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1. INTRODUCTION 

Deep neural networks (DNNs) have demonstrated superior 
performance in various intelligence tasks, such as image 
recognition, decision making, and language translation.1

−4 

Hardware accelerators capable of performing high-speed, 
energy-efficient, and parallel multiply−accumulate (MAC) 

operations are in high demand with the rapidly escalating 
DNN model size and data volume. However, electronic digital 
hardware accelerators, including but not limited to graphical 
processing units (GPUs), field-programmable gate arrays 
(FPGAs),5 and other digital application-specific integrated 
circuits (ASICs),6 are inevitably limited by millisecond-level 
latency, high energy consumption, excessive heat, and high 
interconnect cost.7,8 In contrast, analog neuromorphic 
computing represents a paradigm shift in efficient DNN 
acceleration, significantly increasing parallelism and energy 
efficiency.9,10 

The optical neural network (ONN) is a promising analog 
artificial intelligence (AI) accelerator that features low latency, 
wide bandwidth, and high parallelism of light.11−15 Earlier 

work has presented a range of high-performance integrated 
photonic neural networks that implement multilayer percep- 
trons (MLPs)11,16,17 or convolutional neural networks 
(CNNs).18,19 The fundamental matriX−vector multiplication 

(MVM) unit is realized using Mach−Zehnder interferometer 

(MZI) arrays or microring-resonator (MRR) arrays. By tuning 
the phase shifters in MZIs or the transmission of MRRs, these 
photonic systems are designed to implement universal linear 
operations or general matriX multiplication (GEMM) with a 
relatively high requirement in device control precision. Recent 
studies show that the construction of DNNs can move beyond 
conventional GEMM with restricted matriX parameter space, 
e.g., low-rank NNs20−22 and structured NNs,23−25 which 

shows not only considerable hardware efficiency improvement 
but also comparable representability to classical GEMM-based 
NNs. We refer to such NN architectures as subspace neural 
networks. The success of such a design concept can be 
reproduced in ONNs by trading the universality of weight 
representation for higher hardware efficiency. Several struc- 
tured ONNs have been proposed to reduce the number of 
optical components, e.g., the fast-Fourier-transform-based 
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ABSTRACT: The optical neural network (ONN) is a promising hardware 
platform for next-generation neurocomputing due to its high parallelism, low 
latency, and low energy consumption. Previous ONN architectures are 
mainly designed for general matriX multiplication (GEMM), leading to 
unnecessarily large area cost and high control complexity. Here, we move 
beyond classical GEMM-based ONNs and propose an optical subspace 
neural network (OSNN) architecture, which trades the universality of 
weight representation for lower optical component usage, area cost, and 
energy consumption. We devise a butterfly-style photonic−electronic neural 

chip to implement our OSNN with up to 7× fewer trainable optical 
components compared to GEMM-based ONNs. Additionally, a hardware- 
aware training framework is provided to minimize the required device 
programming precision, lessen the chip area, and boost the noise robustness. 
We experimentally demonstrate the utility of our neural chip in practical 
image recognition tasks, showing that a measured accuracy of 94.16% can be achieved in handwritten digit recognition tasks with 3 
bit weight programming precision. 

KEYWORDS: optical subspace neural network, butterfly-style photonic−electronic neural chip, hardware-aware training, hardware 
efficiency, deep learning 
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Figure 1. General architecture of the optical subspace neural network (OSNN). The hardware-aware training framework is shown in (a). The 
mathematical representation of one layer in our OSNN is shown in (b), where an m × n matriX is partitioned to mn blocks. The hardware 

representation of one layer is shown in (c), which consists of n* = n projection units (P units), m* = m butterfly-style transform units (B units), 
k k 

