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Deep reinforcement learning achieves
multifunctional morphing airfoil control

Kevin P T Haughn1, Lawren L Gamble2 and Daniel J Inman1

Abstract
Smooth camber morphing aircraft offer increased control authority and improved aerodynamic efficiency. Smart material
actuators have become a popular driving force for shape changes, capable of adhering to weight and size constraints and
allowing for simplicity in mechanical design. As a step towards creating uncrewed aerial vehicles (UAVs) capable of
autonomously responding to flow conditions, this work examines a multifunctional morphing airfoil’s ability to follow
commands in various flows. We integrated an airfoil with a morphing trailing edge consisting of an antagonistic pair of
macro fiber composites (MFCs), serving as both skin and actuator, and internal piezoelectric flex sensors to form a closed
loop composite system. Closed loop feedback control is necessary to accurately follow deflection commands due to the
hysteretic behavior of MFCs. Here we used a deep reinforcement learning algorithm, Proximal Policy Optimization, to
control the morphing airfoil. Two neural controllers were trained in a simulation developed through time series modeling
on long short-term memory recurrent neural networks. The learned controllers were then tested on the composite wing
using two state inference methods in still air and in a wind tunnel at various flow speeds. We compared the performance of
our neural controllers to one using traditional position-derivative feedback control methods. Our experimental results
validate that the autonomous neural controllers were faster and more accurate than traditional methods. This research
shows that deep learning methods can overcome common obstacles for achieving sufficient modeling and control when
implementing smart composite actuators in an autonomous aerospace environment.

Keywords
Morphing aircraft, multifunctional materials, reinforcement learning, smart composites, autonomous control

Introduction

Uncrewed aerial vehicles (UAVs) are growing in popularity
for both civilian and military applications, which makes
improving their efficiency and adaptability for various aerial
environments an attractive objective.1 Many studies pursue
this goal using morphing techniques that incorporate shape
changes not typically seen in traditional aircraft.2,3 Due to
weight and volume constraints consistent with smaller flight
vehicles, smart materials, such as macro fiber composites
(MFCs), have been used to achieve the desired shape
changes.4,5 Macro fiber composites are low-profile piezo-
electric actuators which have gained substantial attention
within the morphing aircraft community.1 Piezoelectric
actuators operate by generating strain when voltage, and
hence an electric field, is applied to the electrodes.6 Pie-
zoelectric actuators are also well known for their capabilities
to produce high force-output and a high-speed actuation
response. Unlike traditional piezoelectric actuators, which
are composed of solid piezoelectric material, MFCs are
manufactured using a series of thin piezoceramic rods in a

composite laminate layup allowing them to exhibit excellent
flexibility while still maintaining the performance benefits
attributed to traditional piezoelectric actuators.7,8 Further-
more, MFCs exhibit large out-of-plane curvatures when
bonded to a thin inextensible substrate, like steel shim,
which shifts the structure’s neutral axis. This behavior is
attractive for camber morphing airfoil applications and has
spurred a large subset of research in the field of morphing
aircraft.1,9

Though the field of morphing aircraft is brimming with
novel morphing mechanisms, camber morphing wings and
airfoils have proven to be especially beneficial due to their
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ability to increase control authority and improve
efficiency.10–13 MFC actuators have been widely used in
camber morphing wings, in part because they are capable of
seamlessly generating cambered actuation allowing them to
serve both as the airfoil skin and actuator.1 Furthermore, the
lightweight nature of MFCs and their rapid actuation re-
sponse are advantageous in UAV applications. Reductions
in aircraft weight lead to greater fuel efficiency and rapid
actuation allows for greater maneuverability. MFC-driven
camber morphing has been applied to several UAV control
problems including localized optimization for adverse
aerodynamic disturbance and stall recovery, as well as
improved efficiency and control effectiveness in roll and
pitch for a rudderless aircraft.14–16 Finally, pitch and yaw
control effectiveness and yaw stability were also demon-
strated in an avian-inspired rudderless UAV with a camber
morphing MFC tail actuator.17

Although MFCs have demonstrated potential for camber
morphing applications, they have drawbacks. While pie-
zoelectric actuators generate high force output, the thin and
flexible nature of MFCs make them vulnerable to dis-
placement under large out-of-plane forces. As the wings of
aircraft are the primary lifting surface, large aerodynamic
loads are prone to inducing aeroelastic deformation of
MFC-actuated airfoils, reducing the total camber. However,
this can be remedied using control algorithms which utilize
feedback to tune the actuator’s input voltage such that the
desired camber or trailing edge displacement is achieved.5

Though this has proven successful, the inherent hysteresis
of MFCs is a challenging hurdle for traditional control
algorithms, many of which are linear by nature.18 In con-
trast, deep reinforcement learning (DRL) is well-equipped
to manage nonlinear control relationships and may be a
promising alternative.

