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ABSTRACT: The optical neural network (ONN) is a promising hardware
platform for next-generation neurocomputing due to its high parallelism, low
latency, and low energy consumption. Previous ONN architectures are
mainly designed for general matriXx multiplication (GEMM), leading to
unnecessarily large area cost and high control complexity. Here, we move
beyond classical GEMM-based ONNs and propose an optical subspace
neural network (OSNN) architecture, which trades the universality of
weight representation for lower optical component usage, area cost, and
energy consumption. We devise a butterfly-style photonic—electronic neural
chip to implement our OSNN with up to 7x fewer trainable optical
components compared to GEMM-based ONNs. Additionally, a hardware-
aware training framework is provided to minimize the required device
programming precision, lessen the chip area, and boost the noise robustness.
We experimentally demonstrate the utility of our neural chip in practical
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image recognition tasks, showing that a measured accuracy of 94.16% can be achieved in handwritten digit recognition tasks with 3

bit weight programming precision.
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1. INTRODUCTION

Deep neural networks (DNNs) have demonstrated superior
performance in various intelligence tasks, such as image
recognition, decision making, and language translation.'™
Hardware accelerators capable of performing high-speed,
energy-efficient, and parallel multiply—accumulate (MAC)
operations are in high demand with the rapidly escalating
DNN model size and data volume. However, electronic digital
hardware accelerators, including but not limited to graphical
processing units (GPUs), field-programmable gate arrays
(FPGAs),” and other digital application-specific integrated
circuits (ASICs), are inevitably limited by millisecond-level
latency, high energy consumption, excessive heat, and high
interconnect cost.”® In contrast, analog neuromorphic
computing represents a paradigm shift in efficient DNN
acceleration, significantly increasing parallelism and energy
efficiency.”!?

The optical neural network (ONN) is a promising analog
artificial intelligence (Al) accelerator that features low latency,
wide bandwidth, and high parallelism of light.!'” ! Earlier
work has presented a range of high-performance integrated
photonic neural networks that implement multilayer percep-
trons (MLPs)!%!%!17 or convolutional neural networks
(CNNs).'®" The fundamental matriX-vector multiplication
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(MVM) unit is realized using Mach-Zehnder interferometer
(MZI) arrays or microring-resonator (MRR) arrays. By tuning
the phase shifters in MZIs or the transmission of MRRs, these
photonic systems are designed to implement universal linear
operations or general matriX multiplication (GEMM) with a
relatively high requirement in device control precision. Recent
studies show that the construction of DNNs can move beyond
conventional GEMM with restricted matriX parameter space,
e.g., low-rank NNs?*?? and structured NNs,>* > which
shows not only considerable hardware efficiency improvement
but also comparable representability to classical GEMM-based
NNs. We refer to such NN architectures as subspace neural
networks. The success of such a design concept can be
reproduced in ONNSs by trading the universality of weight
representation for higher hardware efficiency. Several struc-
tured ONNs have been proposed to reduce the number of
optical components, e.g., the fast-Fourier-transform-based
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Figure 1. General architecture of the optical subspace neural network (OSNN). The hardware-aware training framework is shown in (a). The

mathematical representation of one layer in our OSNN is shown in

(b), where an m x n matrix is partitioned to ™ blocks. The hardware

representation of one layer is shown in (c), which consists of n* = £ projection units (P units), m* = f butterfly-style transform units (B units),

and m* x p* diagonal matrix units (X units). The fanout network and the combiner network are used to distribute and combine the optical signals
to different optical paths. By setting phase shifters in B units and P units, several popular structured ONNs based on (1) fast Fourier transform and
inverse fast Fourier transform, (2) Hadamard transform, or (3) other implementable transforms are shown in (d). () Schematic of 4x4 B, P, andZ
units, respectively, which are the building blocks of a four-point OSNN. To train the OSNN, we first perform an on-chip device calibration on our
OSNN. The measurement data are learned and modeled in our hardware-aware training flow. Moreover, other factors such as the precision of

controlling signals, limited extinction ratio (ER) of input modulators,
accuracy and robustness of our OSNN.

and other noises are also considered in our training engine to improve the

(FFT-based) ONN.>*"?7 In this work, we further explore this
subspace NN design concept in the optical domain and
experimentally demonstrate a novel butterfly-style photonic-
electronic neural chip (BPNC) with superior hardware
efficiency and compactness.

