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1. Introduction

1.1. Definitions and results. Let (X, B, µ) be a standard Lebesgue space and let T be a

free, ergodic, µ-preserving action of a discrete amenable group G on X. It is natural to ask

what properties of T are preserved by a generic extension (X, µ, T ) (a precise definition

of ‘generic extension’ is discussed in §3). For example, it was shown in [GTW21] that a

generic T has the same entropy as T and that if T is a non-trivial Bernoulli shift, then a

generic T is also Bernoulli. A system (X, µ, T ) is said to be dominant if it is isomorphic

to a generic extension (X, µ, T ). Thus, for example, the aforementioned results from

[GTW21] together with Ornstein’s famous isomorphism theorem [Orn70] imply that all

non-trivial Bernoulli shifts are dominant. More generally, it has been shown in [AGTW21]

that:

(1) if G = Z, then (X, µ, T ) is dominant if and only if it has positive Kolmogorov–Sinai

entropy; and

(2) for any G, if (X, µ, T ) has positive entropy, then it is dominant.

In this paper, we complete the picture by proving the following result.
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2 A. Lott

THEOREM 1.1. Let G be any discrete amenable group and let (X, µ, T ) be any free

ergodic action with zero entropy. Then (X, µ, T ) is not dominant.

The proof of result (2) is based on the theory of ‘slow entropy’ developed by Katok

and Thouvenot in [KT97] (see also [Fer97]), and our proof of Theorem 1.1 uses the same

ideas.

1.2. Outline. In §2, we introduce the relevant ideas from slow entropy. In §3, we

describe a precise definition of ‘generic extension’ and begin the proof of Theorem 1.1.

Finally, in §4, we prove the proposition that is the technical heart of Theorem 1.1.

2. Slow entropy

Fix a Følner sequence (Fn) for G. For g ∈ G, write T gx for the action of g on the point

x ∈ X, and for a subset F ⊆ G, write T F x = {T f x : f ∈ F }. If Q = {Q1, . . . , Qk} is

a partition of X, then for x ∈ X denote by Q(x) the index of the cell of Q containing x.

Sometimes we use the same notation to mean the cell itself; which meaning is intended will

be clear from the context. Given a finite subset F ⊆ G, the (Q, F)-name of x for the action

T is the tuple QT ,F (x) := (Q(T f x))f ∈F ∈ {1, 2, . . . , k}F . Similarly, we also define the

partition QT ,F :=
∨

f ∈F T f −1
Q, and in some contexts we use the same notation QT ,F (x)

to refer to the cell of QT ,F containing x.

For a finite subset F ⊆ G and any finite alphabet �, the symbolic space �F is equipped

with the normalized Hamming distance dF (w, w′) = (1/|F |)
∑

f ∈F 1w(f )�=w′(f ).

Definition 2.1. Given a partition Q = {Q1, . . . , Qk}, a finite set F ⊆ G, and ε > 0,

define

BHam(Q, T , F , x, ε) := {y ∈ X : dF (QT ,F (y), QT ,F (x)) < ε}.

We refer to this set as the ‘(Q, T , F)-Hamming ball of radius ε centered at x’. Formally,

it is the preimage under the map QT ,F of the ball of radius ε centered at QT ,F (x) in the

metric space ([k]F , dF ).

Definition 2.2. Given ε > 0, the Hamming ε-covering number of µ is defined to be the

minimum number of (Q, T , F)-Hamming balls of radius ε required to cover a subset of X

of µ-measure at least 1 − ε, and is denoted by cov(Q, T , F , µ, ε).

LEMMA 2.3. Let ϕ : (X, T , µ) → (Y , S, ν) be an isomorphism. Also let Q be a finite

partition of X, let F be a finite subset of G, and let ε > 0. Then cov(Q, T , F , µ, ε) =

cov(ϕQ, S, F , ν, ε).

Proof. It is immediate from the definition of isomorphism that for µ-almost every

x, x′ ∈ X,

dF (QT ,F (x), QT ,F (x′)) = dF ((ϕQ)S,F (ϕx), (ϕQ)S,F (ϕx′)).

Therefore, it follows thatϕ(BHam(Q, T , F , x, ε)) = BHam(ϕQ, S, F , ϕx, ε) for µ-almost

every x. Thus, any collection of (Q, T , F)-Hamming balls in X covering a set of

µ-measure 1 − ε is directly mapped by ϕ to a collection of (ϕQ, S, F)-Hamming balls in Y
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Zero entropy actions of amenable groups are not dominant 3

covering a set of ν-measure 1 − ε. Therefore, cov(Q, T , F , µ, ε) ≥ cov(ϕQ, S, F , ν, ε).

The reverse inequality holds by doing the same argument with ϕ−1 in place of ϕ.

The goal of the rest of this section is to show that for a given action (X, T , µ),

the sequence of covering numbers cov(Q, T , Fn, µ, ε) grows at a rate that is bounded

uniformly for any choice of partition Q. A key ingredient is an analog of the classical

Shannon–McMillan theorem for actions of amenable groups [MO85, Theorem 4.4.2].

THEOREM 2.4. Let G be a countable amenable group and let (Fn) be any Følner sequence

for G. Let (X, T , µ) be an ergodic action of G and let Q be any finite partition of X. Then

−1

|Fn|
log µ(QT ,Fn(x))

L1(µ)
−−−→ h(µ, T , Q) as n → ∞,

where h denotes the entropy. In particular, for any fixed γ > 0,

µ{x : exp((−h − γ )|Fn|) < µ(QT ,Fn(x)) < exp((−h + γ )|Fn|)} → 1 as n → ∞.

