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Abstract
Despite excellent performance on many tasks,
NLP systems are easily fooled by small adver-
sarial perturbations of inputs. Existing pro-
cedures to defend against such perturbations
are either (i) heuristic in nature and suscep-
tible to stronger attacks or (ii) provide guar-
anteed robustness to worst-case attacks, but
are incompatible with state-of-the-art models
like BERT. In this work, we introduce robust
encodings (RobEn): a simple framework that
confers guaranteed robustness, without mak-
ing compromises on model architecture. The
core component of RobEn is an encoding func-
tion, which maps sentences to a smaller, dis-
crete space of encodings. Systems using these
encodings as a bottleneck confer guaranteed
robustness with standard training, and the
same encodings can be used across multiple
tasks. We identify two desiderata to construct
robust encoding functions: perturbations of a
sentence should map to a small set of encod-
ings (stability), and models using encodings
should still perform well (fidelity). We instan-
tiate RobEn to defend against a large family
of adversarial typos. Across six tasks from
GLUE, our instantiation of RobEn paired with
BERT achieves an average robust accuracy of
71.3% against all adversarial typos in the fam-
ily considered, while previous work using a
typo-corrector achieves only 35.3% accuracy
against a simple greedy attack.

1 Introduction

State-of-the-art NLP systems are brittle: small per-
turbations of inputs, commonly referred to as ad-
versarial examples, can lead to catastrophic model
failures (Belinkov and Bisk, 2018; Ebrahimi et al.,
2018b; Ribeiro et al., 2018; Alzantot et al., 2018).
For example, carefully chosen typos and word sub-
stitutions have fooled systems for hate speech de-
tection (Hosseini et al., 2017), machine translation
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Figure 1: Example of a defense using RobEn. An
adversary can perturb sentences (blue, underlined)
to many different perturbations (red, not-underlined)
within the attack surface (red, ovals). We define an en-
coding function α such that each perturbation of the
input sentences maps to one of a few encodings (grey,
rounded rectangles). We can then use any model g to
make predictions given the encodings.

(Ebrahimi et al., 2018a), and spam filtering (Lee
and Ng, 2005), among others.

We aim to build systems that achieve high ro-
bust accuracy: accuracy against worst-case attacks.
Broadly, existing methods to build robust mod-
els fall under one of two categories: (i) adversar-
ial training, which augments the training set with
heuristically generated perturbations and (ii) cer-
tifiably robust training, which bounds the change
in prediction between an input and any of its al-
lowable perturbations. Both these approaches have
major shortcomings, especially in NLP. Adversar-
ial training, while quite successful in vision (Madry
et al., 2018), is challenging in NLP due to the
discrete nature of textual inputs (Ebrahimi et al.,
2018b); current techniques like projected gradi-
ent descent are incompatible with subword tok-
enization. Further, adversarial training relies on
heuristic approximations to the worst-case pertur-
bations, leaving models vulnerable to new, stronger
attacks. Certifiably robust training (Jia et al., 2019;
Huang et al., 2019; Shi et al., 2020) circumvents

ar
X

iv
:2

00
5.

01
22

9v
1 

 [c
s.C

L]
  4

 M
ay

 2
02

0



the above challenges by optimizing over a convex
outer-approximation of the set of perturbations, al-
lowing us to lower bound the true robust accuracy.
However, the quality of bounds obtained by these
methods scale poorly with the size of the network,
and are vacuous for state-of-the-art models like
BERT. Moreover, both approaches require sepa-
rate, expensive training for each task, even when
defending against the same type of perturbations.

Ideally we would like a “robustness” module that
we can reuse across multiple tasks, allowing us to
only worry about robustness once: during its con-
struction. Indeed, reusable components have driven
recent progress in NLP. For example, word vectors
are a universal resource that are constructed once,
then used for many different tasks. Can we build a
reusable robust defense that can easily work with
complex, state-of-the-art architectures like BERT?
The recent work of Pruthi et al. (2019), which uses
a typo-corrector to defend against adversarial typos,
is such a reusable defense: it is trained once, then
reused across different tasks. However, we find that
current typo-correctors do not perform well against
even heuristic attacks, limiting their applicability.

Our primary contribution is robust encodings
(RobEn), a framework to construct encodings that
can make systems using any model robust. The
core component of RobEn is an encoding function
that maps sentences to a smaller discrete space
of encodings, which are then used to make pre-
dictions. We define two desiderata that a robust
encoding function should satisfy: stability and fi-
delity. First, to encourage consistent predictions
across perturbations, the encoding function should
map all perturbations of a sentence to a small set
of encodings (stability). Simultaneously, encod-
ings should remain expressive, so models trained
using encodings still perform well on unperturbed
inputs (fidelity). Because systems using RobEn
are encoding-based we can compute the exact ro-
bust accuracy tractably, avoiding the lower bounds
of certifiably robust training. Moreover, these en-
codings can make any downstream model robust,
including state-of-the-art transformers like BERT,
and can be reused across different tasks.

In Section 4, we apply RobEn to combat adver-
sarial typos. In particular, we allow an attacker to
add independent edit distance one typos to each
word in an input sentence, resulting in exponen-
tially more possible perturbations than previous
work (Pruthi et al., 2019; Huang et al., 2019). We
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Figure 2: Attack model allowing independent perturba-
tions of each token. The original input, x is classified
by the model as positive while the perturbation x̃ =,
obtained by choosing perturbations of “This”, “delight-
ful”, and “film” independently, is classified as negative.
Independent perturbations of each word results in an
exponentially large perturbation space B(x).

consider a natural class of token-level encodings,
which are obtained by encoding each token in a
sentence independently. This structure allows us to
express stability and fidelity in terms of a clustering
objective, which we optimize.