Additionally, noise-tolerant ONN training currently still
lacks an efficient, scalable, and physically evaluated solution. As
is the case with other analog computing platforms, ONNs will
inevitably encounter performance degradation or even
malfunction due to non-ideal factors, e.g., process varia-
tions,?®?? limited control precision,**' and dynamic noises.*
Recently, on-chip training has become an appealing trend
toward noise-resilient ONNs. Numerous on-chip training
algorithms have been proposed to directly optimize optical
devices with in situ noise handling.**"*” However, prior ONN
on-chip training protocols suffer from algorithmic inefficiency
and require costly hardware overhead, e.g., phase detection,

high-resolution optical component control,** or per-device
field monitoring.’>7 Therefore, applying them to practical
ONN training is still technically challenging.

In this work, we propose an OSNN for next-generation
hardware-efficient deep learning. Our proposed OSNN
partitions each layer’s weight matriX into smaller k x k (k =
4, 8) submatrices with restricted parameter space. Our
architecture can achieve photonic neural computing with 7x
fewer trainable optical components compared to MZI-based
ONN architectures designed for general MVMs,!! resulting in
a 3.3x smaller device footprint and 5.5x lower latency. The
number of trainable optical components can be further
reduced by ~70% using structured circuit pruning*® with
negligible (<0.2%) task performance loss. Moreover, an
efficient and scalable hardware-aware training framework is
experimentally deployed to enable ONN training with high
noise robustness and a low control precision requirement. Our
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OSNN is then experimentally demonstrated on a 4x4 BPNC
and evaluated by a MNIST handwritten digit classification
task®” with a measured accuracy of 94.16%. Our performance
analysis reveals that our OSNN can achieve a computational
density of ~225 tera (10'%) operations per second/mm?
(TOPS/mm?) and energy efficiency of ~9.5 TOPS/W using
compact optical devices, e.g., microdisk-based active devices.*
Our proposed OSNN architecture and hardware-aware
training framework provide a synergistic solution that
unleashes the power of optics from a novel co-design
perspective and pushes the limits of next-generation efficient
Al

2. OPTICAL SUBSPACE NEURAL NETWORK

The proposed OSNN and its training framework are depicted
in Figure 1a. The mathematical representation of one layer in a
typical DNN with » inputs and m outputs is shown in Figure
1(b), along with its hardware implementation shown in Figure
1S<c) Here we p rtltlon th(i x n weight matrix W into m* x
submatrlces? r”}; In"lj [m*. The input vector Xi, is
encoded as the amplltude of the optical 51gnals and will also be
partitioned into n* segments X = (x', x*, ..., X"*). Thus, the

in in 1n in
MVM operation can be expressed using the block matriX
multiplication formula as follows,

)T w)xm 2
] 0
, j lmé) in % (1)
Xout = } z
1l .w «x12
J n J
i
Each submatrix W, ; can be decomposed as W, ;= Bx, P,

where B and P are both k x k unitary matrices shown in Figure
1d, and Z; ; is a k x k diagonal matrix. Here, we use two
butterfly-style programmable photonic integrated circuits
(PICs), namely, a butterfly-style transform unit (B unit) and
a projection unit (P unit), to implement the unitary matrices B
and P using phase shifters, directional couplers and waveguide
el b Saeel i i Rt sgmped
circuit structure of these matriX units when k = 4. Compared to
previous work with similar butterfly-style circuit topology,
which uses MZI modulators as building blocks,*'*> our BPNC
uses more basic components as building blocks such as
directional couplers and phase shifters. As a result, we save
~50% number of optical components compared to previous
work.