Reinforcement learning (RL) is a means of autono-
mously achieving control in a manner analogous to that seen
in biological systems. Like biological learning, trial and
error is used in conjunction with a reward system to meet a
specified goal. Each reinforcement learning problem con-
sists of two fundamental parts, the agent, or object of
concern whose actions are determined by a learned policy,
and the environment in which the agent observes its state
and performs actions. A state’s value is measured as the long
term expected reward to be received after residing in that
specific state.19 If the state space is large and best repre-
sented as continuous, function approximation is used to
reduce memory requirements. Artificial neural networks
(ANNs) are an effective method for function approximation
because of their ability to accurately represent nonlinear
functions when trained on large quantities of data. Recent
work has combined multi-layered ANNs with RL to create
the subfield DRL, which has found remarkable success in
many simulated and game based environments.20–24 Suc-
cess in perfectly controlled environments, such as games

and simulations, continues to advance the field; however,
there is a growing need to apply the knowledge gained
through simulation to robotics and other physical hardware
environments.25–28

Aerial vehicles have been the environment of choice for
many reinforcement learning problems with the goal of
creating autonomous UAVs that can adapt to their envi-
ronment or a changing mission.29,30 RL supports the
complexity of a morphing aircraft by producing a controller
that learns to use morphing control surfaces and operates in
several configurations, as well as by determining the best
configuration for a given flight situation.31–33 Although
these shape changes are achieved using traditional methods,
such as servos and motors, some have implemented RL in
smart material based morphing simulations.34,35 One case
presented by Goecks et al. implemented deep deterministic
policy gradient (DDPG) with a shape memory alloy (SMA)
actuated airfoil.36 They found learning in the physical
hardware environment to be difficult due to limited time
constraints; however, through deep learning, they were able
to accurately model the behavior of the SMA actuated airfoil
in a wind tunnel and achieved control in a simulated
morphing environment. Much of the work performed
in DRL, and almost all the current literature around RL in
morphing UAV environments, is performed entirely in
simulation.

Through a sim-to-real policy transfer we present the first
successful application of RL for anMFC actuated morphing
system in a physical hardware environment (Figure 1). In
this research, we found that DRL countered the hysteretic
behaviors present in our MFC morphing airfoil to effec-
tively control trailing edge tip deflection in the physical
hardware. In the simulated environment, we trained two
controllers for use on the physical morphing airfoil, in-
cluding one with a simple position error-based reward
system (RL) and another with an adjusted reward system
designed to mitigate overshoot (MO). Control effectiveness
of these two controllers and a traditional proportional-
derivative (PD) controller were compared on physical
hardware in situations where “true” state information was
supplied through an external Keyence profilometer, and
with on-board sensing where state information was esti-
mated through a piezoelectric flex sensor signal. We used
two methods for state inference with the flex sensor signal,
including a linear model (LIN) and a long short-term
memory (LSTM) neural network model. We first made
comparisons in an unloaded environment, where system
dynamics data was gathered initially to develop the simu-
lation for training, and then additionally when the airfoil
was subjected to aerodynamic loads at three different flow
speeds.

We found that the learned controllers, specifically the
MO controller, outperformed the traditional PD feedback
method. This was especially true for control metrics
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considering speed and accuracy. From this, we verified that
autonomously developed controllers are not only viable for
MFC actuated camber morphing but may be a superior
option for erratic environments in which rapid adjustments
must be made, as in the case of turbulent flow.

Methods

Morphing airfoil system design

We assessed the performances of the learned controllers
using the camber morphing airfoil design developed by
Pankonien et al.14Our baseline geometry for the morphing
airfoil was a NACA0012 airfoil with a 310 mm chord
(Figure 2). We 3D printed the leading edge using an Objet
Connex500 multi-material 3D printer, which can print
both rigid and flexible materials. The multi-material
printing capabilities were crucial for this airfoil design.
The flexure box with integrated compliant material hinges
interfaced the rigid leading edge with the morphing
trailing edge. This allowed a shearing motion that am-
plified the maximum tip displacement of the morphing
trailing edge.14 We assembled the morphing trailing edge
using two MFC unimorphs, one on either side of the
airfoil. We constructed each unimorph by bonding a
M8557-P1 MFC to a 0.025 mm thick sheet of stainless-
steel shim. The morphing section also included two Flex
Sensors from Spectra Symbol, which function as unidi-
rectional variable resistors. To increase the sensor sensi-
tivity, we bonded each flex sensor to a 0.025 mm thick strip
of stainless-steel shim as well. The flex sensors measured
the internal displacement of the morphing trailing edge
and were wired in a voltage divider configuration.

