thus, the Advs model converged to a sub-optimal local minima of its first-order adversarial train-
ing procedure (i.e., learning the same thresholding mechanism as Adv., would yield lower loss).
Yet, this sub-optimal local minima generalizes much better to other /5 attacks.

Models trained against £, 1 and ¢y attacks (i.e., Adv,y and Advpyax) in Table 1, left) also
learn to use thresholding to achieve robustness to £, attacks, while masking gradients for ¢; and

4Specifically, for the “secret” model of Madry et al., the three thresholding filters are approximately ReLU(0.6 -
(z —0.3)), ReLU(1.34 - (x — 0.3)) and ReLU(0.86 - (z — 0.7)).
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{5 attacks.

E Examples of Affine Combinations of Perturbations

In Figure 4, we display examples of /1, ¢, and rotation-translation attacks on MNIST and CI-
FARI10, as well as affine attacks that interpolate between two attack types.

B=1.0 0.75 0.25 pf=1.0 0.75 0.25 B=1.0 0.75 0.25

4 e
HES SONEEE EEEEES
2

loo RT ——m80 0 —— S —" NN

Figure 4: Adversarial examples for /., ¢; and rotation-translation (RT) attacks, and
affine combinations thereof. The first column in each subplot shows clean images. The
following five images in each row linearly interpolate between two attack types, as described in
Section 2.5. Images marked in red are mis-classified by a model trained against both types of
perturbations. Note that there are examples for which combining a rotation-translation and ¢.-
attack is stronger than either perturbation type individually.

F Proof of Theorem 1 (Robustness trade-off between /., and
{1- norms)

Our proof follows a similar structure to the proof of Theorem 2.1 in [41], although the analysis
is slightly simplified in our case as we are comparing two perturbation models, an ¢.,-bounded
one and an ¢;-bounded one, that are essentially orthogonal to each other. With a perturbation of
size € = 2, the f.-bounded noise can “flip” the distribution of the features z1,...,z4 to reflect
the opposite label, and thus destroy any information that a classifier might extract from those
features. On the other side, an /;-bounded perturbation with € = 2 can flip the distribution of
xo. By sacrificing some features, a classifier can thus achieve some robustness to either £, or {1
noise, but never to both simultaneously.

For y € {—1,+1}, let GY be the distribution over feature o conditioned on the value of y.
Similarly, let HY be the conditional distribution over features z1,...,x4. Consider the following
perturbations: ro, = [0, —2yn, ..., —2yn] has small {,,-norm, and r; = [—2x0,0,...,0] has small
¢1-norm. The ¢, perturbation can change HY to H ™Y, while the ¢; perturbation can change GY
to G7Y.

Let f(x) be any classifier from R%*! to {—1,+1} and define:

b= m~(gflr,n—1)[f(w) =t o= m~(g?1r,n+1)[f(w) =+

The accuracy of f against the r,, perturbation is given by:

Pr{f(z + 7o) = 4] = Prly = +1] - py_ +Prly= 1] (L —pi) = = - (L4 pee —p_y).

N =



Similarly, the accuracy of f against the r; perturbation is:

Prif(x +7) =yl =Prly=+1] -p_y +Prly=—1]- A —py_) =5 - A +p—y —p+-) .

N =

Combining these, we get Pr[f(x + ro) = y] + Pr[f(x +m) =y] = 1.

As T and r; are two specific /.- and ¢1-bounded perturbations, the above is an upper-bound
on the accuracy that f achieves against worst-case perturbation within the prescribed noise models,
which concludes the proof.

O

G Proof of Theorem 2 (Robustness trade-off between /., and
spatial perturbations)

The proof of this theorem follows a similar blueprint to the proof of Theorem 1. Recall that an £
perturbation with € = 2n can flip the distribution of the features z1,...,z, to reflect an opposite
label y. The tricky part of the proof is to show that a small rotation or translation can flip the
distribution of xy to the opposite label, without affecting the marginal distribution of the other
features too much.

Recall that we model rotations and translations as picking a permutation 7 from some fixed
set IT of permutations over the indices in @, with the constraint that feature xg be moved to at
most N different positions for all = € II.

We again define GY as the distribution of xy conditioned on y, and HY for the distribution of
T1,...,Tq. We know that a small {-perturbation can transform HY into H~Y. Our goal is to
show that a rotation-translation adversary can change (GY,HY) into a distribution that is very
close to (G7Y,HY). The result of the theorem then follows by arguing that no binary classifier
f can distinguish, with high accuracy, between ¢, .-perturbed examples with label y and rotated
examples with label —y (and vice versa).

