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Abstract. Manipulation of objects of variable size, shape and surface
properties remains a challenging problem in robotics. In this paper, we
present the design of a soft, pneumatically variable contact stiffness
grasper and the training of a sparse, bioinspired neural network con-
troller for pick-and-place manipulation. Both the soft grasper and the
neural network controller are inspired by the sea slug Aplysia califor-
nica. The compliant nature of the grasper is beneficial for maintaining
rich contact with objects, which simplifies the control problem. Adopt-
ing biologically inspired neural dynamics and network structure has the
further advantage of building neural network controllers that are robust
and efficient for real-time control. To verify the effectiveness of our bio-
inspired approach for object grasping and manipulation, we developed
a simulation environment that reflects the compliance between the soft
grasper and the object. We demonstrate that when integrated with the
neural network controller, the grasper successfully completed the pick-
and-place task in simulation. With minimal tuning, the controller was
then successfully transferred to the physical soft grasping platform and
was able to successfully pick-and-place objects of various size and mass,
up to a maximum tested mass of 706 g. The bio-inspired approach to
both the morphology and the control of the soft-grasper presented here
thus represents an exciting first step toward the robust adaptive manip-
ulation of a broad class of objects.
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1 Introduction

In the pursuit of robotic manipulators that can replicate the dexterity and sen-
sitivity of prehensile appendages found in nature, roboticists have increasingly
incorporated soft materials and compliant structures in their designs [1,21,27].
Soft graspers offer advantages that make them attractive options for the manip-
ulation of objects in challenging environments, such as in agriculture. Some fruit,
fungi, and vegetables are often soft, slippery, and fragile [37]. Soft graspers and
compliant structures can solve contact problems encountered in the manipulation
of such objects morphologically by conforming to the surface of the object [27].
Moreover, unlike point contact between rigid bodies, compliant structures have
the ability to conform to the grasped object, which increases the contact area
and the frictional forces and torques that can be applied to keep the object
stable [2].

Prehensile appendages like tentacles [1] and soft fingertips [22]| often serve
as a direct source of inspiration for the morphology of their soft robotic coun-
terparts [27]. However, soft structures possess many degrees of freedom, which
make predicting how these structures will deform computationally expensive.
The computational cost is further compounded when the objects being grasped
are soft or irregular. Hence, the real-time control of soft robotic grasping and ma-
nipulation systems remains a challenge [33]. However, many natural organisms
are capable of similar real-time control to execute such complicated manipulation
tasks.

One organism that is adept at grasping and manipulating a wide variety of
objects, including small, fragile, and slippery objects in real-world settings using
a soft grasper is the sea slug Aplysia californica. Aplysia regularly manipulates
seaweeds of a wide range of geometries and stiffness and adapts to mechanical
loads in the environment. Furthermore, Aplysia possesses a tractable nervous
system that has facilitated the creation of detailed neuromechanical models of
its soft grasper and neural controller [34]. This detailed understanding of both
the biomechanics and neural controller of Aplysia has been used to create soft
robots that can capture the major kinematics of Aplysia’s feeding behavior [5,21].
Abstracting key features from Aplysia’s feeding mechanisms for engineering ap-
plications may help to bridge the gap between the manipulation benefits inherent
to soft graspers and the difficulty in controlling such structures.

