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Sensory Adaptation in Biomolecular Memristors Improves

Reservoir Computing Performance

Joshua J. Maraj,* Kevin P.T. Haughn, Daniel J. Inman, and Stephen A. Sarles*

Despite its prevalence in neurosensory systems for pattern recognition, event
detection, and learning, the effects of sensory adaptation (SA) are not explored in
reservoir computing (RC). Monazomycin-based biomolecular synapse (MzBS)
devices that exhibit volatile memristance and short-term plasticity with two
strength-dependent modes of response are studied: facilitation and facilitation-
then-depression (i.e., SA). Their ability to perform RC tasks including digit rec-
ognition, nonlinear function learning, and aerodynamic gust classification via
combination of model-based device simulations and physical experiments where
SA presence is controlled is studied. Simulations exhibiting moderate SA achieve
significantly higher accuracy classifying a custom 5 x 5 binary digit set, with
experimental validation achieving maximum testing accuracies of 90%.
Classifications of the Modified National Institute of Standards and Technology

training time, factors that significantly con-
strain Al performance. While the number
of unique synaptic behaviors in the nervous
system is large, only a few have been dem-
onstrated in emerging neuromorphic
devices. Neuromorphic hardware includ-
ing memristors and synaptic transistors
typically leverages simple forms of long-
term potentiation!'” or short-term synaptic
plasticity (STP).'"*? Fewer devices exhibit
complex forms of STP, such as sensory
adaptation (SA)™*?? or multiple concur-
ring STP timescales.*~2¢!

SA is defined as a rise in neuronal spik-
ing frequency of a postsynaptic neuron fol-

(MNIST) handwritten digit dataset achieve a maximum testing accuracy of
94.34% in devices with SA. Fitting error of the Mackey-Glass time series is also
significantly reduced by SA. Experimentally obtained pressure distributions
representing gusts on an airfoil in a wind tunnel are classified by MzBS reser-
voirs. Reservoirs exhibiting SA achieve 100% accuracy, unlike MzBS reservoirs

without SA and comparable static neural networks.

1. Introduction

New types of computing hardware for accelerating artificial intel-
ligence (AI) algorithms have recently been enabled by materials
and devices that mimic the functions of neural synapses found in
biological nervous systems.~ These advancements are promis-
ing due to demonstrated improvements in energy efficiency and
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lowed by a decrease in its spiking frequency
when continually stimulated at a constant
level 1314212327311 A s crucial for the
operation of efficient neural sensory sys-
tems, as it provides “device level” filtering
of nonnovel stimuli. Therefore, SA is one
of the mechanisms allowing system-wide
habituation.?**3! Without this adaptive
feature, brains would be constantly over-
whelmed by persistent and irrelevant infor-
mation (e.g., the feeling of clothes on a wearer’s skin, or the smell
of one’s home). SA is hypothesized to stem from a variety of
causes including changes to individual ion channels and synaptic
junctions.l'*?*2734 1dentifying and leveraging this form of
autonomous adaptation in neuromorphic synaptic devices is
therefore an opportunity to realize artificial sensory systems that
more closely mimic the history-dependent signal processing in
biological nervous systems.

We previously demonstrated that lipid membranes doped with
monazomycin (Mz) ion channels are volatile memristors
(Figure 1A,B) that, unlike many other artificial synapses, exhibit
amplitude-dependent forms of STP, including sensory adapta-
tion and STP across multiple concurrent timescales!*°
(Figure 1C,D, and S1, Supporting Information). These attributes
are hallmarks of adaptive sensory processing in biological ner-
vous systems. 1323283436371 An example of the previously-
characterized”® amplitude-dependent STP behavior in MzBS
is shown in Figure 1C, where i represents the ion current density
through Mz channels in the membrane. At low voltages (e.g.,
80mV, blue trace), i increases (facilitates) monotonically as
the transmembrane voltage stably drives more Mz into the
bilayer to form new ion channels. However, i peaks and then
decays at higher applied voltages (e.g., 110 mV, orange trace)
due to voltage-driven translocation of Mz which lowers the net
number of conductive channels permitting ion flux!*>?*’!

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 1. System overview and characteristics. A) Bottom-view micrograph of the MzBS device platform, the droplet interface bilayer (DIB). Two aqueous
droplets where amphiphilic phospholipids self-organize at the oil-water interface are brought into contact, resulting in a lipid bilayer between them (scale
bar: 400 pm). A side-view micrograph of the system can be seen in Figure S2A, Supporting Information. Membrane-active monazomycin (Mz) species,
represented by the red staves are incorporated to affect ion transport through the bilayer. At voltages exceeding 60 mV, Mz species insert into the lipid
bilayer and oligomerize to form nanoscale conductive ion channels. At voltages exceeding 80 mV, Mz inserts, forms channels, and may also translocate to
a nonconductive state on the opposite side of the membrane. This results in a decrease in current density (i) from a peak, as seen in (C) (orange trace),
which is analogous to sensory adaptation (SA). B) Frequency dependent pinched i-V hysteresis of MzBS devices confirming volatile (i.e., analog) mem-
ristive switching. D) Signal transduction in the peripheral nervous system. At a constant stimulus level, some sensory neurons (right) show an increase in
spiking frequency followed by a decrease when continually stimulated. These changes in presynaptic firing have a direct effect on the postsynaptic firing
rate. In our previous work, we showed that MzBS devices mimic this sensory synapse and its ability to modulate postsynaptic firing.**! At a constant
voltage (80 and 110 mV, blue and orange curves, respectively), MzBS current density facilitates (green arrow) and then depresses (red arrow) (right).
D) Mz-mediated conductance exhibits history-dependent adaptation across multiple time scales. Shown are the simulated evolutions in Mz current
density in response to three consecutive 90 mV steps (an extended simulation can be found in Figure S2B,C). In the short term on the order of
ms to s, rapid changes are measured, and sensory adaptation occurs. Over the course of minutes, longer term depression occurs, indicated by the
decrease in peaks. This medium-term plasticity!®”! disappears with a 20-30 min gap between pulses (see Figure S2DF). E) RC networks built from
independent volatile memristors (top) enable a direct substitution of MzBS devices (bottom) to study the effects of SA on RC performance.

