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Abstract. A probability measure-preserving action of a discrete amenable group G is said
to be dominant if it is isomorphic to a generic extension of itself. Recently, it was shown
that for G = Z, an action is dominant if and only if it has positive entropy and that for any
G, positive entropy implies dominance. In this paper, we show that the converse also holds
for any G, that is, that zero entropy implies non-dominance.
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1. Introduction
1.1. Definitions and results. Let (X, BB, n) be a standard Lebesgue space and let T be a
free, ergodic, p-preserving action of a discrete amenable group G on X. It is natural to ask
what properties of T are preserved by a generic extension (X, 7z, T) (a precise definition
of ‘generic extension’ is discussed in §3). For example, it was shown in [GTW21] that a
generic T has the same entropy as T and that if T is a non-trivial Bernoulli shift, then a
generic T is also Bernoulli. A system (X, 1, T) is said to be dominant if it is isomorphic
to a generic extension (7, o, T). Thus, for example, the aforementioned results from
[GTW21] together with Ornstein’s famous isomorphism theorem [Orn70] imply that all
non-trivial Bernoulli shifts are dominant. More generally, it has been shown in [AGTW21]
that:
(1) if G =7Z,then (X, u, T) is dominant if and only if it has positive Kolmogorov—Sinai
entropy; and
(2) for any G, if (X, u, T) has positive entropy, then it is dominant.

In this paper, we complete the picture by proving the following result.
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2 A. Lott

THEOREM 1.1. Let G be any discrete amenable group and let (X, u, T) be any free
ergodic action with zero entropy. Then (X, u, T) is not dominant.

The proof of result (2) is based on the theory of ‘slow entropy’ developed by Katok
and Thouvenot in [KT97] (see also [Fer97]), and our proof of Theorem 1.1 uses the same
ideas.

1.2. Outline. In §2, we introduce the relevant ideas from slow entropy. In §3, we
describe a precise definition of ‘generic extension’ and begin the proof of Theorem 1.1.
Finally, in §4, we prove the proposition that is the technical heart of Theorem 1.1.

2. Slow entropy
Fix a Fglner sequence (F,) for G. For g € G, write T$x for the action of g on the point
x € X, and for a subset F C G, write T x ={T/x: f e F}.If Q ={01,..., Qi) is
a partition of X, then for x € X denote by Q(x) the index of the cell of Q containing x.
Sometimes we use the same notation to mean the cell itself; which meaning is intended will
be clear from the context. Given a finite subset F C G, the (Q, F)-name of x for the action
T is the tuple Q7 F(x) := (Q(T/x)) rer € {1,2, ..., k}F. Similarly, we also define the
partition Q71 r 1= \/feF T 0, and in some contexts we use the same notation Q7 r(x)
to refer to the cell of Q7 r containing x.

For a finite subset F C G and any finite alphabet A, the symbolic space A* is equipped
with the normalized Hamming distance dp(w, w') = (1/|F|) ZfeF Lu(fyw'(f)-

Definition 2.1. Given a partition Q = {Qy, ..., Ok}, a finite set F € G, and € > 0,
define

Buam(Q. T, F, x,€) :={y € X :dp(Q1,r(y), Or,Fr(x)) < €}.

We refer to this set as the ‘(Q, T, F)-Hamming ball of radius € centered at x’. Formally,
it is the preimage under the map Q7 r of the ball of radius € centered at Q7 r(x) in the
metric space ([k1F, dF).

Definition 2.2. Given € > 0, the Hamming €-covering number of u is defined to be the
minimum number of (Q, T, F')-Hamming balls of radius € required to cover a subset of X
of u-measure at least 1 — €, and is denoted by cov(Q, T, F, u, €).

LEMMA 2.3. Let ¢ : (X, T, ) — (Y, S,v) be an isomorphism. Also let Q be a finite
partition of X, let F be a finite subset of G, and let € > 0. Then cov(Q, T, F, i, €) =
COV(‘PQ’ Ss F, v, 6)'

Proof. Tt is immediate from the definition of isomorphism that for p-almost every
/
x,x €X,

dr(Qr,F(x), O1,F(x") = dr (9 Q)5,F (9X), (9 Q)s,F (9x)).

Therefore, it follows thatp(Byam(Q, T, F, x, €)) = Baam(¢ 0O, S, F, ¢x, €) for p-almost
every x. Thus, any collection of (Q, T, F)-Hamming balls in X covering a set of
u-measure 1 — € is directly mapped by ¢ to a collection of (¢ Q, S, F)-Hamming balls in Y
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Zero entropy actions of amenable groups are not dominant 3

covering a set of v-measure 1 — €. Therefore, cov(Q, T, F, u, €) > cov(epQ, S, F, v, €).
The reverse inequality holds by doing the same argument with ¢! in place of . O

The goal of the rest of this section is to show that for a given action (X, T, u),
the sequence of covering numbers cov(Q, T, F,, u, €) grows at a rate that is bounded
uniformly for any choice of partition Q. A key ingredient is an analog of the classical
Shannon—McMillan theorem for actions of amenable groups [MO8S5, Theorem 4.4.2].