The control architecture for our morphing airfoil is
shown in Figure 3. A Keyence LJ-V7300 2D profilometer
gathered true deflection information, and two piezoelectric

flex sensors within the morphing section provided signals
for deflection inference. This sensor information was di-
rected through an Arduino Mega to a laptop where it was
stored during data collection for model training or used for
action selection via a Python script in Jupyter notebooks.
For controller deployment, either true deflection informa-
tion or a flex sensor signal in conjunction with one of the
two inference models (LIN and LSTM) was used to provide
state information to one of the three controllers (PD, RL,
and MO) to determine an output voltage signal. From the
Python script, a voltage signal was sent to the ArduinoMega
and converted into a pulse width modulation (PWM) signal
for the voltage amplifier. From there the corresponding
voltages were supplied to the antagonistic MFC unimorphs
forming the trailing end of the airfoil.

Data collection

Reinforcement learning, although a powerful tool, is
time consuming due to its trial-and-error format. To
refrain from subjecting our system to unnecessary wear
and tear, we created a simulation in which we could
experiment with RL methods to develop a sufficient
controller. Since we performed all training in simulation
and transferred that controller directly to the hardware
system, any inaccuracy in this model would contribute to
poor controller performance. In addition to the complex
nonlinear behavior of our system, any imperfections that
occurred in manufacturing the composite wing provide a
potential for variation in the behavior of our MFC ac-
tuators. To accomplish accurate modeling specific to our
morphing airfoil’s dynamics, we collected true deflection
and flex sensor information from randomized sweeps
through the action and state space of the morphing
trailing edge.

Figure 1. Image of the morphing airfoil system within the 10×1’ (30 cm × 30 cm) wind tunnel. Also visible in the upper left corner is the
Keyence 2D profilometer used to measure the true deflection of the trailing edge.
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During data collection, we ensured sufficient coverage of
the state-action space by applying a range of voltage
changes from a randomized series of initial voltages. For our
situation, the randomization of our voltage selection was
crucial to accurately capture the hysteretic behavior of the
MFC system. The set of initial voltages included all even
percentages of possible voltage outputs. For our case, a
voltage signal of zero represented the largest negative
supplied voltage and a signal of 100 was the largest positive
supplied voltage. Thus, 50 was a neutral supply of zero
volts. From the initial voltages, a random voltage change
signal was selected from the range of even values
between �30 and 30. This change in voltage signal was
applied to the MFC actuators for 100 timesteps of 0.05 s,
supplying the new voltage for 5 seconds in total, after which
the initial voltage was again supplied for another 5 seconds.

This was repeated until the set of voltage change signals had
been exhausted and then restarted for the next randomly
selected initial voltage signal. This process was repeated
10 times for 10 different random seeds.

Modeling dynamics

Following data collection, we implemented three neural
network structures to comparatively model the dynamics of
our system, including a multi-step dense network, a one-
dimensional convolutional neural network (CNN), and a
long short-term memory (LSTM) network.37–39 The input
for each of the models included state information over the
10 previous timesteps. Each timestep state observation
consisted of the current deflection value and the current and
previous voltage signal. From this the models predicted the

Figure 2. Image of the morphing airfoil system including two antagonistic MFC unimorphs, two piezoelectric flex sensors, the multi-
material flexure box, and NACA 0012 leading edge.

Figure 3. Data flow diagram for the morphing airfoil experiment. Deflection information was captured through the 2D profilometer
and two piezoelectric flex sensors and provided to a laptop for data collection and controller decision making.
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deflection for the next immediate timestep. Of the 10 da-
tasets collected using different random seeds, the first nine
were combined and split into an 8:2 ratio for training and
validation, respectively. The 10th data set was not included
in the training process and was used for testing. We found
that the LSTM model achieved the lowest error in both
validation and testing (Figure 4(a)). This is visualized by
the LSTM model’s ability to accurately represent the
system’s dynamics for a 100 s example section of the
collected testing data (Figure 4(b)). The dynamics mod-
eled here were based on the true deflection of the morphing
trailing edge and did not include any information from the
piezoelectric flex sensors. This must be considered when
implementing controllers trained in a simulation informed
by this model.

Reinforcement learning environment and controllers

Many RL algorithms have been developed to fit a variety of
learning problems. Model free methods remove computa-
tional complexity attributed to learning a model of the
environment. Instead, they focus on learning a function to
dictate which actions are preferred given the current state.19

That function is known as the policy. Focusing on learning
a policy, as opposed to an environment model, creates a
reactive controller concerned only with the current state
instead of selecting actions based on predicted outcomes.
On-policy methods use the learned policy for all decision
making and are frequently safer since they actively avoid
states that result in low reward during training.19 It is for
these reasons that we chose to use the model free on-policy
algorithm, proximal policy optimization (PPO).40