One of the key advantages of our OSNN is that the chip
footprint and the total number of trainable optical devices are
considerably smaller than previous GEMM-based MZI-ONN.
Specifically, while an k x k MZI array consumes (k&) MZIs, our
B and P units only use (klog} k) couplers and phase
shifters. Moreover, instead of having all devices to be trainable,
only the Z; ; units need to be trained. The B and P units will
not be modified throughout the training, and mapping
processes after their desired states are accomplished by tuning
the phase shifters in them. As a result, the total number of

trainable optical devices is T2 p 1 in an n-input, m-output layer,

significantly reducing the weight loading cost and reprogram-
ming complexity.

Based on the statistical evaluation,” our butterfly-style BEP
block demonstrates good flexibility and matriX expressivity by
only using 1/k total trainable components compared to MZI
arrays (details in the Supporting Information). The B and P
units in OSNN can flexibly support a wide range of unitary
transforms. For instance, when & = 4, our butterfly unit B itself
can express 80.2% arbitrary unitary matrices and the BXP
block can realize 64.4% fidelity in expressing general matrices
(see Figure S3). As depicted in Figure 1d, several commonly
used structured matrices can be realized by configuring the
phase shifters in B and P units. For example, a block-circulant
matriX can be realized (Figure 1d1) when the P unit performs
optical FFT, while the B unit performs optical inverse FFT
(IFFT).? Furthermore, our B and P units can realize
Hadamard transformation (HT), which is a popular choice

to construct efficient DNNs.* Detailed proves can be found in
the Supporting Information. Figure 1d2 shows the matriX

pattern when both P and B units implement HT. The superior
versatility and expressivity of our BEP units guarantee that our
OSNN can have enough learning capability.

Another essential property of our OSNN is that different Z; ;
units can share the B and P units, leading to significant chi
area reduction. Since all W, js are constructed by the same B,
transforms, B and P units can be reused in the optical domain.
Here, we rewrite eq | with matriX multiplication’s distributive
and associative properties:

L, BE, ;Px; BYL E,

AN}
i, BI, Px, BE E, X,

ermr = Wxy, =

S RSN itary
where . _ Pk}' sibfing th€unitary

atriX units, one can

implement an MVM operation of size m x n with only m/kP

units and n/kB units, dramatically reducing the footprint of the
OSNN compared to previous FFT-based ONN architecture,
which requires 2P and B units.” The mechanism of the

optical architecture shown in Figure 1b can then be stated as
follows: First, the input optical signal X;, is partitioned into n*
segments X;s and then propagate through the P units to
generate N;S, which will then be distributed via a fanout
network to m* x n* diagonal matriX units Z;js. After
propagating through the Z; ; units, the signals will be
combined and fed into each B unit with a combiner network
to obtain the MVM result. Finally, as with all typical NN
architectures, a nonlinear activation unit (¢ unit) is required to
generate the output of the layer Xou, which has been realized
by all-optical non-linear devices or optoelectronic circuits in
previous work.***® In this work, we assume the activation
functions are realized electronically. We omit details on this
and do not consider its effects on system performance in our
discussion hereinafter.

3. HARDWARE-AWARE TRAINING FRAMEWORK

After manufacturing, fabrication variances in optical compo-

nents and dynamic noises will introduce uncertainty into the
ONN. Moreover, the numerical resolution of implementable
weight matrices is limited by the precision of electrical signals
used to program the ONN. Consequently, the task perform-
ance will deteriorate. To remedy this robustness issue, we build
a multistage hardware-aware training framework.

The general procedures of the training framework are
summarized in Figure la, and more details are provided in the

https://doi.org/10.1021/acsphotonics.2c01188
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Figure 2. Schematic of the butterfly-style silicon photonic—electronic neural chip. The micrograph of the neural chip is shown in (a). The input
optical beams with different wavelengths are shown in different colors. The necessary optical components are highlighted in (b). (c) shows the
schematic and the normalized transmission curve of an MZI attenuator in the diagonal matriX unit (X unit). Only the attenuators in Z are

programmed in training.

