
Springer Nature 2021 LATEX template

N IPM-HLSP: An Efficient Interior-Point

Method for Hierarchical Least-Squares

Programs

Kai Pfeiffer1*, Adrien Escande2 and Ludovic Righetti3

1*School of Mechanical and Aerospace Engineering, Nanyang
Technological University, Singapore.

2Inria Center of Grenoble Alpes University, Montbonnot, France.
3Tandon School of Engineering, New York University, New York,

USA.

*Corresponding author(s). E-mail(s):
kaipfeifferrobotics@gmail.com;

Abstract

Hierarchical least-squares programs with linear constraints (HLSP) are
a type of optimization problem very common in robotics. Each prior-
ity level contains an objective in least-squares form which is subject
to the linear constraints of the higher priority levels. Active-set meth-
ods are a popular choice for solving them. However, they can perform
poorly in terms of computational time if there are large changes of
the active set. We therefore propose a computationally efficient primal-
dual interior-point method (IPM) for dense HLSP’s which is able to
maintain constant numbers of solver iterations in these situations. We
base our IPM on the computationally efficient nullspace method as it
requires only a single matrix factorization per solver iteration instead
of two as it is the case for other IPM formulations. We show that the
resulting normal equations can be expressed in least-squares form. This
avoids the formation of the quadratic Lagrangian Hessian and can pos-
sibly maintain high levels of sparsity. Our solver reliably solves ill-posed
instantaneous hierarchical robot control problems without exhibiting
the large variations in computation time seen in active-set methods.

1

Springer Nature 2021 LATEX template

2 NIPM-HLSP

Keywords: Numerical optimization; real time robot control; hierarchical
least-squares programming; nullspace method; lexicographical optimization;
multi objective optimization;

1 Introduction

1.1 Context and contribution

Hierarchical or lexicographic multi-objective optimization (LMOO) is the
prioritized separation of constraints and objectives over any number of pri-
ority levels p. In its most generic form, LMOO can be written as (lexmin.:
lexicographically minimize)

lexmin.
u

fE1
(u), . . . , fEp

(u) (LMOO)

s.t fI∪p
(u) ≥ 0

u ∈ R
n is a variable vector. Each (possibly) non-linear objective fEl

∈ R
mEl ,

which represent the set of equality constraints El of level l (|El| = mEl
), needs

to be minimized. This comes to the extent of not influencing the optimality
of the infinitely more important constraints fE∪l−1

∈ R
mE∪l−1 of levels 1 to

l− 1. E∪l−1 represents the set union E∪l−1 :=
⋃l−1

i=1
Ei = E1 ∪ · · · ∪El−1 of the

sets of equality constraints of levels 1 to l − 1. At the same time, inequality
constraints fI∪p

∈ R
mI∪p shall not be violated.

To date, no method has been proposed to efficently solve LMOO as is. Early
beginnings of LMOO have been reported for example in Sherali and Soyster
(1983) in the context of lexicographic linear programming. The authors pro-
pose a set of appropriate weights to solve the prioritized multi-objectives as
an equivalent weighted one. A solution in a variable reducing fashion has been
proposed in Holder (2006). In this case the problem dimensions decrease as
the solver progresses through the lexicographical program. This is one of the
fundamental ideas in efficient hierarchical programming. Extensions to non-
linear objective functions based on optimal Pareto front and for lexicographic
programs and non-smooth functions can be found in Evtushenko and Posyp-
kin (2014), Lai et al (2021) and Ansary (2023), respectively. A solution can
also be obtained by evolutionary algorithms with great efficiency in identify-
ing trade-off solutions. An evaluation on the scheduling problem for satellite
communication is given in Petelin et al (2021).

A specific form of LMOO is hierarchical linear least-squares programming
(HLSP), which is the main focus of this work. Here all constraints are linear
and the objectives are in least-squares form. HLSP’s have seen a sharp rise in
popularity in the robotics community over the recent years. Different works
tackled the incorporation of infeasible inequality constraints on any priority
level (Kanoun et al, 2009), or proposed very efficient solvers for these types
of problems (Escande et al, 2014). The aforementioned HLSP solver (Escande
et al, 2014) enables high frequency non-linear whole-body robot control when
used within a sequential hierarchical least-squares programming (S-HLSP)

Springer Nature 2021 LATEX template

NIPM-HLSP 3

solver to solve non-linear hierarchical least-squares programs (NL-HLSP). S-
HLSP with local convergence properties for example based on a real-time
capable trust-region adaptation method (Pfeiffer et al, 2018) has been applied
in many robot control works (Herzog et al (2014) and references therein). In
contrast, a globally converging method for non-linear least-squares program-
ming based on branch-and-bound has been proposed in Amaran and Sahinidis
(2012). However, this method is applicable only to unconstrained problems.

In this work we propose an efficient, dense HLSP solver based on the
interior point method (IPM). This has numerical advantages with respect to
active-set method (ASM) based solvers like Escande et al (2014). The active-

set method separates inequality constraints into active constraints, which are
violated, and inactive constraints, which are satisfied. Violated constraints are
commonly referred to as infeasible. In ill-posed robot control scenarios our IPM
based solver maintains constant number of iterations and computation times
as opposed to the ASM. This is favorable in real-time robot control where only
limited computational resources are available and a control loop has a fixed
time budget at each iteration.

The solver’s C++ code based on the Eigen library (Guennebaud et al,
2010) is available at https://www.github.com/pfeiffer-kai/NIPM-HLSP. The
nomenclature and variable naming used hereafter is listed below.

Nomenclature

l Current priority level
l∗ Virtual priority level
p Overall number of priority levels, excluding the trust region

constraint on l = 0
n Number of variables
r Rank of matrix

nr Number of remaining variables after nullspace projections
m Number of constraints

x ∈ R
n Primal of HLSP

∆x ∈ R
n Primal Newton step of HLSP

∆z Primal nullspace step
f(u) ∈ R

m Non-linear constraint function of variable vector u ∈ R
n

El Set of mE equality constraints (eq.) of level l
Il Set of mI inequality constraints (eq.) of level l
Il Set of mI inactive inequality constraints (ineq.) of level l
Al Set of mA active equality and inequality constraints of level l

E∪l (or E∪l) Set union E∪l :=
⋃l

i=1
Ei = E1 ∪ · · · ∪ El with mE∪l

constraints
AE ∈ R

mE×n Matrix representing a set E of mE linear constraints
bE ∈ R

mE Vector representing a set E of mE linear constraints
N (AAl

) Operator to compute the nullspace basis ZAl
and the rank r of

a matrix AAl

Springer Nature 2021 LATEX template

4 NIPM-HLSP

ZAl
∈ R

n×nr Nullspace basis of matrix AAl
∈ R

mAl
×n with rank r, nr = n−r

and AAl
ZAl

= 0
NA∪l

∈ R
n×nr Accumulated nullspace basis NA∪l

= ZA1
. . . ZAl

M̃ ∈ R
m×nr Matrix M̃ = MN projected into the nullspace basis N ∈ R

n×nr

of a matrix A ∈ R
m×n of rank r; nr = n − r (variable

elimination)
v ∈ R

m Slack variable
V ∈ R

m,m Diagonal matrix equivalent V = diag(v) of vector v ∈ R
m

v∗ ∈ R
m Optimal slack variable

λ ∈ R
m Lagrange multiplier
L Lagrangian
K Gradient of Lagrangian K := ∇L
ι Newton iteration or active-set iteration of HLSP solver
µ Duality measure
σ Centering parameter
ρ Trust region radius
ξ Activation threshold of inequality constraints
ǫ Convergence threshold for Newton’s method

e ∈ R
m Vector of ones

a⊙ b Element-wise multiplication between two vectors a and b

1.2 Hierarchical least-squares programming

A HLSP is a sub-form of LMOO with linear constraints and least-squares
objectives as follows

lexmin.
x,vE∪p ,vI∪p

‖vE1
‖2 + ‖vI1‖

2, . . . , ‖vEp
‖2 + ‖vIp‖

2 (1)

s.t AE∪p
x− bE∪p

= vE∪p

AI∪p
x− bI∪p

≥ vI∪p

The variable vector x ∈ R
n consists of n variables. The linear constraint sets

El and Il of each level l = 1, . . . , p are represented by the constraint matrices
and vectors AEl

∈ R
mEl and bEl

∈ R
mEl , respectively. The slack variables

vEl
∈ R

mEl and vIl ∈ R
mIl relax the equality and inequality constraints El

and Il in case of infeasibility. This relaxation allows handling of infeasible
inequality constraints on any priority level (Kanoun et al, 2011). In contrary,
LMOO only allows the incorporation of inequality constraints on the problem
variables (Lai et al, 2021). On each level l = 1, . . . , p the optimal slacks v∗

El

and v∗
Il
need to be identified. At the same time the optimal slacks v∗

E∪l−1
and

v∗
I∪l−1

of the previous levels 1 to l − 1 must not be violated.
In essence, a HLSP with p levels is an optimization problem composed of

p consecutive least-squares programs (LSP). Each level l consists of a least
squares objective which is subject to the linear constraints associated with the
higher priority levels 1 to l − 1 (except for the first level 1 which does not

Springer Nature 2021 LATEX template

NIPM-HLSP 5

carry any constraints from previous levels). The corresponding LSP’s of levels
l = 1, . . . , p can be written as

min.
x,vEl ,vIl

1

2
‖vEl
‖2 +

1

2
‖vIl‖

2 l = 1, . . . , p

s.t. AEl
x− bEl

= vEl

AIl
x− bIl ≥ vIl

AE∪l−1
x− bE∪l−1

= v∗
E∪l−1

AI∪l−1
x− bI∪l−1

≥ 0

(2)

v∗
E∪l−1

indicates the optimal slacks that were identified for the equality con-
straints of the previous levels 1 to l − 1. Inequality constraints are assumed
to be feasible on each priority level. In Sec. 2 we introduce a relaxation
of this assumption based on the active-set method such that the original
lexicographical problem (1) is represented exactly.