We developed our learned controllers using PPO in a
simulation informed by the LSTM dynamics model. PPO is

among the top RL algorithms in many Atari, OpenAI, and
MuJoCo environments and is frequently a baseline for
comparison for new algorithm performance.41 At its base
PPO is an actor-critic method. This means that it approxi-
mates two functions, the critic, a value function that repre-
sents the preferability of being in a given state, and the actor,
which learns the policy π. Given that there are two neural
networks to update in PPO, there are also two loss functions
combined for gradient-based optimization, for which we used
Adam optimizer with a 3 × 10�4 learning rate.42 The actor
and critic loss functions are defined as follows

L
CLIPðθÞ ¼ bE �

min
�
rðθÞbAt, clipðrðθÞ, 1� ϵ, 1þ ϵÞbAt

��
,

(1)

LcriticðwÞ ¼
�
VwðstÞ � V target

t

�2
, (2)

Where At is the advantage at time t described by

bAt ¼ δt þ ðγλÞδtþ1 þ…þ…þ ðγλÞT�tþ1δT�1, (3)

With

δt ¼ Rt þ γV ðstþ1Þ � V ðstÞ, (4)

where Rt represents the reward earned at time t, and rðθÞ is
the ratio between the new and old policy for the current
action, at and state st

rtðθÞ ¼ πθðatjstÞ
�
πold
θ ðatjstÞ (5)

In the above equations, θ is the vector of weights for the
policy network, w is the vector of weights for the value
network, and V is the value of a state. The parameter γ is a
discount factor used to gradually degrade the impact of
future state values on the current state value, hence

Figure 4. Comparison of learned dynamics models, including multi-step dense (MSD), convolutional neural network (CNN), and long
short-term memory (LSTM). The normalized mean absolute error (MAE) earned during training validation (Val) and testing (test) is
presented in a), and (b) illustrates the performance of the different models over a 100 s section of data collection when given the true
state at time 0. Mean absolute error, in terms of millimeters, over the 100 s for each model is shown in parentheses.
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emphasizing the impact of more immediate states. The
smoothing factor, λ, is used to reduce the variance in
training and improve stability. Finally, the main difference
between PPO and previous actor-critic methods comes from
the actor loss function where the clipping factor, ϵ, is in-
troduced to limit overall step size of the policy update to
prevent an individual update from growing too large. The
values of these parameters, λ, and ϵ, were set to equal 0.99,
0.95, and 0.2 respectively, as suggested by Schulman when
first presenting PPO.40 Our implementation of PPO was
drawn from an opensource example in Pytorch.43

The network structures for both the actor and critic are
presented in Figure 5. State observations presented to the
controller consisted of the current normalized deflection
observation, the normalized goal deflection, as well as the
current and previous normalized voltage signals for each
timestep. We used a 1D convolutional neural network (CNN)
for the initial layer of both the critic and actor networks in our
PPO algorithms, each followed by three fully connected
layers with rectified linear unit (ReLU) activation
functions.38,44 This input layer was given the 10 most recent
state observations and goal deflections, providing additional
temporal information to both the critic and actor for value
approximation and policy generation. Instead of using a
continuous action space to cover the large selection of voltage
signals, we used a smaller discrete action space consisting of

seven potential changes in voltage signal ranging from�6 to
6. Training consisted of 5000 training episodes, each lasting
200 timesteps and beginning with randomized initial con-
ditions and goal deflection values.

We trained two controllers in the simulated environ-
ment. For the first learned controller the action space in-
cluded voltage signal changes [-6,�4,�2, 0, 2, 4, 6] and a
simple reward scheme that distributed negative rewards
equal to the squared error between the current deflection
and the goal deflection. After initial testing of this con-
troller in the physical hardware environment, we noticed
room for improvement regarding the overshoot experi-
enced. In the second learned controller we chose to include
smaller potential voltage changes within the action space,
[-6, �2, �1, 0, 1, 2, 6], with the goal of achieving finer
control. Additionally, we augmented the original reward
scheme for the second learned controller to include an
extra penalty equal to 10 times the original cost when the
controller experienced an overshoot greater than 1% of the
tested response step size. Both these controllers were
compared to a traditional PD controller. To distinguish
between the two learned controllers, we referred to the
initial controller with the simple reward scheme as the RL
controller, whereas the second one, trained with the
amended reward scheme, was labeled the mitigated-
overshoot (MO) controller.