Adapting the advantages of Aplysia’s soft grasper for engineering applica-
tions requires the adoption of principles from both the grasper’s morphology
and control. Aplysia’s soft grasper can conform to the shape of a grasped ob-
ject by enveloping it within the soft grasper and modulating the shape of its
lumen [14]. Through active modulation of closing force in the musculature of
the grasper [10], it can tune the contact stiffness of the grasper to maintain
a secure hold of the object. To mimic the modulatory characteristics of the
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Aplysia grasper in soft robots, a combination of grasper morphology and mate-
rial properties can be exploited to achieve tunable stiffness. Methods to mod-
ulate contact stiffness through thermally actuated polymers and metals [3,24],
dielectric elastomers (DEA) [28] and dielectric liquids [36], and variable fluidic
pressure [16,22,29] have previously been used by soft roboticists, but gaps re-
main. For example, thermally actuated methods can achieve order of magnitude
changes in stiffness but can require timescales on the order of minutes to do
so0 [24]. Dielectric elastomer and dielectric liquid based graspers have the advan-
tage of direct interfacing with electrical control systems. However, they require
operating voltages on the order of kilovolts (kV) [28,36] which needs specialized
circuitry and handling [20]. Fluidic actuated graspers can achieve tunable stiff-
ness by modulating pressure, while simultaneously providing feedback of contact
pressure [22] and geometry [16,29]. The graspers presented in [16,29] and [22]
achieve tunable stiffness with feedback of contact by modulating and monitor-
ing pressure in an elastic enclosure. However, these graspers adopt a parallel
jaw configuration which limits their ability to spatially tune stiffness and max-
imize the surface area in contact with the target object. Although other fluidic
graspers have been reported that can provide a greater contact area with the
object using stochastic tentacle-like appendages [1] or a fluidic toroid [25], they
do not explicitly provide the ability to spatially tune contact stiffness and sense
changes in contact state along the grasping surface.

In addition to the compliance and tunable materials of Aplysia’s feeding ap-
paratus, the controller for Aplysia’s soft grasper demonstrates real-time control
of feeding behavior that adapts to the environment. The controller exhibits a
hierarchical control architecture that is composed of command and interneurons
that creates emergent adaptability based on sensory feedback [34]. To create
a similar, real-time controller for our Aplysia-inspired soft grasper, we imple-
mented a Synthetic Nervous System (SNS) controller. SNSs incorporate the dy-
namics of real neurons and can be designed to perform basic arithmetic opera-
tions efficiently, which makes them a promising approach for the control of real-
time robotic systems [9,31,32]. Furthermore, SNSs can be designed to replicate
a hierarchical control architecture, inspired by that found in Aplysia [18]. We
have previously demonstrated that an SNS tuned in simulation can successfully
control a Cartesian gantry robot for a real-time pick-and-place manipulation
task [18]. However, SNSs have not been previously used to control a soft grasper
in a manipulation task. SNSs’ ability to robustly and efficiently perform compu-
tations in real-time [18] makes it particularly attractive for the real-time control
of a soft grasper for manipulating objects of various sizes, shapes, and surface
properties.

To address the need for real-time control of soft robotic graspers for pick-
and-place manipulation, in this work, we present the design, manufacturing,
and characterization of a bio-inspired soft grasper based on the abstraction of
key features from the feeding mechanism of Aplysia californica. The grasper’s
morphology was inspired by the conformable grasping surface of Aplysia, and
was able to envelop grasped objects via pneumatic soft actuators that contract
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radially. Spatial tuning of contact stiffness was achieved by soft jaws with pneu-
matically variable contact stiffness, which also simultaneously provide contact
feedback via monitoring of abrupt pressure changes. We then show that an SNS
controller inspired by the hierarchical structure of the Aplysia feeding control
circuitry can be first tuned in simulation and then transferred to the physical
soft, robotic grasper to perform pick-and-place manipulation, with limited ad-
ditional tuning. The physical grasper qualitatively replicated the key dynamics
of the simulated grasper. Without any additional tuning of the controller, the
soft grasper with SNS control was able to pick up objects of varying size, shape,
and mass. This work lays the foundation for a soft grasper platform that can
adaptively change its control and actuation to robustly manipulate objects of
various shape and surface properties. Such a grasping platform may be partic-
ularly useful in an agricultural environment where the ability to simultaneously
modulate and sense contact pressure can aid in the manipulation of soft, fragile,
and slippery objects.