THEOREM 2.4. Let G be a countable amenable group and let (Fy,) be any Fglner sequence
for G. Let (X, T, ) be an ergodic action of G and let Q be any finite partition of X. Then

-1 1
1 o8 k(0T () LW b, T, Q) asn — oo,
n

where h denotes the entropy. In particular, for any fixed y > 0,

pfx rexp((=h — y)|Ful) < u(Qr,F,(x)) < exp((=h +y)|F,D} —> 1 asn — oo.

LEMMA 2.5. For any partition P, any Fglner sequence (F,) and any € > 0, let
LT, P, i, n, €) be the minimum number of Pr f,-cells required to cover a subset of
X of measure more than 1 — €. Then

1
lim sup
n—oo n

| log ¢(T, P, u,n,€) <h(u, T, P).
Proof. Leth = h(u, T, P).Lety > 0.By Theorem 2.4, for n sufficiently large depending
on y, we have

pix € X : u(Pr r,(x)) = exp((—h — y)|FuD} > 1 — €.

Let X’ denote the set in the above equation. Let G be the family of cells of the partition
Pr f, that meet X'. Then clearly u(|J G) > 1 — e and |G| < exp((h + y)|Fy|). Therefore,

lim sup log (T, P, u,n,e) <h+y,
n— oo | n|
and this holds for arbitrary y, so we are done. O

At this point, fix for all time € = 1/100. We can also now omit € from all of the notation
defined previously, because it will never change. In addition, assume from now on that the
system (X, T, i) has zero entropy.

LEMMA 2.6. If (Fy,) is a Fglner sequence for G and A is any finite subset of G, then (A F,)
is also a Folner sequence for G.
Proof. First, because A is finite and (F},) is Fglner we have

AF,|

1

1.

Now fix any g € G and observe that
|gAF, A AF,| - |gAF, A F,| + |F, A AF,| . | Fl
|AF,| - [ Fal [AF,|
which shows that (A F},) is a Fglner sequence. O]

—- 0 asn— oo,
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4 A. Lott

LEMMA 2.7. Let b(m, n) > 0 be real numbers satisfying:

o lim,_, b(m, n) = 0 for each fixed m; and

o b(m+1,n) > b(m,n) forallm,n.

Then there exists a sequence (ay,) such that a, — 0 and for each fixed m, b(m, n) < a, for
n sufficiently large (depending on m).

Proof. For each m, let N, be such that b(m,n) < 1/m for all n > N,,. Without loss
of generality, we may assume that N,, < N,,+1. Then we define the sequence (a,) by
a, = b(l, n) forn < N> and a, = b(m, n) for N, < n < Ny,4+1. We have a,, — 0 because
ap < 1/m for all n > N,,. Finally, the fact that b(m + 1, n) > b(m, n) implies that for
every fixed m, a, > b(m, n) as soon as n > Ny,. L]

PROPOSITION 2.8. There is a sequence (a,) such that:

(1) limsup,_, . (1/|Fy]) loga, = 0; and

(2)  for any finite partition Q, there exists an N such that cov(Q, T, Fy,, n) < a, for all
n > N.

Proof. Because T has zero entropy, there exists a finite generating partition for 7 (see, for
example, [Sew19, Corollary 1.2] or [Ros88, Theorem 2']). Fix such a partition P and let
0 ={01, ..., 0O} be any given partition. Because P is generating, there is an integer m
and another partition Q" = {Q/, . . ., Q)} such that Q' is refined by Pr f, and

€
pix 1 Q(x) # Q'(x)} < T
By the mean ergodic theorem, we can write
dr,(Qr.F,(x), Q7 £, (X))

1 L'(w) €
=71 2 lemseon@T/x) —= uly: 00 # QM) < 3.
feFy

80, in particular, for n sufficiently large, we have
€
plx : dr, (Q1.5, (). Q7 p, () < €/2) > 1= .

Let Y denote the set {x : df, (Or,F, (X), Q/T,F,, (x)) < €/2}.

Recall that Q' is refined by Pr f,,, so Q/T,F,, is refined by (Pr f,)7.F, = Pr.F,F, - Let
£ = £(m, n) be the minimum number of Pr f, f, cells required to cover a set of p-measure
at least 1 —€/4, and let Cq, . . ., Cy be such a collection of cells satisfying ,u(Ul- Ci) >
1 —€/4. If any of the C; do not meet the set Y, then drop them from the list. Because
n(Y) > 1 —e/4 we can still assume after dropping that u(|J; C;) > 1 — €/2. Choose a
set of representatives yg, . .. yg witheach y; e C;NY.