Figure 5. The actor and critic networks each have the same structure, including a 1D CNN layer and three fully connected layers with
ReLU activation functions. The actor produces a probability distribution for each action, and the critic outputs a single value
representing the estimated long term expected reward of the current state.
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Modeling flex sensor

The controllers developed in simulation were based on
true deflection information gathered by the 2D profil-
ometer and did not account for errors that occurred in state
estimation. However, in a realistic implementation of these
controllers, state information would be observed through
onboard sensors, in our case piezoelectric flex sensors, that
give imperfect state measurements. Therefore, to provide
accurate state observation, we used the information
gathered in the data collection section to model the re-
lationship between the piezoelectric flex sensor signals
and the true deflection of the MFC trailing edge. We used
two methods for this model, a traditional linear method
(LIN) and a time series neural network. The LIN inference
model was structured as neural network with a single node
and a linear activation function, leading the model to
behave as a sum of weighted state values and an additional
bias. Initially, we trained models using information only
from the current timestep and included supplied voltage
values. Although these appeared to be accurate in training,
implementation showed that the voltage values were
heavily weighted in the model, neglecting the sensor
values and ignoring the hysteretic behavior. Therefore, we
removed the voltage values from the model input and used
a time series of the 10 most recent timesteps to infer the
current deflection. Each timestep included only the current
sensor reading and the previous deflection estimate. Once
again, we found LSTM networks provided the most ac-
curate prediction when compared to the other neural
network structures (Figure 6).

Experiment

Using the same data flow strategy as described in Figure 3,
for each test we implemented a series of step responses
spanning a portion of the state space ranging from nor-
malized deflection values of �1 to 1. The composite airfoil
began each test in a neutral position without deflection and
performed eight step responses of magnitude 0.5 (3.31 mm),
beginning with two positive steps, followed by four neg-
ative steps, and finishing with two additional positive steps
to complete a cycle within the designated testing space.
Similar to data collection, each step response was held for
100 timesteps before transitioning to the following
step. Due to the black-box nature of these learned con-
trollers, stability is still an open research problem in RL
control.44 For this reason, we use repetition to empirically
show what response and overall performance we can expect
from these controllers. Therefore, we repeated each test five
times for each controller and state observation method,
providing us 40 step responses for each controller-
observation method combination. As a point of compari-
son, we used the Ziegler-Nichols open loopmethod to tune a
proportional-integral-derivative (PID) controller; however,
the controller experienced high overshoot and integral
windup.46 To mitigate this, we used two anti-windup
methods including the addition of an anti-windup term
based on controller saturation, as well as a reduction of the
integrated error value.47 We found that dropping the integral
term, and therefore using a PD controller, produced an
accurate controller that limited the overshoot when com-
pared to the other PID methods. This was particularly true

Figure 6. This plot compares the flex inference models using three different neural network structures, including multi-step dense
(MSD), convolutional neural networks (CNN), and long short-term memory (LSTM), with the mean absolute error shown in
parentheses. The LSTM inference model provided the most accurate state approximation.
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when paired with the flex sensor inference methods, pro-
viding a fair and interesting baseline for comparing to the
learned controllers. Figure 7 presents the step response
cycle for the PD controller using each of the inference
models in an unloaded environment. Both the inferred
position (blue), as determined by the flex sensors and the
respective inference model, and the true position (green), as
determined by the 2D profilometer, are illustrated. Although
the inferred deflection often followed the target position
closely, the true deflection was sometimes off by several
millimeters for the less accurate inference model. Increasing
in complexity and accuracy from the linear model to the
LSTM model, we found a decrease in state estimation error
that is particularly noticeable in the intermediate steps. For
the remainder of this paper, although state information was
provided to the controllers using each of the inference
methods, performance metrics and comparisons were made
based on the true deflection achieved by the MFC airfoil.

We compared controller performances using several
metrics, including three traditional controller step re-
sponse metrics: rise time, settling time, and overshoot.
We measured the rise time and settling time from the
beginning of a step response until the true deflection first
crossed, or remained within, a 10% maximum test de-
flection boundary of the goal position. The overshoot was
measured as a percentage with respect to the size of the
step response. We included an additional metric common
to RL: total earned reward. This was the value optimized
by the RL algorithm. For consistency, we chose the
simpler reward of squared error between the true position
and the goal position as our metric for each of the
controllers. As an error-based metric, we used reward as
an indicator for the overall accuracy achieved in a
test run.

MFCs are known to perform differently under me-
chanical loads, but all the data used for training the con-
troller and state estimation models were collected without
consideration for aerodynamic loading.14 Therefore, to
seriously consider these controllers for autonomous UAV
flight, we performed the same step response tests for a
variety of flow speeds. For this purpose, we repeated the
testing process in a 10×1’ (30 cm × 30 cm) wind tunnel for
three flow speeds, 5 m/s, 7.5 m/s, and 10 m/s, to determine
the controllers’ ability to adapt to the environmental dif-
ferences. These tests provided information on the learned
controllers’ performance in the presence of aerodynamic
loading. It was not within the scope of this project to
perform any aerodynamic analysis of the airfoil and
therefore the angle of attack was maintained at 0+.

Note that prior to conducting the wind tunnel tests a new
flex sensor circuit was integrated into the composite wing
due to a malfunction in the original. The circuit was built in
the same manner, however there was a noticeable shift in the
sensor readings. To account for this, the mean and standard
deviation of the sensor values were adjusted, allowing the
normalized values to be like those experienced prior to the
changed circuit. All testing performed within the wind
tunnel was subject to this change and therefore comparisons
between controllers with shared flow speeds were fair.