(Figure 1A). This mechanism of facilitation-then-depression via  reservoir computing (RC),?*~*! that operate in the time domain.
Mz depletion emulates SA observed in neurons of the olfactory,  RC relies upon the rich dynamics of physical or simulated nodes
auditory, and visual processing circuits in the brain!'*'**¥!  to nonlinearly process and separate temporal input signals.*¥
(Figure 1C) and it leads to cumulative changes in device STP  The primary advantage of RC over traditional neural networks
behavior across multiple stimulation events and longer time-  is that it drastically reduces computational overhead by cutting
scales (Figure 1D). the number of weights requiring training by focusing on a linear

These features make Mz-based biomolecular synapses (MzBS)  output layer.*”! A variety of physical systems and devices, includ-
unique candidates for memristor-based Al applications, such as  ing two-terminal memristors and three-terminal transistor
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devices, have been used to implement RC schemes.[®>°! The
benefit of constructing reservoirs from volatile memristors such
as the MzBS allows their “fading memory” to function as intrin-
sic negative feedback. This property satisfies the requisite of
recurrence for RC®® and allows simpler network architectures,
such as parallel arrangements of independent devices. Recent
memristor-based networks exhibited facilitation-only STP in RC
networks for classification and learning!*"*”**78 and showed
that defining virtual nodes (i.e., time multiplexing)®® and
mapping inputs to multiple sets of devices (i.e., device
multiplexing)**~% to increase the number of reservoir outputs
significantly improves task performance.

However, the effects of sensory adaptation on RC tasks have
not been explored, despite the prevalence of SA in neurosensory
processes that assist in pattern recognition, event detection, and
learning *>**%! L everaging MzBs devices, which exhibit facilitation-
only STP at low input levels and facilitation-then-depression at
higher input levels,?*) we can uniquely modulate STP behavior
(both in situ and in silico) to reveal the effects of SA on RC appli-
cations. Herein, we report on model-based device simulations
and physical experiments of several RC tasks, including a novel
aerospace application, to show that multiplexing of MzBS devices
(Figure 1E) exhibiting amplitude-dependent STP and SA can out-
perform RC network frameworks that utilize memristive devices
with facilitation-only forms of STP.!*%4749:57:38:6263] \re hypothe-
size this performance increase arises from the ability of SA to
spawn different trajectories for small differences in voltage and
initial device state, thereby operating closer to the “edge of chaos”
regime observed in biological neural networks.>%¢

2. Results and Discussion

2.1. Model of Amplitude-Dependent STP in MzBS

We previously developed a dynamical model describing the
voltage- and history-dependent current density (i.e., volatile
memristance, Equation S1, Supporting Information) measured
in Mz-doped membranes at room temperature (21 °C).?* The
model consists of four state variables, three of which are
dynamic: Ny, the number of available Mz species per area; P,
the proportion of N, in the nonconductive “pre-channel” state;
C, the proportion of N, in the ion-conducting channel state;
and I, the proportion of N, in the inactivated state (Equation
S2-S8, Supporting Information). Empirical voltage-dependent
rate parameters govern the reversible kinetic transitions between
the P, C, and I states, Equation (S9) and (S10), Supporting
Information. The current density of an MzBS device at a partic-
ular voltage is therefore proportional to the number of ion-
conducting channels per membrane area, N, determined by
the product of N, and C, as detailed by Equation (S5),
Supporting Information. An example of the predicted states to
a step response using experimentally-fitted rate parameters as
well as the variations in the values of the rate parameters at room
temperature during a simulated sinusoidal voltage sweep with
accompanying device current is shown in Figure S3,
Supporting Information.

In agreement with device measurements at low stimulus lev-
els, the model predicts that some fraction of Mz species initially
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in the P state transition to the conductive C state yielding a
facilitation-only type STP response (Figure 1C, blue trace).
The physical process for this transition involves insertion of
Mz monomers into the membrane and oligomerization to form
an ion channel.’® Under higher steady potentials, the subse-
quent transition of Mz from states C to I causes the total number
of channels, and thus the measured current (conductance), to
peak and then decay in a manner similar to SA (Figure 1C,
orange trace). Rate parameters defining backward transitions
(e.g., Cto P, or I to C) determine how quickly Mz species return
to a prior state. In addition to amplitude-dependent STP under a
single continual stimulus, our model also captures the adaptation
of device conductance across longer times and under subsequent
applied voltages. The simulated response in Figure 1D shows that
repeated high voltage pulses induce diminishing SA-type
responses due to cumulative depletion of Mz in the P and C states.
The model thus provides a basis for simulating reservoirs consist-
ing of independent MzBS nodes with amplitude-dependent forms
of STP and spontaneous fading memory (Figure 1E).

2.2. Device Simulations for 5 x 5 Digit Classification

To prove the feasibility of pattern recognition using an MzBS
biomolecular reservoir, we created a custom 5 x 5 binary image
dataset comprising digits “0-9”, with 10 variations of each digit
for a total of 100 unique patterns (see Figure S4, Supporting
Information, for the full set). This smaller task provided a con-
venient environment for determining suitable input mapping
and output selections from the MzBS reservoir. For inputting
these spatial patterns, each row of pixels was converted to a train
of rectangular voltage pulses defined by “high” and “low” stimu-
lus levels (Viigh and Vi, respectively) as has been used else-
where.**%7%? In this scheme, the reservoir consists of n=>5
independently operated devices, each receiving information from
a separate pixel row (Figure 2A). The pulse duration for a single
pixel is defined as 1. Black pixels (“0”) in a row remain at Vioy,
whereas each white pixel (“1”) induces a single “high” level pulse
with a 50% duty cycle (View first, then Vign) (Figure 2A). Using
these temporal voltage signals for each pixel row of the binary
images, we simulated the dynamic evolutions in channel density,
N, of all MzBS devices and recorded their final values at the verti-
cal dashed line in Figure 2A. Model details and simulation param-
eters can be found in Table S1, Supporting Information. Thus, for
this task, each 5-pixel row per image produced five independent
voltage signals that were input into five independent MzBS devi-
ces. The simulated outputs for each simulation condition are clas-
sified 20 times using a linear classifier (0 hidden layers, 5 x 10
readout function), starting with newly randomized weights at
each iteration. Due to the small size of the dataset, randomized
image selections for training and testing produced variable
results. Therefore, one randomly selected image from each digit
class was used as the testing set, resulting in a 90%/10% training/
testing split.