2 Methods

2.1 Bioinspired Soft Grasper

Assembly and Characterization of Closure Artificial Muscle. To achieve
circumferential contraction of the closure muscle, two layers of McKibben actu-
ators are placed in a fabric sleeve (80% Nylon, 20% Spandex). Each layer of
actuators was composed of two McKibben actuators fabricated using methods
previously described by Dai et al. [5], each 245 mm long, connected via 1.6 mm
(1/16 in.) inner diameter (ID) tubing. To maintain a cylindrical shape, the layers
of McKibbens were offset by 90 degrees (Fig. 1A). This 90-degree offset mini-
mized the strain on the tubing connections between the McKibben actuators,
which otherwise had a tendency to buckle when pressurized. This buckling would
cause the closure muscle to lose its circular shape if only one actuator layer was
used.

When actuated, these McKibben’s exhibited approximately 25% contraction
from their original length. For a closure muscle of circumferential length of 490
mm, we would expect to see a change of radius of the circular area of the actua-
tor from 46.5 mm when fully deflated to 19.5 mm when fully inflated, for a total
radial change of 27 mm (Fig. 1A). To characterize the contraction of the fabri-
cated closure muscle, the pressure applied to the muscle was increased from 0 to
12 psig at increasing intervals of 0.5 psig. At every pressure point, the system
was pneumatically inflated in a twenty-second period, and three measurements
of the diameter of the muscle were taken on the inner wall of the closure muscle
with a 1-mm resolution ruler.

Assembly and Characterization of Soft Jaws with Tunable Stiffness.
While the closure muscle became increasingly stiff with applied pressure, this
change was coupled with a decrease in diameter. Moreover, it was not possible
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Fig. 1. A. Schematic of grasper in the uninflated and inflated states. B Cross-section of
the soft grasper. Air tightness was kept via the flange of the soft jaw. C Exploded view
of soft jaw assembly. D Fabricated Grasper (underside view). The soft grasper without
the tilt attachments weighed 143 g. The total radial contraction of the manufactured
grasper was 19 mm. E Mold used to create the soft jaw. F After the mold was assembled,
the liquid urethane elastomer was injected via a syringe.
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to spatially tune the contact stiffness of the closure actuator. To be able to
tune the contact stiffness spatially and to decouple the contact stiffness from the
positional state of the closure muscle, soft deformable jaws were designed and
affixed to the inner diameter of the closure muscle (Fig. 1). The stiffness of these
jaws could be varied pneumatically, such that increasing the air pressure to the
internal cavity of a jaw increased its effective stiffness.

To fabricate the jaws, an injection molding technique was used. A four-piece
mold was 3D printed on a Prusa MK3S+ out of Hatchbox PRO+ polylactic
acid filament (PLA) and sprayed with mold release (Mann). Then, a liquid ure-
thane rubber was mixed according to the manufacturer’s instructions (Smooth-
On Vytaflex 30A) and was placed in a vacuum chamber @ -100 kPa for 20
minutes to remove bubbles introduced during mixing. The four-piece mold was
then assembled (Fig. 1E), and the liquid rubber was injected into the inlet with
a syringe (Fig. 1F). The liquid rubber was left for 24 hours at room temperature
to cure. After curing, the mold was disassembled, and the soft jaw was removed
from the core. Smooth-on Vytaflex 30A was chosen in part because of its ability
to withstand up to 1000% strain, which facilitates not only high deformations
during grasping but also removal from the mold during fabrication.

To enable a modular design where soft jaws
of different sizes, geometries, and material prop-
erties could be used, the jaw mounts were at-
tached to the soft grasper, and a removable at-
tachment insert was used to fasten the flange of
the soft jaws to the jaw mount using four M2
screws. The mount and insert were 3D printed
on an Asiga Freeform PICO2 using a 79D shore
hardness resin (PlasCLEAR) with 0.1 mm layer
height. The mount included routing channels for
the air inlet, which was attached to the pressure
controller with a 3.2 mm (1/8 in.) outer diame-
ter (OD) and 1.6 mm (1/16 in.) inner diameter
(ID) tube. To ensure air-tightness between the
mount and the air inlet, a 4.5 mm OD, 2.5 mm
ID, 1 mm thick rubber O-ring (McMaster-Carr)
was placed in a slot in the inlet tube pathway. The flange of the soft jaw was
slightly oversized for the cavity formed between the mount and the insert (Fig.
1 B-C), which aided in making an airtight seal when tightened with the M2
screws. To further prevent air leaks at the boundary of the soft jaw and the jaw
mount, Loctite SI5011 Silicone RTV sealant was applied around the boundary
before final assembly.