LEMMA 2.5. For any partition P, any Følner sequence (Fn) and any ε > 0, let

�(T , P , µ, n, ε) be the minimum number of PT ,Fn-cells required to cover a subset of

X of measure more than 1 − ε. Then

lim sup
n→∞

1

|Fn|
log �(T , P , µ, n, ε) ≤ h(µ, T , P).

Proof. Let h = h(µ, T , P). Let γ > 0. By Theorem 2.4, for n sufficiently large depending

on γ , we have

µ{x ∈ X : µ(PT ,Fn(x)) ≥ exp((−h − γ )|Fn|)} > 1 − ε.

Let X′ denote the set in the above equation. Let G be the family of cells of the partition

PT ,Fn that meet X′. Then clearly µ(
⋃

G) > 1 − ε and |G| < exp((h + γ )|Fn|). Therefore,

lim sup
n→∞

1

|Fn|
log �(T , P , µ, n, ε) ≤ h + γ ,

and this holds for arbitrary γ , so we are done.

At this point, fix for all time ε = 1/100. We can also now omit ε from all of the notation

defined previously, because it will never change. In addition, assume from now on that the

system (X, T , µ) has zero entropy.

LEMMA 2.6. If (Fn) is a Følner sequence for G and A is any finite subset of G, then (AFn)

is also a Følner sequence for G.

Proof. First, because A is finite and (Fn) is Følner we have

lim
n→∞

|AFn|

|Fn|
= 1.

Now fix any g ∈ G and observe that

|gAFn 
 AFn|

|AFn|
≤

|gAFn 
 Fn| + |Fn 
 AFn|

|Fn|
·

|Fn|

|AFn|
→ 0 as n → ∞,

which shows that (AFn) is a Følner sequence.
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4 A. Lott

LEMMA 2.7. Let b(m, n) ≥ 0 be real numbers satisfying:

• limn→∞ b(m, n) = 0 for each fixed m; and

• b(m + 1, n) ≥ b(m, n) for all m, n.

Then there exists a sequence (an) such that an → 0 and for each fixed m, b(m, n) ≤ an for

n sufficiently large (depending on m).

Proof. For each m, let Nm be such that b(m, n) < 1/m for all n > Nm. Without loss

of generality, we may assume that Nm < Nm+1. Then we define the sequence (an) by

an = b(1, n) for n ≤ N2 and an = b(m, n) for Nm < n ≤ Nm+1. We have an → 0 because

an < 1/m for all n > Nm. Finally, the fact that b(m + 1, n) ≥ b(m, n) implies that for

every fixed m, an ≥ b(m, n) as soon as n > Nm.

PROPOSITION 2.8. There is a sequence (an) such that:

(1) lim supn→∞(1/|Fn|) log an = 0; and

(2) for any finite partition Q, there exists an N such that cov(Q, T , Fn, µ) ≤ an for all

n > N .

Proof. Because T has zero entropy, there exists a finite generating partition for T (see, for

example, [Sew19, Corollary 1.2] or [Ros88, Theorem 2′]). Fix such a partition P and let

Q = {Q1, . . . , Qr } be any given partition. Because P is generating, there is an integer m

and another partition Q′ = {Q′
1, . . . , Q′

r} such that Q′ is refined by PT ,Fm and

µ{x : Q(x) �= Q′(x)} <
ε

4
.

By the mean ergodic theorem, we can write

dFn(QT ,Fn(x), Q′
T ,Fn

(x))

=
1

|Fn|

∑

f ∈Fn

1{y:Q(y)�=Q′(y)}(T
f x)

L1(µ)
−−−→ µ{y : Q(y) �= Q′(y)} <

ε

4
,

so, in particular, for n sufficiently large, we have

µ{x : dFn(QT ,Fn(x), Q′
T ,Fn

(x)) < ε/2} > 1 −
ε

4
.

Let Y denote the set {x : dFn(QT ,Fn(x), Q′
T ,Fn

(x)) < ε/2}.

Recall that Q′ is refined by PT ,Fm , so Q′
T ,Fn

is refined by (PT ,Fm)T ,Fn = PT ,FmFn . Let

� = �(m, n) be the minimum number of PT ,FmFn cells required to cover a set of µ-measure

at least 1 − ε/4, and let C1, . . . , C� be such a collection of cells satisfying µ(
⋃

i Ci) ≥

1 − ε/4. If any of the Ci do not meet the set Y, then drop them from the list. Because

µ(Y ) > 1 − ε/4 we can still assume after dropping that µ(
⋃

i Ci) > 1 − ε/2. Choose a

set of representatives y1, . . . y� with each yi ∈ Ci ∩ Y .

Now we claim that Y ∩
⋃

i Ci ⊆
⋃�

i=1 BHam(Q, T , Fn, yi , ε). To see this, let x ∈ Y ∩⋃
i Ci . Then there is one index j such that x and yj are in the same cell of PT ,FmFn . We

can then estimate
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dFn(QT ,Fn(x), QT ,Fn(yj )) ≤ dFn(QT ,Fn(x), Q′
T ,Fn

(x)) + dFn(Q
′
T ,Fn

(x), Q′
T ,Fn

(yj ))

+ dFn(Q
′
T ,Fn

(yj ), QT ,Fn(yj ))

<
ε

2
+ 0 +

ε

2
= ε.

The bounds for the first and third terms come from the fact that x, yj ∈ Y . The second

term is 0 because Q′
Fn

is refined by PT ,FmFn and yj was chosen so that x and yj are in the

same PT ,FmFn-cell. Therefore, cov(Q, T , Fn, µ) ≤ �(m, n). Thus, the proof is complete

once we find a fixed sequence (an) that is subexponential in |Fn| and eventually dominates

�(m, n) for each fixed m.