Now we claim that Y N J; C; € Ule Buam(Q, T, Fy, yi, €). To see this, letx € Y N
\U; Ci. Then there is one index j such that x and y; are in the same cell of Pr f,, r,. We
can then estimate
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Zero entropy actions of amenable groups are not dominant 5

dr,(Qr.F,(x), O1.F, (¥))) < dF,(Q71.F,(X), QF £, (X)) + dF,(QF £, (x), OF £, (¥)))
+dF,(Q7.r, (V) OT.F, (¥)))

€ Los€
< 3 +0+ 5= €.
The bounds for the first and third terms come from the fact that x, y; € Y. The second
term is 0 because Q/F,, is refined by Pr f, F, and y; was chosen so that x and y; are in the
same Pr r, r,-cell. Therefore, cov(Q, T, F,, u) < £(m, n). Thus, the proof is complete
once we find a fixed sequence (a,) that is subexponential in | F},| and eventually dominates
£(m, n) for each fixed m.
Because T has zero entropy, Lemmas 2.5 and 2.6 imply that

FnFal 1

1
lim sup | log £(m, n) = lim sup log £(m,n) =0 for each fixed m.

Note also that because Pr f,, ., F, refines Pr f, F,, we have £(m + 1, n) > £(m, n) for all
m, n. Therefore, we can apply Lemma 2.7 to the numbers b(m, n) = | F, I_l log ¢(m, n) to
produce a sequence (a,,) satisfying a), — 0 and a, > b(m, n) eventually for each fixed m.
Then a,, := exp(|Fy|a,,) is the desired sequence. O]

3. Cocycles and extensions

Let I be the unit interval [0, 1] and let m be Lebesgue measure on I. Denote by
Aut(I, m) the group of invertible m-preserving transformations of I. A cocycle on X is
a family of measurable maps a, : X — Aut(/, m) indexed by g € G that satisfies the
cocycle condition: for every g, h € G and p-almost every X, ojg(x) = 0 (T8x) 0 0rg (x).
A cocycle can equivalently be thought of as a measurable map « : R — Aut(/, m), where
R C X x X is the orbit equivalence relation induced by T (that is, (x, y) € R if and only
if y = T'8x for some g € G). With this perspective, the cocycle condition takes the form
a(x,z7) =a(y, 2) oa(x, y). A cocycle « induces the skew product action Ty, of G on the
larger space X x I defined by

TS (x, 1) == (T8x, ag(x)(1)).

This action preserves the measure p x m and is an extension of the original action
(X, T, ).

By a classical theorem of Rokhlin (see, for example, [Gla03, Theorem 3.18]), any
infinite-to-one ergodic extension of (X, u, T') is isomorphic to 7, for some cocycle «.
Therefore, by topologizing the space of all cocycles on X we can capture the notion of a
‘generic’ extension: a property is said to hold for a generic extension if it holds for a dense
G set of cocycles. Denote the space of all cocycles on X by Co(X). Topologizing Co(X)
is done in a few stages.

(1) Let B(I) be the Borel sets in I and let (E,) be a sequence in B(I) that is dense in
the m(- A -) metric. For example, (E,) could be an enumeration of the family of all
finite unions of intervals with rational endpoints.
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6 A. Lott

(2) The group Aut(/, m) is completely metrizable via the metric

d _ 1 —n -1 -1
Al ¥) =5 D 2TMm(@EN AYEL) +m(¢T Ey A YT Ep)].
n>1
Note that with this metric, Aut(/, m) has diameter at most 1. See, for example,
[Kecl0, §1.1]

3) If g, Bop are maps X — Aut(l,m), then define dist(xg, fo) = f da(ao(x),
Bo(x)) dpu(x).

(4) The metric defined in the previous step induces a topology on Aut(1, m)*. Therefore,
because Co(X) is just a certain (closed) subset of (Aut(1, m)*X )9, it just inherits the
product topology.

To summarize, if « is a cocycle, then a basic open neighborhood « is specified by
two parameters: a finite subset ' € G and 1 > 0. The (F, n)-neighborhood of « is
{B € Co(X) : dist(crg, Bg) < nforall g € F}. In practice, we always arrange things so that
there is a set of x of measure at least 1 — 1 on which a, (x) = B, (x) for all g € F, which
is sufficient to guarantee that § is in the (F', n)-neighborhood of «.

Let Q be the partition {X x [0, 1/2], X x (1/2, 1]} of X x I. We derive Theorem 1.1
from the following result about covering numbers of extensions, which is the main
technical result of the paper.

THEOREM 3.1. For any sequence (a,) satisfying lim sup,,_, ., (1/|F,|) log a, = 0, there
is a dense Gs set U € Co(X) such that for any o € U, cov(a, Ty, Fr, u x m) > a, for
infinitely many n.

Proof that Theorem 3.1 implies Theorem 1.1. Choose a sequence (a,) as in Proposition 2.8
such that for any partition Q, cov(Q, T, F,, ) < a, for sufficiently large n. Let U/ be
the dense Gg set of cocycles associated to (a,) as guaranteed by Theorem 3.1 and
let o € U, so we know that cov(a, Ty, Fy, & X m) > a, for infinitely many n. Now if
o (X xI1,Ty,u xm) — (X, T, ) were an isomorphism, then by Lemma 2.3, (pa
would be a partition of X satisfying cov(¢Q, T, Fy, ) = cov(Q, Ty, Fp, t X m) > a,
for infinitely many n, contradicting the conclusion of Proposition 2.8. Therefore, we have
produced a dense G set of cocycles « such that 7, 22 T, which implies Theorem 1.1. [

To prove Theorem 3.1, we need to show roughly that {o € Co(X) : cov(Q, Ty, Fy,
@ x m) is large} is both open and dense. We address the open part here and leave the
density part until the next section. Let 7 be the partition {[0, 1/2), [1/2, 1]} of I.