Results

Unloaded environment

For our initial experiments we compared our learned
controllers to that of the tuned PD controller in the envi-
ronment in which they were trained, without aerodynamic
loading. The step response tests for each controller when

Figure 7. Controller performance changed with state observation accuracy. The left plot shows the performance of the traditional PD
controller when given true deflection information. The following two plots show the true deflections and inferred deflections
experienced by the PD controller when provided the linear (LIN) and LSTM inference models.
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provided true state information and using each of the three
inference methods are visualized in Figure 8. We found that
each of the controllers were able to track the target value
with precision when provided accurate state observations by
the 2D profilometer. The learned methods reached the
desired deflections more rapidly than the PD method, al-
though the RL controller often overshot the target. The MO
controller improved on this while still maintaining most of
the speed seen by the initial RL controller.

Next, we investigated our three metrics (rise time,
overshoot, settling time) as well as the total earned reward
(Figure 9). This figure visualizes the eight step responses in
each of the five tests for the three controllers. From this we
can see each controller’s strengths and weaknesses. Of the
three controllers, PD (green lines) consistently earned the
lowest reward. This was expected because the two learned
controllers directly use this reward, or at least a form of it, to
develop their policies. In addition to the low reward, the PD
controller typically had a longer rise time, and a lower
overshoot percentage. Although these characteristics al-
lowed for smoother control, they may have led to the ob-
served higher settling times (Figure 9). In contrast, the RL
controller (blue lines) achieved the highest reward and
fastest rising times, but at the cost of much higher overshoot
percentages. However, even with the higher overshoot, the
RL controller had fast settling times that frequently out-
performed those of the PD controller. Finally, the MO
controller (orange lines) found a middle ground between the
two previous controllers, achieving a medium reward and
rising times that were faster than the PD controller but
typically not as fast as the RL controller. The MO controller
improved over the RL controller in its overshoot percentage,
in some cases experiencing lower overshoot values than the
PD controller. The MO controller’s performance highlights

how the adjusted reward scheme led to a lower overshoot
percentage. Additionally, the MO controller achieved the
fastest settling times of the three controllers.

Although the improved performance of the learned
controllers, especially the MO controller, over the tra-
ditional PD method built our confidence in these more
complex controllers, it is not realistic to expect an airfoil
controller to have perfect state observations during flight.
Thus, we conducted the same step response tests for both
state inference methods (LIN and LSTM). We found a
substantial impact from the state observation accuracy for
each of the controllers (Figure 8). Interestingly, although
the different controllers used the same modeling methods
for state inference, in some cases the learned controllers
were quicker to overcome the obstacles offered by in-
accurate estimation, settling on deflections closer to the
designated goal than that achieved by the traditional PD
controller. This was particularly apparent in the early
steps for the linear model, and the intermediate steps for
the LSTM model. For a more direct comparison,
Figure 10 considers each of the performance metrics and
presents the average performance difference between a
given learned controller-inference model combination
and the PD controller when using the same state esti-
mation method. The error bars represent 95% confidence
intervals to illustrate the significance of the difference.
Except for overshoot, both the learned controllers out-
performed the PD controller on average. This difference
was significant in all cases when considering rise time,
and for five separate controller-inference model combi-
nations in reward and settling time. As mentioned before,
overshoot was the metric where the learned controllers
struggled the most; however, when paired with the linear
model for state observation, the MO controller trended

Figure 8. This plot shows the step responses of each controller (PD, RL, and MO) in an unloaded environment when supplied true
deflection information as well as state observations provided by the two piezoelectric flex sensor inference models (LIN and LSTM).
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towards achieving a lower average overshoot than the PD
controller.

Loaded environment

The step response tests for all three controllers when given
perfect and imperfect state information in the tested envi-
ronment of 10 m/s flow speed are visualized in Figure 11.
These loaded responses with true state information indicate
that the controllers respond quickly and accurately to the
various changes in goal deflection, like that seen without
loading. We see similar trends to those seen in the unloaded
testing when comparing the performance metrics of the
controllers in a 10 m/s airflow environment (Figure 12).
Interestingly, the learned controllers outperformed their
unloaded condition, specifically the MO controller with
regards to overshoot.

The plots in Figure 11 provide an example of each
controller’s step response given the available state obser-
vation models. Unlike when given true state observations,

the control was less smooth. This may have been caused by
vibrations in the sensors due to airflow. To further inves-
tigate our results, we examined the average absolute error
between the true state and model observed state (Figure 13).
We found a substantial improvement in the linear model
accuracy from the unloaded environment in the wind tunnel
tests, possibly due to the normalization adjustment men-
tioned previously. The LSTM model was not substantially
affected, in some cases performing better and other cases
performing worse. This suggests that the LSTM model
generalized well to the adjusted environment.