We first describe our proof idea at a high level. We define an intermediate “hybrid” distribution
ZY where all d + 1 features are i.i.d N(yn, 1) (that is, z9 now has the same distribution as the
other weakly-correlated features). The main step in the proof is to show that for samples from
either (GY¥, HY) or (G~¥,HY), a random rotation-translation yields a distribution that is very close
(in total variation) to Z¥. From this, we then show that there exists an adversary that applies
two rotations or translations in a row, to first transform samples from (GY, HY) into samples close
to ZY, and then transform those samples into ones that are close to (G™Y, HY).

We will need a standard version of the Berry-Esseen theorem, stated hereafter for completeness.

Theorem 5 (Berry-Esseen [2]|). Let X1,..., X, be independent random variables with E[X;] = p;,
E[X?] = 02 > 0, and E[|X;|?] = p; < oo, where the p;,0; and p; are constants independent of n.
Let S, = X5 + -+ + X,,, with F,(z) the CDF of S,, and ®(z) the CDF of the standard normal
distribution. Then,

sup
zeR

x — E[Sy]
F () - ——=== ]| =0(1/vn).
(@) ( Var[sn]>| (1/vm)

For distributions P, Q, let Apy (P, Q) denote their total-variation distance. The below lemma is
the main technical result we need, and bounds the total variation between a multivariate Gaussian
P and a special mixture of multivariate Gaussians Q.

Lemma 6. For k > 1, let P be a k-dimensional Gaussians with mean pup = [Ap,...,A\p| and
identity covariance. For all i € [k], let Q; be a multivariate Gaussian with mean w; and diagonal
A - . — . 2 . . — .
covariance X; where (p;); = Q ¥ ]‘ and (X3) (.5 = o Ui j‘ .
Ap otherwise > 1 otherwise

Define Q as a mizture distribution of the Qi,..., Qr with probabilities 1/k. Assuming that
Ap, A, 0q are constants independent of k, we have Ary(P, Q) = O(1/VE).
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Proof. ® Let p(x) and q(x) denote, respectively, the pdfs of P and Q. Note that g(x) =
Zle +qi(x), where ¢;(x) is the pdf of Q;. We first compute:

ka

—L(@—pp)  (z—pp)

I
.
-
®
|
[N
~+
*
8
;
5

2n)F kol &
1 k
14wy
= (@) F-od 'Ze e
=1
where
t(a:) = (057 — D)7 — (2Aqog” — 2Ap)zi + (M0, — Ap) - (3)
Thus we have that
1
(z)
¢(z) <plx) = k: o3 ;e <1.

The total-variation distance between P and Q is then Ay (P, Q) = p; — pa, where

pr=Pr[Sy<k-o3], p2=Pr[Tp<k- 03], (4)
k
Sk = ZUl sy T =Sk + Vi, U= eiét(zi) , Vp= eiét(W")

i=1

and the Z; ~ N(Ap,1), W,, ~ N(Aq, 0?2) and all the Z; and W,, are mutually independent.
It is easy to verify that E[U;] = 0, Var[U;] = O(1), E[U?] = O(1), E[W,,] = O(1), Var[W,,] =
O(1),E[W2] = O(1). Then, applying the Berry-Esseen theorem, we get:

=Pr[Sk<k-op] =9 ()+0<\/_)—% O( )
:Pr[Tk<k-aé]:¢<k Uf/aer ) ( ) ( (%))jLO(Lk)
o)
And thus,
Ary(P,Q) = O(1/VE) . (5)
O

We now define a rotation-translation adversary A with a budget of N. It samples a random
permutation from the set IT of permutations that switch position 0 with a position in [0, N — 1]
and leave all other positions fixed (note that [IT| = N). Let A(GY,HY) denote the distribution
resulting from applying A to (GY, HY) and define A(G~Y, HY) similarly. Recall that ZY is a hybrid
distribution which has all features distributed as N (yn, 1).