Because T has zero entropy, Lemmas 2.5 and 2.6 imply that

lim sup
n→∞

1

|Fn|
log �(m, n) = lim sup

n→∞

|FmFn|

|Fn|
·

1

|FmFn|
log �(m, n) = 0 for each fixed m.

Note also that because PT ,Fm+1Fn refines PT ,FmFn , we have �(m + 1, n) ≥ �(m, n) for all

m, n. Therefore, we can apply Lemma 2.7 to the numbers b(m, n) = |Fn|
−1 log �(m, n) to

produce a sequence (a′
n) satisfying a′

n → 0 and a′
n ≥ b(m, n) eventually for each fixed m.

Then an := exp(|Fn|a
′
n) is the desired sequence.

3. Cocycles and extensions

Let I be the unit interval [0, 1] and let m be Lebesgue measure on I. Denote by

Aut(I , m) the group of invertible m-preserving transformations of I. A cocycle on X is

a family of measurable maps αg : X → Aut(I , m) indexed by g ∈ G that satisfies the

cocycle condition: for every g, h ∈ G and µ-almost every x, αhg(x) = αh(T
gx) ◦ αg(x).

A cocycle can equivalently be thought of as a measurable map α : R → Aut(I , m), where

R ⊆ X × X is the orbit equivalence relation induced by T (that is, (x, y) ∈ R if and only

if y = T gx for some g ∈ G). With this perspective, the cocycle condition takes the form

α(x, z) = α(y, z) ◦ α(x, y). A cocycle α induces the skew product action Tα of G on the

larger space X × I defined by

T g
α (x, t) := (T gx, αg(x)(t)).

This action preserves the measure µ × m and is an extension of the original action

(X, T , µ).

By a classical theorem of Rokhlin (see, for example, [Gla03, Theorem 3.18]), any

infinite-to-one ergodic extension of (X, µ, T ) is isomorphic to Tα for some cocycle α.

Therefore, by topologizing the space of all cocycles on X we can capture the notion of a

‘generic’ extension: a property is said to hold for a generic extension if it holds for a dense

Gδ set of cocycles. Denote the space of all cocycles on X by Co(X). Topologizing Co(X)

is done in a few stages.

(1) Let B(I ) be the Borel sets in I and let (En) be a sequence in B(I ) that is dense in

the m(· 
 ·) metric. For example, (En) could be an enumeration of the family of all

finite unions of intervals with rational endpoints.
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6 A. Lott

(2) The group Aut(I , m) is completely metrizable via the metric

dA(φ, ψ) =
1

2

∑

n≥1

2−n[m(φEn 
 ψEn) + m(φ−1En 
 ψ−1En)].

Note that with this metric, Aut(I , m) has diameter at most 1. See, for example,

[Kec10, §1.1]

(3) If α0, β0 are maps X → Aut(I , m), then define dist(α0, β0) =
∫

dA(α0(x),

β0(x)) dµ(x).

(4) The metric defined in the previous step induces a topology on Aut(I , m)X. Therefore,

because Co(X) is just a certain (closed) subset of (Aut(I , m)X)G, it just inherits the

product topology.

To summarize, if α is a cocycle, then a basic open neighborhood α is specified by

two parameters: a finite subset F ⊆ G and η > 0. The (F , η)-neighborhood of α is

{β ∈ Co(X) : dist(αg , βg) < η for all g ∈ F }. In practice, we always arrange things so that

there is a set of x of measure at least 1 − η on which αg(x) = βg(x) for all g ∈ F , which

is sufficient to guarantee that β is in the (F , η)-neighborhood of α.

Let Q be the partition {X × [0, 1/2], X × (1/2, 1]} of X × I . We derive Theorem 1.1

from the following result about covering numbers of extensions, which is the main

technical result of the paper.

THEOREM 3.1. For any sequence (an) satisfying lim supn→∞(1/|Fn|) log an = 0, there

is a dense Gδ set U ⊆ Co(X) such that for any α ∈ U , cov(Q, Tα , Fn, µ × m) > an for

infinitely many n.

Proof that Theorem 3.1 implies Theorem 1.1. Choose a sequence (an) as in Proposition 2.8

such that for any partition Q, cov(Q, T , Fn, µ) ≤ an for sufficiently large n. Let U be

the dense Gδ set of cocycles associated to (an) as guaranteed by Theorem 3.1 and

let α ∈ U , so we know that cov(Q, Tα , Fn, µ × m) > an for infinitely many n. Now if

ϕ : (X × I , Tα , µ × m) → (X, T , µ) were an isomorphism, then by Lemma 2.3, ϕQ

would be a partition of X satisfying cov(ϕQ, T , Fn, µ) = cov(Q, Tα , Fn, µ × m) > an

for infinitely many n, contradicting the conclusion of Proposition 2.8. Therefore, we have

produced a dense Gδ set of cocycles α such that Tα �
 T , which implies Theorem 1.1.

To prove Theorem 3.1, we need to show roughly that {α ∈ Co(X) : cov(Q, Tα , Fn,

µ × m) is large} is both open and dense. We address the open part here and leave the

density part until the next section. Let π be the partition {[0, 1/2), [1/2, 1]} of I.

LEMMA 3.2. If β(n) is a sequence of cocycles converging to α, then for any finite F ⊆ G,

we have

(µ × m){(x, t) : QT
β(n) ,F (x, t) = QTα ,F (x, t)} → 1 as n → ∞.