and m* × n* diagonal matriX units (Σ units). The fanout network and the combiner network are used to distribute and combine the optical signals 
to different optical paths. By setting phase shifters in B units and P units, several popular structured ONNs based on (1) fast Fourier transform and 
inverse fast Fourier transform, (2) Hadamard transform, or (3) other implementable transforms are shown in (d). (e) Schematic of 4×4 B, P, and Σ 
units, respectively, which are the building blocks of a four-point OSNN. To train the OSNN, we first perform an on-chip device calibration on our 
OSNN. The measurement data are learned and modeled in our hardware-aware training flow. Moreover, other factors such as the precision of 
controlling signals, limited extinction ratio (ER) of input modulators, and other noises are also considered in our training engine to improve the 
accuracy and robustness of our OSNN. 

(FFT-based) ONN.25−27 In this work, we further explore this 

subspace NN design concept in the optical domain and 
experimentally demonstrate a novel butterfly-style photonic− 
electronic neural chip (BPNC) with superior hardware 
efficiency and compactness. 

Additionally, noise-tolerant ONN training currently still 

lacks an efficient, scalable, and physically evaluated solution. As 

is the case with other analog computing platforms, ONNs will 

inevitably encounter performance degradation or even 

malfunction due to non-ideal factors, e.g., process varia- 

tions,28,29 limited control precision,30,31 and dynamic noises.32 

Recently, on-chip training has become an appealing trend 

toward noise-resilient ONNs. Numerous on-chip training 

algorithms have been proposed to directly optimize optical 

devices with in situ noise handling.33−37 However, prior ONN 

on-chip training protocols suffer from algorithmic inefficiency 

and require costly hardware overhead, e.g., phase detection,33 

high-resolution optical component control,34 or per-device 

field monitoring.33,37 Therefore, applying them to practical 

ONN training is still technically challenging. 

In this work, we propose an OSNN for next-generation 
hardware-efficient deep learning. Our proposed OSNN 

partitions each layer’s weight matriX into smaller k × k (k = 

4, 8) submatrices with restricted parameter space. Our 

architecture can achieve photonic neural computing with 7× 
fewer trainable optical components compared to MZI-based 
ONN architectures designed for general MVMs,11 resulting in 

a 3.3× smaller device footprint and 5.5× lower latency. The 

number of trainable optical components can be further 

reduced by ∼70% using structured circuit pruning38 with 
negligible (<0.2%) task performance loss. Moreover, an 
efficient and scalable hardware-aware training framework is 
experimentally deployed to enable ONN training with high 
noise robustness and a low control precision requirement. Our 

https://doi.org/10.1021/acsphotonics.2c01188?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
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OSNN is then experimentally demonstrated on a 4×4 BPNC 
and evaluated by a MNIST handwritten digit classification 
task39 with a measured accuracy of 94.16%. Our performance 
analysis reveals that our OSNN can achieve a computational 
density of ∼225 tera (1012) operations per second/mm2 
(TOPS/mm2) and energy efficiency of ∼9.5 TOPS/W using 
compact optical devices, e.g., microdisk-based active devices.40 
Our proposed OSNN architecture and hardware-aware 
training framework provide a synergistic solution that 
unleashes the power of optics from a novel co-design 
perspective and pushes the limits of next-generation efficient 
AI. 

2. OPTICAL SUBSPACE NEURAL NETWORK 

The proposed OSNN and its training framework are depicted 
in Figure 1a. The mathematical representation of one layer in a 

Based on the statistical evaluation,43 our butterfly-style BΣP 
block demonstrates good flexibility and matriX expressivity by 
only using 1/k total trainable components compared to MZI 
arrays (details in the Supporting Information). The B and P 
units in OSNN can flexibly support a wide range of unitary 
transforms. For instance, when k = 4, our butterfly unit B itself 
can express 80.2% arbitrary unitary matrices and the BΣP 
block can realize 64.4% fidelity in expressing general matrices 
(see Figure S3). As depicted in Figure 1d, several commonly 
used structured matrices can be realized by configuring the 
phase shifters in B and P units. For example, a block-circulant 
matriX can be realized (Figure 1d1) when the P unit performs 
optical FFT, while the B unit performs optical inverse FFT 
(IFFT).23 Furthermore, our B and P units can realize 
Hadamard transformation (HT), which is a popular choice 
to construct efficient DNNs.44 Detailed proves can be found in 

typical DNN with n inputs and m outputs is shown in Figure the Supporting Information. Figure 1d2 shows the matriX 