LEMMA 3.2. If B is a sequence of cocycles converging to a, then for any finite F C G,
we have

(n x m){(x, 1) :@Tﬂ(”),p(x, t) = ET%F(x, H}—1 asn — oo.

Proof. For the names aTﬁ o.F(x, 1) and @Ta, r(x, t) to be the same means that for every
gEeF,

Q(T4x, BV (1)) = O(Tx, ag (D)),
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Zero entropy actions of amenable groups are not dominant 7

which is equivalent to

(B (0)1) = 7 (ag (0)1). (1)

The idea is the following. For fixed g and x, if oy (x) and ,3;,") (x) are close in d4, then

(1) fails for only a small measure set of 7. In addition, if 87 is very close to « in the
cocycle topology, then ,B;n)(x) and o, (x) are close for all g € F and most x € X. Then,
by Fubini’s theorem, we will get that the measure of the set of (x, ¢) failing (1) is small.

Here are the details. Fix p > 0; we show that the measure of the desired set is at least
1 — p for n sufficiently large. First, let o be so small that for any ¢, ¥ € Aut(Z, m),

da(p, ) <o implies mit:n(pt) =n(t)} >1—p/2.
This is possible because
{rom@n) #xWn) S (@7'10,1/2) Ay~0,1/2) U (¢~ [1/2, 11 Ay [1/2, 1]).
Then, from the definition of the cocycle topology, we have
nix € X :da(BY (x), ag(x)) < o forallg € F} > 1 asn — oo.

Let n be large enough so that the above is larger than 1 — p/2. Then, by Fubini’s theorem,
we have

(e xm){(x, 1) 2 O, p(x, 1) = O, p (x, 1))
= f mit : (B (0)1) = (e (x)1) forall g € F}dpu(x).

We have arranged things so that the integrand above is greater than 1 — p/2 on a set of x
of u-measure greater than 1 — p/2, so the integral is at least (1 — p/2)(1 — p/2) > 1 —p
as desired. O

LEMMA 3.3. For any finite F € G and any L > 0, the set {a € Co(X) : cov(Q, Ty, F,
u x m) > L} is open in Co(X).

Proof. Suppose B is a sequence of cocycles converging to « and satisfying
cov(@, Tﬂm), F, u x m) < L for all n. We show that cov(@, Ty, F, u x m) < L as well.
The covering number cov(Q, Tgw, F, p x m) is a quantity which really depends only on
the measure (@Tw), 7)«( x m) € Prob({0, 1}F), which we now call v, for short. The
assumption that cov(@, Tﬁm), F, u xm) <L for all n says that for each n, there is a
collection of L words w%"), e, w(L") € {0, l}F such that the Hamming balls of radius €
centered at these words cover a set of v,-measure at least 1 — €. As {0, I}F is a finite set,
there are only finitely many possibilities for the collection (wi”), cee w(L") ). Therefore,
by passing to a subsequence and relabeling, we may assume that there is a fixed collection
of words wj, . . ., wy with the property that if we let B; be the Hamming ball of radius €
centered at w;, then v, (UiL:1 B;) > 1 — € for every n.

Now, by Lemma 3.2, the map @Tﬂ ().F agrees with ETQ, £ on a set of measure converging

to 1 as n — oo. This implies that the measures v, converge in the total variation norm
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8 A. Lott

on Prob({0, I}F) to v:= (@Ta,p)*(,u x m). As v,,(UiL=1 B;) > 1 — ¢ for every n, we
conclude that v(UiL=1 B;) > 1 — € also, which implies that cov(Q, Ty, F, u x m) < L
as desired. O]

Define Uy :={a € Co(X) : cov(@, To, Fr, 0 X m) > a, for somen > N}. By
Lemma 3.3, each Uy is a union of open sets and therefore open. In addition, )y Uy
is exactly the set of o € Co(X) satisfying cov(@, Ty, Fu, u x m) > a, infinitely often.
Therefore, by the Baire category theorem, in order to prove Theorem 3.1 it suffices to
prove

PROPOSITION 3.4. For each N, Uy is dense in Co(X).

The proof of this proposition is the content of the next section.

4. Proof of Proposition 3.4

4.1. Setup. LetN be fixed and let g be an arbitrary cocycle. Consider a neighborhood of
ag determined by a finite set F* € G and n > 0. We can assume without loss of generality
that n <« € = 1/100. We produce a new cocycle a € Uy such that there is a set X’ of
measure at least 1 —n on which a ¢ (x) = (ap) f(x) for all f € F, implying that « is in
the (F, n)-neighborhood of ¢y. The construction of such an « is based on the fact that the
orbit equivalence relation R is hyperfinite.

THEOREM 4.1. [OWS80, Theorem 6] There is an increasing sequence of equivalence
relations R,, C X x X such that:

e cach R, is measurable as a subset of X x X;
e every cell of every R,, is finite; and
o |, Ry agrees p-almost everywhere with R.