The authors in Kanoun et al (2009) consecutively solve each level l from the
first to the last level p of (2) in a cascade-like manner. The disadvantage of this
approach is that each optimization problem grows in the number of constraints
since the ones from the previous levels need to be carried over. In De Lasa
and Hertzmann (2009) this is avoided by solving each level in the nullspace of
the active constraints of the previous levels. This way the problem dimensions
are progressively reduced. This nullspace projection and consequent variable
reduction is commonly referred to as the nullspace method (Nocedal and
Wright, 2006). Additionally, only feasible inequality constraints are considered
on the first level. The approach considered in Escande et al (2014) is based on
this same principle but enables the incorporation of inequality constraints on
any priority level. Unlike the previous cascade-like approaches (Kanoun et al,
2009; De Lasa and Hertzmann, 2009), their active-set search solves the whole
hierarchy at once which adds further efficiency by unifying the active-set search
of all the levels into one.

The dedicated HLSP solver in Escande et al (2014) is based on the ASM.
At each solver iteration an equality only problem consisting of the active con-
straints A∪p of the priority levels 1 to p is solved. A∪p assembles equality
constraints E∪p and active inequality constraints of I∪p. Based on the viola-
tion or feasibility of inequality constraints I∪p, the active set A∪p is composed
accordingly. The ASM converges if no constraint needs to be added to or
removed from the active set. In ASM’s based on the nullspace method, all con-
straint matrices of levels l to p are projected into the nullspace of the active
constraints A∪l−1 of levels 1 to l− 1 (Coleman, 1984; Benzi et al, 2005). With
the right choice of nullspace basis this leads to a possibly significant reduc-
tion of variables especially on lower priority levels in case of a large number
of linearly independent active constraints. This makes the solvers very effi-
cient as the matrix factorization for the linear system solution is cubically
dependent of the number of variables. While the work in Escande et al (2014)

Springer Nature 2021 LATEX template

6 NIPM-HLSP

uses orthogonal nullspace bases, the authors in Dimitrov et al (2015) imple-
ment non-orthogonal bases with further computational advantage due to their
block structure. The disadvantage of non-orthogonal bases is that the primal
x is not of minimum norm but this characteristic can be easily enforced by
regularization.

ASM based solvers are most efficient on problems with limited changes of
the active-set between HLSP problem instances. This is usually the case for
parametric problems like robot control scenarios where the problem variables
evolve slowly. In this case the ASM can be warm started by setting the active
set of the current problem with the active set from the previous one (Gill
et al, 1986). However, in robot real-time control there are cases where large
shifts of the active set occur, for example in instances close to contact shift-
ing or oscillations in case of numerical instabilities due to ill-posed constraint
matrices (Pfeiffer et al, 2018; Pfeiffer et al, 2023). In these cases the num-
ber of iterations of the ASM may be exponential in the number of constraints
as all possible active-set combinations need to be explored (Rao et al, 1998).
Numerical issues like cycling (repeated activation and deactivation of the same
constraint) can further increase the number of active set iterations such that
it becomes impractical for real-time robot control. While methods mitigating
such effects like decomposition updates (Hammarling and Lucas, 2008) and
cycling handling (Gill et al, 1989) exist, they might not be enough to make up
for the possibly large number of active set iterations until convergence (Pfeiffer
et al, 2023).

In contrast, the IPM has been shown to robustly converge in a determin-
istic number of iterations independent of problem conditioning (Nesterov and
Nemirovskii, 1994; Bartlett et al, 2000). The IPM has been first developed for
linear programming (Karmarkar, 1984) but has seen extensions to quadratic
programs (which LSP’s are a sub-form of, Vanderbei (1999)) or non-linear
programming (Wächter and Biegler, 2006). The ASM only considers inequal-
ity constraints which are deemed active in the current guess of the active-set.
In contrast, the IPM considers all constraints including all inactive inequal-
ity constraints. In primal-dual formulations of the IPM, the primal and dual
variables thereby move within the interior of the feasible region. This is first
achieved by maintaining feasibility conditions by line search or more complex
methods based on non-linear arc-searches (Yang, 2022). Furthermore, viola-
tions are penalized for example by a log-barrier function. A function with
an upper bound on solver iterations has been proposed for linear programs
in Fathi Hafshejani et al (2020). A summary of different functions is given in Li
et al (2021). A single iteration of the IPM is relatively expensive but conver-
gence is achieved robustly. The authors in Kuindersma et al (2014) use this
fact to switch from the ASM to the reliable IPM in case of ASM failures.

1.3 Our contribution

While the IPM has been developed for LSP (Vanderbei, 1999) and could be
used to solve (2) directly by solving each level in sequence (Kanoun et al,

Springer Nature 2021 LATEX template

NIPM-HLSP 7

2009), there exist no dedicated IPM based solvers for HLSP. In this work we
provide the theoretical foundations for an efficient IPM for HLSP. The IPM
based HLSP solver provides predictability in terms of computation times due
to its constant number of Newton iterations even in case of ill-posed constraints
matrices. This can be important for example when critical safety constraints
need to be dealt with but the ASM fails to find an optimal point in a reasonable
number of active set iterations.

Our contributions are threefold:

❼ We formulate the IPM for HLSP. It reliably resolves ill-posed HLSP’s with-
out significant fluctuations in solver iterations or computation time. We show
that this enables a humanoid robot to handle large changes of the active set
after a strong push.

❼ We suggest to apply the nullspace method (Nocedal and Wright, 2006) to the
IPM for HLSP instead of the commonly used Schur complement (Wang and
Boyd, 2010; Domahidi et al, 2012). This transfers the same variable reducing
quality to the IPM for HLSP as seen for the ASM for HLSP. While this has
been previously done for QP’s in Model predictive control (MPC) (Frison
and Diehl, 2020), we give a more detailed explanation for example on our
choice of nullspace basis. With this formulation we reduce the necessary
number of decompositions of the KKT system per Newton iteration from
two to one. We show that this is computationally efficient for almost all
problem constellations. Furthermore, the Lagrange multipliers associated
with active constraints do not need to be evaluated by virtue of an adapted
IPM convergence test.

❼ We show that the IPM can be expressed in least squares form. This way
the formation of expensive matrix products is avoided which is of advantage
for problems with high number of variables but low number of constraints.
This also potentially preserves a large degree of sparsity of the constraint
matrices which we aim to exploit in a future sparse version of the proposed
solver.

1.4 Overview

This article is structured as follows: In Sec. 2 we first introduce the notion of
active sets into the optimization problem (2). We then continue to outline the
formulation of the IPM for HLSP. Section 3 oversees the efficient computation
of the IPM solver iterations. First, the overall algorithm is outlined in Sec. 3.1.
We apply the nullspace method which is a common tool in hierarchical pro-
gramming, see Sec. 3.2. This requires a concept we refer to as ‘virtual priority
level’ and which is detailed in Sec. 3.3. With a special convergence test the
calculation of the dual associated with the active constraints can be avoided
(Sec. 3.4). In Sec. 3.5 we show that the solver iterations can be expressed in
efficient least-squares form. Section 3.6 oversees the development of Mehrotra’s
predictor-corrector-algorithm for HLSP’s. Finally, we give a computational
comparison between the different solver formulations (Sec. 4). The proposed

Springer Nature 2021 LATEX template

8 NIPM-HLSP

algorithms are evaluated in Sec. 5. We conclude the article with some remarks
and considerations for future work (see Sec. 6).

2 Formulating the interior point method for
HLSP

We first separately consider the top three lines of the optimization problem (2).
This problem corresponds to finding a feasible point (v∗

El
= 0, v∗

Il
≥ 0) or

optimal infeasible point (v∗
El
6= 0, v∗

Il
< 0 with minimal ‖vEl

‖2, ‖vIl‖
2) of

the constraints. In the context of linear programming the self-dual embedding
model (Ye et al, 1994) has been proposed. Similarly to Wang and Boyd (2010)
for quadratic programming, infeasible initial points with respect to the equality
constraints are handled but inequality constraints are assumed to be feasible
with AIl

x− bIl ≥ 0. An algorithm overcoming this issue was proposed in Gill
et al (1986) where the initial feasible point is determined by minimizing the
sum of infeasibilities. However, the algorithm fails when no feasible but only an
optimal infeasible point AIl

x− bIl < 0 exists. The solvers proposed in Kanoun
et al (2011); Escande et al (2014); Dimitrov et al (2015) are based on the ASM
and are able of handling all the above cases by virtue of relaxation with slack
variables. Similarly, we introduce the notion of active constraints into (2) ((2)
is equivalent to (1) only if all inequality constraints on all levels are feasible):

min.
x,vEl ,vIl

1

2
‖vEl
‖2 +

1

2
‖vIl‖

2 l = 1, . . . , p (HLSP)

s.t. AEl
x− bEl

= vEl

AIl
x− bIl ≥ vIl

AA∪l−1
x− bA∪l−1

= v∗A∪l−1

AI∪l−1
x− bI∪l−1

≥ 0

The active set A∪l−1 represents all equality constraints E∪l−1 and the inequal-
ity constraints of I∪l−1 that were infeasible and violated by v∗A∪l−1

at the
optimal points of the levels 1 to l − 1. Consequently, I∪l−1 are the remaining
inequality constraints that were feasible and satisfied at the optimal points of
the levels 1 to l−1 and which are labeled as ‘inactive’. More details on setting
these active sets are given in Sec. 3.3.

