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Abstract— In this paper, we study a navigation problem
where a mobile robot needs to locate a mmWave wireless signal.
Using the directionality properties of the signal, we propose an
estimation and path planning algorithm that can efficiently nav-
igate in cluttered indoor environments. We formulate Extended
Kalman filters for emitter location estimation in cases where
the signal is received in line-of-sight or after reflections. We
then propose to plan motion trajectories based on belief-space
dynamics in order to minimize the uncertainty of the position
estimates. The associated non-linear optimization problem is
solved by a state-of-the-art constrained iLQR solver. In par-
ticular, we propose a method that can handle a large number
of obstacles (∼ 300) with reasonable computation times. We
validate the approach in an extensive set of simulations. We
show that our estimators can help increase navigation success
rate and that planning to reduce estimation uncertainty can
improve the overall task completion speed.

I. INTRODUCTION

Wireless communications play an important role in

robotics, typically to operate robots [1] or drones [2] re-

motely. Additionally, wireless signals can be used as sensors,

for example to localize a robot or to perform SLAM based on

the signal strength of a WiFi network [3]. However, tradition-

ally wireless signals do not contain direction information to

estimate the location of the emitter precisely. The emergence

of directional millimeter wave (mmWave) bands, which are

deployed for example in 5G networks, have attracted signif-

icant attention for high precision localization applications.

Indeed, the estimation of the direction of transmission is

greatly simplified as angular information does not need to

be reconstructed by complex algorithm as in [4]–[6].

In this paper, we study a scenario where a robot seeks

to navigate to fixed but unknown mmWave wireless emitter

location in an unknown environment. This could model, for

example, a search and rescue scenario where the stranded

human carries the emitter [7]–[10]. Our goal is to exploit

the directionality of mmWave wireless to devise a planning

and estimation framework for fast navigation to the emitter.

Recent work [11] has addressed this problem using a

simple navigation algorithm that follows the angle of arrival
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(AoA) of the received mmWave signal till the robot reaches

the emitter. The algorithm can be used if the robot is in

line of sight (LOS) or in non-line of sight (NLOS) settings

of the emitter. However, this method has two drawbacks.

First, it uses noisy, unfiltered AoA measurements and is thus

ineffective when the robot is two or more reflections from

the emitter. Second, it does not maintain an estimate of the

transponder position, requiring the robot to navigate first to

the point of reflection in NLOS settings.

This paper aims to improve upon the state-of-art using

joint estimation and trajectory planning algorithms. We

consider unexplored cluttered environments with possibly

high degrees of signal reflections (NLOS). We propose an

Extended Kalman Filter (EKF) to estimate the robot position

with respect to the emitter in the LOS and NLOS cases.

The filters are able to robustly estimate the direction of the

wireless sources despite noisy observations. We formulate

a trajectory optimization problem based on belief-space

dynamics following [12] to minimize the uncertainty of the

estimate along the trajectory while avoiding obstacles.

We propose an improved algorithm compared to [12]

by formulating the trajectory optimization problem as a

constrained one. This renders the need for expensive second-

order derivatives of the cost terms when including collision

avoidance unnecessary. Solvers have been proposed that are

able to consider box constraints [13], or nonlinear inequal-

ity constraints for example by the augmented Lagrangian

method [14] or the interior-point-method [15]. Furthermore,

we provide explicit computations of the partial derivatives

of the estimation covariance updates of the EKF, neces-

sary for the solvers. This brings computational advantage

compared to numerical derivatives previously reported [12].

The proposed method is evaluated using the ’Active Neural-

SLAM’ framework [16], a modular, open-source, approach

for mobile navigation, and demonstrate its performance ben-

efits over prior work in a wide range of simulated indoor

navigation environments.

In the following, we formulate the EKF transition and

observation models for the LOS and first- and general n-

th order NLOS cases (Sec. II). To obtain trajectories that

minimize the uncertainty of the EKF state estimate we

formulate a non-linear constrained trajectory optimization

problem (Sec. III). Based on Bayesian filtering, we require

the gradient of the EKF which is detailed in App. I. We start

the evaluation (Sec. V) by verifying the identification based

on the EKF (Sec. V-A) and path planning through cluttered

environments (Sec. V-B) in simple scenarios. The methods

are then applied on complex maps, with detailed results on





and pr,n+1 = p (robot position). This leads to an expression

for pr,n,x = f(p, ptx,m, c) with pr,n,y = mnpr,n,x + cn.

The observation model is then the same as in (3) with pr,n
instead of pr.

This filter requires the knowledge of the n LOR’s and

their correct order. We wrote the filter for completeness but

in practice this is an unlikely assumption. In this work, we

rather reply on an exploration mode to escape such high-

order reflections, see sec. IV

III. CONSTRAINED PATH PLANNING UNDER

UNCERTAINTY

We now present the trjectory optimization approach. Our

goal is to compute paths that will move the robot towards the

estimated emitter position while avoiding obstacles but that

will additionally try to minimize the predicted uncertainty

on these estimates. We want to find paths that will take into

account estimation uncertainty to improve overall navigation.