Fix such a sequence (R,) and for x € X, write R, (x) to denote the cell of R, that
contains x.

LEMMA 4.2. There exists an my such that p{x € X : T¥x C Ry, (x)} >1—n.

Proof. Almost every x satisfies TGx = Um R, (x), so, in particular, for p-almost every x,
there is an m,, such that T7¥x C R, (x) for all m > m,. Letting X, = {x € X : m, < ¢},
we see that the sets X, are increasing and exhaust almost all of X. Therefore, we can pick
mq so that u(X,,) > 1—n. ]

Now we drop Ry, . . ., R,,—1 from the sequence and assume that m; = 1.

LEMMA 4.3. There exists a K such that u{x : |R1(x)| < K} >1—n.

Proof. Every Rj-cell is finite, so if we define Xy = {x € X : |R1(x)| < k}, then the X}
are increasing and exhaust all of X. Thus, we pick K so that u(Xg) > 1 — n. O

Continue to use the notation Xx = {x € X : |[R1(x)| < K}.
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Zero entropy actions of amenable groups are not dominant 9

LEMMA 4.4. For all n sufficiently large, u{x € X : |(T™x) N Xg|/|Fy| > 1 —2n} >
1—n.

Proof. We have |(TFrx)N Xg| = Zfan Ixy (T x). By the mean ergodic theorem
[Gla03, Theorem 3.33], we get

(TFnx) N Xkl

A — w(Xg) > 1—n in probability as n — oo.
n

Therefore, in particular, u{x € X : |(TF"x) NXkl|/|Fyl >1—2n} - 1 as n — 00, so
this measure is greater than 1 — 5 for all n sufficiently large. O

From now on, let n be a fixed number that is large enough so that the above lemma
holds, n > N, and % exp(1/8K2 - |Fn]) > ay. This is possible because (a;) is assumed to
be subexponential in | F},|. The relevance of the final condition will appear at the end.

LEMMA 4.5. There is an m such that u{x € X : Tfrx C Rp,(x)} > 1—n.
Proof. The proof follows the same lines as Lemma 4.2. O

Again, drop R», ..., R;,—1 from the sequence of equivalence relations and assume
my = 2.

4.2. Construction of the perturbed cocycle. Let (R,) be the relabeled sequence of
equivalence relations from the previous section. The following measure-theoretic fact is
well known. Recall that two partitions P and P’ of I are said to be independent with
respect tom if m(E N E’) = m(E)m(E') forany E € P, E' € P’.

LEMMA 4.6. Let P and P’ be two finite partitions of I. Then there exists a ¢ € Aut(I, m)
such that P and ¢~ P’ are independent with respect to m.

PROPOSITION 4.7. For any ag € Co(X), there is an a € Co(X) such that:

(1) ag(x) = (ag)g(x) whenever (x, T8x) € Ry; and

(2)  for u-almost every x, the following holds. If C is an R1-cell contained in Ry(x), con-
sider the map Y¢ : t — aTm{g:Tgxec}(X, t) as a random variable on the underlying
space (I, m). Then as C ranges over all such Ri-cells, the random variables Yc are
independent.

Proof. We give here only a sketch of the proof and leave the full details to Appendix A.
It is more convenient to adopt the perspective of a cocycle as a map « : R — Aut(/, m)
satisfying the condition «(x, z) = «(y, z) o a(x, y).

Step 1. For (x, y) € Ry, leta(x, y) = ag(x, y).

Step 2. Fix an Rp-cell C. Enumerate by {Cq, . . ., Cx} all of the Rj-cells contained in C
and choose from each a representative x; € C;.

Step 3. Let m denote the partition {[0, 1/2), [1/2, 1]} of I. Define «(x1, x2) to be an
element of Aut(/, m) such that

\/ oz(xl,y)_ln and oz(xl,xz)_1< \/ o (xy, y)_lrr>

yeCy yeCs

https://doi.org/10.1017/etds.2023.17 Published online by Cambridge University Press



10 A. Lott

are independent. These expressions are well defined because o has already been defined
on R; and we use Lemma 4.6 to guarantee that such an element of Aut(/, m) exists.

Step 4. There is now a unique way to extend the definition of o to (C; U C3) X
(C1 U () that is consistent with the cocycle condition. For arbitrary y; € Cy, y; € Ca,
define

a(y1, y2) = a(xz, y2) oca(xy, x2) o a(y1, x1) and

a(y2, y1) = a(y, y2) L.

The middle term in the first equation was defined in the previous step and the outer two
terms were defined in step 1.

Step 5. Extend the definition of « to the rest of the C; inductively, making each
cell independent of all the previous ones. Suppose « has been defined on (C; U - --U
C;j) x (C1U---UCj). Using Lemma 4.6 again, define a(x1, x;11) to be an element of
Aut(I, m) such that

\/ a(x;,y) " '7  and Ol(xl»xj+1)_l( \/ Ol(ijrl»Y)_le)

yeC1U--UC; yeCjq

are independent. Then, just as in step 4, there is a unique way to extend the definition of
atoalof (CyU---UCj41) x (CyU---UC;q1). At the end of this process, o has been
defined on all of C x C. This was done for an arbitrary Rj-cell C, so now « is defined
on R;.