Empirically, our instantiation of RobEn achieves
state-of-the-art robust accuracy, which we com-
pute exactly, across six classification tasks from
the GLUE benchmark (Wang et al., 2019). Our
best system, which combines RobEn with a BERT
classifier (Devlin et al., 2019), achieves an average
robust accuracy of 71.3% across the six tasks. In
contrast, a state-of-the-art defense that combines
BERT with a typo corrector (Pruthi et al., 2019)
gets 35.3% accuracy when adversarial typos are
inserted, and a standard data augmentation defense
gets only 12.2% accuracy.

2 Setup

Tasks. We consider NLP tasks that require clas-
sifying textual input x ∈ X to a class y ∈ Y . For
simplicity, we refer to inputs as sentences. Each
sentence x consists of tokens x1, . . . , xL from the
set of all strings T . Let ptask denote the distribution
over inputs and labels for a particular task of inter-
est. The goal is to learn a model f : X → Y that
maps sentences to labels, given training examples
(x, y) ∼ ptask.

Attack surface. We consider an attack surface in
which an adversary can perturb each token xi of a
sentence to some token x̃i ∈ B(xi), where B(xi)
is the set of valid perturbations of xi. For example,
B(xi) could be a set of allowed typos of xi. We
define B(x) as the set of all valid perturbations



of the set x, where every possible combination of
token-level typos is allowed:

B(x) = {(x̃1, . . . , x̃L) | x̃i ∈ B(xi) ∀ i} (1)

The size of the attack surface |B(x)| grows expo-
nentially with respect to number of input tokens, as
shown in Figure 2. In general xi ∈ B(xi), so some
words could remain unperturbed.

Model evaluation. In this work, we use three
evaluation metrics for any given task.

First, we evaluate a model on its standard accu-
racy on the task:

accstd(f) = E(x,y)∼ptask1[f(x) = y]. (2)

Next, we are interested in models that also have
high robust accuracy, the fraction of examples
(x, y) for which the model is correct on all valid per-
turbations x̃ ∈ B(x) allowed in the attack model:

accrob(f) = E(x,y)∼ptask min
x̃∈B(x)

1 [f(x̃) = y] .

(3)

It is common to instead compute accuracy against
a heuristic attack a that maps clean sentences x to
perturbed sentences a(x) ∈ B(x).

accattack(f ; a) = E(x,y)∼ptask1[f(a(x)) = y]. (4)

Typically, a(x) is the result of a heuristic search for
a perturbation x̃ ∈ B(x) that f misclassifies. Note
that accattack is a (possibly loose) upper bound of
accrob because there could be perturbations that the
model misclassifies but are not encountered during
the heuristic search (Athalye et al., 2018).

Additionally, since robust accuracy is generally
hard to compute, some existing work computes cer-
tified accuracy (Huang et al., 2019; Jia et al., 2019;
Shi et al., 2020), which is a potentially conserva-
tive lower bound for the true robust accuracy. In
this work, since we use robust encodings, we can
tractably compute the exact robust accuracy.

3 Robust Encodings

We introduce robust encodings (RobEn), a frame-
work for constructing encodings that are reusable
across many tasks, and pair with arbitrary model
architectures. In Section 3.1 we describe the key
components of RobEn, then in Section 3.2 we high-
light desiderata RobEn should satisfy.

3.1 Encoding functions

A RobEn classifier fα : X → Y using RobEn de-
composes into two components: a fixed encoding
function α : X → Z , and a model that accepts en-
codings g : Z → Y .1 For any sentence x, our sys-
tem makes the prediction fα(x) = g(α(x)). Given
training data {(xi, yi)}ni=1 and the encoding func-
tion α, we learn g by performing standard training
on encoded training points {(α(xi), yi)}ni=1. To
compute the robust accuracy of this system, we
note that for well-chosen α and an input x from
some distribution Px, the set of possible encodings
α(x̃) for some perturbation x̃ ∈ B(x) is both small
and tractable to compute quickly. We can thus com-
pute accrob(fα) quickly by generating this set of
possible encodings, and feeding each into g, which
can be any architecture.

3.2 Encoding function desiderata

In order to achieve high robust accuracy, a classifier
fα that uses α should make consistent predictions
on all x̃ ∈ B(x), the set of points described by the
attack surface, and also have high standard accu-
racy on unperturbed inputs. We term the former
property stability, and the latter fidelity, give intu-
ition for both in this section, and provide a formal
instantiation in Section 4.

Stability. For an encoding function α and some
distribution over inputs Px, the stability Stab(α)
measures how often α maps sentences x ∼ Px to
the same encoding as all of their perturbations.

Fidelity. An encoding function α has high fi-
delity if models that use α can still achieve high
standard accuracy. Unfortunately, while we want to
make task agnostic encoding functions, standard ac-
curacy is inherently task dependent: different tasks
have different expected distributions over inputs
and labels. To emphasize this challenge consider
two tasks: for an integer n, predict n mod 2, and
n mod 3. The information we need encodings to
preserve varies significantly between these tasks:
for the former, 2 and 6 can be identically encoded,
while for the latter they must encoded separately.