Claim 7. Ary (A(GY,HY), 2Y) = O(1/V'N) and Ary (A(G™Y,HY), 2Y) = O(1/V/'N)

Proof. For the first N features, samples output by A follow exactly the distribution Q from
Lemma (6), for k= N and A\p =y -7, A\q = y,05 = a~>. Note that in this case, the distribution
P has each feature distributed as in Z¥. Thus, Lemma (6) tells us that the distribution of the

5We thank Iosif Pinelis for his help with this proof (https://mathoverflow.net/questions/325409/).
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first N features is the same as in ZY, up to a total-variation distance of O(1/vN). As features

TN ..., xq are unaffected by A and thus remain distributed as in ZY, we conclude that the total-
variation distance between A’s outputs and Z¥ is O(1/vV/N).
The proof for A(G™Y,HY) is similar, except that we apply Lemma (6) with A\g = —v. O

Let Z¥ be the true distribution A(G~¥, H¥), which we have shown to be close to Z¥. Consider
the following “inverse” adversary A~!. This adversary samples z ~ ZY and returns 7~ !(z), for
m € II, with probability

1 fgvpn(nH(2)
1| fz.(2) ’

where f(g-v yv) and fz, are the probability density functions for (G=¥,H") and for Zv.

Claim 8. A~! is a RT adversary with budget N that transforms ZY into (G=Y, HY).

Proof. Note that A~! always applies the inverse of a perturbation in IT. So feature zo gets sent
to at most N positions when perturbed by A~1.

Let Z be a random variable distributed as Z¥ and let h be the density function of the distri-
bution obtained by applying A~! to Z. We compute:

h(x) = Z fz,(m(zx)) - Pr[A™" picks permutation 7 | Z = 7(x)]

well
1 fig-vun(n(n™!(2))) 1
=) falr(@) 7 : =D 7 fgvmn (@)
7; z ] f2.(x () Z;Y ] e
= f(g*y,?-[y)(w) )
so applying A~! to Z¥ does yield the distribution (G~¥, HY). O

We can now finally define our main rotation-translation adversary, A*. The adversary first
applies A to samples from (GY,HY), and then applies A1 to the resulting samples from Z¥.

Claim 9. The adversary A* is a rotation-translation adversary with budget N. Moreover,
ATV (A*(gya Hy)a (givay)) = O(l/m) :

Proof. The adversary A* first switches xy with some random position in [0, N — 1] by applying
A. Then, A~! either switches xy back into its original position or leaves it untouched. Thus,
A* always moves xq into one of N positions. The total-variation bound follows by the triangular
inequality:
ATV (A* (gy, Hy)v (giyv Hy))
= Ay (AN (AGY, 1Y), (G, HY))
< ATV (A—l(zy), (g_yv HU)) + ATV (Zyv A(gyv HU))

Ary (ATHE. (G HY) ) + Ary (20,670 HY)) + Ary (2Y, AGY 1Y)

0 0(1/vVN) O(1/VN)
=O0(1/VN).
O
To conclude the proof, we define:
Pi-= @ =F py = Pr @) =
p—t = mNA*(gL_’HH)[f(iB) =+1], P = mw(g?lqu.[—l)[f(w) =+1].
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Then

3

Pr(f (@ + 7o) = ] + P (A°(@) = 3] = gpa— + 5(1—p4) + 554 + 5(1 =51 )
1 ) 1 ]
=145 (P4 = P4-) + 5 (0—+ = D—+)
<1-0(1/VN).

O

G.1 Numerical Estimates for the Robustness Trade-off in Theorem 2

While the robustness trade-off we proved in Theorem 2 is asymptotic in N (the budget of the
RT adversary), we can provide tight numerical estimates for this trade-off for concrete parameter
settings:

Remark 10. Let d > 200, « = 2 and N = 49 (e.g., translations by +3 pixels). Then, there exists
a classifier with Raqv(f; Seo) < 10%, as well as a (distinct) classifier with Raav(f; Srr) < 10%.
Yet, any single classifier satisfies R2 (f; Seo, Srr) % 0.425.

adv

We first show the existence of classifiers with R.q, < 10% for the given £, and RT attacks.
Let f(x) = sign(zp) and let » = [—ye,0,...,0] be the worst-case perturbation with ||r| < e.
Recall that e = 2n = 4/\/8 We have

Prif(z +7) £y = Pr[N(1,1/4) —4/Vd < 0} < Pr{Nu —4/v/200,1/4) < 0] < 8% .

Thus, f achieves Raqv < 10% against the fo.-perturbations.
Let g(x) = sign(Z?: ~ i) be a classifier that ignores all feature positions that a RT adversary
A may affect. We have

Prlg(A(z)) # y] = Prlg(z) # y] =Pr[N ((d = N +1)-n,d = N +1) <0
< Pr|N(2vVd—48/Vd, 1) < 0| < 5% .

Thus, g achieves Raqyv < 10% against RT perturbations.