1(b), along with its hardware implementation shown in Figure 
1(c). Here we partition the m × n weight matriX W into m* × 

pattern when both P and B units implement HT. The superior 
versatility and expressivity of our BΣP units guarantee that our 

n* submatrices {Wi ,j 
k×k}i 

 
[n*],j 

 

 

[m*]. The input vector xin is 
 

 

OSNN can have enough learning capability. 

encoded as the amplitude of the optical signals and will also be Another essential property of our OSNN is that different Σi, j 
partitioned into n* segments x = (x1 , x2 , ..., xn*). Thus, the units can share the B and P units, leading to significant chip 

in in in in area reduction. Since all Wi, js are constructed by the same B, P 
MVM operation can be expressed using the block 
multiplication formula as follows, 

matriX transforms, B and P units can be reused in the optical domain. 
Here, we rewrite eq 1 with matriX multiplication’s distributive 

i n* j y 
j j=1  1, j  in  

z
 

and associative properties: 

j n* j z 

xout = Wxin = j 
j 
j j 

 

 

j=1W2,j xin z 
z 
z 
z W x z 

(1)  

 where           . By sharing the unitary matriX units, one can 
 

j
k   j=1  m*,j    in z{ implement an MVM operation of size m × n with only m/kP 

Each submatriX Wi, j can be decomposed as Wi, j = BΣi, jP, 
where B and P are both k × k unitary matrices shown in Figure 
1d, and Σi, j is a k × k diagonal matriX. Here, we use two 
butterfly-style programmable photonic integrated circuits 
(PICs), namely, a butterfly-style transform unit (B unit) and 
a projection unit (P unit), to implement the unitary matrices B 
and P using phase shifters, directional couplers, and waveguide 
crossings, while the diagonal matriX unit (Σ unit) is composed 

units and n/kB units, dramatically reducing the footprint of the 
OSNN compared to previous FFT-based ONN architecture, 

which requires mn P and B units.25 The mechanism of the 

optical architecture shown in Figure 1b can then be stated as 

follows: First, the input optical signal xin is partitioned into n* 
segments xjs and then propagate through the P units to 
generate , which will then be distributed via a fanout 

with a column of modulators. Figure 1e shows the photonic network to m* × n* diagonal matriX units Σi, js. After 

circuit structure of these matriX units when k = 4. Compared to 
previous work with similar butterfly-style circuit topology, 
which uses MZI modulators as building blocks,41,42 our BPNC 
uses more basic components as building blocks such as 
directional couplers and phase shifters. As a result, we save 
∼50% number of optical components compared to previous 
work. 

One of the key advantages of our OSNN is that the chip 

footprint and the total number of trainable optical devices are 

considerably smaller than previous GEMM-based MZI-ONN. 

Specifically, while an k × k MZI array consumes (k2) MZIs, our 

B and P units only use (klog
2 
k) couplers and phase 

propagating through the Σi, j units, the signals will be 
combined and fed into each B unit with a combiner network 
to obtain the MVM result. Finally, as with all typical NN 
architectures, a nonlinear activation unit (σ unit) is required to 
generate the output of the layer xout, which has been realized 
by all-optical non-linear devices or optoelectronic circuits in 
previous work.45,46 In this work, we assume the activation 
functions are realized electronically. We omit details on this 
and do not consider its effects on system performance in our 
discussion hereinafter. 