To overcome this challenge, we consider a sin-
gle distribution over the inputs Px that we believe
covers many task-distributions ptask. Since it is
hard to model the distribution over the labels, we
take the more conservative approach of mapping

1We can set Z ⊆ X when g accepts sentences.



the different sentences sampled from Px to differ-
ent encodings with high probability. We call this
Fid(α), and give an example in Section 4.5.

Tradeoff. Stability and fidelity are inherently
competing goals. An encoding function that maps
every sentence to the same encoding trivially max-
imizes stability, but is useless for any non-trivial
classification task. Conversely, fidelity is maxi-
mized when every input is mapped to itself, which
has very low stability. In the following section,
we construct an instantiation of RobEn that bal-
ances stability and fidelity when the attack surface
consists of typos.

4 Robust Encodings for Typos

In this section, we focus on adversarial typos,
where an adversary can add typos to each token
in a sentence (see Figure 2). Since this attack sur-
face is defined at the level of tokens, we restrict
attention to encoding functions that encode each
token independently. Such an encoding does not
use contextual information; we find that even such
robust encodings achieve greater attack accuracy
and robust accuracy in practice than previous work.

First, we will reduce the problem of generat-
ing token level encodings to assigning vocabulary
words to clusters (Section 4.1). Next, we use an ex-
ample to motivate different clustering approaches
(Section 4.2), then describe how we handle out-of-
vocabulary tokens (Section 4.3). Finally, we in-
troduce two types of token-level robust encodings:
connected component encodings (Section 4.4) and
agglomerative cluster encodings (Section 4.5).

4.1 Encodings as clusters
We construct an encoding function α that encodes
x token-wise. Formally, α is defined by a token-
level encoding function π that maps each token
xi ∈ T to some encoded token π(xi) ∈ ZTok:

α(x) = [π(x1), π(x2), . . . π(xL)]. (5)

In the RobEn pipeline, a downstream model g is
trained on encodings (Section 3.1). If π maps many
words and their typos to the same encoded token,
they become indistinguishable to g, conferring ro-
bustness. In principle, the relationship between dif-
ferent encoded tokens is irrelevant: during training,
g learns how to use the encoded tokens to perform
a desired task. Thus, the problem of finding a good
π is equivalent to deciding which tokens should
share the same encoded token.

at

aunt

abet

abrupt

about

aut

aet

auet

abot

aboupt

Maximal stability

Maximal fidelity
Balanced

Figure 3: Visualization of three different encodings.
Vocabulary words (large font, blue) share an edge if
they share a common perturbation (small font, red).
The maximal stability cluster (thick solid line) clusters
identically, the maximal fidelity clusters (thin dotted
line) encodes all words separately, while the balanced
clusters (thin solid line) trade off the two.

Since the space of possible tokens T is in-
numerable, we focus on a smaller set of words
V = {w1, . . . , wN} ⊆ T , which contains the N
most frequent words over Px. We will call elements
of V words, and tokens that are perturbations of
some word typos. We view deciding which words
should share an encoded token as assigning words
to clusters C1, . . . , Ck ⊆ V . For all other tokens
not in the vocabulary, including typos, we define a
separate πOOV. Thus, we decompose π as follows:

π(xi) =

{
πV (xi) xi ∈ V
πOOV(xi) xi /∈ V

, (6)

Here, πV is associated with a clustering C of vo-
cabulary words, where each cluster is associated
with a unique encoded token.

4.2 Simple example
We use a simple example to illustrate how a token-
level encoding function can achieve the RobEn
desiderata: stability and fidelity defined in Section
3.2. We will formally define the stability and fi-
delity of a clustering in Sections 4.3 and 4.5.

Consider the five words (large font, blue) in Fig-
ure 3, along with potential typos (small font, red).
We illustrate three different clusterings as boxes
around tokens in the same cluster. We may put all
words in the same cluster (thick box), each word
in its own cluster (dashed boxes), or something
in between (thin solid boxes). For now, we group
each typo with a word it could have been perturbed
from (we will discuss this further in Section 4.3).

To maximize stability, we need to place all words
in the same cluster. Otherwise, there would be two



words (say “at” and “aunt”) that could both be
perturbed to the same typo (“aut”) but are in dif-
ferent clusters. Therefore, “aut” cannot map to
the same encoded token as both the possible vocab
words. At the other extreme, to maximize fidelity,
each word should be in its own cluster. Both map-
pings have weaknesses: the stability-maximizing
mapping has low fidelity since all words are iden-
tically encoded and thus indistinguishable, while
the fidelity-maximizing mapping has low stabil-
ity since the typos of words “aunt”, “abet”, and

“abrupt” could all be mapped to different encoded
tokens than that of the original word.

The clustering represented by the thin solid
boxes in Figure 3 balances stability and fidelity.
Compared to encoding all words identically, it has
higher fidelity, since it distinguishes between some
of the words (e.g., “at” and “about” are encoded
differently). It also has reasonably high stability,
since only the infrequent “abet” has typos that
are shared across words and hence are mapped to
different encoded tokens.

4.3 Encoding out-of-vocab tokens
Given a fixed clustering of V , we now study how
to map out-of-vocabulary tokens, including typos,
to encoded tokens without compromising stability.

Stability. Stability measures the extent to which
typos of words map to different encoded tokens.
We formalize this by defining the set of tokens that
some typo of a word w could map to, Bπ(w):

Bπ(w) = {π(w̃); w̃ ∈ B(w)}, (7)

where B(w) is the set of allowable typos of w.
Since we care about inputs drawn from Px, we
define Stab on the clustering C using ρ(w), the
normalized frequency of word w based on Px.