Supporting Information. First, the OSNN is calibrated on-chip

to measure the performance of tunable components and
prepare the state of the photonic chip to approach the desired
transfer matriX. In reality, the actual transfer matrix of the
photonic neural chip deviates from the designed one due to
performance variations of the optical components, e.g., the
unbalanced splitting ratio of directional couplers. Second, to
model the non-ideal behavior and predict the response of the
real optical neural chip, we develop an NN-based differentiable
PIC estimator (DPE) using measurement data and Al
algorithms. Our DPE explicitly models the behavior of the
real physical chip during forward and gradient backpropagation
that enables gradient-based physical-variation-aware optimiza-
tion. The third step involves determining the DNN parameters
and mapping them to the electrical control signals using a
hardware-aware training and parameter mapping process. The
DPE is used to efficiently emulate the real chip response to
enable variation-aware gradient backpropagation. Quantiza-
tion-aware training with dynamic noise injection techniques is
used to improve the noise tolerance with limited device control
resolution. Thus, our OSNN can achieve the performance
target despite control precision restrictions and other non-
idealities. More details of our hardware-aware training
framework are shown in the Supporting Information.
Compared to prior on-chip training protocols based on

3909

derivative-free optimization algorithms!'*>*¢47 and gradient

approXimation using ideal simulation models,** " our Al-
assisted ONN learning shows considerably higher scalability
and effectiveness in robust optical neural chip training.

4. EXPERIMENT

In this work, we experimentally demonstrate the practicality of
the OSNN on the silicon photonics platform using a butterfly-
style photonic—electronic neural chip (BPNC) capable of
implementing 4x4 BZP blocks in our OSNN. The layout of
the chip was drawn and verified using Synopsys OptoDesigner,
while the chip was fabricated by the Advanced Micro Foundry
(AMF). The schematic of the BPNC is shown in Figure 2a,
while the close-ups of its components, such as phase shifters,
50-50 directional couplers, and crossings, are depicted in
Figure 2b. The unitary matriX units B/P are marked in red/
green in Figure 2a. The active phase shifters in these regions
support enough flexibility to realize different unitary trans-
forms, but note that they are not optimized as parameters
during ONN training. The diagonal matriX unit (Z unit) is
built using an array of MZI attenuators for magnitude and
phase control.”! One MZI attenuator and its transmission are
shown in Figure 2c.

The schematic of the testing setup is shown in Figure 3.
Continuous-wave (CW) light of different wavelengths is

https://doi.org/10.1021/acsphotonics.2c01188
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Figure 3. Experimental setup of OSNN. (a) Schematic of our OSNN test flow. The entire MVM is first partitioned into multiple 4x4 blocks, and
each block is implemented optically on a butterfly-style photonic—electronic neural chip (BPNC). The wavelengths of input signals are A1 = 1548.0
nm, A2 = 1549.0 nm, A3 = 1550.0 nm, and A4 = 1551.0 nm. (b) shows the wire-bonded photonic chip and its starting/ending electrical pin numbers,
while (c) is the photography of the chip testing setup. The parameters and the input signals are programmed by a multichannel digital-to-analog
converter (DAC), while the output signals are read by the oscilloscope. Both the oscilloscope and the DAC are controlled by a microcontroller.
The MVM results are provided to the computer for data processing in order to train and deploy the DNN.
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Figure 4. Experimental data of digit recognition with the OSNN. (a) Structure of the CNN; the convolution is realized by OSNN with the im2col
approach. The first convolutional layer has one input channel and 16 output channels with a stride of 2. The subsequent convolutional layer has 16
input/output channels with a stride of 1, and the size of the convolutional kernel is 3 x 3. After adaptive average pooling, we have 5 x 5 x 16 = 400
hidden features, followed by a linear classifier with 10 outputs. (b) Confusion matrix of the trained OSNN on MNIST, showing a measured
accuracy of 94.16%. (c) Experimental results of convolving two input images with convolution kernels of size 3 x 3 in our OSNN. (d) Predicted
probability distribution of our OSNN on four selected test digits in the MNIST dataset.
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Robustness comparison between the hardware-unaware training and our proposed hardware-aware training, which includes dynamic noise injection
techniques. With noise-awareness, our proposed hardware-aware training flow can effectively boost the noise tolerance of OSNN against various

nonideal factors, such as input noises and weight-encoding noises.