The aim of the optimization problem is

1. to find the feasible or optimal infeasible point v∗
El

and v∗
Il

of the equality
and inequality constraints El and Il of the current level l
→ IPM

2. while keeping the inactive inequality constraints I∪l−1 of the previous levels
1, . . . , l − 1 feasible with AI∪l−1

x− bI∪l−1
≥ 0

→ IPM

Springer Nature 2021 LATEX template

NIPM-HLSP 9

3. and while keeping the active constraints A∪l−1 of the previous levels
1, . . . , l − 1 optimal at the current violation v∗A∪l−1

→ Nullspace method

The first and second point we achieve by the IPM as outlined below. The third
point is outlined in Sec. 3.2.

2.1 The Newton’s method in the IPM

We introduce two positive slack variables, wIl
for the inequality constraints

on the current level l, and wI∪l−1
for the inactive inequality constraints of the

previous levels. They are then penalized by the log function to avoid values
approaching zero (‘log-barrier’):

min
x

.
1

2
‖vEl
‖2 +

1

2
‖vIl‖

2 − σIl
µIl

∑

log(wIl
)− σI∪l−1

µI∪l−1

∑

log(wI∪l−1
)

s.t. AEl
x− bEl

= vEl

AIl
x− bIl − vIl = wIl

wIl
≥ 0

AA∪l−1
x− bA∪l−1

= v∗A∪l−1

AI∪l−1
x− bI∪l−1

= wI∪l−1

wI∪l−1
≥ 0 (3)

The Lagrangian of the optimization problem (3) is

L :=
1

2
‖vEl
‖2 +

1

2
‖vIl‖

2 − σIl
µIl

∑

log(wIl
)− σI∪l−1

µI∪l−1

∑

log(wI∪l−1
)

− λT
El
(AEl

x− bEl
− vEl

)− λT
Il
(AIl

x− bIl − vIl − wIl
)

− λT
A∪l−1

(AA∪l−1
x− bA∪l−1

− v∗A∪l−1
)− λT

I∪l−1
(AI∪l−1

x− bI∪l−1
− wI∪l−1

)

(4)

λ are the Lagrange multipliers associated with the corresponding constraints
El, Il, A∪l−1 and I∪l−1.

The first order optimality or KKT conditions K := ∇qL = 0 with the
variable vector q

q :=
[

xT vT
El

vT
Il

wT
Il

λT
A∪l−1

λI∪l−1
wT

I∪l−1

]T

(5)

Springer Nature 2021 LATEX template

10 NIPM-HLSP

are (after applying the substitutions vEl
= −λEl

and vIl = −λIl
)

Kl(q) =



























Kx,l

KvEl ,l

KvIl ,l

KwIl
,l

KλA∪l−1
,l

KλI∪l−1
,l

KwI∪l−1
,l



























:=



























AT
El
vEl

+AT
Il
vIl −AT

A∪l−1
λA∪l−1

−AT
I∪l−1

λI∪l−1

bEl
−AEl

x+ vEl

bIl −AIl
x+ vIl + wIl

wIl
⊙ vIl + σIl

µIl
e

bA∪l−1
−AA∪l−1

x+ v∗A∪l−1

bI∪l−1
−AI∪l−1

x+ wI∪l−1

λI∪l−1
⊙ wI∪l−1

− σI∪l−1
µI∪l−1

e



























=0

(KKT)

The operator ⊙ indicates the element-wise multiplication between two vectors.
e is a vector of 1’s of appropriate dimensions. The duality measures µ and the
centering parameter σ are given by (Vanderbei, 2013)

µIl
:= λT

Il
wi/(n+ml,i) (6)

µI∪l−1
:= λT

I∪l−1
wI∪l−1

/(n+mI∪l−1
) (7)

σIl
, σmI∪l−1

∈ [0, 1] (8)

The values can also be determined by Mehtrotra’s predictor-corrector algo-
rithm (Mehrotra, 1992), see Sec. 3.6.

The KKT conditions are non-linear. We linearize them by the
Newton’s method by applying the Newton step

Kl(q +∆q) ≈ Kl(q) +∇qKl(q)∆q (9)

The Lagrangian Hessian is given by

∇qKl(q) :=



























0 AT
El

AT
Il

0 −AT
A∪l−1

−AT
I∪l−1

0

−AEl
I 0 0 0 0 0

−AIl
0 I I 0 0 0

0 0 WIl
VIl

0 0 0

−AA∪l−1
0 0 0 0 0 0

−AI∪l−1
0 0 0 0 0 I

0 0 0 0 0 WI∪l−1
ΛI∪l−1



























(10)

The capital variables W = diag(w) ∈ R
m,m, V = diag(V) ∈ R

m,m and Λ =
diag(λ) ∈ R

m,m are the diagonal matrix equivalents of their vectors w ∈ R
m,

v ∈ R
m and λ ∈ R

m. I is an identity matrix of appropriate dimensions.

Springer Nature 2021 LATEX template

NIPM-HLSP 11

We sequentially apply substitutions for ∆vEl
, ∆vIl , ∆wI∪l−1

, ∆wIl
and

∆λI∪l−1
which leads to the hierarchical augmented system

[

Cl −AT
A∪l−1

−AA∪l−1
0

][

∆x

∆λA∪l−1

]

=

[

rl,1

rl,2

]

(11)

with

Cl := AT
El
AEl

+AT
Il

(

I + (VIl
−WIl

)−1WIl

)

AIl
+AT

I∪l−1
w−1

I∪l−1
λI∪l−1

AI∪l−1

(12)

and the right hand side

rl,1 := AT
A∪l−1

λA∪l−1
+AT

I∪l−1
F +AT

El
(bEl
−AEl

x) +AT
Il
G (13)

rl,2 := AA∪l−1
x− bA∪l−1

− w∗
A∪l−1

(14)

G and F are given by

Fl := λI∪l−1
+W−1

I∪l−1
(λI∪l−1

⊙ (bI∪l−1
−AI∪l−1

x) + σI∪l−1
µI∪l−1

e) (15)

Gl := bIl −AIl
x+ wIl

− (VIl
−WIl

)−1(σIl
µIl

e+ wIl
⊙ (AIl

x− bIl − wIl
))
(16)

respectively.

2.2 The iterative nature of the IPM

The linear hierarchical augmented system (11) of level l is now repeatedly
solved for the primal and dual steps ∆q. The IPM’s for finding the initial
feasible or optimal infeasible point require following dual feasibility conditions
to hold

vIl ≤ 0 and wIl
≥ 0 (17)

For the IPM of the inactive constraints we have

λI∪l−1
≥ 0 and wI∪l−1

≥ 0 (18)

These conditions are maintained by line search. The computed primal and dual
steps ∆q are then scaled by the line search factor α and added to the current
estimates of the primal and dual q ← q + α∆q. The Newton’s method termi-
nates once the norm of the non-linear KKT conditions ‖Kl(q)‖2 < ǫ (KKT) is
below a certain threshold ǫ = 10−12.

3 Computing the IPM for HLSP

Solving the augmented system (11) directly in a dense manner is inefficient
as the zero block in the lower right corner of the left hand side matrix would

Springer Nature 2021 LATEX template

12 NIPM-HLSP

be ignored (a sparse solver has been proposed for example in Pandala et al
(2019)). One way to circumvent this is to form the Schur complement (Bartlett
and Biegler, 2006; Domahidi et al, 2012)

∆x = C−1

l (rl,1 +AT
A∪l−1

∆λA∪l−1
) (19)

The resulting ‘Schur’ normal equations are given below (IPM-snf: Schur normal
form or Schur normal equations):

AA∪l−1
C−1

l AT
A∪l−1

∆λA∪l−1
= −rl,2 −AA∪l−1

C−1

l rl,1 (IPM-snf)

In order to obtain the primal step ∆x two decompositions per Newton iteration
are required, one for C−1

l and one for AA∪l−1
C−1

l AT
A∪l−1

. Efficient strate-

gies especially in the context of Model-Predictive-Control (MPC) leveraging
banded matrix structures have been proposed (Domahidi et al, 2012). However,
this still can prove inefficient, especially if the dual λA∪l−1

is not required for
later use (they might be required for example for Hessian computations (Pfeif-
fer et al, 2023)). We therefore describe in the following an algorithm based on
the nullspace method that only requires a single decomposition per Newton
iteration.

3.1 Algorithm for N IPM-HLSP

An overview of our algorithm N IPM-HLSP to resolve HLSP’s is given below:

1. Go through the hierarchy HLSP from level 1 to p.
2. For each level l, repeatedly compute the Newton step by solving N IPM-nf

or N IPM-ls formulated in Sec. 3.2 and Sec. 3.5, respectively. In case of the
Mehrotra’s predictor corrector algorithm (Sec. 3.6), first compute the affine
step ∆ aff and then the centered one ∆ . The symbol is a placeholder for
the different variables x, vIl , wIl

, wI∪l−1
and λI∪l−1

.
3. Line search for dual feasibility (17) and (18). Add step scaled by the line

search factor to current primal and dual estimate.
4. Upon convergence of the Newton’s method ‖K̃‖ ≤ ǫ, gather all inactive

inequality constraints from higher priority levels I∪l−1 that are saturated
and add them to the active set Al∗ of the virtual priority level l∗. The active
set assembly including the concept of virtual priority levels is explained in
Sec. 3.3. K̃ are the projected KKT conditions described in Sec. 3.4.

5. Compute its nullspace ZAl∗
, r ← N (AAl∗

) (the operator N (A) returns the
rank and a basis of the nullspace Z of the input matrix A) and project
lower priority levels and the remaining inactive inequality constraints into
it. Augment NA∪l∗

← NA∪l−1
ZAl∗

.
6. Add all equalities and the violated inequality constraints from level l to the

active set Al of level l. This is described in Sec. 3.3.
7. Compute its nullspace ZAl

, r ← N (AAl
) and project lower priority levels

and the remaining inactive inequality constraints into it. Augment NA∪l
←

NA∪l∗
ZAl

.