Stab(C) = −
N∑
i=1

ρ(wi)|Bπ(wi)| (8)

For a fixed clustering, the size of Bπ(w) depends
on where πOOV maps typos thatw shares with other
words; for example in Figure 3, “aet” could be a
perturbation of both “at” and “abet”. If we map
the typo the encoded token of “at”, we increase
the size of Bπ(”abet”) and vice-versa. In order to
keep the size of Bπ(w) smaller for the more fre-
quent words and maximize stability (Equation 8),
we map a typo to the same encoded token as its
most frequent neighbor word (in this case “at”).

Finally, when a token is not a typo of any vocab
words, we encode it to a special token OOV.

4.4 Connected component encodings

We present two approaches to generate robust
token-level encodings. Our first method, connected
component encodings, maximizes the stability ob-
jective (8). Notice that Stab is maximized when for
each word w, Bπ(w) contains one encoded token.
This is possible only when all words that share a
typo are assigned to the same cluster.

To maximize Stab, define a graph G with all
words in V as vertices, and edges between words
that share a typo. Since we must map words that
share an edge in G to the same cluster, we define
the cluster Ci to be the set of words in the ith

connected component of G. While this stability-
maximizing clustering encodes many words to the
same token (and hence seems to compromise on
fidelity), these encodings still perform surprisingly
well in practice (see Section 5.4).

4.5 Agglomerative cluster encodings

Connected component encodings focus only sta-
bility and can lead to needlessly low fidelity. For
example, in Figure 3, “at” and “about” are in the
same connected component even though they don’t
share a typo. Since both words are generally fre-
quent, mapping them to different encoded tokens
can significantly improve fidelity, with only a small
drop in stability: recall only the infrequent word

“abet” can be perturbed to multiple encoded tokens.
To handle such cases, we introduce agglomera-

tive cluster encodings, which we construct by trad-
ing off Stab with a formal objective we define for
fidelity: Fid. We then approximately optimize this
combined objective Φ using an agglomerative clus-
tering algorithm.

Fidelity objective. Recall from Section 3.2 that
an encoding has high fidelity if it can be used to
achieve high standard accuracy on many tasks. This
is hard to precisely characterize: we aim to design
an objective that could approximate this.

We note that distinct encoded tokens are arbi-
trarily related: the model g learns how to use dif-
ferent encodings during training. Returning to our
example, suppose “at” and “abet” belong to the
same cluster and share an encoded token z. Dur-
ing training, each occurrence of “at” and “abet”
is replaced with z. However, since “at” is much
more frequent, classifiers treat z similarly to “at ′′



in order to achieve good overall performance. This
leads to mostly uncompromised performance on
sentences with “at”, at the cost of performance on
sentences containing the less frequent “abet”.

This motivates the following definition: let ~vi
be a the indicator vector in R|V | corresponding to
word i. In principle ~vi could be a word embedding;
we choose indicator vectors to avoid making addi-
tional assumptions. We define the encoded token
~µj associated with words in cluster Cj as follows:

~µj =

∑
wi∈Cj ρ(wi)~vi∑
wi∈Cj ρ(wi)

(9)

We weight by the frequency ρ to capture the effect
of training on the encodings, as described above.

Fidelity is maximized when each word has a
distinct encoded token. We capture the drop in
standard accuracy due to shared encoded tokens by
computing the distance between the original em-
beddings of the word its encoded token. Formally,
let c(i) be the cluster index of word wi. We define
the fidelity objective Fid as follows:

Fid(C) = −
N∑
i=1

ρ(wi)‖~vi − ~µc(i)‖2. (10)

Fid is high if frequent words and rare words are
in the same cluster and is low when when multiple
frequent words are in the same cluster.

Final objective. We introduce a hyperparameter
γ ∈ [0, 1] that balances stability and fidelity. We
approximately minimize the following weighted
combination of Stab (8) and Fid (10):

Φ(C) = γ Fid(C) + (1− γ) Stab(C). (11)

As γ approaches 0, we get the connected compo-
nent clusters from our baseline, which maximize
stability. As γ approaches 1, we maximize fidelity
by assigning each word to its own cluster.

Agglomerative clustering. We approximate the
optimal value of Φ using agglomerative clustering;
we start with each word in its own cluster, then iter-
atively combine the pair of clusters whose resulting
combination increases Φ the most. We repeat until
combining any pair of clusters would decrease Φ.
Further details are provided in Appendix A.1.

5 Experiments

5.1 Setup
Token-level attacks. The primary attack surface
we study is edit distance one (ED1) perturbations.

For every word in the input, the adversary is al-
lowed to insert a lowercase letter, delete a charac-
ter, substitute a character for any letter, or swap
two adjacent characters, so long as the first and last
characters remain the same as in the original token.
The constraint on the outer characters, also used by
Pruthi et al. (2019), is motivated by psycholinguis-
tic studies (Rawlinson, 1976; Davis, 2003).

Within our attack surface, “the movie was miser-
able” can be perturbed to “thae mvie wjs misreable”
but not “th movie as miserable”. Since each to-
ken can be independently perturbed, the number
of perturbations of a sentence grows exponentially
with its length; even “the movie was miserable”
has 431,842,320 possible perturbations. Our attack
surface contains the attack surface used by (Pruthi
et al., 2019), which allows ED1 perturbations to at
most two words per sentence. Reviews from SST-2
have 5 million perturbations per example (PPE) on
average under this attack surface, while our attack
surface averages 1097 PPE. We view the size of
the attack surface as a strength of our approach:
our attack surface forces a system robust to subtle
perturbations (“the moviie waas misreable”) that
smaller attack surfaces miss.