As a reference, we can achieve 94.41% test accuracy with 3 bit weight

programming precision using the ideal transfer matriX model of the BPNC but will suffer complete malfunction (~10%) when mapped onto the
real chip due to the huge discrepancy between the simulation model and the manufactured chip.

coupled in different input grating couplers separately. There
are three reasons to use multiwavelength inputs in our BPNC:
First, we can use compact resonator-based modulators as input
modulators and avoid additional hardware costs for phase
control, which requires high-speed phase shifters. Second,
phase detection at the outputs can be avoided using
multiwavelength inputs.* Third, multiwavelength inputs
eliminate the phase fluctuations of optical signals in off-chip
fibers and improve the robustness of OSNN to input phase
noises, which have been reported in other work.>> More details
about the weight matrix of the BPNC when we use
multiwavelength inputs are provided in the Supporting
Information. Using multiwavelength inputs, our BPNC can
express arbitrary all-positive or all-negative 4 x 4 matrices witha
surprisingly high fidelity of 92.2% (See Figure S3 and the
Supporting Information). The input modulators and phase
shifters of the BPNC are programmed by a high-precision
multichannel digital-to-analog converter (DAC). Off-chip
photodetector arrays will collect the output signals, which
will subsequently be read using oscilloscopes or analog-to-
digital converters (ADCs). A microcontroller is used to write
electrical signals to the DAC and read the output signals in this
work. The measurement data are processed by computers to
train and implement the DNN model. It should be noted that
current fabrication and packaging technologies enable the
integration of electrical circuits, photodetectors, and the laser
on a single chip®® with potentially much higher compactness,
shorter interconnect paths, and higher efficiency. The
experimental setup is described in detail in the Supporting
Information.

Here, we experimentally implement the multistage hard-
ware-aware training flow on our BPNC. In the calibration
stage, the performance of modulators and phase shifters in the

BPNC are first calibrated individually, such that we can
precisely control the state of active devices, especially the input
modulators and the Z matrix (the calibration results are
detailed in the Supporting Information). The second stage is to
learn desired device configurations via ONN training. We first
program the BPNC with representative input signals and phase
shifter control voltages and collect the corresponding outputs.
The above measured input—output pairs are used to train our
differentiable PIC estimator for accurate and efficient chip
response modeling. Then, we embed our DPE into our ONN
training procedure to effectively enable hardware-aware
training. Quantization-aware training and dynamic noise
injection techniques are used during training to adapt the
ONN model to limited phase-shifter control resolutions and
boost the PIC robustness to dynamic system noises.

In this work, we construct a CNN with our BPNC and
benchmark its performance on a handwritten digit classi-
fication dataset MNIST.* We use MVM operations to
implement CNNs with a widely-applied tensor unrolling
method (im2col),’ as detailed in the Supporting Information.
Figure 4a illustrates the network structure. Here, large-size
tensor operations are partitioned into 4 x 4 blocks and
mapped onto our BPNC. When the voltage control resolution
is set to 3 bits (eight attenuation levels for each MZI
attenuator in the X unit), the inference accuracy of the CNN
reaches 94.16% in our experimental demonstration, compara-
ble to the simulated value of 94.59%. The confusion matriX
depicting the prediction results is shown in Figure 4b. Figure
4¢ visualizes the tested output images after being convolved by
learned kernels. Figure 4d shows the tested probability
distribution of different hand-written digits. More testing
results are included in the Supporting Information, where we
evaluate the accuracy of OSNN with different control voltage
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ranges and control resolutions. They will also be discussed in
the following section.

5. DISCUSSION

5.1. Footprint. Our OSNN outperforms SVD-based MZI
ONN architectures'! in the number of trainable devices and
the footprint. Rather than deploying area-costly MZI arrays, we
use basic optical components such as directional couplers,
phase shifters, and crossings to construct the unitary matriX
units B and P. The second reason that leads to our superior
compactness is that many X units share the B and P units,
which reduces the chip area for implementing unitary
R SR 2 e e 2

and ~ 4.8x fewer directional couplers, leading to ~3.3x
footprint reduction compared to SVD-based MZI ONN
architectures!! with the same matriX size and optical

component selection. The footprints of different ONN
architectures are estimated by summing the areas of their
constituent optical components provided by the same foundry
(AMF). See the detailed evaluation of the chip area in the
Supporting Information.