A unique aspect of MzBS is that the shape of its dynamic
response can take one of two different qualitative forms
(Figure 1C) depending on stimulation amplitude and duration.
Therefore, we varied Vyign while keeping the value of t,.1, duty
cycle, and Vi, fixed at 45, 50%, and 15mV, respectively.
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Figure 2. Image to pulse conversion scheme and 5 x 5 digit classification. A) Each pixel row is converted to a series of rectangular voltage pulses based
on a time per pixel (tpixel), Vhigh» and duty cycle. These voltage pulses are then used as the temporal inputs for simulations of MzBS channel density,
represented by the orange curves. The channel density values obtained at the time indicated by the black dotted line are used as features for a linear
readout layer to classify which digit (0-9) is presented. Numbers in gray circles show that a single digit can be made of repetitions of unique rows.
B) Differences in STP between model variations by tuning the translocation rate constant (k,, see Table S1, Supporting Information) in response to the
“pixel-row 1” (from (A)) with Vg, = 145 mV. By setting k, to 0 (0x), a fast sigmoidal rise is achieved. 1x uses nominal parameters obtained from device
fitting?>) and shows SA with a moderate amount of inactivation. 10x increases k, by a factor of 10 as compared to 1x and shows a larger amount of
inactivation, represented by the channel density nearly returning to its prewritten state by the end of the second pulse. C, D) Comparisons of classification
accuracies versus pulse amplitude for varying levels of SA, while keeping all other parameters constant: duty = 50%, tyixel =4S, Viow =15 mV in all cases.
Red asterisks indicate pulse amplitudes where 1x is significantly higher (see (E)) than both 0x and 10x. Green hashmarks indicate where 10x is
significantly lower than both 0x and 1x. The blue “@” symbol shows the single case where 0x is higher than both 1x and 10x. Error bars represent
standard error of 20 randomly seeded weight initializations. C) shows the overall (training + testing) accuracy. D) Testing accuracy only.
E) Table containing multiple comparison p values from Kruskal-Wallis testing. “All" refers to overall accuracy in (C); “Test” refers to (D);
Comparisons are color-coded to match designations in the table and graphs in (C, D) P value color represents the model variation with the higher
value for that comparison.

This was done to induce a continuum of responses exhibiting  set to 0 (“0x”), left unchanged (“1x”), or multiplied by factor
facilitation-only to facilitation-then-depression type STP to study ~ of 10 (“10x”). The 0x variation is representative of the typical
the effect of SA on 5 x 5 digit classification accuracy. We also  conductance evolution of volatile memristors used in RC
modulated SA directly by varying the value of model parameter — networks,**>”*%2 1 is representative of slowly adapting sen-
k, (see Table S1, Supporting Information), which governs the  sory neurons in the eye, ear, and nose, and 10x is more repre-
transition rate of Mz from C to I (see Equation (S4)). It was either  sentative of rapidly adapting synapses, such as those found in the
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brain."? The plots in Figure 2B show how k, affects the
simulated response of N to a three-pulse voltage sequence (cor-
responding to the top row of pixels for the image in Figure 2A)
with a Vpig, value of 145 mV. In the 0x variation, facilitation-only
STP causes unidirectional “writing” of the conductance state
(N here) for memristors. This increase in conductance subse-
quently fades when voltage is then removed due to memristive
volatility caused by C-state Mz channels exiting the membrane
and returning to the P-state.® In the 1x variation, conductance
initially increases but then decays even as the stimulation
remains on. In the 10x variation, the postpeak conductance
decay is more significant during the writing pulse, returning
the device conductance almost to its prewritten value.

Simulations revealed that reservoirs consisting of unmodified
(1x) MzBS devices were significantly more accurate than the
0x and 10x device models at many of the tested voltage levels.
The overall (training + test) and test accuracy results are reported
in Figure 2C,D. For Vpig, < 115 mV, the three models (0x, 1x,
and 10x) overlap in classification performance. They diverge
from one another at 130 mV, where the 1x model shows higher
overall accuracies for voltages between 130-175 mV and higher
test accuracies at 145-160mV than Ox and 10x variations.
The 10x model performs consistently worse than the 0x and
1x models starting at 160 mV. The p values for these compari-
sons are reported in Figure 2E (see Methods for specifics on
statistics).

Interestingly, 1x and 10x models both show a decrease in
accuracy as voltage rises above 145 mV, whereas the 0x model
begins to slowly increase, overtaking the 1x model in test accu-
racy at 205 mV. This is likely due to the state being overwritten in
the 1x and 10x case at these larger voltages, as seen in
Figure 2B, with 10x being an extreme case whose performance
suffers because of it. This finding implies that RC nodes exhib-
iting moderate amounts of SA can outperform facilitation-only
nodes in image classification tasks. Moreover, it informed our
choices of stimulation voltages, model comparisons used to
understand MzBS RC performance, and the role of SA on larger
classification tasks, such as the Modified National Institute of
Standards (MNIST) handwritten digit dataset.

2.3. Experiments Validate Predicted 5 x 5 Digit Classification
Performance

To validate the model-based RC simulations, the 5 x 5 digit
dataset (Figure S4, Supporting Information) was converted into
voltage pulses and used to experimentally stimulate physical
MzBS devices. The combination of using biomolecular memris-
tors that exhibit SA and experiments to demonstrate their physi-
cal responses differentiate this work from a prior simulation-only
study of RC using biomolecular nodes.*? Specifically, the 5 x 5
digit dataset was separated into its basic set of 21 unique pixel
rows containing at least 1 white pixel. This process is represented
in Figure S5, Supporting Information, where it can be observed,
for example, that these versions of a “3” and an “8” can each be
constructed from two unique pixel rows; one of which is shared
between them. Unique pixel rows are also labeled in Figure 2A
with gray numbered circles. Experiments consisted of inputting
voltage pulses derived from a single pixel row into one MzBS

Adv. Intell. Syst. 2023, 5, 2300049 2300049 (5 of 13)
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device and measuring the resulting current density at the prede-
fined timepoint for each pixel-row (Figure S5, Supporting
Information). Stimulations from several (but not all) unique pixel
rows were input serially into the same MzBS device to reduce
device-to-device variation and maintain stability. We allotted
30 min of inactivity (V = 0) in between each stimulation to allow
the devices to fully reset®” (see Methods for further details).
In this way, we generated responses to the whole basis set with
21 independent measurements. Two full sets of basis row stim-
ulations were created, one at Vhigh = 110mV and another at a
Vhigh = 120 mV, both voltages where SA is present (individual
responses in Figure S6-S8, Supporting Information).