 

3. HARDWARE-AWARE TRAINING FRAMEWORK 
After manufacturing, fabrication variances in optical compo- 

shifters. Moreover, instead of having all devices to be trainable, 
only the Σi, j units need to be trained. The B and P units will 
not be modified throughout the training, and mapping 
processes after their desired states are accomplished by tuning 
the phase shifters in them. As a result, the total number of 

nents and dynamic noises will introduce uncertainty into the 
ONN. Moreover, the numerical resolution of implementable 
weight matrices is limited by the precision of electrical signals 
used to program the ONN. Consequently, the task perform- 
ance will deteriorate. To remedy this robustness issue, we build 

trainable optical devices is mn in an n-input, m-output layer, a multistage hardware-aware training framework. 
significantly reducing the weight loading cost and reprogram- 
ming complexity. 

The general procedures of the training framework are 
summarized in Figure 1a, and more details are provided in the 

https://doi.org/10.1021/acsphotonics.2c01188?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
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Figure 2. Schematic of the butterfly-style silicon photonic−electronic neural chip. The micrograph of the neural chip is shown in (a). The input 

optical beams with different wavelengths are shown in different colors. The necessary optical components are highlighted in (b). (c) shows the 
schematic and the normalized transmission curve of an MZI attenuator in the diagonal matriX unit (Σ unit). Only the attenuators in Σ are 
programmed in training. 

Supporting Information. First, the OSNN is calibrated on-chip derivative-free optimization algorithms11,35,36,47 and gradient 

to measure the  performance of  tunable  components and approXimation using ideal simulation models,48−50 our AI- 

prepare the state of the photonic chip to approach the desired 
transfer matriX. In reality, the actual transfer matriX of the 
photonic neural chip deviates from the designed one due to 
performance variations of the optical components, e.g., the 
unbalanced splitting ratio of directional couplers. Second, to 
model the non-ideal behavior and predict the response of the 
real optical neural chip, we develop an NN-based differentiable 
PIC estimator (DPE) using measurement data and AI 
algorithms. Our DPE explicitly models the behavior of the 
real physical chip during forward and gradient backpropagation 
that enables gradient-based physical-variation-aware optimiza- 
tion. The third step involves determining the DNN parameters 
and mapping them to the electrical control signals using a 
hardware-aware training and parameter mapping process. The 
DPE is used to efficiently emulate the real chip response to 
enable variation-aware gradient backpropagation. Quantiza- 
tion-aware training with dynamic noise injection techniques is 
used to improve the noise tolerance with limited device control 
resolution. Thus, our OSNN can achieve the performance 
target despite control precision restrictions and other non- 
idealities. More details of our hardware-aware training 
framework are shown in the Supporting Information. 
Compared to prior on-chip training protocols based on 

assisted ONN learning shows considerably higher scalability 
and effectiveness in robust optical neural chip training. 

4. EXPERIMENT 

In this work, we experimentally demonstrate the practicality of 
the OSNN on the silicon photonics platform using a butterfly- 
style photonic−electronic neural chip (BPNC) capable of 

implementing 4×4 BΣP blocks in our OSNN. The layout of 
the chip was drawn and verified using Synopsys OptoDesigner, 
while the chip was fabricated by the Advanced Micro Foundry 
(AMF). The schematic of the BPNC is shown in Figure 2a, 
while the close-ups of its components, such as phase shifters, 
50−50 directional couplers, and crossings, are depicted in 

Figure 2b. The unitary matriX units B/P are marked in red/ 
green in Figure 2a. The active phase shifters in these regions 
support enough flexibility to realize different unitary trans- 
forms, but note that they are not optimized as parameters 
during ONN training. The diagonal matriX unit (Σ unit) is 
built using an array of MZI attenuators for magnitude and 
phase control.51 One MZI attenuator and its transmission are 
shown in Figure 2c. 