In Section 5.7, we additionally consider the in-
ternal permutation attacks studied in Belinkov and
Bisk (2018) and Sakaguchi et al. (2017), where
all characters, except the first and the last, may be
arbitrarily reordered.

Attack algorithms. We consider two attack algo-
rithms: the worst-case attack (WCA) and a beam-
search attack (BSA). WCA exhaustively tests ev-
ery possible perturbation of an input x to see any
change in the prediction. The attack accuracy of
WCA is the true robust accuracy since if there ex-
ists some perturbation that changes the prediction,
WCA finds it. When instances of RobEn have high
stability, the number of possible encodings of per-
turbations of x is often small, allowing us to exhaus-
tively test all possible perturbations in the encoding
space.2 This allows us to tractably run WCA. Using
WCA with RobEn, we can obtain computationally
tractable guarantees on robustness: given a sen-
tence, we can quickly compute whether or not any
perturbation of x that changes the prediction.

For systems that don’t use RobEn, we cannot
tractably run WCA. Instead, we run a beam search

2When there are more than 10000 possible encodings,
which holds for 0.009% of our test examples, we assume
the adversary successfully alters the prediction.



attack (BSA) with beam width 5, perturbing tokens
one at a time. For efficiency, we sample at most
len(xi) perturbations at each step of the search (see
Apendix A.2). Even against this very limited attack,
we find that baseline models have low accuracy.

Datasets. We use six of the nine tasks from
GLUE (Wang et al., 2019): SST-2, MRPC, QQP,
MNLI, QNLI, and RTE. We do not use STS-B and
CoLA as they are evaluated on correlation, which
does not decompose as an example-level loss. We
additionally do not use WNLI, as most submitted
GLUE models cannot even outperform the major-
ity baseline, and state-of-the-art models are rely on
external training data (Kocijan et al., 2019). We
evaluate on the test sets for SST-2 and MRPC, and
the publicly available dev sets for the remaining
tasks. More details are provided in Appendix A.3.

5.2 Baseline models.
We consider three baseline systems. Our first is the
standard base uncased BERT model (Devlin et al.,
2019) fine-tuned on the training data for each task.3

Data augmentation. For our next baseline, we
augment the training dataset with four random per-
turbations of each example, then fine-tune BERT
on this augmented data. Data augmentation has
been shown to increase robustness to some types of
adversarial perturbations (Ribeiro et al., 2018; Liu
et al., 2019). Other natural baselines all have severe
limitations. Adversarial training with black-box at-
tacks offers limited robustness gains over data aug-
mentation (Cohen et al., 2019; Pruthi et al., 2019).
Projected gradient descent (Madry et al., 2017), the
only white-box adversarial training method that is
robust in practice, cannot currently be applied to
BERT since subword tokenization maps different
perturbations to different numbers of tokens, mak-
ing gradient-based search impossible. Certifiably
robust training (Huang et al., 2019; Shi et al., 2020)
does not work with BERT due to the same tokeniza-
tion issue and BERT’s use of non-monotonic acti-
vation functions, which make computing bounds
intractable. Moreover the bounds computed with
certifiably robust training, which give guarantees,
become loose as model depth increases, hurting
robust performance (Gowal et al., 2018).

Typo-corrector. For our third baseline, we use
the most robust method from Pruthi et al. (2019). In

3https://github.com/huggingface/
pytorch-transformers

particular, we train a scRNN typo-corrector (Sak-
aguchi et al., 2017) on random perturbations of
each task’s training set. At test time inputs are
“corrected” using the typo corrector, then fed into
a downstream model. We replace any OOV out-
putted by the typo-corrector with the neutral word

“a” and use BERT as our downstream model.

5.3 Models with RobEn

We run experiments using our two token-level
encodings: connected component encodings
(CONNCOMP) and agglomerative cluster encod-
ings (AGGCLUST). To form clusters, we use the
N = 100, 000 most frequent words from the Cor-
pus of Contemporary American English (Davies,
2008) that are also in GloVe (Pennington et al.,
2014). For AGGCLUST we use γ = 0.3, which
maximizes robust accuracy on SST-2 dev set.

Form of encodings. Though unnecessary when
training from scratch, to leverage the inductive bi-
ases of pre-trained models like BERT (Devlin et al.,
2019), we define the encoded token of a cluster to
be the cluster’s most frequent member word. In
the special case of the out-of-vocab token, we map
OOV to [MASK]. Our final encoding, α(x), is the
concatenation of all of these words. For both encod-
ings, we fine-tune BERT on the training data, using
α(x) as input. Further details are in Appendix A.4.

5.4 Robustness gains from RobEn

Our main results are shown in Table 1. We show
all three baselines, as well as models using our
instances of RobEn: CONNCOMP and AGGCLUST.

Even against the heuristic attack, each baseline
system suffers dramatic performance drops. The
system presented by Pruthi et al. (2019), Typo Cor-
rector + BERT, only achieves 35.3% attack accu-
racy, compared to its standard accuracy of 78.2%.
BERT and Data Augmentation + BERT perform
even worse. Moreover, the number of perturbations
the heuristic attack explores is a tiny fraction of our
attack surface, so the robust accuracy of Typo Cor-
rector + BERT, the quantity we’d like to measure,
is likely far lower than the attack accuracy.