The measured feature set for Vg =110mV produced an
accuracy of 84.46% (max 91.00%) and mean test accuracy of
68.92% (max 90.00%), where the same training/testing split
as used in the simulations was used here. Increasing Vg, to
120 mV resulted in a mean overall accuracy of 83.74% (max
88.00%) and mean test accuracy of 70.42% (max 90.00%).
Of note, raising Vyign to 120 mV resulted in currents beyond the
measurement range of our equipment. This saturation caused
measurement artifacts (see 120mV in Figure S7 and S8,
Supporting Information) that affected assessing the final state
at higher voltages and prevented experimental measurements
at higher voltages. It also necessitated a slightly different form
of current normalization, see Methods. These experimental accu-
racies align well with the simulation results from 115mV 1x
(Figure 2C,D, Table 1), and compare favorably with experimental
results on solid-state volatile memristors from other groups.?”

We also compared the MzBS RC experimental results to using
the individual pixel values (i.e., 0 black or 1 for white) as features
for training a linear readout layer (0 hidden layer neural
network), again using training 200 iterations with randomized
starting weights. This resulted in a mean overall accuracy of
91.94% (max 97.00%) and mean testing accuracy of 59.72%
(max 90.00%). The higher overall accuracy compared to test accu-
racy suggests that overfitting occurred, leading to poor generali-
zation. In addition, using all 25 pixels required training of 250
weights compared to only 50 for the RC scheme. Compressing
the 5 x 5imagesto5 x 1 (see Methods) reduced the mean overall
accuracy to 40.37% (max 49.00%) and mean testing accuracy to
25.98% (max 45.00%) (Table 1). This reinforces the purpose of
the reservoir computing scheme: fewer trained weights with
comparable results.

Optimal t,ie and duty cycle will vary between individual or
groups of devices due to device-to-device variations that affect
the total number of Mz species interacting with the membrane.
It is likely that these experimental results can be further improved
by optimizing the input parameters and assembling arrays to test
MzBS devices concurrently. Still, the accuracies achieved from
experimental measurements add confidence to our model-based
predictions, including that devices exhibiting SA can achieve
favorable classification accuracies for small datasets.

2.4. Device Simulations for MNIST Handwritten Digit
Classification

Using the same pixel row to voltage pulse train scheme as used
for the 5 x 5 digit classification (Figure 2A), we simulated the
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Table 1. A comparison between classification methodologies presented in this manuscript (outlined by the thick black line) and previously reported works
using two terminal devices. Classifications using the image pixel values as features are also presented for comparison. “F1” and “F2" refer to

combinations of feature sets.

Case Data Source Vhigh (MV) pixel duty # VNs  # Devices # wts Max OA Acc  Max Test Acc
5x51x RC Sim 115 4s 0.5 0 5 50 0.9100 0.8500
5%51x RC Exp 110 4s 0.5 0 5 50 0.9100 0.9000
5x51x? RC Exp 120 4s 0.5 0 5 50 0.8800 0.9000
5% 5 Images NN Sim - - - - - 250 0.9700 0.8500
5% 1 Images NN Sim - - - - - 50 0.4900 0.4500
MNIST 1xVN RC Sim 85 05s 0.8 0 20 200 0.8332 0.8364
MNIST 1xVN RC Sim 145 0.5s 0.8 0 20 200 0.7240 0.7300
MNIST 1xVN RC Sim 85 0.5s 0.8 3 20 800 0.9157 0.9149
MNIST 1xVN RC Sim 145 0.5s 0.8 3 20 800 0.9089 0.9150
MNIST 1xVN RC Sim F1: 85 F2: 145  F10.55sF2:05s F1: 0.8 F2: 0.8 0 40 400 0.9170 0.9181
MNIST 1xVN RC Sim F1: 85 F2: 145  F10.5sF2:05s F1: 0.8 F2: 0.8 3 40 1,600 0.9410 0.9411
MNIST SM RC Sim F1: 85 F2: 145  F10.55sF2: 0.5 s F1: 0.8 F2: 0.8 0 160 1,600 0.9263 0.9261
MNIST SM RC Sim F1: 85 F2: 145  F1:05sF2 1s F1: 0.8 F2: 0.8 0 160 1,600 0.9271 0.9267
MNIST SM RC Sim F1: 85 F2: 85 F1: 055 F2: 15 F1: 0.8 F2: 0.8 0 160 1,600 0.9238 0.9200
MNIST 20 x 20 NN Sim - - - - - 4,000 0.9285 0.9183
MNIST 20 x 8 NN Sim - - - - - 1,600 0.9023 0.9049
Du et al. SM[? RC Sim 1,500 F1: 0.8ms F2: 4ms  F1: 0.625 F2: 0.125 0 88 1,760 - 0.9110
Du et al. SM? RC Sim 1,500 F1: 0.8ms F2: 4ms  F1: 0.625 F2: 0.125 0 112 2,240 - 0.9150
Du et al. SM? RC Exp 1,500 0.8 ms 0.625 0 88 880 - 0.8560
Du et al. SM? RC Exp 1,500 F1: 0.8ms F2: 4ms  F1: 0.625 F2: 0.125 0 38 1,760 - 0.8810
Midya et al. SME7! RC and NN Exp 1,250 200 us 0.5 0 220 2,200 0.8300 -
Hossain et al. SM1*? RC Sim 120 12 ms 0.833 0 88 880 - 0.8851
Hossain et al. SM[* RC Sim 130 12ms 0.833 0 88 880 - 0.8866

AThis experiment was normalized by initial device current rather than device area.

responses of larger MzBS reservoirs to test the accuracy of MzBS
and study the effects of SA in classification of the MNIST hand-
written digit dataset. MNIST images were cropped from 28 x 28
to 20 x 20 and binarized (Figure 3A). We hypothesized that max-
imizing the performance of the reservoir depends on fully
leveraging the history dependence of the volatile memristive
nodes. We therefore employed both virtual node-multiplexing
(VN) and device-multiplexing to create classifiable RC features.
These strategies have been used in previously reported RC
applications.**>773%62631 N5 are stored states from earlier time-
points of the signal which are used as additional features for the
readout layer to use for classification. Device-multiplexing sends
each input signal to multiple devices, usually where the
additional devices receive an amplitude-modified or timescale-
modified version of the same input.****%! In our multiplexing
scheme, only the value of Vy;gn changes, keeping the same ty;ci
and using three prior states (VNs) in addition to the final state
(Figure 3A).