As with the unloaded testing, our main objective was to
compare the performance of our controllers developed
through RL to that of the traditional PD controller. These
direct comparisons are presented in Figure 14 for all three
flow speeds. We first noticed that the learned controllers no
longer completely dominated the settling time and reward
metrics. The most complex state estimation method (LSTM)
was used for all but one of the tests in which the PD
controller outperformed the compared learned controller in

Figure 9. Comprehensive presentation of performance metrics achieved by each controller given true state observations. This plot
includes every step response performed in testing and can therefore be used to determine expected trends for each controller’s
performance.

Figure 10. Direct comparison of average performance achieved by learned controllers in the unloaded environment for each metric to
those achieved by the PD controller given the same state observation method. Comparisons that trend in the favor of the learned
controller are in light green, and those in favor of the PD controller are in dark red. 95% confidence interval error bars are provided to
clarify significance of perceived difference. Labels on the y axis are color coded, those in blue represent comparative RL controller
performances and those in orange depict comparative performances achieved by the MO controller.
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at least one of these two metrics. The one exception to this
was for the average settling time when the controllers had
access to true state observations. In this case the average
difference between the PD controller and the RL controller
was 0.014 s. This difference is less than the timestep size of
0.05 s, and therefore was not significant enough to consider
a trend in either direction. Additionally, of the tests where
the PD controller outperformed the learned controller, this
difference in performance was only great enough to be
considered significant in two of the cases according to the
95% confidence intervals, but the trend is still worth
mentioning.

On the other hand, when using the linear model for state
estimation, both learned controllers significantly out-
performed the PD controller at all flow speeds. On average,

when combined with the linear inference model, the MO
controller outperformed the PD controller in all four per-
formance metrics, including overshoot, at all three flow
speeds and at rest. This does not mean that this was the best
controller-inference model combination overall, only that it
performed better comparatively given the same flow speed
and state estimation conditions. To determine the best
performances overall we can look at Figure 15, which
presents the average performance metric values for each
controller, inference model, and flow speed.

Assuming perfect state observations, our previous
comments are further validated. The learned controllers
excel in achieving fast and accurate control, according to
rising time, settling time, and reward. The PD controller still
achieved the lowest overshoot of the controllers on average,

Figure 11. This plot shows the step responses of each controller (PD, RL, and MO) in a 10 m/s aerodynamically loaded environment
when supplied true deflection information as well as state observations provided by the two piezoelectric flex sensor inference models
(LIN and LSTM).

Figure 12. Comprehensive presentation of performance metrics achieved by each controller given true state observations in a 10 m/s
airflow environment. This plot includes every step response performed in testing and can therefore be used to determine expected
trends for each controller’s performance.
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but the MO controller produced only 2.13% greater over-
shoot on average. This is a great improvement over the
additional 10% of average overshoot produced by the RL
controller than the PD controller. We found a continuation
of this trend when regarding imperfect state observations.

The learned controllers consistently outperformed the PD
controller when using the linear flex sensor model, LIN. The
PD controller only outperformed one learned controller, the
RL controller, in the single metric of overshoot. We found
that the more accurate LSTM model improved perfor-
mances for all controllers in the unloaded environment and
most cases in the loaded environment. Interestingly, the RL
controller did not see notable improvement in performance
from the more accurate inference model in the loaded en-
vironment, but the MO controller did, showing decreased
overshoot compared to using the LIN inference method and
achieving the fastest settling times and highest reward of all
three controllers. The improved accuracy produced no-
ticeable improvement in most metrics for the PD controller
as well. Given these findings, the MO controller appeared
comparable, and often preferred, over the traditional PD
controller, especially for instances where rapid control and
overall accuracy was the primary focus.

Discussion

These results have given us insight for future controller
design in the pursuit of fly-by-feel solutions for morphing
composite wings. We have validated the use of DRL

Figure 13. Average error for all controller-observation method
combinations at all four flow speeds. The noticeable
improvement in linear inference error is due to the normalization
adjustment made between unloaded and loaded environment
testing.