Proof. For the names QT
β(n) ,F (x, t) and QTα ,F (x, t) to be the same means that for every

g ∈ F ,

Q(T gx, β(n)
g (x)t) = Q(T gx, αg(x)t),
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which is equivalent to

π(β(n)
g (x)t) = π(αg(x)t). (1)

The idea is the following. For fixed g and x, if αg(x) and β
(n)
g (x) are close in dA, then

(1) fails for only a small measure set of t. In addition, if β(n) is very close to α in the

cocycle topology, then β
(n)
g (x) and αg(x) are close for all g ∈ F and most x ∈ X. Then,

by Fubini’s theorem, we will get that the measure of the set of (x, t) failing (1) is small.

Here are the details. Fix ρ > 0; we show that the measure of the desired set is at least

1 − ρ for n sufficiently large. First, let σ be so small that for any φ, ψ ∈ Aut(I , m),

dA(φ, ψ) < σ implies m{t : π(φt) = π(ψt)} > 1 − ρ/2.

This is possible because

{t : π(φt) �= π(ψt)} ⊆ (φ−1[0, 1/2) 
 ψ−1[0, 1/2)) ∪ (φ−1[1/2, 1] 
 ψ−1[1/2, 1]).

Then, from the definition of the cocycle topology, we have

µ{x ∈ X : dA(β(n)
g (x), αg(x)) < σ for all g ∈ F } → 1 as n → ∞.

Let n be large enough so that the above is larger than 1 − ρ/2. Then, by Fubini’s theorem,

we have

(µ × m){(x, t) : QT
β(n) ,F (x, t) = QTα ,F (x, t)}

=

∫
m{t : π(β(n)

g (x)t) = π(αg(x)t) for all g ∈ F } dµ(x).

We have arranged things so that the integrand above is greater than 1 − ρ/2 on a set of x

of µ-measure greater than 1 − ρ/2, so the integral is at least (1 − ρ/2)(1 − ρ/2) > 1 − ρ

as desired.

LEMMA 3.3. For any finite F ⊆ G and any L > 0, the set {α ∈ Co(X) : cov(Q, Tα , F ,

µ × m) > L} is open in Co(X).

Proof. Suppose β(n) is a sequence of cocycles converging to α and satisfying

cov(Q, Tβ(n) , F , µ × m) ≤ L for all n. We show that cov(Q, Tα , F , µ × m) ≤ L as well.

The covering number cov(Q, Tβ(n) , F , µ × m) is a quantity which really depends only on

the measure (QT
β(n) ,F )∗(µ × m) ∈ Prob({0, 1}F ), which we now call νn for short. The

assumption that cov(Q, Tβ(n) , F , µ × m) ≤ L for all n says that for each n, there is a

collection of L words w
(n)
1 , . . . , w

(n)
L ∈ {0, 1}F such that the Hamming balls of radius ε

centered at these words cover a set of νn-measure at least 1 − ε. As {0, 1}F is a finite set,

there are only finitely many possibilities for the collection (w
(n)
1 , . . . , w

(n)
L ). Therefore,

by passing to a subsequence and relabeling, we may assume that there is a fixed collection

of words w1, . . . , wL with the property that if we let Bi be the Hamming ball of radius ε

centered at wi , then νn(
⋃L

i=1 Bi) ≥ 1 − ε for every n.

Now, by Lemma 3.2, the map QT
β(n) ,F agrees with QTα ,F on a set of measure converging

to 1 as n → ∞. This implies that the measures νn converge in the total variation norm
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8 A. Lott

on Prob({0, 1}F ) to ν := (QTα ,F )∗(µ × m). As νn(
⋃L

i=1 Bi) ≥ 1 − ε for every n, we

conclude that ν(
⋃L

i=1 Bi) ≥ 1 − ε also, which implies that cov(Q, Tα , F , µ × m) ≤ L

as desired.

Define UN := {α ∈ Co(X) : cov(Q, Tα , Fn, µ × m) > an for some n > N}. By

Lemma 3.3, each UN is a union of open sets and therefore open. In addition,
⋂

N UN

is exactly the set of α ∈ Co(X) satisfying cov(Q, Tα , Fn, µ × m) > an infinitely often.

Therefore, by the Baire category theorem, in order to prove Theorem 3.1 it suffices to

prove

PROPOSITION 3.4. For each N, UN is dense in Co(X).

The proof of this proposition is the content of the next section.

4. Proof of Proposition 3.4

4.1. Setup. Let N be fixed and let α0 be an arbitrary cocycle. Consider a neighborhood of

α0 determined by a finite set F ⊆ G and η > 0. We can assume without loss of generality

that η � ε = 1/100. We produce a new cocycle α ∈ UN such that there is a set X′ of

measure at least 1 − η on which αf (x) = (α0)f (x) for all f ∈ F , implying that α is in

the (F , η)-neighborhood of α0. The construction of such an α is based on the fact that the

orbit equivalence relation R is hyperfinite.

THEOREM 4.1. [OW80, Theorem 6] There is an increasing sequence of equivalence

relations Rn ⊆ X × X such that:

• each Rn is measurable as a subset of X × X;

• every cell of every Rn is finite; and

•
⋃

n Rn agrees µ-almost everywhere with R.

Fix such a sequence (Rn) and for x ∈ X, write Rn(x) to denote the cell of Rn that

contains x.

LEMMA 4.2. There exists an m1 such that µ{x ∈ X : T F x ⊆ Rm1
(x)} > 1 − η.

Proof. Almost every x satisfies T Gx =
⋃

m Rm(x), so, in particular, for µ-almost every x,

there is an mx such that T F x ⊆ Rm(x) for all m ≥ mx . Letting X� = {x ∈ X : mx ≤ �},

we see that the sets X� are increasing and exhaust almost all of X. Therefore, we can pick

m1 so that µ(Xm1
) > 1 − η.

Now we drop R1, . . . , Rm1−1 from the sequence and assume that m1 = 1.

LEMMA 4.3. There exists a K such that µ{x : |R1(x)| ≤ K} > 1 − η.