In order to receive AoA measurements that lead to EKF

state estimates with minimal uncertainty we formulate the

following trajectory optimization problem

min.
x,u

γN (xN |N , uN ) +

i+N−1
∑

i

γi(xi|i, ui) (10)

xi|i :=
[

pT
i|i vec(Pi|i)

T
]T

← EKF(xi−1|i−1, ui) (11)

φi(xi−1|i−1, ui) ≤ 0 with i = 1, ..., N (12)

This is a non-linear optimal control problem over a control

horizon of length N where we aim to minimize a cost

composed of running γi and terminal γN costs. We aim

to find for each time step i of the planning horizon states

xi|i and controls ui that minimize this cost while satisfying

the constraints φi. The state xi|i is comprised of the robot

position estimate pi|i and the associated vectorized estima-

tion covariance Pi|i and is governed by the EKF update

equations (16) for the state and covariance as a Bayesian

filtering process [12]. The transition and observation matrices

are chosen according to the LOS or NLOS expressions

derived in Sec. II-A and Sec. II-B.

The cost γ incorporates the distance between estimated

and desired robot position pi|i and pd, the uncertainty Pi|i of

the position estimate pi|i and the control effort u, all subject

to minimization. The explicit formulation for the running and

terminal costs then becomes

γi = uT
i Riui + tr(Pi|iTi) (13)

γN = (pN |N − pd)
TQN (pN |N − pd) + tr(PN |NTN )

Q, R and T are diagonal weight matrices which let us trade-

off the three different objectives.

We impose lower and upper bound constraints u and u on

the controls. Different from the original formulation [12],

we formulate obstacle avoidance as a constraint. This is

computationally advantageous as the need for second-order

derivatives in iLQR [13] is rendered unnecessary. We have

φobs,i(xi|i):=−deuc,i(pi|i)+rrob+robs+nstd max(eig(Pi|i))≤0
(14)

deuc is the Euclidean distance between the robot and obstacle

center which are both modeled as spheres with radii rrob

and robs. max(eig(Pi|i)) is the distance along one standard

deviation and gives the constraint the character of a chance

constraint P (φ(x, u) ≤ 0) ≥ 0.997 (for nstd = 3).

We use the interior point method based iLQR solver

IPDDP [15] to solve the problem (10) as it enables to easily

include these constraints. The solver requires the gradient

of both the dynamics and the constraints φ. The gradient of

the Bayesian filtering can be determined analytically. The

gradient of the state estimation update (16) is direct and

depends on the chosen state transition f(p). The gradient

of the estimation covariance update (16) is more involved

and detailed in App. I. Finally, the analytical gradient of

the obstacle avoidance constraints including the covariance

term (14) can be determined according to [18]. Thanks to

this formulation, we have a lower computational complexity

than the original algorithm [12] as summarized in Table 1.

Method ∇xf(x) (11) ∇2
x
φ(x) (14)

Ours O(l4) not necessary

[12] O(l6) O(ol2)

TABLE 1: Computational comparison for selected operations

per solver step according to [12] and our method based on

constrained iLQR. o is the number of obstacles.

IV. OVERALL ALGORITHM

The overall algorithm consists of two steps:

• Estimation step updates a list of EKF’s (LOS and NLOS)

during the motion of the robot while observing the AoA

of the received wireless signal in order to identify the

approximate robot and transponder positions. New NLOS

filters are added as soon as a new LOR is identified.

• Path planning step re-computes an optimize path for the

robot towards the goal location pd := ptx,i|i based on the

current estimates of the robot and transponder positions

pi|i and ptx,i|i and the obstacle map.

As in our previous work [11], the algorithm is incorporated

into the Neural-Slam [16] system which returns a robot

position estimate pi|i in a 2D binary point map of the

environment (free space and obstacles) using vision. We

use the 2D map to generate LOR’s. A simple heuristic is

used to cover the point cloud with circles which act as

a convex approximation of the obstacles for the trajectory

optimization.

The high-level control architecture for moving the robot

to an unknown transponder position ptx with the current

estimate ptx,i|i is described below. We use the machine

learning based link state estimator from [11] for identifying

the degree of reflection of the received wireless signal.
1) LOS: the path planner uses the EKF formulation

from Sec. II-A for the dynamics (11). If the Mahalanobis

distance [19] of the filter is below a threshold, we plan a

trajectory from the current robot position estimate p0 = pi|i
to the transponder estimate with a low weight T on the

covariance minimization term of (10). Otherwise we choose

a high weight.







We compare our algorithm with a baseline algorithm based

on Neural-SLAM where the transponder positions are known

in advance (pure navigation problem to a fixed desired goal).

Furthermore, we show the results of the algorithm originally

proposed in [11] (LOS + 1st-NLOS AoA) which follows

a target offset in the direction of the LOS or first-order

NLOS AoA. Otherwise, the algorithm depends on the same

exploration mode that we employ for higher-order reflections

or no signal. Our algorithm is evaluated with (LOS + 1st-

NLOS EKF) and without (LOS + 1st-NLOS EKF T=0)

covariance minimization.