The chip area or hardware cost of OSNN can be further
optimized with structured circuit pruning strategies. In an n-
input, m-output layer, the % diagonal matriX units can be
treated as % parameter groups. When all of the transmission

coefficients in one Z unit are zeros, this unit or parameter
group is unnecessary and can be omitted in OSNN designs.
When training the DNN, penalty terms encouraging higher
sparsity can be added to the training objective, allowing for the
elimination of unneeded Z units while minimizing task
performance degradation. Our simulation results indicate that
more than 70% of neural connections in our OSNN can be
pruned with negligible (<0.2%) accuracy loss when implement-
ing image recognition tasks such as MNIST*® or Fashion-
MNIST.>® (Results are provided in the Supporting Informa-
tion). On these datasets, our pruned OSNN can save around
70% of the trainable optical components, resulting in ~52%
chip area reduction compared to unpruned OSNN.

5.2. Computational Speed and Energy Efficiency. Our
OSNN utilizes light to implement MVM operations, which
outperforms electronic counterparts in both speed and energy
efficiency. Taking into account the delay contributed by high-
speed modulators (10 ps),*>*® photodetectors (10 ps),*’
ADCs (100 ps),” and the optical path (43.8 ps), the total
delay required to implement a 32x32 MVM can reach ~164
ps, which corresponds to an operating frequency of around 6
GHz. Using the same component library,> the propagation
delay of the optical path in our OSNN is 5.5x less than that of
an MZI-based ONN,'" as depicted in Figure 5b. The
computational speed of OSNN is now constrained by
optical-to-electrical (OE) or electrical-to-optical (EO) con-
version, but it can be increased further by using all-optical
devices as non-linear activation functions®® (see the Support-
ing Information).

The total power consumption of OSNN for MVM
operations is composed of the power to drive the laser/
modulators/photodetectors, the power to set the weight
matriX, and the power to drive the ADCs. Numerous energy-
efficient active optical components have been developed in
recent years. For instance, the silicon microdisk modulator
achieves approximately 1 fJ per bit.*’ Maintaining the weight
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matriX takes less than 2.5 mW per phase shifter in our AMF-
manufactured neural chip, which can be decreased to zero by
setting weights with phase change materials or nano-opto-
electromechanical devices.®*> Concerning the power con-
sumption of ADCs, despite the availability of high-speed
ADCs, the power consumption of ADCs is significantly higher
than that of other components. For example, an 8 bit, 40 GSPS
ADC consumes 200 mW per channel, while an 8 bit, 10 GSPS
ADC consumes 39 mW per channel.”® In addition, the number

of trainable devices in our k-point OSNN is only C(m—:), which

saves energy for storing and reconfiguring weights. In
comparison to ONN architectures designed for general
MVM, where the number of programmable devices is around

O(mn)'® or O(max(m?, n?)),'" the memory cost of storing
and accessing the weight matriX and the energy required to
reconfigure corresponding active devices are also reduced by &
times. This feature of OSNN will bring considerable energy
efficiency improvement when weights need to be reconfigured
frequently in large-scale DNNs, where weight loading takes
nontrivial hardware cost even with weight-stationary data-
flow.%

5.3. Resolution Analysis. Our OSNN is capable of
achieving a high accuracy under low bit control of optical
components, Prior ONN architectures designed for general
MVMs require high-precision control of optical devices for
parameter mapping to maintain accuracy.'! Otherwise, we may
encounter severe task performance degradation because of
large mapping errors,* which will quickly accumulate as the
size of weight matrices or the number of layers increases. Given
that the control precision of some energy-efficient photonic
tensor cores is only 4 or 5 bits,*” it is necessary to reduce the
resolution requirement of ONN architectures and enhance the
tolerance of quantization errors. In this study, quantization-
aware training is applied to our OSNN to adopt the limited
voltage control precision and mitigate the accuracy loss. In
experiments, we have shown that ~94% accuracy can be
achieved for digit recognition when the precision of the DACs
for controlling the phase shifters is around 3 bits (see the
Supporting Information). What is more, low-resolution device
control can also lessen the energy cost for weight storage,
access, and reconfiguration.®