In contrast, simple instances of RobEn are much
more robust. AGGCLUST + BERT achieves av-
erage robust accuracy of 71.3%, 36 points higher
than the attack accuracy of Typo Corrector + BERT.
AGGCLUST also further improves on CONNCOMP

in terms of both robust accuracy (by 1.3 points)
and standard accuracy (by 2.8 points).

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers


Accuracy System SST-2 MRPC QQP MNLI QNLI RTE Avg

Standard

Baselines
BERT 93.8 87.7 91.3 84.6 88.6 71.1 86.2
Data Aug. + BERT 92.2 84.3 88.7 83.0 87.4 63.5 83.1
Typo Corr. + BERT 89.6 80.9 87.6 75.9 80.5 54.9 78.2

RobEn
Con. Comp. + BERT 80.6 79.9 84.2 65.7 73.3 52.7 72.7
Agg. Clust. + BERT 83.1 83.8 85.0 69.1 76.6 59.2 76.1

Attack

Baselines
BERT 8.7 10.0 17.4 0.7 0.7 1.8 6.6
Data Aug. + BERT 17.1 1.0 27.6 15.4 10.7 1.4 12.2
Typo Corr. + BERT 53.2 30.1 52.0 23.0 32.3 21.3 35.3

RobEn
Con. Comp. + BERT 80.3 79.4 82.7 62.6 71.5 47.3 70.6
Agg. Clust. + BERT 82.1 82.8 83.2 65.3 74.5 52.7 73.4

Robust
RobEn
Con. Comp. + BERT 80.1 79.4 82.2 61.4 70.5 46.6 70.0
Agg. Clust. + BERT 80.7 80.9 81.4 62.8 71.9 49.8 71.3

Table 1: Standard, attack, and robust accuracy on six GLUE tasks against ED1 perturbations. For baseline models
we only compute attack accuracy, an upper bound on robust accuracy, since robust accuracy cannot be tractably
computed. Using RobEn, we get robustness guarantees by computing robust accuracy, which we find outperforms
a the typo corrector in (Pruthi et al., 2019) by at least 36 points.

Standard accuracy. Like defenses against adver-
sarial examples in other domains, using RobEn
decreases standard accuracy (Madry et al., 2017;
Zhang et al., 2019; Jia et al., 2019). Our agglomer-
ative cluster encodings’s standard accuracy is 10.1
points lower then that of normally trained BERT.
However, to the best of our knowledge, our stan-
dard accuracy is state-of-the-art for approaches that
guarantee robustness. We attribute this improve-
ment to RobEn’s compatibility with any model.

Comparison to smaller attack surfaces. We
note that RobEn also outperform existing methods
on their original, smaller attack surfaces. On SST-2,
Pruthi et al. (2019) achieves an accuracy of 75.0%
defending against a single ED1 typo, which is 5.7
points lower than AGGCLUST’s robust accuracy
against perturbations of all tokens: a superset of the
original perturbation set. We discuss constrained
adversaries further in Appendix A.5. AGGCLUST

also outperforms certified training: Huang et al.
(2019), which offers robustness guarantees to three
character substitution typos (but not insertions or
deletions), achieves a robust accuracy of 74.9%
on SST-2. Certified training requires strong as-
sumptions on model architecture; even the robust
accuracy of AGGCLUST outperforms the standard
accuracy of the CNN used in Huang et al. (2019).

5.5 Reusable encodings

Each instance of RobEn achieves consistently high
stability across our tasks, despite reusing a single
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Figure 4: Histogram of |Bα(x)| for SST-2 and RTE.
SST-2 has the highest percentage of inputs x where
|Bα(x)| = 1, while RTE has the least. On both
datasets, |Bα(x)| < 9 for most x, and |Bα(x)| = 1
on a plurality of inputs.

function. Figure 4 plots the distribution of |Bα(x)|,
across test examples in SST-2 and RTE, where
Bα(x) is the set of encodings that are mapped to by
some perturbation of x. Over AGGCLUST encod-
ings, |Bα(x)| = 1 for 25% of examples in RTE and
66% in SST-2, with the other four datasets falling
between these extremes (see Appendix A.6). As
expected, these numbers are even higher for the
connected component encodings. Note that when
|Bα(x)| = 1, every perturbation of x maps to the
same encoding. When |Bα(x)| is small, robust
accuracy can be computed quickly.

5.6 Agglomerative Clustering Tradeoff

In Figure 5, we plot standard and robust accuracy
on SST-2 for AGGCLUST encodings, using differ-
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Figure 5: Standard and robust accuracies on SST-2 with
AGGCLUST using different values of γ. While the gap
between standard and robust accuracy increases mono-
tonically, robust accuracy increases before decreasing.

ent values of γ. Recall that γ = 0 maximizes
stability (CONNCOMP), and γ = 1 maximizes fi-
delity. At γ = 0, the gap between standard and
robust accuracy, due to out-of-vocabulary tokens,
is negligible. As γ increases, both standard ac-
curacy and the gap between standard and robust
accuracy increase. As a result, robust accuracy first
increases, then decreases.

5.7 Internal permutation attacks

RobEn can also be used to defend against the in-
ternal perturbations described in Section 5.1. For
normally trained BERT, a heuristic beam search
attack using internal permutations reduces aver-
age accuracy from 86.2% to 15.7% across our six
tasks. Using CONNCOMP with the internal permu-
tation attack surface, we achieve robust accuracy
of 81.4%. See Appendix A.7 for further details.

