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Abstract—1In this paper, we study a navigation problem
where a mobile robot needs to locate a mmWave wireless signal.
Using the directionality properties of the signal, we propose an
estimation and path planning algorithm that can efficiently nav-
igate in cluttered indoor environments. We formulate Extended
Kalman filters for emitter location estimation in cases where
the signal is received in line-of-sight or after reflections. We
then propose to plan motion trajectories based on belief-space
dynamics in order to minimize the uncertainty of the position
estimates. The associated non-linear optimization problem is
solved by a state-of-the-art constrained iLQR solver. In par-
ticular, we propose a method that can handle a large number
of obstacles (~ 300) with reasonable computation times. We
validate the approach in an extensive set of simulations. We
show that our estimators can help increase navigation success
rate and that planning to reduce estimation uncertainty can
improve the overall task completion speed.

I. INTRODUCTION

Wireless communications play an important role in
robotics, typically to operate robots [1] or drones [2] re-
motely. Additionally, wireless signals can be used as sensors,
for example to localize a robot or to perform SLAM based on
the signal strength of a WiFi network [3]. However, tradition-
ally wireless signals do not contain direction information to
estimate the location of the emitter precisely. The emergence
of directional millimeter wave (mmWave) bands, which are
deployed for example in 5G networks, have attracted signif-
icant attention for high precision localization applications.
Indeed, the estimation of the direction of transmission is
greatly simplified as angular information does not need to
be reconstructed by complex algorithm as in [4]-[6].

In this paper, we study a scenario where a robot seeks
to navigate to fixed but unknown mmWave wireless emitter
location in an unknown environment. This could model, for
example, a search and rescue scenario where the stranded
human carries the emitter [7]-[10]. Our goal is to exploit
the directionality of mmWave wireless to devise a planning
and estimation framework for fast navigation to the emitter.

Recent work [11] has addressed this problem using a
simple navigation algorithm that follows the angle of arrival
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(AoA) of the received mmWave signal till the robot reaches
the emitter. The algorithm can be used if the robot is in
line of sight (LOS) or in non-line of sight (NLOS) settings
of the emitter. However, this method has two drawbacks.
First, it uses noisy, unfiltered AoA measurements and is thus
ineffective when the robot is two or more reflections from
the emitter. Second, it does not maintain an estimate of the
transponder position, requiring the robot to navigate first to
the point of reflection in NLOS settings.

This paper aims to improve upon the state-of-art using
joint estimation and trajectory planning algorithms. We
consider unexplored cluttered environments with possibly
high degrees of signal reflections (NLOS). We propose an
Extended Kalman Filter (EKF) to estimate the robot position
with respect to the emitter in the LOS and NLOS cases.
The filters are able to robustly estimate the direction of the
wireless sources despite noisy observations. We formulate
a trajectory optimization problem based on belief-space
dynamics following [12] to minimize the uncertainty of the
estimate along the trajectory while avoiding obstacles.

We propose an improved algorithm compared to [12]
by formulating the trajectory optimization problem as a
constrained one. This renders the need for expensive second-
order derivatives of the cost terms when including collision
avoidance unnecessary. Solvers have been proposed that are
able to consider box constraints [13], or nonlinear inequal-
ity constraints for example by the augmented Lagrangian
method [14] or the interior-point-method [15]. Furthermore,
we provide explicit computations of the partial derivatives
of the estimation covariance updates of the EKF, neces-
sary for the solvers. This brings computational advantage
compared to numerical derivatives previously reported [12].
The proposed method is evaluated using the ’Active Neural-
SLAM’ framework [16], a modular, open-source, approach
for mobile navigation, and demonstrate its performance ben-
efits over prior work in a wide range of simulated indoor
navigation environments.

In the following, we formulate the EKF transition and
observation models for the LOS and first- and general n-
th order NLOS cases (Sec. II). To obtain trajectories that
minimize the uncertainty of the EKF state estimate we
formulate a non-linear constrained trajectory optimization
problem (Sec. III). Based on Bayesian filtering, we require
the gradient of the EKF which is detailed in App. I. We start
the evaluation (Sec. V) by verifying the identification based
on the EKF (Sec. V-A) and path planning through cluttered
environments (Sec. V-B) in simple scenarios. The methods
are then applied on complex maps, with detailed results on



a single typical map (Sec. V-B), and success rate and time-
to-target evaluations on 200 different scenarios (Sec. V-D).