We also hypothesized that multiplexing devices exhibiting SA
with those that only facilitate would increase accuracy due to the
differing trajectories of current density that determine the nonlin-
ear map between inputs and classified outputs. We tested this by

Adv. Intell. Syst. 2023, 5, 2300049 2300049 (6 of 13)

constructing several feature sets containing reservoir states at dif-
fering Viigh, tpixels and duty cycle that can be “mixed and matched”
with each other, as in Figure 3A (righthand side). Feature sets
using these same values are also constructed using the sectioning
method (SM)[***7%?] and the VN method with inactivation (SA)
disabled (0x VN) (Figure 2). An example of the sectioning method
(SM) is shown in Figure S9, Supporting Information, to compare
with VN multiplexing in Figure 3A. Using two different values of
toixel, three feature creation methods, two values of duty cycle, and
seven values of Vg resulted in 84 possible combinations of
feature sets to classify. Chosen values were: 0.5 and 1's for tpi;
50% and 80% duty cycle; and 70-160 mV in increments of 15 mV
for Vhign. The simulated reservoir states for each of these sets
generated 80 output features (20 rows, 4 states per row).
Combining two sets of multiplexed devices resulted in 160 fea-
tures (160 x 10 readout), which is the same as or fewer than
the number of features per row in previous works, but with fewer
devices: 40 here compared to 88 or more elsewhere,*?*7%?) see
Table 1 for details on number of devices and number of weights
trained.

For each combination, the merged features were classified
by a linear readout layer 20 times, using newly randomized

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 3. MNIST digit classification details and results. A) MNIST digits are first cropped from 28 x 28 to 20 x 20 and binarized. Features are then
created by virtual nodes from multiple devices (1x and 0x) or separated into smaller sections before being input into different devices at two different
rates/timescales (SM, see Figure S9, Supporting Information). The features are labeled according to device and VN number for clarification of how they
are used in the readout layer. B-D) Heatmaps of average testing accuracies (n = 20) obtained after combining feature sets created with differing Vy;gh.
toixel = 0.5 s for both axes of (B) and (C). Highest average for each heatmap indicated by a green outline. (B) 1xVN model containing SA. C) 0xVN model
containing no SA. D) SM method combining differing ¢l to compare with previous work’s methods,* namely on the diagonal where Vhigh is equal for

each feature set.

initial weights each time with an 80%/10%/10%
training/validation/testing split on the full 70000 digit set,
divided randomly. The highest performing 1xVN, 0xVN, and
SM feature sets are shown as accuracy heatmaps in
Figure 3B-D. Between 1xVN and 0x VN, using the same value
of Vhigh (i.e., values on the diagonals) for the two sets of devices
in a multiplexed RC network performs worse than combining
devices stimulated at different voltage amplitudes (i.e., values
off the diagonals). Regardless of device model variation, accuracy
increases when devices receiving low voltage stimulus are multi-
plexed with devices receiving high voltage stimulus. Test accura-
cies for the SM are roughly uniform until 145 mV, where they
decline (Figure 3D).

The 1xVN feature set combination obtained for 85 and
145mV pulse amplitudes with tye1=0.5s and duty=0.8
achieved the highest mean test accuracy at 93.62% (max
94.11%) (Figure 3B). This is significantly higher than the mean
test accuracy of 93.33% for 0xX VN (max 93.86%) (p = 0.0269) and
SM (92.04%, p = 4.96 E-19). The highest maximum test accuracy
achieved by any feature set combination was 94.34% (mean accu-
racy 93.56%, Figure 3B) obtained with the 1xVN reservoir,

Adv. Intell. Syst. 2023, 5, 2300049 2300049 (7 of 13)

which multiplexed devices at 70 and 145 mV and set tpie; = 0.5 s
and duty = 80%. These results support the hypothesis that SA
present in the device model for the nodes leads to higher perfor-
mance. The simulated performance of MzBS reservoirs also
compares favorably to similar memristor-based RC network
performance, achieving higher average and max accuracies for
all methods. This includes theoretical maxima predicted from
simulation. #2762

In aggregate, the classification accuracies of 0xVN and 1xVN
reservoirs with device multiplexing are not statistically different
(n=284, p=0.1247). In contrast, they are both significantly
higher (p < 6.45 E-16) than when SM is used. This suggests that
a virtual node method is responsible for some of the improve-
ment in accuracy demonstrated by MzBS. We also tested classi-
fication accuracies of individual feature sets with and without
virtual nodes; using the raw pixel values of the 20 x 20 images
as the features; and using the raw pixel values of compressed
20 x 8 images as features for the linear readout to make the
number of trained weights equal to the 1xVN method. These
results are summarized in Table 1 and Table S2, Supporting
Information.

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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2.5. SA Benefits Dynamic Nonlinear Function Fitting

Model-free dynamic nonlinear function fitting is another com-
mon task in benchmarking RC performance.!*>#%>7,58.62.63,66]
To investigate the role of SA in this type of task, two common
functions were fit using MzBS RC networks. The first

y(k) = 0.4y(k — 1) + 0.4p(k — 1)p(k — 2) + 0.6u3(k) + 0.1 (1)

is discrete in time and is a second-order, nonlinear, autogregres-
sive moving average, abbreviated NARMA2.1”) For the purposes
of the benchmark, u(k) was set to be a random number between 0
and 0.5. This number was scaled to a voltage range of
70-100 mV (Figure 4A), which was then converted to a rectan-
gular voltage pulse with varying duration and used as the input
to a reservoir consisting of 90 MzBS devices with preprog-
rammed device variation (see Methods for details). The simu-
lated channel densities from all devices at the end of each
stimulation block were then fit by regression to the true function
value by a 90 x 1 readout layer using the normalized mean
square error (NMSE), defined as

A

www.advintellsyst.com

>k i (pi(k) — yi(k))?

e 2ivi (k)
where p;(k) is the predicted value at the kth step or time k=t
and the ith device, and y;(k) is the true function value.