Figure 14. Average performances achieved by learned controllers in the aerodynamically loaded environments for each metric are
directly compared to those achieved by the PD controller given the same state observation method. Comparisons that trend in the
favor of the learned controller are in light green, and those in favor of the PD controller are in dark red. 95% confidence interval error
bars are provided to clarify significance of perceived difference. Labels on the y axis are color coded; those in blue represent comparative
RL controller performances and those in orange depict comparative performances achieved by the MO controller.
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controllers in our physical multifunctional morphing airfoil
environment. Furthermore, we found the learned controllers
were superior to a traditionally tuned PD controller. This was
particularly true when emphasizing speed and accuracy in
control. For instances where overshoot is the only metric worth
optimizing, choosing a traditional PD controller with the most
accurate state inference method available (True or LSTM)
would be the primary option. However, this is rarely the case.
When considering all controllermetrics used in this research, the
learned controllers show superior overall performance. Addi-
tionally, the MO controller produced comparable speed and
accuracy to the RL controller while reducing the overshoot. This
improved performance was most emphasized when state

inference complexity was limited to a linear model. Because the
learned controllers most clearly outperformed the PD controller
when using the least accurate inference model, we suspect the
learned controllers were internally accounting for the hysteretic
behavior of the system. Since the learned controllers used 1D
convolutions of the 10 most recent timesteps of state infor-
mation, RL and MO may have learned to recognize the non-
linear pattern within the dynamics of the system to better inform
action selection. The PD controller had no internal mechanism
to recognize hysteresis and therefore relied heavily on the ac-
curacy of the feedback signal.

The improvement achieved by the MO controller brought to
light another question: can we further optimize our controller
through additional reward engineering? There is a philosophy
that achieving general intelligence in a trial-and-error format
only requires a simple reward structure that captures the goal of
the controller.48 This was the philosophy we followed when
designing our first controller (RL), and found it created a strong
controller with emphasis on speed and accuracy. However, after
seeing it struggle to mitigate overshoot, we added a rule to our
reward scheme. This amendment created a controller with an
impressive balance between speed, accuracy, and overshoot
(MO). It may be argued that, for our purposes, mitigating
overshoot falls within the bounds of the goal that must be
characterized by our reward function. Others may suggest that
this is an example of the Reward Engineering Principle: “as
reinforcement-learning-based AI systems become more general
and autonomous, the design of reward mechanisms that elicit
desired behaviors becomes both more important and more
difficult”.49 Regardless of philosophy, we evaluated one reward
function augmentation, and in doing so developed a highly
effective controller for our desired purpose. This suggests that
there are a variety of controllers that can be learned, each with
adjusted reward schemes designed to emphasize controller
characteristics crucial for an individual control problem on our
MFC morphing system. Additionally, this idea of greater
customization in controller development can lead to larger and
more complex problems with multifunctional MFC airfoils.

This project showed that MFC morphing UAVs present an
environment where RL is not only a possible solution, but often
a preferable one. However, the control problem in this workwas
limited to the basic functionality of the multifunctional
morphing airfoil under loading at a single neutral angle of attack.
On this basis, future projects can look toward using RL to
pursue goals more complex than achieving a desired tip de-
flection. This may include stall rejection, efficiency optimiza-
tion, or gust alleviation.15,50,51 Additionally, in this work we
validated our learned controllers in hardware, but all training
was performed in simulation. If we aim to produce truly
adaptive controllers for complex varying environments, another
avenue for future research is to pursue these goals with real time
learning on the physical hardware instead of offline in simu-
lation.28 Finally, the learning algorithms and control commands
were executed on an external computer, not containedwithin the

Figure 15. A summary of the average performances for each
controller, under all flow speed conditions, and with all three
observation methods.
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airfoil. For autonomousmorphing aircraft, futureworkwill need
to use adaptive learning techniques with embedded systems or
neuromorphic chips.52 The next missing link to create fully
autonomous composite wing systems for morphing is under-
standing how to integrate computing chips into a composite
material. We must solve the mechanics of composite issues
associated with embedding a computing chip into a layered
composite to allow it to survive mechanical loads and thermal
gradients caused by self-heating without degrading RL
performance.

Conclusion

In this work, we presented the first successful application of
RL to a physical MFC actuated system, outperforming
traditional PD control methods. To achieve this, we com-
pared three controllers for an MFC morphing airfoil: a
traditional PD controller, a learned controller using a simple
error-based reward scheme (RL), and another learned
controller incorporating an additional penalty to mitigate
controller overshoot (MO). Through deep supervised
learning, we accurately modelled the dynamics of the smart
composite actuators, capturing their hysteretic behavior.
These models were used to develop a simulation to train
effective controllers for an MFC system through offline
policy optimization. Due to the nonlinear hysteretic MFC
behavior, this environment required closed loop feedback
for accurate control. For this reason, two state inference
methods, consisting of a linear model and an LSTM net-
work, were used in coordination with piezoelectric flex
sensors for imperfect on-board state observation. Addi-
tionally, an external 2D profilometer was used for true state
measurements. We first evaluated these controllers with the
three state observation methods in an unloaded environment
and then at three flow speeds. We used a tuned PD controller
as the comparative baseline.

We found both learned controllers to be comparable, and
in many cases preferable, to the traditional PD controller.
The MO controller in particular had impressive control
effectiveness. This was especially true for instances where
controller speed and accuracy were a priority. This result is
promising for the field of autonomic morphing aircraft,
where smart composites are used and adapting to erratic
environments is required.
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