Springer Nature 2021 LATEX template

NIPM-HLSP 13

A pseudo-implementation of the algorithm is given in App. C.

3.2 N IPM-HSLP: The nullspace method based IPM for

HLSP

We first assume that rl,2 = 0 (14). This condition holds as x is updated
after every Newton iteration during the resolution of the higher priority levels
l = 1, . . . , l − 1 and is therefore feasible with respect to the active constraints
A∪l−1. We then apply the nullspace method (Nocedal and Wright, 2006) by
first introducing the variable change

∆x = NA∪l−1
∆z (20)

The nullspace basis NA∪l−1
of AA∪l−1

fulfills the condition AA∪l−1
NA∪l−1

= 0.
This means that AA∪l−1

∆x = 0 such that the condition rl,2 = 0 continues to
be fulfilled. An additional multiplication of the first row of (11) by NT

A∪l−1

from the left results in the ‘projected’ normal equations

NT
A∪l−1

ClNA∪l−1
∆z = NT

A∪l−1
rl,1 (N IPM-nf)

As can be seen, the primal step ∆z is directly obtained without the interme-
diate step of computing the Lagrange multipliers λA∪l−1

corresponding to the
active constraints A∪l−1. They can be obtained by solving

AT
A∪l−1

∆λA∪l−1
= Cl∆x− rl,1 (21)

An efficient recursive method of calculation is detailed in Appendix A. As
we detail in Sec. 3.4, we do not necessarily need to compute these Lagrange
multipliers after all.

We use the nullspace basis described in Nocedal and Wright (2006)

ZAl
= P

[

−R−1T

I

]

with AAl
= Q

[

R T

0 0

]

PT (22)

Resulting from a rank-revealing QR decomposition (RRQR) of AAl
, Q is an

orthogonal matrix, R is upper triangular, T is a rectangular matrix and P is
a permutation matrix. The bottom zero row is due to possible linear depen-
dencies in AAl

. This basis has variable reducing qualities (Björck, 1996) (i.e.
projected matrices are reduced in variables), projections are computed cheaply
due to the lower identity matrix and it can be reused for the calculation of the
Lagrange multipliers (App. A). While this basis is partly sparse, its projec-
tions are dense if there is any density in the factors R or T . The accumulated
nullspace basis NA∪l

is computed by NA∪l
= ZA1

. . . ZAl
.

Springer Nature 2021 LATEX template

14 NIPM-HLSP

3.3 Active set assembly and virtual priority levels

Once the Newton’s method of a priority level l has converged, inactive con-
straints I∪l−1 from previous levels 1 to l − 1 are either saturated with
AI∪l−1

x − bI∪l−1
= 0 or satisfied with AI∪l−1

x − bI∪l−1
> 0. Additionally,

inequality constraints Il from the current level l are either satisfied with
AIl

x − bIl ≥ 0 or violated with AIl
x − bIl < 0. In order to be able to proceed

with the cascade-like resolution of the next priority level we need to determine
two distinct active sets Al∗ and Al (such that A∪l := A1∗∪A1∪· · ·∪Al∗∪Al).
The index l∗ represents a ‘virtual’ priority level whose active set Al∗ contains
saturated constraints from I∪l−1. This is necessary as the projection of I∪l−1

into the nullspace basis of the active constraints Al of level l would contradict
the priority order. Therefore, a virtual priority level l∗ has lower priority than
level l− 1 but higher priority than level l whose active set Al comprises of the
equality constraints El and the activated constraints from Il.

We activate a constraint c ∈ I∪l−1 if the corresponding pair of slack and
Lagrange multiplier fulfills the conditions

wI∪l−1
(c) < ξ and λI∪l−1

(c) > ξ (23)

While wI∪l−1
(c) < ξ ensures that only saturated constraints are activated,

the condition λI∪l−1
(c) > ξ only selects constraints that are in significant

conflict with constraints from level l and are not just accidentally saturated, for
example by a randomly chosen initial point. Otherwise the ability of resolving
the lower priority level l is artificially restricted by an unnecessarily inflated
active set A∪l−1.

The threshold ξ = 10−8 is necessary as the Newton’s method is usually
not run to complete convergence ‖Kl‖2 = 0 but stopped earlier with some
threshold ‖Kl‖2 < ǫ. The small choice for ξ requires the Newton’s method to
converge to a similarly accurate degree ǫ = 10−12 in order to have an accurate
value of the dual wI∪l−1

and λI∪l−1
.

The following steps are conducted for the virtual priority level l∗:

1. Add the newly activated constraints from I∪l−1 to Al∗ as a ‘virtual’ priority
level l∗.

2. Calculate the nullspace basis ZAl∗
of AAl∗

NA∪l−1
and project lower priority

levels and the remaining inactive inequality constraints into it.
3. Augment NA∪l−1

to NA∪l∗
= NA∪l−1

ZAl∗

Now we handle the violated constraints from level l for the active set Al. A
constraint c ∈ Il is activated if the following conditions are fulfilled:

wIl
(c) < ξ and vIl(c) < −ξ (24)

Following steps complete the active set assembly:

1. Assemble the active set Al of level l with all equality constraints and the
active inequality constraints.

Springer Nature 2021 LATEX template

NIPM-HLSP 15

2. Inactive constraints are added to I∪l. Note that in the case of bound con-
straints we check whether the variable is already constrained by the same
constraint. If this is the case, no new constraint is added and the tighter
bound of the two is used as the new right hand side bI∪l

. This prevents
unnecessarily increasing the size of I∪l. Note that this is already implied
by the set union symbol ∪.

3. Calculate the nullspace basis ZAl of AAl
NA∪l∗

and project lower priority
levels and the remaining inactive inequality constraints into it.

4. Augment N∪Al∗
to NA∪l

= NA∪l∗
ZAl

.

3.4 Avoiding the calculation of ∆λA∪l−1

The cost of calculating the dual step ∆λA∪l−1
associated with the equality

constraints A∪l−1 is of magnitude O(r2A∪l−1
). The rank of AA∪l−1

is given as
rA∪l−1

. However, we do not necessarily need to update the Lagrange multipli-
ers λA∪l−1

since none of the other primal or dual variables depend on them.
Additionally, we can explicitly calculate λA∪l−1

by solving Kx,l = 0 (KKT).
This is in contrast to the augmented system (11) or the Schur normal
equations (IPM-snf) which require the calculation of the dual step in order to
obtain the primal step.

The dual λA∪l−1
is only necessary for the evaluation of the norm of

Kl (KKT) to determine whether the IPM has converged with ‖Kl‖2 < ǫ.
However, we can instead use the projected KKT conditions (we only show the
relevant components)

K̃x,l := NT
A∪l−1

(AT
El
vEl

+AT
Il
vIl −AT

I∪l−1
λI∪l−1

) (25)

K̃λA∪l−1
,l := NT

A∪l−1
(bA∪l−1

−AA∪l−1
x+ v∗A∪l−1

) = 0 (26)

The nullity of the second equation holds since we already have ensured primal
feasibility v∗A∪l−1

of the active constraints A∪l−1 when resolving the previous
levels 1, . . . , l − 1. Furthermore, any nullspace step ∆x = NA∪l−1

∆z does not
influence KλA∪l−1

,l since AA∪l−1
(x+NA∪l−1

∆z) = AA∪l−1
x.

3.5 The least-squares form of the N IPM-HLSP

N IPM-nf can be rewritten to least squares form

min.
∆z

∥

∥

∥

∥

∥

∥

∥

∥









√

w−1
I∪l−1

λI∪l−1
ÃI∪l−1

√

I + (VIl
−WIl

)−1WIl
ÃIl

ÃEl









∆z−









√

wI∪l−1
λ−1
I∪l−1

F
√

I + (VIl
−WIl

)−1WIl

−1
G

bEl
−AEl

x









∥

∥

∥

∥

∥

∥

∥

∥

2

(N IPM-ls)

F and G are defined in (15) and (16), respectively. We use the notation M̃ :=
MNA∪l−1

. The above is well defined as we show in the following.

Springer Nature 2021 LATEX template

16 NIPM-HLSP

Theorem 1. The expressions under the square root of N IPM-ls are non-

negative.

Proof W
−1
I∪l−1

ΛI∪l−1
≥ 0 and WI∪l−1

Λ−1
I∪l−1

≥ 0 follow directly from (18). Fur-

thermore, for
√

I + (VIl −WIl
)−1WIl

we have VIl −WIl
≤ 0 because of the dual

feasibility conditions (17). This leads to

I + (VIl −WIl
)−1

WIl
≥ 0 ↔ VIl ≤ 0 (27)

which is true and ensured by (17). �

The least-squares form has the advantage that the (substituted) Lagrangian
Hessian (12) does not need to be computed. On the other hand, solving the
system N IPM-ls requires a more expensive rank revealing decomposition (for
example QR decomposition). Following our considerations from Sec. 4, we use
the condition

nr >
3

5
(mI∪l−1

+mEl
+mIl

) (28)

to decide whether the least-squares form (N IPM-ls) is more appropriate than
the projected normal equations (N IPM-nf).

The above implies that the least-squares form is more efficient for a high
ratio of number of variables to number of constraints (nr ≫ m). Yet, effi-
cient parallel decomposition methods for tall matrices (m ≫ nr) have been
evaluated for example in Sauk et al (2020). Furthermore, the above condition
neglects the circumstance that the least-squares form can potentially main-
tain a high degree of sparsity of the constraint matrices A. In future work we
therefore aim to implement a sparse version of the solver, for example based
on sparsity maintaining nullspace bases as proposed in Gill et al (1987).