Fig.2. Experimental setup to
characterize the soft jaw stiff-
ness as a function of indentation
depth and pressure.

To characterize the stiffness of the jaws, the soft jaw and mount assembly were
placed in a 3D printed jig on an MTS Criterion 42 electromechanical load testing
system (Fig. 2). A syringe was connected to the air inlet of the jaw, with a 30 psig
pressure gauge (ELVH-030G-HAND-C-PSA4) used to monitor the pressure. To
achieve a given pressure setpoint, a caulking gun (Albion B12 26:1) was used
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to actuate the syringe and hold it in place. Then, the MTS indenter (diameter
12.7 mm) was lowered at a speed of 2 mm/s up to a maximum indentation depth
of 5 mm. Pressure setpoints of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0, 1.5, 1.8, and
2.5 psig were tested, with each setpoint experiment repeated three times. The
zero indentation depth for all pressure setpoints was set at the height of the soft
jaw when it was uninflated, i.e. the pressure was 0 psig. An empirical model of
the measured reaction force as a function of indentation depth and the applied
pressure was then fitted for use in the simulation of the soft grasper.

Assembly of Complete
Soft Grasper. To as-
semble the complete soft
grasper for pick-and-place
manipulation, the soft jaws
were first connected to the
closure muscle via hook-
and-loop fasteners and se-
cured in place via stitches
with Kevlar thread through
inserts placed in the jaw
holder. This was neces-
sary to prevent the jaws
from tilting around the clo-
sure muscle when it at-
tempted to lift objects. Fig. 3. Block diagram of the robotic system to demon-
Rigid graspers with only strate real-time control of the soft grasper for a pick-
two frictional contact points and-place task. Geometry (G-) and Machine (M-)
with the grasped objects of- Code which contains the position commands for the
ten cannot resist moments gantry are used to communicate between the computer

about the axis that join the and the gantry. PC Icon from Biorender.com.

contacts [19]. A minimum of

three contact points greatly improves the ability to resist external forces and
torques applied to the grasped object and establish force closure [19]. To im-
prove the stability of the grasped object, three soft jaws were attached to the
closure muscle spaced 120° apart. Note that the design could accommodate a
total of 6 jaws spaced 60° apart if there is a need for greater contact force or
finer tuning of spatial stiffness. The soft grasper was then connected to a gantry
via a 3D printed mount, with 3D printed tilt attachments that rotate to allow
the closure muscle to contract and relax (Fig. 1A). The gantry was built using
a Creality CR-10 S5 3D printer whose firmware was modified to accept M-code
commands to control the grasper’s position and report its current positional
state [18].

2.2 Simulation Environment

To facilitate the design of a controller for real-time pick-and-place tasks in the
soft grasper, a simulation of the soft grasper’s mechanics was implemented in
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PyBullet (Fig. 7) [4]. The simulation uses a gantry system for spatial positioning
of the grasper as described in our prior work [18]. The mechanics of the closure
muscle were simulated as linear motor-powered prismatic joints along which
each jaw can slide. To take advantage of PyBullet’s fast computation for rapid
controller tuning, the soft jaws were represented as rigid bodies with a contact
stiffness that varied with applied pressure in accordance with the experimentally
characterized soft jaw stiffness. To simulate a pick-and-place task, a 1kg cube of
size (39, 39, 34.5) mm was placed at the initial position ([0, 0, -0.315] m). The
target position for the pick-and-place operation was [0.15, 0.15, -0.335] m. The
coefficient of friction between the object and the soft grasper was set as 0.75,
which is a typical value of the static coefficient of friction between rubber and
other materials [26]. Note that the target position (4, y, 2;) and object position
(Zo, Yo, o) are fixed parameters. The pick-and-place of random target and object
positions are not addressed in this work but may be accomplished in the future
through the use of vision or tactile feedback from the robot.