We upper-bound the adversarial risk that any classifier must incur against both attacks by
numerically estimating the total-variation distance between the distributions induced by the RT
and /, adversaries for inputs of opposing labels y. Specifically, we generate 100,000 samples from
the distributions G*',G~! and HT! as defined in the proof of Theorem 2, and obtain an estimate
of the total-variation distance in Lemma (9). For this, we numerically estimate p; and ps as
defined in Equation (4).

H Proof of Claim 3 (Affine combinations of /,- perturbations
do not affect linear models)

Let
T T

max w T = Upax, and min w’ r = vy, .
reSy reSu
Let Sy = S, US,. Note that any r € Sagine is of the form Sri + (1 — 8)rs for 5 € [0, 1]. Moreover,

we have r1 € S, C Sy and r2 € S; C Sy. Thus,

max wlr= Umax, and min wr = vy -

TESaffine 7€ Saffine
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Let h(x) = wTx + b, so that f(x) = sign(h(z)). Then, we get

[Hr € Suffine : W r < —h(x) |y = —i—ﬂ

N~

I;r[ﬂr € Saffine : f(x+71) #y|l= I;r
+

Pr[3r € Sagine : wir > h(z) |y =—1]

N~

1
Pmin < —h(@) [y = +1] + 5 Br [omax > h(2) [y = —1]

N = N =

Pr
D
Pr [FreSy:w'r < —h(z)|y=+1]
+

1
glgr[ErESU:wTr>h(w) |y =—1]

:%r[EIrESU:f(w—i-r)#y] .

O

I Affine combinations of ¢,- perturbations can affect non-
linear models

In Section 2.5, we showed that for linear models, robustness to a union of £,-perturbations implies
robustness to an affine adversary that interpolates between perturbation types. We show that
this need not be the case when the model is non-linear. In particular, we can show that for the
distribution D introduced in Section 2, non-linearity is necessary to achieve robustness to a union
of 45 and ¢i-perturbations (with different parameter settings than for Theorem 1), but that at
the same time, robustness to affine combinations of these perturbations is unattainable by any
model.

Theorem 11. Consider the distribution D with d > 200, a = 2 and pg = 1 — &(—2). Let S be
the set of Lo-bounded perturbation with e = (3/2)n = 3/v/d and let Sy be the set of 1-bounded
perturbations with € = 3. Define Sqpine as in Section 2.5. Then, there exists a non-linear classifier

g that achieves RI{5(g; Soo, S1) < 35%. Yet, for all classifiers f we have Raqo(f; Saffine) > 50%.

adv

Proof. We first prove that no classifier can achieve accuracy above 50% (which is achieved by the
constant classifier) against Sagne. The proof is very similar to the one of Theorem 1.

Let 8 = 2/3, so the affine attacker gets to compose an {.-budget of 2/\/5 and an /;1-budget
of 1. Specifically, for a point (x,y) ~ D, the affine adversary will apply the perturbation

IS TU T
y\/aw"u y\/a 0, —Yn, .-, —Yn| .

Let G0 be the following distribution:

r = [—xo,

y N {-1,41}, 20=0, 21,...,24 Z'ild./\/((), 1).
Note that in G%°, z is independent of y so no classifier can achieve more than 50% accuracy on G%°.
Yet, note that the affine adversary’s perturbation = transforms any (z,y) ~ D into (z,y) ~ G*Y.
We now show that there exists a classifier that achieves non-trivial robustness against the set
of perturbations S., U S1, i.e., the union of £,,-noise with € = 3/\/8 and /1-noise with ¢ = 3. Note
that by Claim 3, this classifier must be non-linear. We define

d
f(x) = sign <3 -sign(zo) + Z % . xz> .

The reader might notice that f(x) closely resembles the Bayes optimal classifier for D (which
would be a linear classifier). The non-linearity in f comes from the sign function applied to xg.
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Intuitively, this limits the damage caused by the ¢1-noise, as sign(zg) cannot change by more than
42 under any perturbation of xg. This forces the ¢; perturbation budget to be “wasted” on the
other features x1,...,xq, which are very robust to ¢; attacks.

As a warm-up, we compute the classifier’s natural accuracy on D. For (x,y) ~ D, let X =

Y- Z?:l % - ; be a random variable. Recall that 7 = 2/v/d. Note that X is distributed as

y-é%-/\/(ym Zd:;a < >ZN< )_N(4,4).