Step 6. For each N > 2, extend the definition of o from Ry to Ry with the same
procedure, but there is no need to set up any independence. Instead, every time there is a
choice for how to define o between two of the cell representatives, just take it to be the
identity. This defines & on | J,-; Ry, which is equal mod p to the full orbit equivalence
relation, so « is a well-defined Eocycle.

Now we verify the two claimed properties of «. Property (1) is immediate from step 1
of the construction. To check property (2), fix x and let C; be any of the R;-cells contained
in Ry(x). Note that the name @Ta’{g:nxec}.}(x, t) records the data Q(TS (x, 1)) =
O(T8x, ag(x)t) = m(og(x)t) for all g such that T8x € C;, which, by switching to the
other notation, is the same data as m(a(x, y)t) for y € C;. Thus, the set of 7 for which
ETM{ g:TexeC;} (X, 1) is equal to a particular word is given by a corresponding particular cell
of the partition \/yecj a(x, ) lr = a(x, x))7! (\/yecj a(x1, y)~'7). The construction
of o was defined exactly so that the partitions \/yecj a(x1, y)~'m are all independent and

the names ETQ,{ g Texe;) (x, t) are determined by these independent partitions pulled back
by the fixed m-preserving map «(x, x1), so they are also independent.

The reason this is only a sketch is because it is not clear that the construction described
here can be done in a way so that the resulting « is a measurable function. To do it properly
requires a slightly different approach; see Appendix A for full details. O

Letting X = {(xe X: TFx C Ri(x)}, this construction guarantees that of(x) =
(o) f(x) for all f € F,x € X. By Lemma 4.2, u(X) > 1 —n, so this shows that « is
in the (F, n)-neighborhood of «y.
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4.3. Estimating the size of Hamming balls. Let o be the cocycle constructed in the
previous section. We estimate the (u x m)-measure of (0, T, F,)-Hamming balls in
order to get a lower bound for the covering number. The following formulation of
Hoeffding’s inequality will be quite useful [Ver18, Theorem 2.2.6].

THEOREM 4.8. Let Yi,...,Yy be independent random variables such that each
Y; € [0, K] almost surely. Let a = E[)Y_ Y;]. Then for any t > 0,

¢ 212
P(;Yi <a—t> Sexp(—m)
Let Xo={xe X :|(Tf"x)N Xgl|/|F,| > 1—2nand Tf"x € Ry(x)}. By Lemmas

44 and 4.5, pn(Xo) >1—2n. In addition, write puxm = [ m,du(x), where
my = &y X m.

PROPOSITION 4.9. Forany (x,t) € Xo x I,
_ 1
mx(BHam(Q, Tou F}'I’(-x’ t)9 6)) Sexp (_ 8K2 : |Fn|> (2)

Proof. Let C be the collection of R;-cells C that meet 777 x and satisfy |C| < K. For each
CeCletFc={feF,:T/x eC}. Define

N A A / _ )
Y(t') = |Fal - dr, (Q1,.F, (%, 1), Or,, 7, (x, 1)) = ,; Lt oy T! ey
€ln

and for each C € C, define

/ —
Ye) = )Y 1gas camsaa! iy
feFc

Then we have

Y(t)= Y Ye(),

ceC

so to get an upper bound for 7, (Bgam(Q, Ty, Fp, (x, 1), €)) = m{t’ : Y(t') < €|Fy,|}, itis
sufficient to control m{t" : Y~ . Yc(t') < €|Fy|}.

View each Y¢ (¢') as a random variable on the underlying probability space (1, m). Our
construction of the cocycle o guarantees that the collection of names ET% Fe(x, 1) as C
ranges over all of the Rj-cells contained in Ry (x) is an independent collection. Therefore,
in particular, the Y¢ for C € C are independent (the assumption that x € X guarantees
that all C € C are contained in R;(x)).

We also have that each Y¢ € [0, K] and the expectation of the sum is

1
— ’ N _ _ N
a:=), / Ye()dm() =), ) /lé(rﬁx,t))#@(rj(x,ﬂ)) dm(@') =) 1Fcl

ceC ceC feFc ceC
1 1
=52 1Cn@ Mol > (1 = 2IFl,
ceC
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where the final inequality is true because x € Xo. Thus, we can apply Theorem 4.8 with
t = a — €|F,| to conclude

—2¢2 —2(1 2—77_6)2|Fn|2
m{t/:ZYc(t’)<6|Fn|} SexlD<1(2|c|> SCXP< / K2|F,| )

ceC
1
< exp —m'”‘m .

The final inequality holds because € = 1/100 and n < € is small enough so that 1/2 —
n—e>1/4 O

COROLLARY 4.10. Let y € Xo. If B is any (Q, Ty, F,)-Hamming ball of radius €, then
my(B) < exp((—1/8K?) - | Fnl).