3.6 Mehrotra’s predictor corrector algorithm

In the following we adapt Mehrotra’s predictor-corrector algorithm (Mehrotra,
1992) to HLSP. It enables fast convergence of the Newton’s method by choosing
σI∪l−1

and σIl
appropriately. The algorithm for LSP is described in Nocedal

and Wright (2006) (Alg. 16.4) and only requires slight adaptations for HLSP
which are detailed in Appendix B.

Even though the primal (O(n2
r)) needs to be computed twice per Newton

iteration this effort is negligible in comparison to the cost of computing a
decomposition (O(n3

r)) of the linear systems N IPM-nf or N IPM-ls.

4 Computational complexity of N IPM-HLSP

4.1 Computational complexity of single Newton iteration

Table 1 details the number of operations per Newton iteration for the
Schur (IPM-snf) and projected normal equations (N IPM-nf) and the least
squares form (N IPM-ls). The projected normal equations (4 steps) and the
least squares form (3 steps) require less steps per Newton iteration than

Springer Nature 2021 LATEX template

NIPM-HLSP 17

Table 1 Necessary steps (#) per Newton iteration and their number of operations for the
different IPM formulations for HLSP.

IPM-snf N IPM-nf N IPM-ls

1.
Form Cl (12):
O((mEl

+ mIl
+

mI∪l−1
)n2)

Form NT

A∪l−1
ClNA∪l−1

:

O((mEl
+ mIl

+
mI∪l−1

)n2
r)

QR decomposition
of N IPM-ls:
O(2n2

r(mI∪l−1
+ mEl

+

mIl
)− 2n3

r/3)

2.
LDLT decomposition of
Cl: O(n3/3)

LDLT decomposition
of NT

A∪l−1
ClNA∪l−1

:

O(n3
r/3)

Solve for ∆z: O(n2
r)

3.

Form matrix
AA∪l−1

C−1

l
AT

A∪l−1
:

O(mA∪l−1
n2 +m2

A∪l−1
n)

(Domahidi et al, 2012)

Solve for ∆z: O(n2
r) ∆x = N∆z: O(nnr)

4.

LDLT decomposition of
AA∪l−1

C−1

l
AT

A∪l−1
:

O(m3

A∪l−1
/3)

∆x = NA∪l−1
∆z: O(nnr)

5.

Calculate dual step
∆λA∪l−1

(IPM-snf):

O(m2

A∪l−1
)

6.
Calculate primal step ∆x
(19): O(n2)

∑
O((mEl

+mIl
+mI∪l−1

+

n/3+mA∪l−1
+1)n2+(n+

mA∪l−1
/3 + 1)m2

A∪l−1
)

O((mEl
+mIl

+mI∪l−1
+

1 + nr)n2
r + nnr)

O(2n2
r(mI∪l−1

+ mEl
+

mIl
)− 2n3

r/3 + n2
r + nnr)

the Schur normal equations (6 steps). However, both the projected normal
equations (N IPM-nf) and the least squares form (N IPM-ls) require the cal-
culation of a nullspace basis ZAl−1

of AA∪l−1
in O(2m2

A∪l−1
n − 2/3m3

A∪l−1
)

at the beginning of the Newton’s method of each level. Furthermore, the pro-
jections AEl

ZAl−1
(O(2mEl

nnr)), AIl
ZAl−1

(O(2mIl
nnr)) and AI∪l−1

ZAl−1

(O(2mI∪l−1
nnr)) are required. Nonetheless, with the additional effect of vari-

able reduction due to the nullspace projections (Björck, 1996) we demonstrate
in our evaluation (Sec. 5.1) that N IPM-HLSP is equivalently fast or faster
than the Schur normal form. This holds even for equality only problems where
convergence is achieved within one Newton iteration without offsetting the
overhead of the nullspace method over several Newton iterations.

4.2 N IPM-HLSP’s overall performance

A measure for the operational cost of N IPM-HLSP dependent on the number
of Newton iterations is given by

cN IPM-HLSP := (29)

Springer Nature 2021 LATEX template

18 NIPM-HLSP

p
∑

l=1

ιl · cIPM(nr,mI∪l−1
+mIl

,mEl
) + cN ,IPM(mAl∗

,mAl
,mI∪l

,ml+1:p, nr)

The first component reflects the cost cIPM of resolving the Newton’s method
of each level with ιl Newton iterations as is listed in Tab. 1. The main compu-
tational load originates from solving the linear systems N IPM-nf or N IPM-ls.
The cost is a function of the number of remaining variables nr, the number
of active constraints mAl∗

and mAl
of each respective level, the number of

inactive constraints from the previous levels mI∪l−1
, the number of equalities

and inequalities of the current level mIl
and mEl

and finally the number of
all equality and inequality constraints from the remaining levels ml+1:p. Sec-
ondly, once the Newton’s method of level l converges, the nullspace bases of
the active-sets Al∗ and Al have to be computed. Furthermore, the remaining
levels l+1, . . . , p and inactive constraints I∪l need to be projected into it. This
is reflected in the nullspace projection cost cN ,IPM.

In comparison, the pseudo-cost of the ASM in resolving the HLSP is
composed as follows:

cASM :=

ι
∑

i=1

p
∑

l=1

cN ,ASM(mAl
,ml+1:p, nr) (30)

ι are the number of active set iterations. Note that the cost of the ASM cASM

is included in the projection cost cN ,ASM (computation of a rank revealing
QR decomposition of the current level with mAl

active constraints; mAl
also

counts the activated constraints from higher priority levels 1 to l− 1). As can
be seen, the nullspace projection of the whole active set needs to be repeated
for each active set iteration whereas N IPM-HLSP needs to project the whole
HLSP (including inactive constraints) only once per HLSP resolution. This
leads to less operations for N IPM-HLSP in case of large number of active set
iterations for the ASM. Note that unlike the IPM, the ASM does not need to
consider the mI∪l

inactive inequality constraint. This can be computationally
advantageous depending on the problem’s dimensions (see condition (28) as a
reference).

5 Evaluation

We employ our solverN IPM-HLSP (N IPM-nf: projected normal form,N IPM-
ls: least-squares form) first on equality only constrained HLSP’s of two levels
p = 2 to gain some insights into its computational efficiency (Sec. 5.1). Espe-
cially, we are interested in how it fares in comparison to the Schur normal
equations (IPM-snf: Schur normal form).

Secondly, we use the solver within the sequential hierarchical least-squares
programming solver with trust region (S-HLSP) presented in Pfeiffer et al

Springer Nature 2021 LATEX template

NIPM-HLSP 19

(2023) to solve NL-HLSP’s of the form (as a sub-form of LMOO)

min
u,vElvIl

1

2
‖vEl
‖2 +

1

2
‖vIl‖

2
l = 1, . . . , p (NL-HLSP)

s.t. fEl
(u) = vEl

fIl(u) ≥ vIl
fA∪l−1

= v∗A∪l−1

fI∪l−1
≥ vI∪l−1

f ∈ R
m are non-linear task functions dependent on the variable vector u ∈ R

n.
v ∈ R

m are slack variables and v∗ ∈ R
m are the optimal ones. S-HLSP

repeatedly linearizes the NL-HLSP to HLSP ‘sub-problems’ around the cur-
rent working point u (with the constraint matrices A and vectors b representing
this linearization, for example as Jacobians and Hessians of f). The result-
ing step x from a HLSP sub-problem solver (for example N IPM-HLSP) is
then used to make an approximate step u ← u + x within the non-linear
model. The trust region radius limits the step ‖x‖∞ < ρ in order to main-
tain validity of the linear approximation (HLSP) with respect to the original
problem (NL-HLSP). In all following examples, the trust region radius con-
straint is formulated on level 0 of the HLSP’s. S-HLSP employs a real-time
capable trust-region radius adaptation method with local convergence prop-
erties. Other non-linear programming methods like filter methods with global
convergence properties (Fletcher et al, 2002) require the recomputation of sub-
problem steps x with different trust-region radii. Since this is not possible
in real-time control due to computational limitations, every step is accepted.
Instead, the trust region radius is only adapted (increased for valid step,
decreased for invalid step) in the following control iteration (for more details
see Pfeiffer et al (2018)).

Given the conceptual context of S-HLSP as in Pfeiffer et al (2023), we
accordingly sample our simulations from different robot control scenarios. All
constraints f(u) therefore consist of either non-linear trigonometric functions
or linear bound constraints on the robot variables u (joint velocities, joint
torques, contact forces). This lets us design ill-posed problems commonly found
in instantaneous robot control resulting from singular kinematic configura-
tions of the robot. In these situations, first-order linearizations (Jacobians of
the constraints f(u)) of the NL-HLSP become ill-posed or singular. Effective
solutions to counter these situtations have been proposed, for example in form
of regularization (Chiaverini, 1997) or higher-order approximations (Pfeiffer
et al, 2023). For all robot control scenarios, one HLSP sub-problem is solved
per control iteration.

We first evaluate a kinematic robot control example (p = 5, see Sec. 5.2).
The evaluation is continued with a dynamic robot simulation depicting the
effect of a larger number of variables and inequality constraints and ill-posed
constraints due to singularities on the solver timings (p = 6, Sec. 5.3). The

Springer Nature 2021 LATEX template

20 NIPM-HLSP

evaluation is concluded with a push simulation in order to observe the distinc-
tive difference in behavior between the ASM and IPM in case of a singular
instance of a large change of the active set (p = 5, Sec. 5.4). For the sim-
ulations we use the HRP-2Kai humanoid robot with 38 degrees of freedom
(DoF) (Kaneko et al, 2015).