Proof. Every R1-cell is finite, so if we define Xk = {x ∈ X : |R1(x)| ≤ k}, then the Xk

are increasing and exhaust all of X. Thus, we pick K so that µ(XK) > 1 − η.

Continue to use the notation XK = {x ∈ X : |R1(x)| ≤ K}.
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LEMMA 4.4. For all n sufficiently large, µ{x ∈ X : |(T Fnx) ∩ XK |/|Fn| > 1 − 2η} >

1 − η.

Proof. We have |(T Fnx) ∩ XK | =
∑

f ∈Fn
1XK

(T f x). By the mean ergodic theorem

[Gla03, Theorem 3.33], we get

|(T Fnx) ∩ XK |

|Fn|
→ µ(XK) > 1 − η in probability as n → ∞.

Therefore, in particular, µ{x ∈ X : |(T Fnx) ∩ XK |/|Fn| > 1 − 2η} → 1 as n → ∞, so

this measure is greater than 1 − η for all n sufficiently large.

From now on, let n be a fixed number that is large enough so that the above lemma

holds, n > N , and 1
2

exp(1/8K2 · |Fn|) > an. This is possible because (an) is assumed to

be subexponential in |Fn|. The relevance of the final condition will appear at the end.

LEMMA 4.5. There is an m2 such that µ{x ∈ X : T Fnx ⊆ Rm2
(x)} > 1 − η.

Proof. The proof follows the same lines as Lemma 4.2.

Again, drop R2, . . . , Rm2−1 from the sequence of equivalence relations and assume

m2 = 2.

4.2. Construction of the perturbed cocycle. Let (Rn) be the relabeled sequence of

equivalence relations from the previous section. The following measure-theoretic fact is

well known. Recall that two partitions P and P ′ of I are said to be independent with

respect to m if m(E ∩ E′) = m(E)m(E′) for any E ∈ P , E′ ∈ P ′.

LEMMA 4.6. Let P and P ′ be two finite partitions of I. Then there exists a ϕ ∈ Aut(I , m)

such that P and ϕ−1P ′ are independent with respect to m.

PROPOSITION 4.7. For any α0 ∈ Co(X), there is an α ∈ Co(X) such that:

(1) αg(x) = (α0)g(x) whenever (x, T gx) ∈ R1; and

(2) for µ-almost every x, the following holds. If C is an R1-cell contained in R2(x), con-

sider the map YC : t �→ QTα ,{g:T gx∈C}(x, t) as a random variable on the underlying

space (I , m). Then as C ranges over all such R1-cells, the random variables YC are

independent.

Proof. We give here only a sketch of the proof and leave the full details to Appendix A.

It is more convenient to adopt the perspective of a cocycle as a map α : R → Aut(I , m)

satisfying the condition α(x, z) = α(y, z) ◦ α(x, y).

Step 1. For (x, y) ∈ R1, let α(x, y) = α0(x, y).

Step 2. Fix an R2-cell C. Enumerate by {C1, . . . , Ck} all of the R1-cells contained in C

and choose from each a representative xi ∈ Ci .

Step 3. Let π denote the partition {[0, 1/2), [1/2, 1]} of I. Define α(x1, x2) to be an

element of Aut(I , m) such that

∨

y∈C1

α(x1, y)−1π and α(x1, x2)
−1

( ∨

y∈C2

α(x2, y)−1π

)
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are independent. These expressions are well defined because α has already been defined

on R1 and we use Lemma 4.6 to guarantee that such an element of Aut(I , m) exists.

Step 4. There is now a unique way to extend the definition of α to (C1 ∪ C2) ×

(C1 ∪ C2) that is consistent with the cocycle condition. For arbitrary y1 ∈ C1, y2 ∈ C2,

define

α(y1, y2) = α(x2, y2) ◦ α(x1, x2) ◦ α(y1, x1) and

α(y2, y1) = α(y1, y2)
−1.

The middle term in the first equation was defined in the previous step and the outer two

terms were defined in step 1.

Step 5. Extend the definition of α to the rest of the Ci inductively, making each

cell independent of all the previous ones. Suppose α has been defined on (C1 ∪ · · · ∪

Cj ) × (C1 ∪ · · · ∪ Cj ). Using Lemma 4.6 again, define α(x1, xj+1) to be an element of

Aut(I , m) such that

∨

y∈C1∪···∪Cj

α(x1, y)−1π and α(x1, xj+1)
−1

( ∨

y∈Cj+1

α(xj+1, y)−1π

)

are independent. Then, just as in step 4, there is a unique way to extend the definition of

α to all of (C1 ∪ · · · ∪ Cj+1) × (C1 ∪ · · · ∪ Cj+1). At the end of this process, α has been

defined on all of C × C. This was done for an arbitrary R2-cell C, so now α is defined

on R2.

Step 6. For each N ≥ 2, extend the definition of α from RN to RN+1 with the same

procedure, but there is no need to set up any independence. Instead, every time there is a

choice for how to define α between two of the cell representatives, just take it to be the

identity. This defines α on
⋃

N≥1 RN , which is equal mod µ to the full orbit equivalence

relation, so α is a well-defined cocycle.

Now we verify the two claimed properties of α. Property (1) is immediate from step 1

of the construction. To check property (2), fix x and let Cj be any of the R1-cells contained

in R2(x). Note that the name QTα ,{g:T gx∈Cj }(x, t) records the data Q(T
g
α (x, t)) =

Q(T gx, αg(x)t) = π(αg(x)t) for all g such that T gx ∈ Cj , which, by switching to the

other notation, is the same data as π(α(x, y)t) for y ∈ Cj . Thus, the set of t for which

QTα ,{g:T gx∈Cj }(x, t) is equal to a particular word is given by a corresponding particular cell

of the partition
∨

y∈Cj
α(x, y)−1π = α(x, x1)

−1(
∨

y∈Cj
α(x1, y)−1π). The construction

of α was defined exactly so that the partitions
∨

y∈Cj
α(x1, y)−1π are all independent and

the names QTα ,{g:T gx∈j }(x, t) are determined by these independent partitions pulled back

by the fixed m-preserving map α(x, x1), so they are also independent.