The results are shown in fig. 6 as the ratio of problems

solved over performance ratio τ (for each solver, sum all

problems’ path lengths to solution; each problem’s path

length is normalized by shortest path out of all solvers). We

distinguish the cases where the robot is in LOS, first-order

NLOS and higher-order NLOS in the first iteration.

In the case of noise free AoA measurements all algorithms

solve all problems with initial LOS or first-order NLOS

configuration with a high success rate and approximately

in the same time (top row). However, the pre-computed

AoA arrival data from the ray-tracer can be considered

‘perfect’ simulated data. We therefore consider the case of

the AoA measurements being subject to additional white

noise (w ∼ N (0, 1), α+0.35w rad). The results are given in

the bottom row of fig. 6 and summarized in table 3. The EKF

Method Success rate Duration

LOS+1st-NLOS EKF (Ours) 94.5% 76%

LOS+1st-NLOS EKF T=0 (Ours) 94.5% 82%

LOS+1st-NLOS AoA [11] 89.5% 100%

TABLE 3: Summary of success rate and duration (overall

path length to solution) of our method with respect to [11]

for noisy AoA measurements.

based algorithms solve the problems both with higher success

rate (94.5% of problems solved for EKF based algorithms,

89.5% for AoA based algorithm) and faster arrival times /

shorter overall path lengths from initial point to transponder

(problems solved in 76% and 82% (T = 0) of the time

required for the AoA based algorithm). This can be explained

by the robot efficiently following a filtered AoA direction. A

slight advantage in arrival times can be identified for the EKF

based algorithm with covariance minimization (92.7% of the

time required for the EKF based algorithm with T = 0)

as the more expressive motions enable a faster transponder

localization under noisy observations.

VI. CONCLUSION

In this paper we proposed a method for navigating robots

through cluttered environments to quickly find a wireless

(mmWave) emitter. Our method consists of an estimator for

the emitter location and a trajectory optimization algorithm

that aims to minimize estimation uncertainty while navi-

gating the robot. Experiments demonstrate the advantages

of the approach under noisy measurements. The estimator

improves navigation success rate while the trajectory planner

based on belief-space dynamics improves tasks completion

speed. Additionally, by formulating a constrained trajectory

optimization problem with analytic gradients our algorithm

is computationally efficient and can be used in an online

setting. Future work will include experiments on real robots.

APPENDIX I

PARTIAL DERIVATIVES OF ESTIMATION COVARIANCE

UPDATE OF THE EKF

In the following we determine the partial derivatives of

the estimation covariance Pi|i ∈ R
l,l updates of the EKF

with respect to the previous estimated state xi−1|i−1 ∈ R
l

and the previous estimation covariance Pi−1|i−1

∂Pi|i/∂xi−1|i−1 and ∂Pi|i/∂Pi−1|i−1 (15)

These are necessary to solve (10) by our constrained iLQR

solver. The index i is the time step, for example along the

control horizon. The EKF update equations are given by

xi|i = f(xi−1|i−1, ui)+Kiyi and Pi|i = (I−KiHi)Pi|i−1

(16)

with

yi = zi − h(xi|i−1) and Pi|i−1 = FiPi−1|i−1F
T
i +Qi

Si = Hiζi +Ri and Ki = ζiS
−1

i

F = ∇xf ∈ R
l,l and H = ∇xh ∈ R

r,l (17)

We define ζi := Pi|i−1H
T
i with symmetry of Pi|i−1.

We use the relationships for matrix derivatives given

in [22], [23]. Π is the commutation matrix for Kronecker

products. The product rule and chain rule for matrix func-

tions applies. For the partial derivative w.r.t. the state estimate

we get

∂Pi|i/∂xi−1,i−1 = −
(

Pi|i−1 ⊗
(

ζiS
−1

i

)T
(18)

+
(

PT
i|i−1 ⊗ S−1ζTi

)

Π− ζiS
−1

i ζTi ⊗
(

ζiS
−1

i

)T

−
(

(

ζiS
−1

i ζTi
)T
⊗ S−1

i ζTi

)

Π
)T

∂Hi/∂xi−1|i−1

For the partial derivative w.r.t to the previous estimation

covariance we have

∂Pi|i/∂Pi−1|i−1 = FT
i ⊗ FT

i −
(

FT
i ⊗ FT

i (ζiS
−1

i Hi)
T −

(HiFi)
TS−1

i ζTi ⊗(ζiS
−1

i (HiFi))
T +(ζiS

−T
i HiFi)

T⊗FT
i

)

(19)

The partial derivatives are computed in approximately

O(l6) operations using central differences [12]. The analytic

computation is of order O(8l4 + 13lr2 + 14l2r + 2r3 +
3l3). The leading factor for finite differences is therefore

O(l6) whereas for the analytic expression it is only O(l4)
(assuming l > r).
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