For comparison, we solve the HLSP’s directly with the ASM solver
LexLS ((Dimitrov et al, 2015), https://github.com/jrl-umi3218/lexls), and in
sequence (Kanoun et al, 2009) by the quadratic programming (QP) solvers
OSQP (Stellato et al, 2020) based on the alternating direction of multipliers
method (ADMM) and the proprietary barrier solver GUROBI (Gurobi Opti-
mization, 2021). Unlike our dense solver N IPM-HLSP, the two latter are
sparse solvers. For OSQP, warm-starting of each level is disabled since the
problem size can change over the course of the simulation due to constraint
activations and deactivations. Since ADMM based solvers have the tendency
to converge with only moderate accuracy, OSQP possesses the functionality
to make an educated guess about the active set (‘polishing’). We enable this
functionality for the second (Sec. 5.3) and third simulation (Sec. 5.4). Oth-
erwise, LexLS (iteration limit: 200), OSQP and GUROBI are used at their
standard settings. In case of N IPM-HLSP we limit the number of IPM iter-
ations to 20. The projected normal equations (N IPM-nf) are solved by a
regularized LDLT decomposition (robust Cholesky decomposition with pivot-
ing (Bunch and Parlett, 1971), plus diagonal regularization with a small weight
of 1 · 10−6). The least-squares form (N IPM-ls) is solved by the rank revealing
QR decomposition.

We depict the overall solver times, the required number of iterations (for
OSQP both iterations and number of factorization updates as a dashed line),
the time per Newton iteration (solver time divided by number of iterations;
not for LexLS and OSQP) and the maximum KKT norm of all the levels
(not for LexLS since it does not keep an update of the dual corresponding
to inactive inequality constraints). The simulations are run on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz processor with 32 Gb of RAM.

5.1 Solving equality only LSP’s

Figure 1 shows the computation times for the different solvers when an equality
only, dense LSP is solved (p = 2, n = 60 variables). The number of constraints
of the first level AE1

∈ R
mE1

,n is chosen to mE1
= 0, 15, 30, 45, 60. The number

of constraints mE2
on the second level ranges from 0 to 240.

It can be observed that the problems are solved the fastest for most prob-
lems by our solver N IPM-nf. The LSP is solved at the same speed by IPM-snf
when there are no equality constraints on the first level. In this case both prob-
lems are equivalent since IPM-snf only needs to do steps 2 and 6 of Tab. 1.
Similarly, N IPM-nf only needs to do steps 2 and 3. For the same problem
constellation, both OSQP and GUROBI require much greater computation
times due to computational overhead of handling dense problems sparsely.
Therefore, for mE1

> 0 we do not report their results for the sake of better

Springer Nature 2021 LATEX template

22 NIPM-HLSP

N IPM-ls and LexLS are slower than N IPM-nf except if both mE1
and

mE2
are low. At the same time N IPM-ls is slower than LexLS which re-uses

the QR decomposition for resolving the primal step to compute the nullspace
basis of the active constraints. Additionally, LexLS implements a very efficient
in-place block decomposition with minimal memory access overhead.

As the number of equality constraints mE1
increases, all nullspace method

based solvers N IPM-nf, N IPM-ls and LexLS make up for the computation
time of the nullspace basis computation ZE1

and projection AE2
ZE1

as increas-
ingly smaller problems nr < n need to be solved on the second level. This is
in contrast to IPM-snf where an increasingly more expensive second Cholesky
decomposition of AE1

C−1
2 AE1

needs to be computed. Eventually, nr = 0 for
mE1

= n = 60 which means that N IPM-nf, N IPM-ls and LexLS finish after
solving the first level.

This evaluation shows that the projected normal equations (N IPM-nf)
are computationally equivalent or superior with respect to the Schur normal
form (IPM-snf) in the limit case of equality constraints only. Since in the
presence of inequalities the computational burden of the nullspace method
for N IPM-nf will be further offset over the solver iterations, we do not further
consider IPM-snf throughout the remainder of the evaluation.

5.2 Kinematic robot control

Table 2 NL-HLSP A with p = 5 and n = 38 for the humanoid robot HRP-2.

l Constraint fl(u) ≧ vl

1 Lower and upper joint angle limits (76 ineq.)

2 Two feet and left hand position and orientation (18 eq.)

3 Center of mass, medial and lateral (2 ineq.)

4 Right hand position (3 eq.)

5 Joint velocity regularization (38 eq.)

In this example, we demonstrate the computational efficiency of N IPM-
HLSP within the S-HLSP solver (Pfeiffer et al, 2023) for non-linear real-time
robot control problems. We design a stretch demonstration with the HRP-2Kai
robot according to the control hierarchy A given in Tab. 2. The constraints f
can represent equality and inequality constraints which is indicated by the sym-
bol ≧. Each constraint’s type (inequality, ineq.; equality, eq.) and dimension
is given in brackets. The first level limits the robot’s joint angles. The second
level contains kinematic position constraints for both feet to be on the ground
and the left hand to be grabbing onto a pole in front of the robot. On the next
level the center of mass (CoM) is asked to stay within the 2D projected outer
area of the feet on the ground. On the next level the right hand aims to reach
an out-of-reach target on the upper right side of the robot. Finally, a regular-
ization task on the joint velocities ensures full rank of the overall hierarchy.

Springer Nature 2021 LATEX template

28 NIPM-HLSP

the same computation time per solver iteration as GUROBI. This can be
explained by the large degree of variable elimination of 32% from 74 to 50
variables after the first priority level, see second graph from the bottom of
Fig. 6.

LexLS fails to find a reasonable approximation of the true active set within
the given limit of 200 iterations in many control iterations. The high frequency
oscillations of the robot due to the kinematic singularities are associated with
large changes of the active-set. This leads to the feet losing contact and the
right arm swaying uncontrollably, see Fig. 5. Also, such a large number of
active set iterations causes LexLS to violate the real-time constraint with
computation times of about 37 ms.

OSQP converges with a maximum KKT norm of about 0.14 on level 3.
While the hierarchy is mostly resolved around 2 ms faster than by IPM-ASM,
there are many instances where OSQP requires both a high number of iter-
ations and factorization updates. This leads to computation times of up to
42 ms (8175 iterations, 9 factorization updates). We observed that the main
challenge of solving HLSP by the ADMM is to maintain feasibility of the
subsequent LSP’s due to the inherent moderate convergence accuracy of the
ADMM. As can be seen from the KKT norms in Fig. 7, there is always a level
where the polishing process fails such that the corresponding level converges
at about 10−3. This negatively influences the determination of the optimal
infeasible points. While this may be acceptable for LSP’s it is problematic
for HLSP’s since wrongly determined violations v∗A∪l−1

render the subsequent
priority levels infeasible and eventually lead to solver failure. We explicitly
recalculate the violations vEl

= AEl
x− bEl

and vIl = AIl
x− bIl at convergence

of each priority level which can slightly mitigate this circumstance. Promising
progress in terms of accuracy of the ADMM has been documented for example
in Bambade et al (2022).

5.4 Dynamic robot control - Handling a push

While the previous example in Sec. 5.3 is interesting from a numerical point of
view, there exist various regularization methods to prevent such numerically
unstable behavior (Chiaverini, 1997; Pfeiffer et al, 2023). This last example
therefore looks at a situation which may occur in a real robot situation, namely
handling a push. For this we use the control hierarchy B given in Tab. 3 with
slight modifications. The level l = 4 is omitted such that p = 5. Instead of an
inequality constrained CoM, the CoM position is fully controlled by equality
constraints in all three spatial directions (l = 3).

The robot is asked to lower its CoM. During this process at control iter-
ation 400, a push from behind of magnitude 800 N is applied to the upper
body. As can be seen from Fig. 8, this leads to a singular instance of a large
number of 132 active set iterations which takes LexLS approximately 50 ms
to resolve. This comes from an unfavorable interplay between the trust region
and the joint torque limits caused by possibly ill conditioned equations of
motion (Maciejewski, 1990).

Springer Nature 2021 LATEX template

30 NIPM-HLSP

The push leads to the CoM of the robot being shifted to the front and
increases the error norm of the CoM task as can be seen from the bottom
graph. The difference in CoM behavior seen for GUROBI is due to a regular-
ization term on the joint velocities and contact forces, which amounts to the
reformulated cost function min.x,vEl ,vIl

1

2
10−5‖x‖2+ 1

2
‖vEl
‖2+ 1

2
‖vIl‖

2 ,
l = 1, . . . , p for the HLSP. Otherwise we observed numerical difficulties.

6 Conclusion

With this work we have formulated the IPM for HLSP resulting in the solver
N IPM-HLSP based on the nullspace method. It requires only a single decom-
position of the KKT system per Newton iteration instead of two. This proves
computationally equivalent or superior with respect to the IPM in Schur
normal form. Our simulations showed that N IPM-HLSP resolves ill-posed
problems without significant variations in solver iterations or computation
times. In contrast, the ASM tends to require high number of active set iter-
ations in dynamic or numerically unstable control situations due to ill-posed
constraint matrices. Our N IPM-HLSP formulation therefore may be preferred
to the ASM if solver predictability is regarded more important than very fast
computation times but limited by instances of unsuccessful active set searches.

While N IPM-HLSP is reasonably efficient, we see further potential for
algorithmic improvements, for example by a sparse solver formulation, heuris-
tically reducing the number of inactive constraints or restricting the number
of Newton iterations as seen in Wang and Boyd (2010). The last point may
require a primal feasible formulation (primal-barrier interior-point method) of
our solver. We further believe that our formulation of the nullspace method
based IPM for HLSP is not only relevant for instantaneous robotic control but
for example in model predictive control (MPC). Special attention requires its
block diagonal structure which may be exploited for computational efficiency
for example by tailored nullspace bases.