Proof. If B does not meet the fiber above y, then obviously my(B) = 0. Thus,
assume (y,s) € B for some s € I. Then applying the triangle inequality in the space
(o, I}F", dr,) shows that B C BHam(E, Ty, Fu, (v, 5), 2¢€). Now apply Proposition 4.9
with 2¢ in place of €. The proof goes through exactly the same and we get the same constant
1/8K? in the final estimate because € and 7 are small enough so that 1/2 — n — 2¢ is still
greater than 1/4. O

COROLLARY 4.11. We have cov(Q, Ty, Fy, t x m) > 5 exp((1/8K?) - |F,|).

Proof. Let {Bi}f:1 be a collection of (Q, Ty, F,,)-Hamming balls of radius € such that

(,u,xm)(UBi) >1—e.

Then

l—e<(uxm)(UBi>

:(,uxm)(UB,-ﬂ(XoxI))—i—(,uxm)(UB,-ﬂ(Xg><I)>

14

< 2w xm)(Bi N (Xo x 1) + (u x m)(Xg x 1)
i=1
4

<> [ msduen <2
i=1 Jy€Xo

1
<€~exp<—m-|Fn|>+2n,

implying that £ > (1 — € — 2n) exp((1/8K2) - |F,|) > (1/2) exp((1/8K?) - |F,]). O

Our choice of n at the beginning now guarantees that cov(Q, Ty, Fp, it x m) >
% exp(1/8K? - |F,|) > a,, showing that o € Uy as desired. This completes the proof of
Proposition 3.4.
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A. Appendix. Measurability of the perturbed cocycle

In this section, we give a more careful proof of Proposition 4.7 that addresses the issue
of measurability. We need to use at some point the following measurable selector theorem
[Fre06, Proposition 433F].

THEOREM A.l. Let (21, F1) and (2, F2) be standard Borel spaces. Let P be a
probability measure on (21, F1) and suppose that f : Q0 — Q1 is measurable and
surjective. Then there exists a measurable selector g : Q1 — Qg which is defined P-almost
everywhere (meaning g(w) € f~ (w) for P-almost every w € Q).

Given x € X, there is a natural bijection between 7 x and G because T is a free action.
We can also identify subsets: if £ C TG x, then we write E:= {g € G:T8x € E}. Note
that this set depends on the ‘base point’ x. If x and y are two points in the same G-orbit,
then the set E based at x is a translate of the same set based at y. It will always be clear
from context what the intended base point is.

Definition A.2. A patternin G is a pair (H, €’), where H is a finite subset of G and € is a
partition of H.

Definition A.3. For x € X, define pat, (x) to be the pattern (H, €), where H = R/,,\(x/) and
% is the partition of H into the sets C where C ranges over all of the R,_-cells contained
in R, (x).

LEMMA A.4. The pattern pat, (x) is a measurable function of x.
Proof. Because there are only countably many possible patterns, it is enough to fix
a pattern (H, %) and show that {x : pat,(x) = (H, %)} is measurable. Enumerate

€ ={C1, ..., Cy}. Saying that pat,(x) = (H, ¥) is the same as saying that THy =
R, (x) and each T i x is a cell of R,_;. We can express the set of x satisfying this as

k
(ﬂ ﬂ {x:(T%x,T"x) e R,_1} N ﬂ {x: (T8%x, Thx) ¢ R,,_1}>

i=1 g,heC; (g.m)eG\J(C; xC))
N (ﬂ{x:(x, T8x) € Ry} N ﬂ{x:(x, Tgx)an}>.
geH g¢H
Because each R, is a measurable set and each 7'¢ is a measurable map, this whole thing is
measurable. O
For each pattern (H, %), let X;';)Cg ={x € X : pat,(x) = (H, ¥)}. We define our

cocycle « inductively on the equivalence relations R,,. For each n, the sets X Z')% partition X
into countably many measurable sets, so it will be enough to define « measurably on each
XZ')%; At this point, fix a pattern (H, %), fix n = 2, and write Xy ¢ instead of Xg)(g
Define
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QY = {y . H x H— Aut(I, m) : ¢ (hy, h3)
= Y (ha, h3) o Y (hy, hp) for all hy, ko, h3 € H},

Qe — {o J CxC— Autl,m):o(g1. 83)
Ce?

= 0(g2,83) 00(g1, &) forall g1, g2, g3 € G},
Qéﬁ”{/ ind _ 1y e le% : ¥ is (H, €)-independent},
where ¢ € le 2 is said to be (H, €)-independent if for any fixed hy € H, the partitions

\VAZUN
heC
as C ranges over % are independent with respect to m.

PROPOSITION A.5. For every o € Qf{’%, there is some {r € le’%j’md that extends o.

Proof. The idea is exactly the same as the construction described in steps 3-5 in the
sketched proof of Proposition 4.7, but we write it out here also for completeness.