The schematic of the testing setup is shown in Figure 3. 
Continuous-wave (CW) light of different wavelengths is 

https://doi.org/10.1021/acsphotonics.2c01188?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
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Figure 3. EXperimental setup of OSNN. (a) Schematic of our OSNN test flow. The entire MVM is first partitioned into multiple 4×4 blocks, and 
each block is implemented optically on a butterfly-style photonic−electronic neural chip (BPNC). The wavelengths of input signals are λ1 = 1548.0 

nm, λ2 = 1549.0 nm, λ3 = 1550.0 nm, and λ4 = 1551.0 nm. (b) shows the wire-bonded photonic chip and its starting/ending electrical pin numbers, 
while (c) is the photography of the chip testing setup. The parameters and the input signals are programmed by a multichannel digital-to-analog 
converter (DAC), while the output signals are read by the oscilloscope. Both the oscilloscope and the DAC are controlled by a microcontroller. 
The MVM results are provided to the computer for data processing in order to train and deploy the DNN. 

 

 
Figure 4. EXperimental data of digit recognition with the OSNN. (a) Structure of the CNN; the convolution is realized by OSNN with the im2col 
approach. The first convolutional layer has one input channel and 16 output channels with a stride of 2. The subsequent convolutional layer has 16 
input/output channels with a stride of 1, and the size of the convolutional kernel is 3 × 3. After adaptive average pooling, we have 5 × 5 × 16 = 400 
hidden features, followed by a linear classifier with 10 outputs. (b) Confusion matriX of the trained OSNN on MNIST, showing a measured 
accuracy of 94.16%. (c) EXperimental results of convolving two input images with convolution kernels of size 3 × 3 in our OSNN. (d) Predicted 
probability distribution of our OSNN on four selected test digits in the MNIST dataset. 
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Figure 5. Performance analysis of the OSNN. (a) Normalized area comparison and (b) normalized optical delay comparison between OSNN and 
MZI-based ONN11 when implementing weight matrices of different sizes. The comparison is evaluated using PDK components from AMF. (c) 
Robustness comparison between the hardware-unaware training and our proposed hardware-aware training, which includes dynamic noise injection 
techniques. With noise-awareness, our proposed hardware-aware training flow can effectively boost the noise tolerance of OSNN against various 
nonideal factors, such as input noises and weight-encoding noises. As a reference, we can achieve 94.41% test accuracy with 3 bit weight 
programming precision using the ideal transfer matriX model of the BPNC but will suffer complete malfunction (∼10%) when mapped onto the 
real chip due to the huge discrepancy between the simulation model and the manufactured chip. 

coupled in different input grating couplers separately. There 
are three reasons to use multiwavelength inputs in our BPNC: 

BPNC are first calibrated individually, such that we can 
precisely control the state of active devices, especially the input 

First, we can use compact resonator-based modulators as input modulators and the Σ matriX (the calibration results are 

modulators and avoid additional hardware costs for phase 
control, which requires high-speed phase shifters. Second, 
phase detection at the outputs can be avoided using 
multiwavelength inputs.49 Third, multiwavelength inputs 
eliminate the phase fluctuations of optical signals in off-chip 
fibers and improve the robustness of OSNN to input phase 
noises, which have been reported in other work.52 More details 

detailed in the Supporting Information). The second stage is to 
learn desired device configurations via ONN training. We first 
program the BPNC with representative input signals and phase 
shifter control voltages and collect the corresponding outputs. 
The above measured input−output pairs are used to train our 

differentiable PIC estimator for accurate and efficient chip 
response modeling. Then, we embed our DPE into our ONN 

about the weight matriX of the BPNC when we use training procedure to effectively enable hardware-aware 
multiwavelength inputs are provided in the Supporting 
Information. Using multiwavelength inputs, our BPNC can 
express arbitrary all-positive or all-negative 4 × 4 matrices with a 