II. EXTENDED KALMAN FILTER FOR TRANSPONDER
LOCALIZATION

In this section we describe the filter used to estimate the
location of the robot with respect to the wireless emitter.
We need to distinguish several cases depending on whether
the received signal comes from an emitter in LOS, in first-
order NLOS (i.e. when there was only one reflection) or in
n-th order NLOS. We can use results from [11] to classify
received signals accordingly.

We design several EKFs governed by nonlinear observa-
tion and process models

;= f(xi—1,u) +w; and  z; = h(z;) +v; (1)

where wu is the control, x the state and z the measurement.
Both the state and observation are subject to Gaussian white
noise processes w and v with covariances W and V. The
estimate of the state x;; at control iteration 4 given obser-
vations up to time j < ¢ and the corresponding estimation
covariance P;; are updated by the Kalman equations (see
App. I for explicit computations of the derivatives of the
estimation covariance) with first-order linearizations of the
non-linear models f and h.

We assume a Cartesian 2D planar coordinate system and
aim to identify the robot position p with respect to a signal
emitting transponder p;,.. Due to the directional character of
the mmWave band this implies that the robot can directly
infer the AoA « of the received signal. In the following,
lower indices a, and a, represent the x and y component of
a 2D position vector a.

A. Line-of-sight case

In this case we receive the signal directly from the emitter
without any reflection. We identify the transponder as the
origin of the coordinate system. The robot position p is
chosen as the filter state = := p. We assume simple integrator
dynamics for the mobile robot

Dit1 = DPi + u; )
We then write the observation model as

) 1T
2= [cos(ai) sin(ozi)}T and h(z;)= {% ﬁ);_m} 3)

We chose a redundant representation to avoid discontinuities
for example associated with the arctan [5]. Note however
that we measure directly «;.

B. First order non-line-of-sight

In the first-order NLOS case the received signal has been
reflected one time. The reflection can be represented by

(pr — pea)” /P — Prall@ = —(pr — 0)* /|Ipr — pll0c (&)

where py, is the transponder position in some global refer-
ence system. p, is the point of reflection (POR) which lies
on the line of reflection (LOR)

w=[0 " +ta wiha=[1 m]"

(&)

c is the offset along the y-axis and m is the inclination of
the LOR. The two dimensions of p, are linearly dependent

DPry = MpPrx +c (6)

Together with (4) we can derive a symbolic expression for

Pr.x = f(D, i, m, c). The observation model becomes then
(we use the same state z; as in (3))
W) = ori=plt Mool )

We need to distinguish two cases, depending on whether we
know the line of reflection.

1) Unknown line of reflection: In case that the LOR
is unknown we place the origin of the coordinate system
at the transponder (p;; = 0). The filter states are z :=
P’ m C}T. We use the same dynamics for p. The dy-
namics of m and c are just random noise. We see that this
filter will have observability issues to identify m and ¢ and
will need a good initial estimate of the LOR. In the following
we propose instead to estimate the LOR from the current
state of the visual SLAM algorithm.
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Fig. 1: Clustering methods on a map with three walls.
Clustering based on the Gaussian Mixture model leads to
a clean separation between the different wall segments.

Gaussian

2) Known line of reflection: We parametrize walls by
LOR’s from a 2D point map of the environment (identified
for example by some SLAM modality) using a clustering
and regression process. We first identify clusters in order
to separate walls from each other, for example if two walls
form a corner. Figure 1 depicts the results from a clustering
process of a point cloud representing three intersecting walls
using different methods. We decided to use clustering based
on a Gaussian mixture model with Bayesian estimation of
a Gaussian mixture [17] as it led to the best separation of
the walls in our experiments. In a second step, we use linear
regression to fit the LOR’s (6) to the identified point clusters.