5.4. Robustness. The robustness of our OSNN is
guaranteed by our hardware-aware training framework. Our
Al-assisted DPE provides accurate variation modeling of static
noises, e.g., process variations, device calibration errors,
thermal cross-talk, and non-ideal extinction ratio of modu-
lators. Moreover, our noise-injection training algorithm further
considers the impacts of dynamic noises, e.g., thermal noises
from the laser source and photodetection noises. The
robustness of our architecture is evaluated by varying the
signal-to-noise-ratio (SNR) of the inputs and the phase drifts
of phase shifters in MZI attenuators, and our analysis results
are shown in Figure 5c. Thanks to our noise injection
techniques, our OSNN maintains greater than 90% average
inference accuracy even when the standard deviation of input
noise and phase drifts reach 0.1 and 0.2, respectively.

Additionally, the robustness of our OSNN can be enhanced
with more reliable optical components and more reliable
control circuits.®® For bandwidth-driven and robustness-driven
OSNN design, one can directly select broadband MZI with
low temperature sensitivity as a robust variable optical
attenuator (VOA). Less robust but more compact or energy-
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efficient components can also be employed, e.g., ultracompact
MRR modulators with on-chip feedback controls and PCM-
based modulators with advanced high-endurance materials.

5.5. Scaling and Outlook. The performance metrics of
the OSNN can be further improved in several directions. First,
our OSNN is compatible with the majority of the device-level
enhancement techniques. For example, by using smaller
directional couplers,®’ crossings,®® and VOAs,* the chip area
of the OSNN can be optimized, resulting in a competitive
computing density of >200 TOPS/mm? and energy efficiency
of ~9.5 TOPS/W (see the Supporting Information). Second,
massive multiplexing techniques can substantially boost the
throughput of our architecture. Because all of the optical
components in our architecture can be broadband devices,
wavelength-division multiplexing (WDM) techniques can be
applied to our architecture: If k-wavelength input signals
propagate through the chip simultaneously to implement the
MVM in parallel, the throughput and the computing density
can then be improved by (k — 1) times over a single-
wavelength OSNN. Furthermore, more circuit structures and
optical components can be investigated to construct our
OSNN. Notably, the BPNC is not the only option to
implement BEP. For example, recent work demonstrates that
multiport n-to-n directional couplers, multimode interference
(MMI) couplers, and diffractive cells can be utilized to build
unitary matrices,’”’! which can achieve smaller footprint but
less matriX representativity compared to our proposed BPNC.
They can also be used to build the B and P units to reduce the
chip area. Finally, faster or more energy efficient EO/OE
conversion techniques are demanded to improve the computa-
tional speed and energy efficiency for data movement between
electrons and photons, which currently restricts the perform-
ance of optical computing platforms.

6. CONCLUSIONS

We present a hardware-efficient optical subspace neural
network (OSNN) architecture with experimental demonstra-
tions on a silicon photonic programmable butterfly-style
photonic—electronic neural chip (BPNC). By exploring optical
neurocomputing beyond conventional GEMMs with restricted
weight representability, our OSNN consumes up to 7x fewer
trainable optical components than prior MZI-based ONN
architectures designed for GEMMs. This advantage can be
further increased to ~23x using structured circuit pruning
strategies with negligible accuracy loss. Our proposed
hardware-aware training framework efficiently models the
behavior of the OSNN to help reduce control precision
requirements, enhance noise robustness, and fully exploit the
expressivity in the subspace. The performance of OSNN can
be further improved with smaller optical components as well as
faster and more efficient EO/OE conversion techniques. Our
OSNN pushes the limits of scalability and the robustness of
ONNs and creates a new design paradigm for next-generation
high-performance Al accelerators with improved hardware
efficiency.
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