The reservoir was allowed to equilibrate for 149 timesteps
before training occurs on timesteps 150-400. Ten training
and testing iterations were performed to compare 1x and 0x
device variations, with both model variations using the same ran-
domized initial weights as well as the same randomly generated
u(k) in each iteration. Results from 1x are shown in Figure 4B,
C. No statistical difference was found between 1x and 0x for
training and testing errors suggesting SA is neither beneficial
nor harmful in this task. In Figure 4B, the NMSE error
(Equation (2)) is 5.34 E-4, indicating a very good fit to the training
set values. Using a newly generated set of random numbers u(k)
from 0 to 0.5 as the testing set in Figure 4C, the error remained
below 1E-3, showing that the fit generalized well. These errors
are lower than previously reported in memristor-based
reservoirs.[**¢?

The second benchmark equation is the Mackey—Glass equa-
tion, given by

2)

100,

0d 8 “€T0T ‘LISYOY9T
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Figure 4. Model-free fitting of nonlinear transfer functions. A) A representation of how random numbers u (k) are converted into voltage pulses. The same
is true for Mackey-Glass, except the timescale does not vary and the numbers are determined by the function instead of being random. B) Blue represents
the true function value y(k) of the NARMA2 function for a given random input u(k) and orange represents the predicted value based on reservoir states
after training on voltage pulses made from u(k). C) The testing prediction set using a newly generated u (k) and the same weights from (B). D) Mackey—
Glass chaotic time series fitting. True values in blue. Training occurs from timepoint 150400, where 1x and 0x models essentially converge on the
training set. From 401 to 1100, the testing fits of 1x and 0x are close, but not the same (see Figure S10, Supporting Information). E) Boxplot of 1x and
0x testing error. 1x achieves significantly lower testing error (p =1.986 E-14).
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which is a continuous time delay-differential equation with
physiological relevance.*®! In this task, the following parameters
were used: t=18s, f=0.2, Y'=0.1, and n=10. Details about
function initialization can be found in the Methods section.
The function was discretized by generating the expected output
every 0.5 s. These values were converted to voltage pulses with a
50% duty cycle between 60 and 90 mV and used as the inputs to
20 simulated MzBS devices, the same as Figure 4A, but with
pulse width set at 0.5 s. The values of the function at the prior
49 timesteps were used as additional features for classification,
resulting in a 1000 x 1 readout layer. The reservoir was allowed
to equilibrate for 150 timesteps before training begins. In
Figure 4D, the true signal is represented in blue, while the
weighted fit to the training timepoints is represented in orange
(1x model) and purple (0x model). Both model variations fit the
training data very well, achieving average NMSEs of 5.35 E-4 and
5.30 E-4 for 1x and 0x device models, respectively, based on ten
randomized weight initializations. Both model variations, using
the weights trained during the training timepoints with no updat-
ing, fit the testing timepoints (1x in yellow, 0x in green,
Figure 4D) well, with the 1x model achieving a significantly
lower (p=1.986E-14) error of 6.63 E-4 compared to 0x at
6.68 E-4 (Figure 4E). A zoomed inset can be found in Figure S10,
Supporting Information. This demonstrates that SA provides a
small but tangible benefit.

2.6. Demonstration of MzBS Reservoir Classifying
Dynamic Gusts

Incorporating physically realized RC networks as peripheral ner-
vous analogs in autonomous systems can enable efficient and
adaptive information processing. For example, this could benefit
manned and unmanned flight control by offloading critical
computational resources to the sensors themselves rather than
the pilot or central processing unit. To test the signal processing
capability of an MzBS reservoir for signals relevant to an aerial
vehicle, we collected pressure measurements from six pressure
sensors on an aircraft wing to distinguish between types of
dynamic gusts (Figure 5A). The sensors were located at Oc,
0.05¢, 0.015c¢, 0.1c, 0.4c, and 0.5c where ¢ is the chord length
of the wing. Different gust pressure distributions were generated
by moving an upwind airfoil between set angles of attack, moving
from 0°— + a° — —a° — 0°, where a was positive or negative.
The gust types are delineated by the three amplitudes and sign
of a (£7.5°, £10°, and £12.5°) resulting in six classes of gust.
For example, “4+12.5°” would refer to 0° — +12.5° — —12.5° — 0°,
an example of which is presented in Figure 5B, while “—7.5°”
would refer to 0°— —7.5°— 47.5°— 0°. These movements
altered the pressure at each sensor location on the downstream
wing (Figure 5B).

The pressure readings from the six sensors were then con-
verted to proportional voltage signals used as separate inputs
to a six-device MzBS reservoir. The channel proportions C for
all devices were simulated across the entire history of pressure
measurement (Figure 5C), but only their values at the final time
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point (T4) were used as the feature set for a linear readout layer.
A reservoir implementing 1x MzBS devices achieved 100% clas-
sification accuracy across 1000 randomly initiated weights,
regardless of whether final states of all six devices or just the final
state of the device receiving information from tap Oc, which
exhibited the largest sensitivity to changes in angle of attack, were
used as features. Gust classification accuracy dropped substan-
tially to an average of 77.26% (when all devices were used)
and 66.31% (using only the device corresponding to sensor
0Oc), respectively, when the reservoir consisted of facilitation-only
0x MzBS devices. This comparison demonstrates that SA result-
ing from Mz-channel inactivation plays a significant role in dis-
crimination between gust types.