The filter is accordingly formulated in the global SLAM
reference system. Therefore, p;, needs to be identified while
we use the current SLAM estimate of p. The corresponding
filter states are then
}T

[Pit1 pm,z’+1]T = [pi+ui Prog (8)

C. n-th order non-line-of-sight

The first-order NLOS formulation can be e%(tended to n-
th order by defining n LOR’s @y = [1 my]” with known
reflection order £k = 1,...,n. For each LOR the equation

(pr,k - pr,kfl)T ’LAL —_ (pr,k - pr,kJrl)T
| (Prge = Proa—1)l 1Prk = Progera]

ﬁk, k= 1, e

)
describes the incoming and outgoing rays at the k-th reflec-
tion point p, ;. We have p, o = py, (transponder position)



and p, 41 = p (robot position). This leads to an expression
for Prine = f(pvptm;m;c> with Driny = MnDrnaz + Cn.
The observation model is then the same as in (3) with p, ,,
instead of p,..

This filter requires the knowledge of the n LOR’s and
their correct order. We wrote the filter for completeness but
in practice this is an unlikely assumption. In this work, we
rather reply on an exploration mode to escape such high-
order reflections, see sec. IV

III. CONSTRAINED PATH PLANNING UNDER
UNCERTAINTY

We now present the trjectory optimization approach. Our
goal is to compute paths that will move the robot towards the
estimated emitter position while avoiding obstacles but that
will additionally try to minimize the predicted uncertainty
on these estimates. We want to find paths that will take into
account estimation uncertainty to improve overall navigation.

In order to receive AoA measurements that lead to EKF
state estimates with minimal uncertainty we formulate the
following trajectory optimization problem

i+N—1
YN (TN N> UN) + Z Yi(@ijis wi)
1
T e
Ti|; = [pm VeC(Pili) } <~ EKF(Ii—l\i—laui) (11)
Gi(wi_1)i—1,ui) <0 withi=1,.... N (12)

This is a non-linear optimal control problem over a control
horizon of length N where we aim to minimize a cost
composed of running 7; and terminal vy costs. We aim
to find for each time step ¢ of the planning horizon states
x;|; and controls u; that minimize this cost while satisfying
the constraints ¢;. The state x;); is comprised of the robot
position estimate p;; and the associated vectorized estima-
tion covariance P;); and is governed by the EKF update
equations (16) for the state and covariance as a Bayesian
filtering process [12]. The transition and observation matrices
are chosen according to the LOS or NLOS expressions
derived in Sec. II-A and Sec. II-B.

The cost 7 incorporates the distance between estimated
and desired robot position p;; and py, the uncertainty P;; of
the position estimate p;|; and the control effort u, all subject
to minimization. The explicit formulation for the running and
terminal costs then becomes

vi = ul Ryu; + tr(P)iT;) (13)
v = (pnin — pa) " Qn(pN|N — Pa) + tr(PyinTN)

@, R and T are diagonal weight matrices which let us trade-
off the three different objectives.

We impose lower and upper bound constraints v and & on
the controls. Different from the original formulation [12],
we formulate obstacle avoidance as a constraint. This is
computationally advantageous as the need for second-order
derivatives in iLQR [13] is rendered unnecessary. We have

Dobs,i (xz\z) = _deuc,i (pi|i)+rrob+Tobs+nstd maX(eig (P1,|z)) <0
(14

min.
x,u

(10)

deuc 18 the Euclidean distance between the robot and obstacle
center which are both modeled as spheres with radii 7op
and 7ops. max(eig(F);)) is the distance along one standard
deviation and gives the constraint the character of a chance
constraint P(¢(x,u) < 0) > 0.997 (for ngq = 3).

We use the interior point method based iLQR solver
IPDDP [15] to solve the problem (10) as it enables to easily
include these constraints. The solver requires the gradient
of both the dynamics and the constraints ¢. The gradient of
the Bayesian filtering can be determined analytically. The
gradient of the state estimation update (16) is direct and
depends on the chosen state transition f(p). The gradient
of the estimation covariance update (16) is more involved
and detailed in App. I. Finally, the analytical gradient of
the obstacle avoidance constraints including the covariance
term (14) can be determined according to [18]. Thanks to
this formulation, we have a lower computational complexity
than the original algorithm [12] as summarized in Table 1.

Method [ V. f(z) (11) | VZ¢(x) (14)
Ours o(%) not necessary
[12] Oo(1%) O(ol?)

TABLE 1: Computational comparison for selected operations
per solver step according to [12] and our method based on
constrained iLQR. o is the number of obstacles.