2.3 Controller Design and Tuning

Synthetic Nervous Systems. To control the soft grasper for pick-and-place
manipulation tasks, we developed a bio-inspired neural network controller using
the Synthetic Nervous System (SNS) approach. Synthetic Nervous Systems (Fig.
4A) are neural network models inspired by the biophysics of neurons [30, 31].
This approach treats synaptic inputs to a neuron as conductance changes while
simplifying the function of the neuron’s axon as a nonlinear relationship between
the membrane potential and neural activity. This representation endows a model
neural network with the necessary inductive bias to conduct nonlinear operations
with low computational complexity [7,11,15]. The dynamics of the ith neuron
in an SNS can be described as the following ordinary differential equations [31]:

dU;
Cmigr = 9m,i(Eri = Us) + ;fiijyj(Eij —U)+1i )
min(max(U;, Eo; ), Enii
vi = dr(U) = (max( lo,i)s Ehii) (2)

Evii — Eyo

where Eq. 2 represents a piecewise-linear relationship between membrane po-
tential U; and neural activity y;, with Ej,; and Ey;; the lower and upper limit
of the activation function ¢;, respectively. In Eq. 1, Cp, i, gm,i, and E,; are the
membrane capacitance, leak conductance, and resting potential of the neuron,
respectively. The summation term is the net synaptic current, where the product
of maximal conductance of the jth synapse g;; and the corresponding presynap-
tic neural activity y; defines the synaptic conductance, and E;; is the reversal
potential of the synapse. I; represents external stimuli or bias current.

After determining the specific network structure, the parameters in an SNS
must be set appropriately to accomplish the assigned tasks of each pathway.
The use of Functional Subnetworks (FSNs) [8,31] is an analytical approach to
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Fig.4. A Schematic of non-spiking, single-compartment neurons in Synthetic Ner-
vous Systems (U: membrane potential, y: neural activity, Cr: membrane capacitance,
Gm: leak conductance, ¢g: maximal synaptic conductance, AE: reversal potential, ypre:
presynaptic neural activity) and B a bio-inspired SNS controller for the pick-and-place
control of the soft grasper. In SNSs, neurons are represented by single-compartment
units with conductance-based inputs and rated outputs. All neurons in our neural net-
work controller are modeled in the SNS framework. The hierarchical structure of the
controller was inspired by the nervous system of Aplysia.

solving the parameter-tuning problem in SNSs. By deriving the constraints that
govern the network behaviors, an SNS user can design static networks for ele-
mentary mathematical operations and dynamic networks for differentiation and
integration. However, the analytical nature of FSNs limits their application in
constructing complex networks and pathways implementing highly nonlinear op-
erations. A more systematic way to tune the SNS parameters is using supervised
learning methods. We can discretize Eq. 2 by a semi-implicit method [17] and
express the governing differential equations of n neurons as a recurrent neural
network (RNN) model in machine learning [18|

T

Fr= 3
T+ Vo(hi_1) )
A

= 4
=2 i+ A (4)
h, — b+ Wo(hi—1) (5)

1+ Vo(hi-1)
ht = (1 —Zt)th,1+Zt®ht (6)
where t is the current time and A is the time step. h; denotes the state vector
[Up,-++,U,]T. z¢ and h; are two intermediate variables defined in Eq. 4 and Eq.
5, respectively. T = [r1,+ -+ ,7,] | is the time constant vector with 7; = Cyy.i/gm.i