Recall that x¢p = y with probability pg = 1 — $(—2) ~ 0.977. We get:

2
%r[f(w)—y]—fgly( - sign(zo +Zﬁ x) ]

1=

:I;r[xozy]-PDr[?)-y-mgn x0) +X >0 xz0 =1y]
+Prlzo #y] - Pr{3-y - sign(zo) + X > 0| 2o # ¢
=p-Pr3+N(4,4) >0]4+ (1—p) -Pr[-3+N(4,4) > 0] = 99% .

We now consider an adversary that picks either an f..-perturbation with e = 3/ Vd or an

{1-perturbation with € = 3. It will suffice to consider the case where oy = y. Note that
the ¢ classifier cannot meaningfully perturb xp, and the best perturbation is always ro, =
[0, —y3/Vd, ..., —y3/+/d]. Moreover, the best ¢;-bounded perturbation is 7, = [~2y, —,0,...,0].

We have f(x + ro) =sign(y- (3+ X —6)) and f(x +r1) =sign(y - (-3+ X — 2/\/_)) We now
lower-bound the classifier’s accuracy under the union Sy = S, U S of these two perturbation
models:

%r[f(m‘i‘?") =y,Yr € Sy| > Prlzg = y] - P;Dr[f(w—i-r) =y,Vr € Sy | z0 = ¥

Pr
D
p-

Y]

[(3+X 6> 0)A (=3 +X —2/vd) > 0)
—p-Pr [N(4,4)>3+2/\/3} > 65% (for d > 200) .

O

J Proof of Theorem 4 (Affine combinations of /.- and spatial
perturbations can affect linear models)

Note that our definition of affine perturbation allows for a different weighting parameter 5 to be
chosen for each input. Thus, the adversary that selects perturbations from Samne is at least as
powerful as the one that selects perturbations from S, USgr. All we need to show to complete the
proof is that there exists some input @ that the affine adversary can perturb, while the adversary
limited to the union of spatial and ¢, perturbations cannot.

Without loss of generality, assume that the RT adversary picks a permutation that switches
2o with a position in [0, N — 1], and leaves all other indices untouched. The main idea is that
for any input x where the RT adversary moves xy to position j < N — 1, the RT adversary with
budget IV is no more powerful than one with budget j 4+ 1. The affine adversary can thus limit its
rotation-translation budget and use the remaining budget on an extra f, perturbation.

We now construct an input @ such that: (1) x cannot be successfully attacked by an RT
adversary (with budget N) or by an ¢s-adversary (with budget €); (2) « can be attacked by an
affine adversary.

Without loss of generality, assume that w; = min{ws,...,wy_1}, i.e., among all the features
that zy can be switched with, x; has the smallest weight. Let y = +1, and let z1,...,zxy_1 be
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chosen such that argmin{zy,...,zy_1} = 1. We set

_ € wll,
xrg = ——— + 1
wo — W1

Moreover, set xy,...,xzq such that
wiz+b=11¢-|w|, .

Note that constructing such an x is always possible as we assumed wg > w; > 0 for all 1 <7 <d.
We now have an input (x,y) that has non-zero support under D. Let 7 be a perturbation with
lr]|, < e We have:

wi(z+r)+b>wz+b—e-|w|, =01 ¢ |w|, >0,

so f(w?(x +r) +b) =y, i.e.,  cannot be attacked by any e-bounded /.-perturbation.
Define @; as the input & with features xg and x; switched, for some 0 < i < N. Then,
’LUTCﬁZ—Fb:’LUT:E—Fb— (wo—wl) (Io—Il)
>wle+b— (wy—wy) - (xo — 1)
=wlz+b—c-||lw|, =01 ¢-||Jw|, >0.
Thus, the RT adversary cannot change the sign of f(x) either. This means that an adversary that
chooses from Sy, U Sgr cannot successfully perturb .
Now, consider the affine adversary, with 8 = 2/N that first applies an RT perturbation with
budget % - N =2 (i.e., the adversary can only flip xo with z1), followed by an {..-perturbation

with budget (1 — %) - €. Specifically, the adversary flips xg and x; and then adds noise r =
—(1—=%)-e-sign(w). Let this adversarial example by @agine. We have

. 2
wTwaﬂine+b: wT$+b_ (wO _wl) : (LL'Q _‘Tl) - (1 a N) e Hw”l

2
— 1ol - el — (1= 2 ) - ull

(092 ) < ll,

<0.

Thus, f(Zamine) = —1 # y, so the affine adversary is strictly stronger that the adversary that is
restricted to RT or ¢, perturbations. o
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