The reason this is only a sketch is because it is not clear that the construction described

here can be done in a way so that the resulting α is a measurable function. To do it properly

requires a slightly different approach; see Appendix A for full details.

Letting X̃ = {x ∈ X : T F x ⊆ R1(x)}, this construction guarantees that αf (x) =

(α0)f (x) for all f ∈ F , x ∈ X̃. By Lemma 4.2, µ(X̃) > 1 − η, so this shows that α is

in the (F , η)-neighborhood of α0.
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4.3. Estimating the size of Hamming balls. Let α be the cocycle constructed in the

previous section. We estimate the (µ × m)-measure of (Q, Tα , Fn)-Hamming balls in

order to get a lower bound for the covering number. The following formulation of

Hoeffding’s inequality will be quite useful [Ver18, Theorem 2.2.6].

THEOREM 4.8. Let Y1, . . . , Y� be independent random variables such that each

Yi ∈ [0, K] almost surely. Let a = E[
∑

Yi]. Then for any t > 0,

P

( �∑

i=1

Yi < a − t

)
≤ exp

(
−

2t2

K2�

)
.

Let X0 = {x ∈ X : |(T Fnx) ∩ XK |/|Fn| > 1 − 2η and T Fnx ⊆ R2(x)}. By Lemmas

4.4 and 4.5, µ(X0) > 1 − 2η. In addition, write µ × m =
∫

mx dµ(x), where

mx = δx × m.

PROPOSITION 4.9. For any (x, t) ∈ X0 × I ,

mx(BHam(Q, Tα , Fn, (x, t), ε)) ≤ exp

(
−

1

8K2
· |Fn|

)
. (2)

Proof. Let C be the collection of R1-cells C that meet T Fnx and satisfy |C| ≤ K . For each

C ∈ C, let FC = {f ∈ Fn : T f x ∈ C}. Define

Y (t ′) = |Fn| · dFn(QTα ,Fn
(x, t), QTα ,Fn

(x, t ′)) =
∑

f ∈Fn

1
Q(T

f
α (x,t)) �=Q(T

f
α (x,t ′))

,

and for each C ∈ C, define

YC(t ′) =
∑

f ∈FC

1
Q(T

f
α (x,t)) �=Q(T

f
α (x,t ′))

.

Then we have

Y (t ′) ≥
∑

C∈C

YC(t ′),

so to get an upper bound for mx(BHam(Q, Tα , Fn, (x, t), ε)) = m{t ′ : Y (t ′) < ε|Fn|}, it is

sufficient to control m{t ′ :
∑

C∈C YC(t ′) < ε|Fn|}.

View each YC(t ′) as a random variable on the underlying probability space (I , m). Our

construction of the cocycle α guarantees that the collection of names QTα ,FC
(x, t ′) as C

ranges over all of the R1-cells contained in R2(x) is an independent collection. Therefore,

in particular, the YC for C ∈ C are independent (the assumption that x ∈ X0 guarantees

that all C ∈ C are contained in R2(x)).

We also have that each YC ∈ [0, K] and the expectation of the sum is

a :=
∑

C∈C

∫
YC(t ′) dm(t ′) =

∑

C∈C

∑

f ∈FC

∫
1
Q(T

f
α (x,t)) �=Q(T

f
α (x,t ′))

dm(t ′) =
∑

C∈C

1

2
|FC |

=
1

2

∑

C∈C

|C ∩ (T Fnx)| >
1

2
(1 − 2η)|Fn|,
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12 A. Lott

where the final inequality is true because x ∈ X0. Thus, we can apply Theorem 4.8 with

t = a − ε|Fn| to conclude

m

{
t ′ :

∑

C∈C

YC(t ′) < ε|Fn|

}
≤ exp

(
−2t2

K2|C|

)
≤ exp

(
−2(1/2 − η − ε)2|Fn|

2

K2|Fn|

)

≤ exp

(
−

1

8K2
· |Fn|

)
.

The final inequality holds because ε = 1/100 and η � ε is small enough so that 1/2 −

η − ε > 1/4.

COROLLARY 4.10. Let y ∈ X0. If B is any (Q, Tα , Fn)-Hamming ball of radius ε, then

my(B) ≤ exp((−1/8K2) · |Fn|).

Proof. If B does not meet the fiber above y, then obviously my(B) = 0. Thus,

assume (y, s) ∈ B for some s ∈ I . Then applying the triangle inequality in the space

({0, 1}Fn , dFn) shows that B ⊆ BHam(Q, Tα , Fn, (y, s), 2ε). Now apply Proposition 4.9

with 2ε in place of ε. The proof goes through exactly the same and we get the same constant

1/8K2 in the final estimate because ε and η are small enough so that 1/2 − η − 2ε is still

greater than 1/4.

COROLLARY 4.11. We have cov(Q, Tα , Fn, µ × m) ≥ 1
2

exp((1/8K2) · |Fn|).

Proof. Let {Bi}
�
i=1 be a collection of (Q, Tα , Fn)-Hamming balls of radius ε such that

(µ × m)

( ⋃
Bi

)
> 1 − ε.