IV. OVERALL ALGORITHM

The overall algorithm consists of two steps:

o Estimation step updates a list of EKF’s (LOS and NLOS)
during the motion of the robot while observing the AoA
of the received wireless signal in order to identify the
approximate robot and transponder positions. New NLOS
filters are added as soon as a new LOR is identified.

e Path planning step re-computes an optimize path for the
robot towards the goal location pg = py, ;; based on the
current estimates of the robot and transponder positions
piji and py, 4; and the obstacle map.

As in our previous work [11], the algorithm is incorporated

into the Neural-Slam [16] system which returns a robot

position estimate p;; in a 2D binary point map of the
environment (free space and obstacles) using vision. We
use the 2D map to generate LOR’s. A simple heuristic is
used to cover the point cloud with circles which act as

a convex approximation of the obstacles for the trajectory

optimization.

The high-level control architecture for moving the robot
to an unknown transponder position p;, with the current
estimate py, ;; is described below. We use the machine
learning based link state estimator from [11] for identifying
the degree of reflection of the received wireless signal.

1) LOS: the path planner uses the EKF formulation
from Sec. II-A for the dynamics (11). If the Mahalanobis
distance [19] of the filter is below a threshold, we plan a
trajectory from the current robot position estimate py = p;|;
to the transponder estimate with a low weight 7' on the
covariance minimization term of (10). Otherwise we choose
a high weight.
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Fig. 2: LOS: The filtered position EKF:p (from red to green
dot) converges to accuracy of approximately Im. The robot
receives a noisy measurement (meas.) of the signal’s AoA

(true AoA in orange).

2) First-order NLOS: the path planner uses the EKF
formulation from Sec. II-B for the dynamics (11). We check
whether a virtual ray along the current received wireless
signal’s AoA « intersects with one of the identified LOR’s.
If this is the case its parametrization is used for the EKF. If
several LOR’s are intersecting we choose the closest LOR.
The initial position is set to the current Neural-Slam estimate
Po = p;j;- The goal location is set to an offset position from
the POR p,. towards the transponder position estimate py, ;;
of the EKF. This is necessary as the EKF can identify the
correct distance to the LOR only if a good initial estimate
exists (see Sec. V-A below).

3) First-order NLOS without intersecting wall, higher-
order reflections, no signal: We switch to the random explo-
ration mode presented in [16] until the robot has approached
an area with good signal reception.

V. EVALUATION

We conduct simulations using the AI Habitat robotic
simulator [20] with environments from the Gibson 3D indoor
models [21] including 3D camera data. The AoA from the
mmWave signals is computed offline using ray-tracing with
resolution of 1 m (cf. [11] for more details on the wireless
simulation). We compute a new control trajectory every 10
control cycles. We choose the weights in the cost function
[ (10) as Qn = 50I for the terminal state cost, R = 0.017
for the running control cost and 7' = 50/ for the running
and terminal covariance term (1" = I for LOS EKF with
low Mahalanbois distance < 0.1 and T" = 0 if no covariance
minimization is desired). The control limit is & = 1m.

First, we test the LOS and NLOS EKF’s for robot and
transponder position identification on simple maps. We pro-
ceed with the evaluation of the path planner in a cluttered en-
vironment with three obstacles (sec. V-B). We continue with
the transponder localization problem on a complex, cluttered
environment. Finally, we evaluate the entire system in 200
different indoor scenarios and compare the performance with
the previous system [11].

A. Identification: Localization on simple maps

The robot executes random motions in both z and y
direction to gather AoA data with added Gaussian noise
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Fig. 3: EKF for NLOS with known LOR. The EKF state
EKF:p converges to a point on the connecting line between
the true POR p,. and p.
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Fig. 4: Computed trajectory with obstacle avoidance. The
uncertainty of the state estimate is reduced significantly for
the LOS case and moderately for the NLOS case as can be
seen from the red confidence ellipses along the trajectories.
The LOR for the NLOS case is depicted in gray.

a + 0.05w rad with normal distribution w ~ AN(0,1). The
filter behavior for the LOS case is depicted in Fig. 2. The
received true and noisy AoA of the signal is given in the
right upper graph. From the left and middle graphs it can
be observed that the filtered robot position EKF:p (orange)
converges from the initial estimate with 40 m error (red) to
the true one (blue) within 1 m error at the green point which
corresponds to the resolution of the simulated wireless data.