To compare these classification results to traditional neural
network architectures, several variations of “static” neural net-
works were tested for this task. These variations received floating
point values of normalized pressure at four specific timepoints
(Figure 5B), resulting in a total of 24 classifiable features (six
pressure taps X four timepoints). All cases were tested with
1000 iterations using randomized initial weights. Using a linear
readout from all 24 features (gold) for the six gust types
(24 x 6 readout) resulted in a testing accuracy of only 58.21%
(Figure 5D). We speculated this occurred due to extraneous
information provided by T1 and T4 features. To remedy this,
the feature set was reduced to using only features from T2
and T3 (i.e., when the angle of attack is not zero), lowering
the number of features from 24 to 12 (12 x 6 readout). This
increased the test accuracy to a mean of 80.64%. To improve
the fairness of comparison, nonlinearity was then added via a
six-neuron hidden layer (HL) and only the two static features
(pressure values at timepoints T2 and T3, 2 x 6 x 6 architecture)
derived from tap Oc were included (denoted as the Static Oc
T2 +T3 HL case). This dramatically increased performance,
resulting in a mean testing accuracy of 98.18%.

As a final comparison, we determined the test accuracy for a
static network with one six-neuron, hidden layer using only one
feature (1 x 6 x 6), the pressure from tap Oc at time point T4.
This selection allows for comparison to using only the final state
at T4 for the MzBS device corresponding to tap Oc. Predictably,
the accuracy of the static network falls to nearly 0 because the
value of pressure at timepoint T4 contains no information about
what angles of attack occurred at earlier times. Using the
Kruskal-Wallis multiple comparison test (due to far from normal
distributions), the MzBS is still statistically different (p < 0.0478)
with higher mean ranks than all compared groups (Figure 5E).
Comparing an RC implementing 1x MzBS model to the Static
Oc T2+ T3 HL (highest performing static) reduces the p-value
dramatically (p < 2.884 E-23).

These comparisons showcase the advantages of using a phys-
ical reservoir based on volatile memristive nodes, as well as the
advantage of SA exhibited by MzBS, in classifying with real-world
time-varying signals. One such advantage is spending less effort
on feature selection. The static network performed poorly when
overwhelmed with extraneous features, whereas the MzBS
reservoir started with fewer features that captured the same
information and required no feature selection, showing 100%
classification accuracy “out of the box”. Another advantage is
the ability to sample at any timepoint to gain information about
the history of the signal. This is also intrinsic to the reservoir, as it

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 5. Gust classification using dynamic pressure measurements on a NACA 0012 Wing. A) Schematic of the wind tunnel experimental setup. An
obstructing airfoil rotates between different angles of attack to create an artificial gust on the wing further downwind. Pressure taps are labeled (from left
to right): Oc, 0.015¢, 0.05¢, 0.1¢, 0.4¢, and 0.5c. B) A single trial example of normalized pressure for a +12.5° deflection. The lines labeled T1, T2, T3, and
T4 are the timepoints where the pressures or states are sampled to use as features for classification. C) An example of how the state variable “C” evolves
over time when normalized pressures are converted to voltages and used to stimulate an MzBS reservoir. D) Histograms of testing accuracies for
comparison of MzBS reservoir models vs static neural networks using different features. Histogram bars belonging to a group are slightly offset from
others to make distinguishing easier. E) Box plots of the histogram accuracies. Multiple comparisons using nonparametric tests show RC 1x at 100% is

significantly higher (p < 0.0478) than all other cases.

stores the information of previous stimulation and only requires
the T4 point of information. The static network is wholly depen-
dent on the timepoint picked ad-hoc by an intelligent outside
actor, while the MzBS reservoir is a continuously updating
and autonomous processor that provides useful transformations
for dynamic data.

3. Conclusion

In conclusion, we show that reservoir computing performance
may be enhanced through the addition of amplitude-dependent
sensory adaptation as exhibited by monazomycin-based biomo-
lecular synapses (MzBS). Through experiments, we confirm the
feasibility of accurate classification using a physical network of
devices. We suspect that larger biomolecular reservoirs incorpo-
rating membrane-bound channels with faster or more complex

Adv. Intell. Syst. 2023, 5, 2300049 2300049 (10 of 13)

forms of memory will be able to accomplish even more complex
tasks. While RC without SA is the norm and works reasonably
well, some amount of SA appears to be beneficial in amplifying
small differences in signals that can be leveraged to make a dis-
tinction. When SA is too strong or fast, the discriminating infor-
mation is lost or overwritten. It is well understood from an
information theory and thermodynamic perspective that SA
overwrites old information in favor of new information, so it is
reasonable to believe that SA imparts new information to the sys-
tem for processing as opposed to facilitation-only STP.[**7%
We also show that an MzBS RC can reconstruct and fit
nonlinear dynamical functions in a model-free fashion with
improved error compared to previous memristor-based RC net-
works. However, we determine that SA is not always beneficial,
and should therefore be judiciously applied when appropriate.
Lastly, while RC has been studied for use in autonomous
vehicles and control,”'7? its integration as a sensory system
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to complement feedback control has been limited.”* We dem-
onstrate a novel application by using pressure data from an airfoil
to dynamically classify different types of gusts and show that it
outperforms traditional forms of neural networks, using fewer
trained weights and achieving perfect accuracy. Perfect accuracy
was only achieved when SA was present in the device model. We
believe presenting a physically realized MzBS reservoir with
more complex gust patterns holds promise as a sensory system
analog.

4, Methods

4.1. Simulations and Classification

Simulations of Mz-based biomolecular synapses (MzBS) were
completed in MATLAB based on the three-state voltage-
dependent model published previously.?> To recap, the propor-
tional amount of Mz in each of the three states (preinserted,
conducting, and inactivated) is governed by transition rates that
vary exponentially with voltage, see Supporting Information for
deeper discussion. Here, we use the generalized version with
parameters for a 1:1 DOPC:DPhPC membrane (see Table S1,
Supporting Information, for a list of parameter functions and
values). Noise was not modeled due to the high precision in cur-
rent measurement of the Axopatch 200B.

Classifications were performed using the default neural net-
work training functions in MATLAB included with the machine
learning and deep learning toolboxes. No difference was found
between training function options besides time of execution,
therefore the default “trainSCG” (stochastic gradient descent)
was used. Large-scale simulations of the MNIST data set were
performed using resources provided by the Infrastructure for
Scientific Applications and Advanced Computing at the
University of Tennessee.