7 Declarations

Part of this work was supported by New York University NSF grants 1925079,
1825993.

Springer Nature 2021 LATEX template

NIPM-HLSP 31

Appendix A Recursive computation of the
Lagrange multipliers associated
with active constraints

(21) can be rewritten to

AT
A∪l−1

∆λA∪l−1
=











AA∪l−1

AI∪l−1

AIl

AEl











T 









−λA∪l−1

D

E

AEl
(x+∆x)− bEl











(A1)

with

D := −λI∪l−1
−W−1

I∪l−1
(λI∪l−1

⊙ (bI∪l−1
−AI∪l−1

(x+∆x)) + σI∪l−1
µI∪l−1

e)

(A2)

and

E :=
(

I + (VIl
−WIl

)−1WIl

)

AIl
∆x+AIl

x− bIl − wIl
(A3)

+ (VIl
−WIl

)−1(σIl
µIl

e+ wIl
⊙ (AIl

x− bIl − wIl
))

The Lagrange multipliers can be calculated recursively by

NT
A∪j−1

AT
Aj

∆λAj
= NT

A∪j−1















AI∪l−1

AIl

AEl







T





D

E

AEl
(x+∆x)− bEl






−

l−1
∑

k=j+1

AT
Ak

∆λAk









(A4)

with j = l − 1, . . . , 1. For nullspace basis Zl of the form (22), the QR
decompositions of AAl

NA∪l−1
can be reused.

Appendix B Mehrotra’s predictor corrector
algorithm for N IPM-HLSP

First, a decomposition of the projected normal equations (N IPM-nf) or the
least squares form (N IPM-ls) is computed. Note that this only needs to be
done once per Newton iteration. It is then used to first calculate the affine
scaling step ∆zaff, ∆xaff, ∆waff

Il
, vaff

Il
, ∆waff

I∪l−1
and ∆λaff

I∪l−1
with

σI∪l−1
= 0 and σIl

= 0 (B5)

Faff := λI∪l−1
−W−1

I∪l−1
λI∪l−1

(AI∪l−1
x− bI∪l−1

)

Springer Nature 2021 LATEX template

32 NIPM-HLSP

Gaff := bIl + wIl
−AIl

x− (VIl
−WIl

)−1WIl
(AIl

x− bIl − wIl
)

Line search αaff is conducted in order to keep the dual feasible with wIl
+

αaff∆waff
Il
≥ 0, vIl + αaff∆vaff

Il
≤ 0, wI∪l−1

+ αaff∆waff
I∪l−1

≥ 0 and λI∪l−1
+

αaff∆λaff
I∪l−1

≥ 0.
With this information we calculate the corrector step ∆z, ∆x, ∆vIl , wIl

,
∆wI∪l−1

and ∆λI∪l−1
with

σI∪l−1
:= (µaff

I∪l−1
/µI∪l−1

)3 and µI∪l−1
:= λT

I∪l−1
wI∪l−1

/mI∪l−1
(B6)

µaff
I∪l−1

:= (λI∪l−1
+ αaff∆λaff

I∪l−1
)T (wI∪l−1

+ αaff∆waff
I∪l−1

)/mI∪l−1

σIl
:= (µaff

Il
/µIl

)3 and µIl
= −vT

Il
wIl

/mIl

µaff
Il

:= (vIl + αaff∆vaff
Il
)T (wIl

+ αaff∆waff
Il
)/mIl

For the corrector step we furthermore have

KwI∪l−1
,l := vIl ⊙ wIl

+∆vaff
Il
⊙∆waff

Il
+ σIl

µIl
e (B7)

KwIl
,l := λI∪l−1

⊙ wI∪l−1
+∆λaff

I∪l−1
⊙∆waff

I∪l−1
− σI∪l−1

µI∪l−1
e

such that

Dcor :=− λI∪l−1
−W−1

I∪l−1
(λI∪l−1

⊙ (bI∪l−1
−AI∪l−1

(x+∆x)) (B8)

−∆λaff
I∪l−1

⊙∆waff
I∪l−1

+ σI∪l−1
µI∪l−1

e)

Fcor :=λI∪l−1
+W−1

I∪l−1
(λI∪l−1

⊙ (bI∪l−1
−AI∪l−1

x)

−∆λaff
I∪l−1

⊙∆waff
I∪l−1

+ σI∪l−1
µI∪l−1

e)

Ecor :=−
(

I + (V1,I −W1,I)
−1WIl

)

AIl
−AIl

x+ bIl + wIl
− (V1,I −W1,I)

−1

(σIl
µIl

e+∆vaff
Il
⊙∆waff

Il
+ wIl

⊙ (AIl
x− bIl − wIl

))

Gcor :=bIl + wIl
−AIl

x− (VIl
−WIl

)−1

(σIl
µIl

e+∆vaff
Il
⊙∆waff

Il
+ wIl

⊙ (AIl
x− bIl − wIl

))

Appendix C Algorithm

Here we detail the implementation of N IPM-HLSP which can also be found
at https://www.github.com/pfeiffer-kai/NIPM-HLSP. Algorithm 1 describes
the overall routine. As input it requires a HLSP which contains information
about the number of priority levels p, the number of variables n and the lin-
ear constraints represented by A and b. Note that the active and inactive sets
A and I and the optimal slacks v∗ are not known yet. Alg. 2 summarizes the
predictor and corrector step calculation. Alg. 3 details the active set composi-
tions and projections. The symbol is a placeholder for the different variables
x, vIl , wIl

, wI∪l−1
and λI∪l−1

.

Springer Nature 2021 LATEX template

NIPM-HLSP 33

Algorithm 1 N IPM-HLSP

Input: HLSP
Output: x, λA∪p

1: r = 0
2: ι = 0
3: N = I
4: Ã = Ap

5: for l = 1 : p do

6: while ‖K̃l‖2 > ǫ & ι < maxIter do
7: αaff,∆xaff,∆vaff

Il
,∆waff

Il
,∆waff

I∪l−1
,∆λaff

I∪l−1
← solve(‘predictor’)

8: α,∆x,∆vIl ,∆wIl
,∆wI∪l−1

,∆λI∪l−1
←solve(‘corrector’, αaff,∆ aff)

9: Make step with = + α∆ for new x, wIl
, vIl , wI∪l−1

, λI∪l−1

10: ι← ι+ 1
11: end while

12: r,N, Ã← project(‘inactive’, r, wI∪l−1
, λI∪l−1

, N, Ã)
13: if r ≥ n then return x, λA∪p

end if

14: r,N, Ã← project(‘this level’, r, wIl
, vIl

, N, Ã)
15: if r ≥ n then return x, λA∪p

end if

16: end for

17: return x, λA∪p

Algorithm 2 solve

Input: type, αaff, ∆ aff

Output: α, ∆x, ∆vIl , ∆wIl
, ∆wI∪l−1

, ∆λI∪l−1

1: if type = ‘predictor’ then
2: Solve N IPM-nf or N IPM-ls for ∆z using B5
3: else

4: Solve N IPM-nf or N IPM-ls for ∆z using (B6), (B7) and (B8) with αaff

and ∆ aff

5: end if

6: ∆x = NA∪l−1
∆z

7: Calculate ∆vIl , ∆wIl
, ∆wI∪l−1

, ∆λI∪l−1
with ∆x

8: Line search for α such that (17) and (18) are fulfilled
9: return α, ∆x, ∆vIl , ∆wIl

, ∆wI∪l−1
, ∆λI∪l−1

References

Amaran S, Sahinidis N (2012) Global optimization of nonlinear least-squares
problems by branch-and-bound and optimality constraints. Top 20:1–19.
https://doi.org/10.1007/s11750-011-0178-8

Ansary MAT (2023) A newton-type proximal gradient method for nonlinear
multi-objective optimization problems. Optimization Methods and Software

Springer Nature 2021 LATEX template

34 NIPM-HLSP

Algorithm 3 project

Input: type, r, w, λ, N , Ã
Output: r, N , Ã

1: Al = {}
2: Il = {}
3: if type = ‘inactive’ then
4: for all c ∈ I∪l−1 do

5: if w(c) < ξ and λ(c) > ξ then

6: Al∗ ← {c,Al∗}
7: I∪l−1 ← I∪l−1 \ c
8: end if

9: end for

10: r̂, ZAl∗
← N (AAl∗

NA∪l−1
)

11: NA∪l∗
← NA∪l−1

ZAl∗

12: Ã← ÃZA∗
l

13: else

14: Al ← El

15: for all c ∈ Il do
16: if wI(c) < ξ and vI(c) < −ξ then

17: Al ← {c,Al}
18: else

19: Il ← {c, Il}
20: end if

21: end for

22: r̂, ZAl
← N (AAl

NA∪l∗
)

23: NA∪l
← NA∪l∗

ZAl

24: Ã← ÃZAl

25: end if

26: r = r + r̂
27: return r, NA∪l∗

or NA∪l

0(0):1–21

Bambade A, El-Kazdadi S, Taylor A, et al (2022) PROX-QP: Yet another
Quadratic Programming Solver for Robotics and beyond. In: RSS 2022 -
Robotics: Science and Systems, New York, United States, URL https://hal.
inria.fr/hal-03683733

Bartlett R, Biegler L (2006) Qpschur: A dual, active-set, schur-complement
method for large-scale and structured convex quadratic program-
ming. Optimization and Engineering 7:5–32. https://doi.org/10.1007/
s11081-006-6588-z

Bartlett RA, Wachter A, Biegler LT (2000) Active set vs. interior point strate-
gies for model predictive control. In: Proceedings of the 2000 American

Springer Nature 2021 LATEX template

NIPM-HLSP 35

Control Conference. ACC (IEEE Cat. No.00CH36334), pp 4229–4233 vol.6

Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point prob-
lems. Acta Numerica 14:1–137. https://doi.org/10.1017/S0962492904000212