surprisingly high fidelity of 92.2% (See Figure S3 and the 
Supporting Information). The input modulators and phase 
shifters of the BPNC are programmed by a high-precision 
multichannel digital-to-analog converter (DAC). Off-chip 
photodetector arrays will collect the output signals, which 
will subsequently be read using oscilloscopes or analog-to- 
digital converters (ADCs). A microcontroller is used to write 
electrical signals to the DAC and read the output signals in this 
work. The measurement data are processed by computers to 
train and implement the DNN model. It should be noted that 
current fabrication and packaging technologies enable the 
integration of electrical circuits, photodetectors, and the laser 
on a single chip53 with potentially much higher compactness, 
shorter interconnect paths, and higher efficiency. The 
experimental setup is described in detail in the Supporting 
Information. 

Here, we experimentally implement the multistage hard- 
ware-aware training flow on our BPNC. In the calibration 
stage, the performance of modulators and phase shifters in the 

training. Quantization-aware training and dynamic noise 
injection techniques are used during training to adapt the 
ONN model to limited phase-shifter control resolutions and 
boost the PIC robustness to dynamic system noises. 

In this work, we construct a CNN with our BPNC and 
benchmark its performance on a handwritten digit classi- 
fication dataset MNIST.39 We use MVM operations to 
implement CNNs with a widely-applied tensor unrolling 
method (im2col),54 as detailed in the Supporting Information. 
Figure 4a illustrates the network structure. Here, large-size 
tensor operations are partitioned into 4 × 4 blocks and 

mapped onto our BPNC. When the voltage control resolution 
is set to 3 bits (eight attenuation levels for each MZI 
attenuator in the Σ unit), the inference accuracy of the CNN 
reaches 94.16% in our experimental demonstration, compara- 
ble to the simulated value of 94.59%. The confusion matriX 
depicting the prediction results is shown in Figure 4b. Figure 
4c visualizes the tested output images after being convolved by 
learned kernels. Figure 4d shows the tested probability 
distribution of different hand-written digits. More testing 
results are included in the Supporting Information, where we 
evaluate the accuracy of OSNN with different control voltage 
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ranges and control resolutions. They will also be discussed in 
the following section. 

5. DISCUSSION 

5.1. Footprint. Our OSNN outperforms SVD-based MZI 
ONN architectures11 in the number of trainable devices and 
the footprint. Rather than deploying area-costly MZI arrays, we 
use basic optical components such as directional couplers, 
phase shifters, and crossings to construct the unitary matriX 
units B and P. The second reason that leads to our superior 
compactness is that many Σ units share the B and P units, 
which reduces the chip area for implementing unitary 
transforms. Shown in Figure 5a, when the matriX size is 32 
× 32, our 8-point OSNN consumes ∼3.6× fewer phase shifters 

matriX takes less than 2.5 mW per phase shifter in our AMF- 
manufactured neural chip, which can be decreased to zero by 
setting weights with phase change materials or nano-opto- 
electromechanical devices.61,62 Concerning the power con- 
sumption of ADCs, despite the availability of high-speed 
ADCs, the power consumption of ADCs is significantly higher 
than that of other components. For example, an 8 bit, 40 GSPS 
ADC consumes 200 mW per channel, while an 8 bit, 10 GSPS 
ADC consumes 39 mW per channel.58 In addition, the number 

of trainable devices in our k-point OSNN is only  ( mn ), which 

saves energy for storing and reconfiguring weights. In 
comparison to ONN architectures designed for general 
MVM, where the number of programmable devices is around 

and ∼ 4.8× fewer directional couplers, leading to ∼3.3× (mn)16 or (max(m2, n2)),11 the memory cost of storing 

footprint reduction compared to SVD-based MZI ONN and accessing the weight matriX and the energy required to 

architectures11 with the same matriX size and optical reconfigure corresponding active devices are also reduced by k 

component selection. The footprints of different ONN 
architectures are estimated by summing the areas of their 
constituent optical components provided by the same foundry 
(AMF). See the detailed evaluation of the chip area in the 
Supporting Information. 