Then

1 − ε < (µ × m)

( ⋃
Bi

)

= (µ × m)

( ⋃
Bi ∩ (X0 × I )

)
+ (µ × m)

( ⋃
Bi ∩ (Xc

0 × I )

)

<

�∑

i=1

(µ × m)(Bi ∩ (X0 × I )) + (µ × m)(Xc
0 × I )

<

�∑

i=1

∫

y∈X0

my(Bi) dµ(y) + 2η

< � · exp

(
−

1

8K2
· |Fn|

)
+ 2η,

implying that � > (1 − ε − 2η) exp((1/8K2) · |Fn|) > (1/2) exp((1/8K2) · |Fn|).

Our choice of n at the beginning now guarantees that cov(Q, Tα , Fn, µ × m) ≥
1
2

exp(1/8K2 · |Fn|) > an, showing that α ∈ UN as desired. This completes the proof of

Proposition 3.4.
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A. Appendix. Measurability of the perturbed cocycle

In this section, we give a more careful proof of Proposition 4.7 that addresses the issue

of measurability. We need to use at some point the following measurable selector theorem

[Fre06, Proposition 433F].

THEOREM A.1. Let (�1, F1) and (�2, F2) be standard Borel spaces. Let P be a

probability measure on (�1, F1) and suppose that f : �2 → �1 is measurable and

surjective. Then there exists a measurable selector g : �1 → �2 which is defined P-almost

everywhere (meaning g(ω) ∈ f −1(ω) for P-almost every ω ∈ �1).

Given x ∈ X, there is a natural bijection between T Gx and G because T is a free action.

We can also identify subsets: if E ⊆ T Gx, then we write Ẽ := {g ∈ G : T gx ∈ E}. Note

that this set depends on the ‘base point’ x. If x and y are two points in the same G-orbit,

then the set Ẽ based at x is a translate of the same set based at y. It will always be clear

from context what the intended base point is.

Definition A.2. A pattern in G is a pair (H , C ), where H is a finite subset of G and C is a

partition of H.

Definition A.3. For x ∈ X, define patn(x) to be the pattern (H , C ), where H = R̃n(x) and

C is the partition of H into the sets C̃ where C ranges over all of the Rn−1-cells contained

in Rn(x).

LEMMA A.4. The pattern patn(x) is a measurable function of x.

Proof. Because there are only countably many possible patterns, it is enough to fix

a pattern (H , C ) and show that {x : patn(x) = (H , C )} is measurable. Enumerate

C = {C1, . . . , Ck}. Saying that patn(x) = (H , C ) is the same as saying that T H x =

Rn(x) and each T Ci x is a cell of Rn−1. We can express the set of x satisfying this as

( k⋂

i=1

⋂

g,h∈Ci

{x : (T gx, T hx) ∈ Rn−1} ∩
⋂

(g,h)∈G2\
⋃

(Ci×Ci )

{x : (T gx, T hx) �∈ Rn−1}

)

∩

( ⋂

g∈H

{x : (x, T gx) ∈ Rn} ∩
⋂

g �∈H

{x : (x, T gx) �∈ Rn}

)
.

Because each Rn is a measurable set and each T g is a measurable map, this whole thing is

measurable.

For each pattern (H , C ), let X
(n)

H ,C
= {x ∈ X : patn(x) = (H , C )}. We define our

cocycle α inductively on the equivalence relations Rn. For each n, the sets X
(n)

H ,C
partition X

into countably many measurable sets, so it will be enough to define α measurably on each

X
(n)

H ,C
. At this point, fix a pattern (H , C ), fix n = 2, and write XH ,C instead of X

(2)

H ,C
.

Define
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14 A. Lott

�
H ,C
2 = {ψ : H × H → Aut(I , m) : ψ(h1, h3)

= ψ(h2, h3) ◦ ψ(h1, h2) for all h1, h2, h3 ∈ H },

�
H ,C
1 =

{
σ :

⋃

C∈C

C × C → Aut(I , m) : σ(g1, g3)

= σ(g2, g3) ◦ σ(g1, g2) for all g1, g2, g3 ∈ G

}
,

�
H ,C , ind
2 = {ψ ∈ �

H ,C
2 : ψ is (H , C )-independent},

where ψ ∈ �
H ,C
2 is said to be (H , C )-independent if for any fixed h0 ∈ H , the partitions

∨

h∈C

ψ(h0, h)−1π

as C ranges over C are independent with respect to m.

PROPOSITION A.5. For every σ ∈ �
H ,C
1 , there is some ψ ∈ �

H ,C ,ind
2 that extends σ .

Proof. The idea is exactly the same as the construction described in steps 3–5 in the

sketched proof of Proposition 4.7, but we write it out here also for completeness.

Enumerate C = {C1, . . . , Ck} and for each i fix an element gi ∈ Ci . First, obviously

we define ψ = σ on each Ci × Ci . Next, define ψ(g1, g2) to be an element of Aut(I , m)

such that

∨

g∈C1

σ(g1, g)−1π and ψ(g1, g2)
−1

( ∨

g∈C2

σ(g2, g)−1π

)

are independent. Then, define ψ on all of (C1 ∪ C2) × (C1 ∪ C2) by setting

ψ(h1, h2) = σ(g2, h2) ◦ ψ(g1, g2) ◦ σ(h1, g1) and

ψ(h2, h1) = ψ(h1, h2)
−1

for any h1 ∈ C1, h2 ∈ C2. Continue this definition inductively, making each new step

independent of all the steps that came before it. If ψ has been defined on (C1 ∪ · · · ∪

Cj ) × (C1 ∪ · · · ∪ Cj ), then define ψ(g1, gj+1) to be an element of Aut(I , m) such that

∨

g∈C1∪···∪Cj

ψ(g1, g)−1π and ψ(g1, gj+1)
−1

( ∨

g′∈Cj+1

σ(gj+1, g′)−1π

)

are independent. Then extend the definition of ψ to all of (C1 ∪ · · · ∪ Cj+1) ×

(C1 ∪ · · · ∪ Cj+1) in the exact same way.