Björck A (1996) Numerical Methods for Least Squares Problems. Soci-
ety for Industrial and Applied Mathematics, https://doi.org/10.1137/1.
9781611971484

Bunch JR, Parlett BN (1971) {D}irect methods for solving symmetric
indefinite systems of linear equations. {SIAM} {J}ournal of {N}umerical
{A}nalysis 8(4):639–655. https://doi.org/10.1137/0708060

Chiaverini S (1997) Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators. IEEE Transactions
on Robotics and Automation 13(3):398–410. https://doi.org/10.1109/70.
585902

Coleman TF (1984) Large Sparse Numerical Optimization. Springer-Verlag,
Berlin, Heidelberg

De Lasa M, Hertzmann A (2009) Prioritized optimization for task-space con-
trol. 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2009 3(2):5755–5762. https://doi.org/10.1109/IROS.2009.
5354341

Dimitrov D, Sherikov A, Wieber PB (2015) Efficient resolution of poten-
tially conflicting linear constraints in robotics, URL https://hal.inria.fr/
hal-01183003

Domahidi A, Zgraggen AU, Zeilinger MN, et al (2012) Efficient interior point
methods for multistage problems arising in receding horizon control. In: 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), pp 668–674

Escande A, Mansard N, Wieber PB (2014) Hierarchical quadratic program-
ming: Fast online humanoid-robot motion generation. The International
Journal of Robotics Research 33(7):1006–1028. https://doi.org/10.1177/
0278364914521306

Evtushenko Y, Posypkin M (2014) A deterministic algorithm for global multi-
objective optimization. Optimization Methods and Software 29(5):1005–
1019

Fathi Hafshejani S, Peyghami MR, Jahromi A (2020) An efficient primal-dual
interior point method for linear programming problems based on a new
kernel function with a finite exponential-trigonometric barrier term. Opti-
mization and Engineering 21. https://doi.org/10.1007/s11081-019-09436-3

Springer Nature 2021 LATEX template

36 NIPM-HLSP

Fletcher R, Leyffer S, Toint PL (2002) On the global convergence of a filter–
sqp algorithm. SIAM Journal on Optimization 13(1):44–59. https://arxiv.
org/abs/https://doinot.org/10.1137/S105262340038081X

Frison G, Diehl M (2020) Hpipm: a high-performance quadratic programming
framework for model predictive control✯✯this research was supported by
the german federal ministry for economic affairs and energy (bmwi) via
eco4wind (0324125b) and dyconpv (0324166b), and by dfg via research unit
for 2401. IFAC-PapersOnLine 53(2):6563–6569. https://doi.org/https://doi.
org/10.1016/j.ifacol.2020.12.073, 21th IFAC World Congress

Gill P, Hammarling S, Murray W, et al (1986) LSSOL (Version 1.0): a For-
tran Package for Constrained Linear Least-Squares and Convex Quadratic
Programming. User’s Guide. Defense Technical Information Center

Gill P, Murray W, Saunders M, et al (1989) Practical anti-cycling procedure for
linearly constrained optimization. Mathematical Programming 45:437–474.
https://doi.org/10.1007/BF01589114

Gill PE, Murray W, Saunders MA, et al (1987) Maintaining lu factors of a
general sparse matrix. Linear Algebra and its Applications 88-89:239–270

Guennebaud G, Jacob B, et al (2010) Eigen v3. http://eigen.tuxfamily.org

Gurobi Optimization L (2021) Gurobi optimizer reference manual

Hammarling S, Lucas C (2008) Updating the qr factorization and the least
squares problem

Herzog A, Righetti L, Grimminger F, et al (2014) Balancing experiments
on a torque-controlled humanoid with hierarchical inverse dynamics. IEEE
International Conference on Intelligent Robots and Systems pp 981–988.
https://doi.org/10.1109/IROS.2014.6942678

Herzog A, Rotella N, Mason S, et al (2016) Momentum control with hierarchi-
cal inverse dynamics on a torque-controlled humanoid. Autonomous Robots
40(3):473–491. https://doi.org/10.1007/s10514-015-9476-6

Holder A (2006) Partitioning multiple objective optimal solutions with appli-
cations in radiotherapy design. Optimization and Engineering 7. https:
//doi.org/10.1007/s11081-006-0352-2

Kaneko K, Morisawa M, Kajita S, et al (2015) Humanoid robot hrp-2kai -
improvement of hrp-2 towards disaster response tasks -. https://doi.org/10.
1109/HUMANOIDS.2015.7363526

Springer Nature 2021 LATEX template

NIPM-HLSP 37

Kanoun O, Lamiraux F, Wieber PB, et al (2009) Prioritizing linear equality
and inequality systems: Application to local motion planning for redundant
robots. 2009 IEEE International Conference on Robotics and Automation
(May):2939–2944. https://doi.org/10.1109/ROBOT.2009.5152293

Kanoun O, Lamiraux F, Wieber PB (2011) Kinematic control of redundant
manipulators: generalizing the task priority framework to inequality tasks.
IEEE Trans on Robotics 27(4):785–792. https://doi.org/10.1109/TRO.2011.
2142450

Karmarkar N (1984) A new polynomial-time algorithm for linear programming.
Combinatorica 4:373–395

Kuindersma S, Permenter F, Tedrake R (2014) An efficiently solvable quadratic
program for stabilizing dynamic locomotion. In: IEEE International Confer-
ence on Robotics and Automation, Hong Kong, China

Lai L, Fiaschi L, Cococcioni M, et al (2021) Handling priority levels in mixed
pareto-lexicographic many-objective optimization problems. In: Ishibuchi H,
Zhang Q, Cheng R, et al (eds) Evolutionary Multi-Criterion Optimization.
Springer International Publishing, Cham, pp 362–374

Li M, Zhang M, Huang K, et al (2021) A new primal-dual interior-point method
for semidefinite optimization based on a parameterized kernel function. Opti-
mization and Engineering 22. https://doi.org/10.1007/s11081-020-09516-9

Maciejewski AA (1990) Dealing with the ill-conditioned equations of motion for
articulated figures. IEEE Computer Graphics and Applications 10(3):63–71.
https://doi.org/10.1109/38.55154

Mehrotra S (1992) On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization 2:575–601. https://doi.org/10.
1137/0802028

Nesterov Y, Nemirovskii A (1994) Interior-Point Polynomial Algorithms in
Convex Programming. Society for Industrial and Applied Mathematics,
https://doi.org/10.1137/1.9781611970791

Nocedal J, Wright SJ (2006) Numerical Optimization, 2nd edn. Springer, New
York, NY, USA

Pandala AG, Ding Y, Park HW (2019) qpswift: A real-time sparse quadratic
program solver for robotic applications. IEEE Robotics and Automation
Letters 4(4):3355–3362. https://doi.org/10.1109/LRA.2019.2926664

Springer Nature 2021 LATEX template

38 NIPM-HLSP

Petelin G, Antoniou M, Papa G (2021) Multi-objective approaches to ground
station scheduling for optimization of communication with satellites. Opti-
mization and Engineering 24. https://doi.org/10.1007/s11081-021-09617-z

Pfeiffer K, Escande A, Kheddar A (2018) Singularity resolution in equality and
inequality constrained hierarchical task-space control by adaptive nonlinear
least squares. IEEE Robotics and Automation Letters 3(4):3630–3637. https:
//doi.org/10.1109/LRA.2018.2855265

Pfeiffer K, Escande A, Gergondet P, et al (2023) The hierarchical newton’s
method for numerically stable prioritized dynamic control. IEEE Trans-
actions on Control Systems Technology pp 1–14. https://doi.org/10.1109/
TCST.2023.3234492

Rao CV, Wright SJ, Rawlings JB (1998) Application of interior-point
methods to model predictive control. JOURNAL OF OPTIMIZATION
THEORY AND APPLICATIONS 99:723–757. https://doi.org/10.1023/A:
1021711402723

Sauk B, Ploskas N, Sahinidis N (2020) Gpu parameter tuning for tall and
skinny dense linear least squares problems. Optimization Methods and
Software 35(3):638–660. https://doi.org/10.1080/10556788.2018.1527331

Sherali HD, Soyster AL (1983) Preemptive and nonpreemptive multi-objective
programming: Relationship and counterexamples. Journal of Optimization
Theory and Applications 39:173–186. https://doi.org/10.1007/BF00934527

Stellato B, Banjac G, Goulart P, et al (2020) OSQP: an operator splitting
solver for quadratic programs. Mathematical Programming Computation
12(4):637–672. https://doi.org/10.1007/s12532-020-00179-2

Vanderbei R (2013) Linear Programming: Foundations and Extensions. Inter-
national Series in Operations Research & Management Science, Springer
US

Vanderbei RJ (1999) Loqo:an interior point code for quadratic programming.
Optimization Methods and Software 11(1-4):451–484. https://doi.org/10.
1080/10556789908805759

Wächter A, Biegler LT (2006) On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical
Programming 106:25–57

Wang Y, Boyd S (2010) Fast model predictive control using online optimiza-
tion. IEEE Transactions on Control Systems Technology 18(2):267–278.
https://doi.org/10.1109/TCST.2009.2017934

Springer Nature 2021 LATEX template

NIPM-HLSP 39

Yang Y (2022) A polynomial time infeasible interior-point arc-search algorithm
for convex optimization. Optimization and Engineering https://doi.org/10.
1007/s11081-022-09712-9

Ye Y, Todd M, Mizuno S (1994) An o(nl)-iteration homogeneous and self-dual
linear programming algorithm. Mathematics of Operations Research - MOR
19. https://doi.org/10.1287/moor.19.1.53