The chip area or hardware cost of OSNN can be further 
optimized with structured circuit pruning strategies. In an n- 

times. This feature of OSNN will bring considerable energy 
efficiency improvement when weights need to be reconfigured 
frequently in large-scale DNNs, where weight loading takes 
nontrivial hardware cost even with weight-stationary data- 
flow.63 

5.3. Resolution Analysis. Our OSNN is capable of 
achieving a high accuracy under low bit control of optical 

input, m-output layer, the mn 
k 

diagonal matriX units can be components. Prior ONN architectures designed for general 
MVMs require high-precision control of optical devices for 

treated as mn parameter groups. When all of the transmission 
k 

coefficients in one Σ unit are zeros, this unit or parameter 
group is unnecessary and can be omitted in OSNN designs. 
When training the DNN, penalty terms encouraging higher 
sparsity can be added to the training objective, allowing for the 
elimination of unneeded Σ units while minimizing task 
performance degradation. Our simulation results indicate that 
more than 70% of neural connections in our OSNN can be 
pruned with negligible (<0.2%) accuracy loss when implement- 
ing image recognition tasks such as MNIST39 or Fashion- 
MNIST.55 (Results are provided in the Supporting Informa- 
tion). On these datasets, our pruned OSNN can save around 
70% of the trainable optical components, resulting in ∼52% 
chip area reduction compared to unpruned OSNN. 

5.2. Computational Speed and Energy Efficiency. Our 
OSNN utilizes light to implement MVM operations, which 
outperforms electronic counterparts in both speed and energy 
efficiency. Taking into account the delay contributed by high- 
speed modulators (10 ps),40,56 photodetectors (10 ps),57 
ADCs (100 ps),58 and the optical path (43.8 ps), the total 
delay required to implement a 32×32 MVM can reach ∼164 
ps, which corresponds to an operating frequency of around 6 
GHz. Using the same component library,59 the propagation 
delay of the optical path in our OSNN is 5.5× less than that of 
an MZI-based ONN,11 as depicted in Figure 5b. The 
computational speed of OSNN is now constrained by 
optical-to-electrical (OE) or electrical-to-optical (EO) con- 
version, but it can be increased further by using all-optical 
devices as non-linear activation functions60 (see the Support- 
ing Information). 

The total power consumption of OSNN for MVM 
operations is composed of the power to drive the laser/ 
modulators/photodetectors, the power to set the weight 
matriX, and the power to drive the ADCs. Numerous energy- 
efficient active optical components have been developed in 
recent years. For instance, the silicon microdisk modulator 
achieves approXimately 1 fJ per bit.40 Maintaining the weight 

parameter mapping to maintain accuracy.11 Otherwise, we may 
encounter severe task performance degradation because of 
large mapping errors,64 which will quickly accumulate as the 
size of weight matrices or the number of layers increases. Given 
that the control precision of some energy-efficient photonic 
tensor cores is only 4 or 5 bits,30 it is necessary to reduce the 
resolution requirement of ONN architectures and enhance the 
tolerance of quantization errors. In this study, quantization- 
aware training is applied to our OSNN to adopt the limited 
voltage control precision and mitigate the accuracy loss. In 
experiments, we have shown that ∼94% accuracy can be 
achieved for digit recognition when the precision of the DACs 
for controlling the phase shifters is around 3 bits (see the 
Supporting Information). What is more, low-resolution device 
control can also lessen the energy cost for weight storage, 
access, and reconfiguration.65 

5.4. Robustness. The robustness of our OSNN is 
guaranteed by our hardware-aware training framework. Our 
AI-assisted DPE provides accurate variation modeling of static 
noises, e.g., process variations, device calibration errors, 
thermal cross-talk, and non-ideal extinction ratio of modu- 
lators. Moreover, our noise-injection training algorithm further 
considers the impacts of dynamic noises, e.g., thermal noises 
from the laser source and photodetection noises. The 
robustness of our architecture is evaluated by varying the 
signal-to-noise-ratio (SNR) of the inputs and the phase drifts 
of phase shifters in MZI attenuators, and our analysis results 
are shown in Figure 5c. Thanks to our noise injection 
techniques, our OSNN maintains greater than 90% average 
inference accuracy even when the standard deviation of input 
noise and phase drifts reach 0.1 and 0.2, respectively. 