An EKF convergence example for the NLOS case with a
known LOR is given in Fig. 3. The position error is reduced
from 10 m to 3 m. The badly identified absolute distance
to the POR can be explained by the high non-linearity of
the observation model. Improvements may be achieved by
augmenting the observations, for example with the signal
strength and a corresponding signal strength decay model.
Another possibility would be to use a particle filter to obtain
good initial EKF estimates [5]. Nevertheless, as we will see
later, the good directional estimates are sufficient to navigate
the robot to the transponder in our experiments.



B. Evaluation of path planning

To illustrate how the trajectory optimization algorithm can
find paths that reduce expected uncertainty, we present results
in an environment with three obstacles for the LOS (sec. II-
A) and NLOS (sec. II-B) case (Fig. 4). The robot is asked to
move from the origin [0 0] m to the location [100 0] m
while navigating three obstacles. The transponder is located
at [0 110] m. In the NLOS case, the LOR is defined by
m = 0, ¢ = 100 m. The covariance along the path of length
N = 100 is initialized as P = 0.1] at each collocation
point such that = := Zf\il tr(P;;) = 20. The results on the
covariance are summarized in Table 2.

For T' = 501 the trajectory optimization results in non-
trivial trajectories that minimize the uncertainty of the state
estimate. In the LOS case (Fig. 4a), we see a clear reduction
in the uncertainty of the state estimate along the trajectory.
When ignoring uncertainty reduction (zero weight 7" = 0 on
the covariance cost function) we find a shorter path but higher
uncertainty (Fig. 4b). For the NLOS case, the reduction is
less pronounced (Fig. 4c) but still visible. We explain this
by the high non-linearity of the NLOS model which makes
it more difficult for the solver to find a good minimizer. In
all cases, all obstacles are avoided.

Case T =50 | T=01I
LOS 4.4 10.95
NLOS 10.84 12.51

TABLE 2: Value = as the trace of the covariance along the
trajectory from initial value = = 20 to after convergence of
the trajectory optimization.

C. Overall algorithm: Locating the transponder

We use the complete algorithm in order to navigate the
robot to a previously unknown transponder position emitting
a wireless signal. To illustrate a typical behavior, we present
navigation results on the Gibson map ‘Springhill’ in Fig. 5.
Until control iteration 40 the link-state estimator correctly
informs the robot that the received signal is reflected to a
high order. The exploration mode following random targets
is employed. At control iteration 50, the received signal
is a first-order reflection. The ray in direction of the AoA
intersects with the blue wall (which we assume to be known
by the robot from the beginning for demonstration purposes,
despite being out of the camera’s sensing distance). The path
planner computes a trajectory with horizon length of 200 to
a goal offset from the LOR. This process is repeated until the
robot gets in LOS with the transponder and finally arrives at
the true transponder position at control iteration 98.

During the robot motion Neural-SLAM gradually con-
structs a point cloud (green points) of the environment.
Accordingly, LOR’s are fitted to it and added to the set
of EKF’s. The number of obstacles goes up to 300 as the
robot progresses. Since the Hessian of the obstacle avoidance
constraints is not necessary, this only leads to a slight
increase of normalized computation times. The trajectory at
control iteration 90 with 261 obstacles and a path length of
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Fig. 5: Path planning for transponder identification of map
’Springhill’. The point cloud identified by Neural-SLAM is
shown in green and the corresponding identified LOR’s are
multi-colored. The direction of the received wireless signal
is indicated by the gray arrow.
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55 is computed in under 2 s with 122 solver iterations. The
solver converges to high precision for all trajectories and
all obstacles are avoided. We also notice that the resulting
motions are non-trivial as they aim to reduce state covariance.

D. Benchmark
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Fig. 6: Performance profile for 200 transponder localization
scenarios. We show the results for noise free AoA measure-
ments (top row) and noisy AoA measurements (bottom row).

We now systematically evaluate the full system on 10
different maps with 10 different transponder locations each.



We compare our algorithm with a baseline algorithm based
on Neural-SLAM where the transponder positions are known
in advance (pure navigation problem to a fixed desired goal).
Furthermore, we show the results of the algorithm originally
proposed in [11] (LOS + 15-NLOS AoA) which follows
a target offset in the direction of the LOS or first-order
NLOS AoA. Otherwise, the algorithm depends on the same
exploration mode that we employ for higher-order reflections
or no signal. Our algorithm is evaluated with (LOS + 1%-
NLOS EKF) and without (LOS + 15-NLOS EKF T=0)
covariance minimization.