At the end of this process, ψ has been defined on (C1 ∪ · · · ∪ Ck) × (C1 ∪ · · · ∪ Ck) =

H × H , and it satisfies the cocycle condition by construction. To verify that it also satisfies

the independence condition, note that the construction has guaranteed that
∨

h∈C

ψ(g1, h)−1π

are independent partitions as C ranges over C . To get the same conclusion for an

arbitrary base point h0, pull everything back by the fixed map ψ(h0, g1). Because
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this map is measure preserving, pulling back all of the partitions by it preserves their

independence.

Now we would like to take this information about cocycles defined on patterns and use it

to produce cocycles defined on the actual space X. Define the map σH ,C : XH ,C → �
H ,C
1

by σ
H ,C
x (g1, g2) := α0(T

g1x, T g2x). Note that this is a measurable map because α0 is a

measurable cocycle.

By Theorem A.1 applied to the measure P = (σH ,C )∗(µ(· | XH ,C )) ∈ Prob(�
H ,C
1 ),

we get a measurable map EH ,C : �
H ,C
1 → �

H ,C ,ind
2 defined P-almost everywhere such

that EH ,C (σ ) extends σ . Denote the composition EH ,C ◦ σH ,C by ψH ,C and write the

image of x under this map as ψ
H ,C
x . To summarize, for every pattern (H , C ), there

is a measurable map ψH ,C : XH ,C → �
H ,C ,ind
2 defined µ-almost everywhere with the

property that ψ
H ,C
x extends σ

H ,C
x .

It is now natural to define our desired cocycle α on the equivalence relation R2 by

the formula α(x, T gx) := ψ
pat2(x)
x (e, g). It is then immediate to verify the two properties

of α claimed in the statement of Proposition 4.7. The fact that α agrees with α0 on R1

follows from the fact that ψH ,C extends σH ,C and the claimed independence property of α

translates directly from the independence property that the ψ
H ,C
x were constructed to have

(see also the discussion after step 6 in the sketched proof of Proposition 4.7). In addition,

α is measurable because for each fixed g, the map x �→ α(x, T gx) is simply a composition

of other maps already determined to be measurable. The only problem is that α, when

defined in this way, need not satisfy the cocycle condition. To see why, observe that the

cocycle condition α(x, T hx) = α(T gx, T hx) ◦ α(x, T gx) is equivalent to the condition

ψ
pat2(x)
x (e, h) = ψ

pat2(T
gx)

T gx (e, hg−1) ◦ ψ
pat2(x)
x (e, g). (A.1)

However, in defining the maps ψH ,C , we have simply applied Theorem A.1 arbitrarily

to each pattern separately, so ψpat2(x) and ψpat2(T
gx) have nothing to do with each other.

However, we can fix this problem with a little extra work, and once we do, we will have

defined α : R2 → Aut(I , m) with all of the desired properties.

Start by declaring two patterns as equivalent if they are translates of each other, and

fix a choice of one pattern from each equivalence class. As there are only countably

many patterns in total, there is no need to worry about how to make this choice. For

each representative pattern (H0, C0), apply Theorem A.1 arbitrarily to get a map ψH0,C0 .

This does not cause any problems because two patterns that are not translates of each

other cannot appear in the same orbit (this follows from the easy fact that pat2(T
gx) =

g−1 · pat2(x)), so it does not matter that their ψ maps are not coordinated with each other.

For convenience, let us denote the representative of the equivalence class of pat2(x) by

rp(x). Now, for every x ∈ X, let g∗(x) be the unique element of G with the property that

pat2(T
g∗(x)x) = rp(x). Note that the maps g∗ and rp are both constant on each subset

XH ,C and are therefore measurable.

Now for an arbitrary pattern (H , C ) and x ∈ XH ,C , we define the map ψH ,C by

ψH ,C
x (g, h) := ψ

rp(x)

T g∗(x)x
(g · g∗(x)−1, h · g∗(x)−1).
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Note that this is still just a composition of measurable functions, so ψH ,C is measurable.

All that remains is to verify that this definition satisfies (A.1). The right-hand side of

(A.1) is

ψ
rp(T gx)

T g∗(T gx)T gx
(eg∗(T gx)−1, hg−1g∗(T gx)−1) ◦ ψ

rp(x)

T g∗(x)x
(eg∗(x)−1, gg∗(x)−1)

= ψ
rp(x)

T g∗(x)g−1
T gx

((g∗(x)g−1)−1, hg−1(g∗(x)g−1)−1) ◦ ψ
rp(x)

T g∗(x)x
(g∗(x)−1, gg∗(x)−1)

= ψ
rp(x)

T g∗(x)x
(gg∗(x)−1, hg∗(x)−1) ◦ ψ

rp(x)

T g∗(x)x
(g∗(x)−1, gg∗(x)−1)

= ψ
rp(x)

T g∗(x)x
(g∗(x)−1, hg∗(x)−1),

which is, by definition, equal to the left-hand side of (A.1) as desired.

This, together with the discussion surrounding (A.1), shows that if we construct the

maps ψH ,C in this way, then making the definition α(x, T gx) = ψ
pat2(x)
x (e, g) gives us a

true measurable cocycle with all of the desired properties. Finally, to extend the definition

of α to Rn with n ≥ 3, repeat the exact same process, except it is even easier because

there is no need to force any independence. The maps ψH ,C only need to be measurable

selections into the space �
H ,C
2 , and then everything else proceeds in exactly the same way.
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