6 Discussion

Additional related work. In this work, we intro-
duce RobEn, a framework to construct systems that
are robust to adversarial perturbations. We then use
RobEn to achieve state-of-the-art robust accuracy
when defending against adversarial typos. Besides
typos, other perturbations can also be applied to
text. Prior attacks consider semantic operations,
such as replacing a word with a synonym (Alzantot
et al., 2018; Ribeiro et al., 2018). Our framework
extends easily to these perturbations. Other attack
surfaces involving insertion of sentences (Jia and
Liang, 2017) or syntactic rearrangements (Iyyer
et al., 2018) are harder to pair with RobEn, and are
interesting directions for future work.

Other defenses are based on various forms of
preprocessing. Gong et al. (2019) apply a spell-

corrector to correct typos chosen to create ambi-
guity as to the original word, but these typos are
not adversarially chosen to fool a model. Edizel
et al. (2019) attempt to learn typo-resistant word
embeddings, but focus on common typos, rather
than worst-case typos. In computer vision, Chen
et al. (2019) discretizes pixels to compute exact
robust accuracy on MNIST, but their approach gen-
eralizes poorly to other tasks like CIFAR-10. Garg
et al. (2018) generate functions that map to robust
features, while enforcing variation in outputs.

Incorporating context. Our token-level robust
encodings lead to strong performance, despite ig-
noring useful contextual information. Using con-
text is not fundamentally at odds with the idea of
robust encodings, and making contextual encod-
ings stable is an interesting technical challenge and
a promising direction for future work.

In principle, an oracle that maps every word with
a typo to the correct unperturbed word seems to
have higher fidelity than our encodings, without
compromising stability. However, existing typo
correctors are far from perfect, and a choosing an
incorrect unperturbed word from a perturbed input
leads to errors in predictions of the downstream
model. This mandates an intractable search over
all perturbations to compute the robust accuracy.

Task-agnosticity. Many recent advances in NLP
have been fueled by the rise of task-agnostic rep-
resentations, such as BERT, that facilitate the cre-
ation of accurate models for many tasks. Robust-
ness to typos should similarly be achieved in a
task-agnostic manner, as it is a shared goal across
many NLP tasks. Our work shows that even simple
robust encodings generalize across tasks and are
more robust than existing defenses. We hope our
work inspires new task-agnostic robust encodings
that lead to more robust and more accurate models.
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A Appendix

A.1 Aggloemrative clustering
Recall that any πV induces a clustering of V , where
each cluster contains a set of words mapped by πV
to the same encoded token. We use an agglomer-
ative clustering algorithm to approximately mini-
mize Φ. We initialize πV by setting πV (w) = w
for each w ∈ V , which corresponds to placing
each word in its own cluster. We then examine
each pair of clusters Ci, Cj such that there exists
an edge between a node in Ci and a node in Cj , in

the graph from Section 4.2. For each such pair, we
compute the value of Φ if Ci and Cj were replaced
by Ci ∪ Cj . If no merge operation causes Φ to
decrease, we return the current πV . Otherwise, we
merge the pair that leads to the greatest reduction
in Φ, and repeat. To merge two clusters Ci and
Cj , we first compute a new encoded token r as
the w ∈ Ci ∪ Cj with largest ρ(w). We then set
πV (w) = r for all w ∈ Ci ∪ Cj . Our algorithm
thus works as follows

Algorithm 1 Objective-minimizing agglomerative
clustering

1: C ← V
2: for i in range(|V |) do
3: Cnext ← Get Best Combination(C)
4: if C = Cnext then
5: return C
6: end if
7: C ← Cnext
8: end for
9: return C

Now, we simply have to define the procedure we
use to get the best combination.

Algorithm 2 Get Best Combination(C)

1: Copt ← C
2: Φopt ← Φ(C)
3: for (Ci, Cj) ∈ Adjacent Pairs(C) do
4: Ccomb ← Ci ∪ Cj
5: Cnew ← C ∪ Ccomb \ {Ci, Cj} {New clus-

ters}
6: Φnew ← Φ(Cnew)
7: if Φnew < Φopt then
8: Φopt ← Φnew

9: Copt ← Cnew
10: end if
11: end for
12: return Copt

Recall our graph G = (G,E) used to define
the connected component clusters. We say two
clusters Ci and Cj are adjacent, and thus returned
by Adjacent Pairs, if there exists a vi ∈ Ci and a
vj ∈ Cj such that (vi, vj) ∈ GE . The runtime of
our algorithm is O(N2E) since at each of a pos-
sible N total iterations, we compute the objective
for one of at most E pairs of clusters. Computation
of the objective can be reframed as computing the
difference between Φ and Φnew, where the latter is



computed using new clusters, which can be done
in O(N) time.

A.2 Attacks

We use two heuristic attacks to compute an upper
bound for robust accuracy: one for ED1 pertur-
bations and one for internal permutations. Each
heuristic attack is a beam search, with beam width
5. However, because |B(xi)| is very large for
many tokens xi, even the beam search is intractable.
Instead, we run a beam search where the allow-
able perturbations are B′(xi) ⊆ B(xi), where
|B′(xi)| << B(xi) for sufficiently long xi. For
our ED1 attack, we define B′(xi) to be four ran-
domly sampled perturbations from B(xi) when
the length of xi is less than five, and all deletions
when xi is greater than five. Thus, the number of
perturbations of each word is bounded above by
min{4, len(xi)−2}. For our internal permutations,
B′(xi) is obtained by sampling five permutations
at random.