The results are shown in fig. 6 as the ratio of problems
solved over performance ratio 7 (for each solver, sum all
problems’ path lengths to solution; each problem’s path
length is normalized by shortest path out of all solvers). We
distinguish the cases where the robot is in LOS, first-order
NLOS and higher-order NLOS in the first iteration.

In the case of noise free AoA measurements all algorithms
solve all problems with initial LOS or first-order NLOS
configuration with a high success rate and approximately
in the same time (top row). However, the pre-computed
AoA arrival data from the ray-tracer can be considered
‘perfect’ simulated data. We therefore consider the case of
the AoA measurements being subject to additional white
noise (w ~ N(0,1), @+ 0.35w rad). The results are given in
the bottom row of fig. 6 and summarized in table 3. The EKF

Method Success rate | Duration
LOS+15*-NLOS EKF (Ours) 94.5% 76%
LOS+15?-NLOS EKF T=0 (Ours) 94.5% 82%
LOS+15¢-NLOS AoA [11] 89.5% 100%

TABLE 3: Summary of success rate and duration (overall
path length to solution) of our method with respect to [11]
for noisy AoA measurements.

based algorithms solve the problems both with higher success
rate (94.5% of problems solved for EKF based algorithms,
89.5% for AoA based algorithm) and faster arrival times /
shorter overall path lengths from initial point to transponder
(problems solved in 76% and 82% (T = 0) of the time
required for the AoA based algorithm). This can be explained
by the robot efficiently following a filtered AoA direction. A
slight advantage in arrival times can be identified for the EKF
based algorithm with covariance minimization (92.7% of the
time required for the EKF based algorithm with 7' = 0)
as the more expressive motions enable a faster transponder
localization under noisy observations.

VI. CONCLUSION

In this paper we proposed a method for navigating robots
through cluttered environments to quickly find a wireless
(mmWave) emitter. Our method consists of an estimator for
the emitter location and a trajectory optimization algorithm
that aims to minimize estimation uncertainty while navi-
gating the robot. Experiments demonstrate the advantages
of the approach under noisy measurements. The estimator
improves navigation success rate while the trajectory planner

based on belief-space dynamics improves tasks completion
speed. Additionally, by formulating a constrained trajectory
optimization problem with analytic gradients our algorithm
is computationally efficient and can be used in an online
setting. Future work will include experiments on real robots.

APPENDIX I
PARTIAL DERIVATIVES OF ESTIMATION COVARIANCE
UPDATE OF THE EKF

In the following we determine the partial derivatives of
the estimation covariance P;); € R updates of the EKF
with respect to the previous estimated state x;_1;_1 € R
and the previous estimation covariance P;_};_;

OPy)i/0z;_1)i—1 and OP;; /0P _1)i—1  (15)
These are necessary to solve (10) by our constrained iLQR
solver. The index ¢ is the time step, for example along the
control horizon. The EKF update equations are given by

ziji = f(Tic1)i—1,wi) + Ky and Py = (1 — KiHi)Pi|(i{61)

with

yi =2 — h(zg;-1) and Py = FP_qi o F) + Qi
S;=Hi(; +R; and K;=(S;!

F=V,feR and H=V,heR" (17)

We define (; = i|i,1HiT with symmetry of FP;;_;.

We use the relationships for matrix derivatives given
in [22], [23]. II is the commutation matrix for Kronecker
products. The product rule and chain rule for matrix func-
tions applies. For the partial derivative w.r.t. the state estimate
we get

OP;;/0xi_1; 1= — (Pi|i71 ® (Cz‘s{l)T
+ (Plaes i) n-ast'd o (@sT)"

- ((QS;lCiT>T ®S;1Q‘T) H)TaHi/amiinfl

(18)

For the partial derivative w.r.t to the previous estimation
covariance we have

OPyi/0P, 11 = Fl @ F — (F @ FI (¢S H)" —
(H:F)" 57 ¢ @ (¢S  (HiF) T +(¢:S; THF) T o FT)
(19)

The partial derivatives are computed in approximately
O(15) operations using central differences [12]. The analytic
computation is of order O(8I* + 1312 + 141%r + 213 +
31%). The leading factor for finite differences is therefore
O(1%) whereas for the analytic expression it is only O(I%)
(assuming [ > r).
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