Additionally, the robustness of our OSNN can be enhanced 
with more reliable optical components and more reliable 
control circuits.66 For bandwidth-driven and robustness-driven 
OSNN design, one can directly select broadband MZI with 
low temperature sensitivity as a robust variable optical 
attenuator (VOA). Less robust but more compact or energy- 
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efficient components can also be employed, e.g., ultracompact 
MRR modulators with on-chip feedback controls and PCM- 
based modulators with advanced high-endurance materials. 

5.5. Scaling and Outlook. The performance metrics of 
the OSNN can be further improved in several directions. First, 

tion discussion of B/P units; Methods to scale B/P 
units; Details of our proposed hardware-aware training 
framework; Weight matriX of BPNC with multi-wave- 
length inputs; Testing setup; On-chip calibration results; 
The approach to implementing 2D convolution with 

our OSNN is compatible with the majority of the device-level MVM operations; EXperimental results of resolution 
enhancement techniques. For example, by using smaller 
directional couplers,67 crossings,68 and VOAs,69 the chip area 
of the OSNN can be optimized, resulting in a competitive 
computing density of >200 TOPS/mm2 and energy efficiency 
of ∼9.5 TOPS/W (see the Supporting Information). Second, 
massive multiplexing techniques can substantially boost the 
throughput of our architecture. Because all of the optical 
components in our architecture can be broadband devices, 
wavelength-division multiplexing (WDM) techniques can be 
applied to our architecture: If k-wavelength input signals 
propagate through the chip simultaneously to implement the 
MVM in parallel, the throughput and the computing density 
can then be improved by (k − 1) times over a single- 

wavelength OSNN. Furthermore, more circuit structures and 
optical components can be investigated to construct our 
OSNN. Notably, the BPNC is not the only option to 
implement BΣP. For example, recent work demonstrates that 
multiport n-to-n directional couplers, multimode interference 
(MMI) couplers, and diffractive cells can be utilized to build 
unitary matrices,70,71 which can achieve smaller footprint but 
less matriX representativity compared to our proposed BPNC. 
They can also be used to build the B and P units to reduce the 
chip area. Finally, faster or more energy efficient EO/OE 
conversion techniques are demanded to improve the computa- 
tional speed and energy efficiency for data movement between 
electrons and photons, which currently restricts the perform- 
ance of optical computing platforms. 

6. CONCLUSIONS 

We present a hardware-efficient optical subspace neural 
network (OSNN) architecture with experimental demonstra- 
tions on a silicon photonic programmable butterfly-style 
photonic−electronic neural chip (BPNC). By exploring optical 

neurocomputing beyond conventional GEMMs with restricted 
weight representability, our OSNN consumes up to 7× fewer 
trainable optical components than prior MZI-based ONN 
architectures designed for GEMMs. This advantage can be 
further increased to ∼23× using structured circuit pruning 
strategies with negligible accuracy loss. Our proposed 
hardware-aware training framework efficiently models the 
behavior of the OSNN to help reduce control precision 
requirements, enhance noise robustness, and fully exploit the 
expressivity in the subspace. The performance of OSNN can 
be further improved with smaller optical components as well as 
faster and more efficient EO/OE conversion techniques. Our 
OSNN pushes the limits of scalability and the robustness of 
ONNs and creates a new design paradigm for next-generation 
high-performance AI accelerators with improved hardware 
efficiency. 
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