A.3 Datasets

We use six out of the nine tasks from GLUE:
SST, MRPC, QQP, MNLI, QNLI, and RTE, all
of which are classification tasks measured by ac-
curacy. The Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013) contains movie reviews
that are classified as positive and negative. The
Microsoft Research Paraphrase Corpus (MRPC)
(Dolan and Brockett, 2005) and the Quora Ques-
tion Pairs dataset4 contain pairs of input which are
classified as semantically equivalent or not; QQP
contains question pairs from Quora, while MRPC
contains pairs from online news sources. MNLI,
and RTE are entailment tasks, where the goal is to
predict whether or not a premise sentence entails
a hypothesis (Williams et al., 2018). MNLI gath-
ers premise sentences from ten different sources,
while RTE gathers premises from entailment chal-
lenges. QNLI gives pairs of sentences and ques-
tions extracted from the Stanford Question Answer-
ing Dataset (Rajpurkar et al., 2016), and the task is
to predict whether or not the answer to the question
is in the sentence.

We use the GLUE splits for the six datasets
and evaluate on test labels when available (SST-2,
MRPC), and otherwise the publicly released de-
velopment labels. We tune hyperparameters by

4data.quora.com/First-Quora-Dataset-Release-Question-
Pairs

training on 80% of the original train set and using
the remaining 20% as a validation set. We then
retrain using the chosen hyperparameters on the
full training set.

A.4 Experimental details

For our methods using transformers, we start with
the pretrained uncased BERT (Devlin et al., 2019),
using the same hyperparameters as the pytorch-
transformers repo.5. In particular, we use the base
uncased version of BERT. We use a batch size of
8, and learning rate 2e−5. For examples where
|Bα(x)| > 10000, we assume the prediction is not
robust to make computation tractible. Each typo
corrector uses the defaults for training from6; it is
trained on a specific task using perturbations of the
training data as input and the true sentence (up to
OOV) as output. The vocabulary size of the typo
correctors is 10000 including the unknown token,
as in (Pruthi et al., 2019). The typo corrector is
chosen based on word-error rate on the validation
set.

A.5 Constrained adversaries

Using RobEn, since we can tractably compute ro-
bust accuracy, it is easy to additionally consider
adversaries that cannot perturb every input token.
We may assume that an attacker has a budget of
b ≤ L words that they may perturb as in (Pruthi
et al., 2019). Exiting methods for certification (Jia
et al., 2019; Huang et al., 2019) require attack to be
factorized over tokens, and cannot give tighter guar-
antees in the budget-constrained case compared to
the unconstrained setting explored in previous sec-
tions. However, our method lets us easily compute
robust accuracy exactly in this situation: we just
enumerate the possible perturbations that satisfy
the budget constraint, and query the model.

Figure 6 plots average robust accuracy across
the six tasks using AGGCLUST as a function of
b. Note that b = 0 is simply standard accuracy.
Interestingly, for each dataset there is an attack only
perturbing 4 tokens with attack accuracy equal to
robust accuracy.

A.6 Number of representations

We include here histograms for the datasets we did
not cover in the main body. The histograms for

5https://github.com/huggingface/
pytorch-transformers

6https://github.com/danishpruthi/
Adversarial-Misspellings

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
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Figure 6: Robust accuracy averaged across all tasks
based on different adversarial budgets b. b = 0 corre-
sponds to clean performance, and robust performance
is reached at b = 4
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Figure 7: Histograms showing sizes of Bα for MRPC,
QQP, MNLI, and QNLI.

MRPC and QQP are shown in Figure 7(a), while
the histograms for MNLI and QNLI are shown in
Figure 7(b). The fraction of x such that |Bα(x)| =
1 for each dataset and each set of encodings is
provided in Table 2.

A.7 Internal Permutation Results
We consider the internal permutation attack sur-
face, where interior characters in a word can be
permuted, assuming the first and last characters
are fixed. For example, “perturbation” can be per-
muted to “peabreuottin” but not “repturbation”.
Normally, context helps humans resolve these ty-
pos. Interestingly, for internal permutations it is
impossible for an adversary to change the cluster
assignment of both in-vocab and out of vocab to-
kens since a cluster can be uniquely represented
by the first character, a sorted version of the inter-
nal characters, and the last character. Therefore,
using CONNCOMP encodings, robust, attack, and
standard accuracy are all equal. We use the attack
described in A.2 to attack the clean model. The
results are in Table 3.



Encodings SST-2 MRPC QQP MNLI QNLI RTE Avg
Con. Comp. 86.9 71.6 72.7 45.3 54.6 40.4 61.9
Agg. Clust. 65.6 50.0 62.7 35.4 36.6 25.2 45.9

Table 2: Percentage of test examples with |Bα(x)| = 1 for each dataset.

Accuracy System SST-2 MRPC QQP MNLI QNLI RTE Avg

Standard BERT 93.8 87.7 91.2 84.3 88.9 71.1 86.2
Con. Comp. + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Attack BERT 28.1 15.9 33.0 4.9 6.2 5.8 15.7
Con. Comp. + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Robust Con. Comp. + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Table 3: Results from internal permutation attacks. Internal permutation attacks bring the average performance
for BERT across the six listed tasks from 86.2 to 15.7. Our CONNCOMP encodings, generated using the internal
permutation attack surface, achieve a robust accuracy of 81.4, which is only 4.8 points below standard accuracy.