Enumerate 4 = {Cy, . . ., Cx} and for each i fix an element g; € C;. First, obviously
we define ¢ = o on each C; x C;. Next, define ¥/ (g1, g2) to be an element of Aut(/, m)
such that

\ o, 9)7'7 and W(gl,gz)_1< \ a(gz,g)_lﬂ>

8€Cy geCy
are independent. Then, define ¢ on all of (C; U C2) x (C1 U C») by setting

Y(hi, ho) = o(g2, h2) o (g1, g2) oo (hy, g1) and
Y (ha, hy) = Y (hy, hy) ™!

for any h| € Cy, hp € C,. Continue this definition inductively, making each new step
independent of all the steps that came before it. If Y has been defined on (C; U - --U
Cj) x (C1U---UC)), then define ¥ (g1, g;j+1) to be an element of Aut(/, m) such that

\V v, 'r and 1//<g1,g,»+1>—1< \V4 a(gjﬂ,g/)—ln)

geCU--UC; g'eCjq

are independent. Then extend the definition of ¥ to all of (CiU---UCjy1) x
(C1U---UCj41) in the exact same way.

At the end of this process, 1 has been definedon (C;{ U - - -UCy) X (C{U---UCy) =
H x H, and it satisfies the cocycle condition by construction. To verify that it also satisfies
the independence condition, note that the construction has guaranteed that

\/ ¥, b 'n
heC

are independent partitions as C ranges over %. To get the same conclusion for an
arbitrary base point hg, pull everything back by the fixed map ¥ (ho, g1). Because
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this map is measure preserving, pulling back all of the partitions by it preserves their
independence. O

Now we would like to take this information about cocycles defined on patterns and use it
to produce cocycles defined on the actual space X. Define the map o - L' HE — Q B

by ax 3 (g1, g2) := ao(T81x, T82x). Note that this is a measurable map because « is a
measurable cocycle.

By Theorem A.l applied to the measure P = (o I- %)*(uﬂ | Xu%)) € Prob(QfI’%),

we get a measurable map E'- L QH LN SZH @ind Gefined P-almost everywhere such

that E#-% (o) extends o. Denote the composition E*- Coott by v e
image of x under this map as 1/fo . To summarize, for every pattern (H, %), there
is a measurable map ¥ D ¢ HE — Qg ind defined u-almost everywhere with the
property that wa ¢ extends af €

It is now natural to define our desired cocycle o on the equivalence relation R, by
1)[fpatz(x)
X

and write the

the formula «(x, T8x) := (e, g). It is then immediate to verify the two properties
of a claimed in the statement of Proposition 4.7. The fact that @ agrees with g on R
follows from the fact that ¥y  extends o "% and the claimed independence property of o
translates directly from the independence property that the xpx % Wwere constructed to have
(see also the discussion after step 6 in the sketched proof of Proposition 4.7). In addition,
« is measurable because for each fixed g, the map x — a(x, T8x) is simply a composition
of other maps already determined to be measurable. The only problem is that o, when
defined in this way, need not satisfy the cocycle condition. To see why, observe that the
cocycle condition «(x, Thx) = a(T8x, T"x) o a(x, T8x) is equivalent to the condition

PP e ) =y e ng ™ 0 e, o). (AD)

However, in defining the maps ¥ ¢, we have simply applied Theorem A.l arbitrarily
to each pattern separately, so ¥P22() and P2 (T*Y) have nothing to do with each other.
However, we can fix this problem with a little extra work, and once we do, we will have
defined & : Ry — Aut(/, m) with all of the desired properties.

Start by declaring two patterns as equivalent if they are translates of each other, and
fix a choice of one pattern from each equivalence class. As there are only countably
many patterns in total, there is no need to worry about how to make this choice. For
each representative pattern (Hy, 40), apply Theorem A.1 arbitrarily to get a map yrHo-o,
This does not cause any problems because two patterns that are not translates of each
other cannot appear in the same orbit (this follows from the easy fact that pat,(T8x) =
g_1 - pat, (x)), so it does not matter that their 1/ maps are not coordinated with each other.
For convenience, let us denote the representative of the equivalence class of pat,(x) by
rp(x). Now, for every x € X, let g*(x) be the unique element of G with the property that
patz(Tg*(x)x) = rp(x). Note that the maps g* and rp are both constant on each subset
X ¢ and are therefore measurable.

Now for an arbitrary pattern (H, ¢) and x € Xy ¢, we define the map Y he by

Ui (g ) =) (@t )T kg0,
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Note that this is still just a composition of measurable functions, so ¥ ‘¢ is measurable.

All that remains is to verify that this definition satisfies (A.1). The right-hand side of
(Al)is

T8 _ _ _ _ _
e e (e" (T ™ hg ™ " (T8) ™) oy P00 (eg* (1) 7!, gg* (1))

— 1prp()c) Tgx((g*(x)gfl)fl’ hgil(g*(x)gil)fl) ° w;ll(f(l)x(g*(x)*l, gg*(x)*l)

7e* ()5
= 0 (8g" @)L gt o YT (8" ()7L gg" )7
=y (@@ hg" )7,

which is, by definition, equal to the left-hand side of (A.1) as desired.

This, together with the discussion surrounding (A.1), shows that if we construct the

maps 1//H’<‘”” in this way, then making the definition a(x, T8x) = wfatz(x)(e, g) gives us a

true measurable cocycle with all of the desired properties. Finally, to extend the definition
of o to R, with n > 3, repeat the exact same process, except it is even easier because
there is no need to force any independence. The maps v/ € only need to be measurable
selections into the space Qg ’%, and then everything else proceeds in exactly the same way.
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