4.2. NARMA2 Function

Ten groupings of nine devices (total of 90) are used, as described
previously.®” The timescale of each pulse per step k are varied
between groupings, from 0.1 s in the first grouping to 1s in the
last grouping. Each pulse has a duty cycle of 50%, with the low
voltage being constant at 15mV. Device variations are also
included, in this case, the Mz autocatalytic insertion rate (k;p,
Table S1, Supporting Information) may vary from 0.85 to 1.15
times its nominal value at a given voltage, assigned randomly.

4.3. Mackey—Glass Function

The Mackey—Glass equation requires a “history function” to tell it
what to consider values before t =0 due to its recursive nature.
In this study, we set the history function to be constant at 0.8.
The function values generated using this history are then con-
verted to voltage pulses ranging from 60 to 90 mV in amplitude
with a duration of 0.25 s with an off time of 0.25s and an “off”
low voltage of 15 mV. To introduce device variation, 2 Mz model
parameters are allowed to vary: ki, kq,, as well as initial channel
density No. These parameters vary between 0.1 and 5 times their
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nominal values calculated from the model at a given voltage. This
range represents a realistic difference between device responses.

4.4, Statistical Testing

Statistical testing in this manuscript follows these prescribed
steps:

1) Check for normality with a Shapiro-Wilk Test.

2) Test for differences with t-test (2 groups)/ANOVA (>2
groups) for normally distributed data or Wilcoxon (2 groups)/
Kruskal-Wallis (>2 groups) for nonnormally distributed data.

3) Perform Tukey HSD posthoc test, if applicable (for >2
groups).

4) Determine sample size (n) required for >90% statistical
power based on group differences.

5) If number of samples >n, reject null hypothesis.

These were applied to all reservoir simulations, where sample
size was 20 for MNIST classifications, 200 for 5 x 5 digit classi-
fication, 10 for NARMAZ2 and Mackey-Glass function fitting, and
1,000 for dynamic gust classification. All processing was done in
MATLAB.

5. Experimental Section

Vesicle Preparation: Lipids were purchased from Avanti Polar Lipids
(Alabaster, AL) in chloroform. Lipid films were produced by fully evapo-
rating chloroform-dissolved stock under nitrogen stream and then addi-
tionally desiccated for an hour under vacuum. Mixtures of 1:1 DOPC:
DPhPC were made by mixing chloroform solutions of each prior to film
creation. Films were rehydrated in ultrapure water at a concentration of
5mgmL~" to make stock aqueous lipid solutions. Stock solutions were
frozen and thawed four times and mixed well before being passed 11 times
through a 100 nm extrusion filter (Whatman). Lipid stocks were combined
with potassium chloride and 3-(N-morpholino)propanesulfonic acid
(MOPS) from Sigma (St. Louis, MO) and monazomycin from Cayman
Chemical (Ann Arbor, MI) to obtain final concentrations of 2mg mL™"
lipid, 100 mm potassium chloride, 10 mm MOPS, and 20 pgmL™" Mz.
Solution pH was consistently measured to be near 6 and was not modified
for device testing.

Electrophysiological Measurements: MzBS ionic currents were measured
using an Axopatch 200B patch clamp amplifier in conjunction with a
Digidata 15008 digitizer, with a noise level of <5 pA (0.000125% measure-
ment range). Voltage was supplied by an NI 9263 output module and was
controlled through MATLAB.

Droplet Reservoir Digit Classification: Droplet interface bilayers were
constructed using lipid-in’>! 1:1 mole ratio DPhPC:DOPC vesicles at
2.36mM, 20pgmL™' Mz, 100mm potassium chloride, and 10 mwm
MOPS. Experiments were conducted in hexadecane oil at room tempera-
ture (21 °C). Due to Mz causing innate instability in the membrane, mem-
branes had to retain a high resistance state at 0 mV for at least 10 min
before experiments could proceed. Images were taken using a Ximea
XiC bottom view camera and processed in MATLAB. Area normalization
was performed using custom MATLAB scripts. A total of 7 of the 21 experi-
ments for each pixel set were performed on individual MzBS devices,
resulting in 6 total MzBS devices represented overall, 3 for each set.
For the 120 mV set, device area was too small to measure, necessitating
a different form of normalization. Instead, the fractional change from
baseline current is used: I/lo—1, where Iy is the current from the initial
3's of the experiment, all at 15 mV. The minimum Iy from each set of
experiments is used to replace the row of all “0’s”.

Airfoil in Wind Tunnel: To develop a gust alleviation system for spanwise
camber morphing wing, we installed six pressure taps on the top surface of
a 228mm wide NACA 0012 wing with a 320mm chord and a
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multifunctional macrofiber composite trailing edge. We placed the gust-
sensing wing at a 9°+1° angle of attack in the 30 x 30 cm wind tunnel at
the University of Michigan. A 15cm wide rigid airfoil located 30cm
upstream of the morphing wing deflected at angles between £12.5° to
generate gusts similar to updrafts and downdrafts found in dynamic aerial
environments. Elliptical endplates were mounted to the ends of the
morphing wing to prevent tip vortices and limit the aerodynamic analysis
to two dimensions in the 10m s airflow environment.

Classifying the degree of gust from onboard sensor signals can inform
gust alleviation controller decisions to compensate for change in wing lift
through camber morphing. Although pressure can be used to directly mea-
sure lift produced by an airfoil, we chose to perform classification directly
from signals provided by six pressure taps. Six compact differential low-
pressure transducers provided signals proportional to the difference
between static pressures experienced at each pressure tap location and
the static pressure measured upstream of the testing section using a pitot
tube. The low-pressure transducers provided signals between 0 and 5V,
with expected pressure signals of 3.40, 3.66, 3.46, 3.27, 2.99, and 2.83 V for
each pressure tap, beginning with the leading edge and working backward.
We gathered pressure sensor signal data and lift values for gust combi-
nations of =+[7.5°10°12.5°. By centering our normalization around
2.5V we could distinguish between positive and negative differential pres-
sures. We found that due to the 9° angle of attack, differential pressures
remained positive, and using a scaling factor of two bounded pressure
signals between [0, 1] for the largest tested gusts. Therefore, we normal-
ized the pressure values using

L — 2.5
pn =2 0

2
where p, is the measured pressure signal and p,, is the normalized pres-
sure signal.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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