representing the time constant of ith neuron, while 7; defined in Eq. 3 is the effec-
tive time constant vector. The weight matrix W = (w;;) and conductance matrix
V = (vi;) are two n X n matrices with w;; = ¢; jFij/gm,i and Vij = ¢ j/9m.i
representing the normalized synaptic weight and synaptic conductance from the
Jth neuron to the ith neuron, respectively. ©® denotes element-wise product. We
can then formulate the parameter tuning problems of SNSs as machine learn-
ing tasks such as function approximation or time series prediction and adopt
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methods like backpropagation through time (BPTT) [35] to effectively calculate
the gradient and optimize the parameters 7, W, V| Ey;, and E),. Due to the
conductance-based synapses, the activities of presynaptic neurons exist in both
the numerator and denominator of Eq. 5. This rational function, as an additional
source of nonlinear computation besides the activation function ¢, increases the
expressive power of SNSs [7], allowing users to design compact and interpretable
controllers with sparse synaptic connections. In [18], it is demonstrated that com-
pact SNSs have superior performance to classical neural network models such as
multilayer perceptrons (MLPs) in terms of implementing nonlinear arithmetic
operations that are essential for robotic control. Furthermore, bio-inspired neu-
ral network models can exploit the temporal nature of the task, enabling them to
filter out transient disturbances and provide superior noise resiliency, compared
to feedforward models [17].

An SNS Controller for the Soft Grasper. Using SNSs, we designed a soft
grasper controller to implement pick-and-place manipulation. The structure of
the neural network controller (Fig. 4B) was inspired by the nervous system of
Aplysia. Aplysia can achieve robust and multifunctional feeding control based
on a relatively small number of neurons [6,34]. Its command-like cerebral-buccal
interneurons in the cerebral ganglion receive afferent feedback from sensory neu-
rons. They coordinate behaviors by mediating the buccal interneurons in the
buccal ganglion [12]. The buccal interneurons, in turn, mediate motor neurons
to generate features that are fundamental for the selected feeding behavior [13].
Our grasper controller used a similar structure. The sensory neuron layer (Fig.
5A) received the grasper position (zg,Ys, 2g), Object position (zo, Yo, o), target
position (x, yt, 2t ), and contact force (F1, F, F3) between the three jaws and the
object. ! The output neurons of this layer detected whether the distance between
the grasper and the object/target (Ao/At) was greater than a relatively large
threshold (th; = 8 cm) or a relatively small threshold (the = 1 cm). Two model
neurons were included in the controller to detect whether a stable contact had
been established (all forces were greater than a large threshold thy; = 15 N) or
discarded (any force was greater than a small threshold thp; = 0.5 N). The com-
mand neuron layer (Fig. 5B) contained 8 neurons, each representing a critical
behavior in the pick-and-place task. The excitation of a neuron led to the gen-
eration of the corresponding behavior. Synapses from the sensory layer ensured
the behaviors could be executed in sequence. Neurons in the interneuron layer
(Fig. 5C) were implemented with synaptic connections to motor neurons(Fig.
5D), which defined four necessary motion primitives in the pick-and-place con-
trol. By selectively exciting the interneurons, a command neuron can accomplish
its behavioral coordination function. For example, the reaching-the-object com-
mand neuron excites the moving-to-the-object (Obj) interneuron. In contrast,

1 Although we can achieve variable stiffness through active pressure control, we set
the pressure applied to the soft jaws as a constant in this work. The regulation of
the stiffness is treated as future work (see section 4)
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Fig. 5. A Neurons and synaptic connections in the sensory neuron layer, B command
neuron layer, C interneuron layer, D and motor neuron layer of the soft grasper con-
troller. Neurons in the interneuron layer represent four different motion primitives,
namely moving to the object (Obj), moving to the target (Tar), lifting the grasper
(Az) up, and closing the jaw (Jaw). The activities of motor neurons represent the joint
commands sent to the gantry system (grasper position (zc,yc, z.) and radial contrac-
tion of the grasper Jaw.). A command neuron will be activated if all of its excitatory
neurons are firing while inhibitory neurons are silent. In contrast, an interneuron will
be activated if any of its excitatory neurons are firing.
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the reaching-the-target command neuron excites the moving-to-target (Tar) and
closing-the-jaw (Jaw) interneurons.

To find appropriate parameters for the SNS controller, we built the neural
network model in Pytorch (version 2.1.0, Python version 3.9.16) [23] and used the
supervised learning paradigm introduced in the previous subsection 2.3 to train
the controller in an offline and layer-wise manner. The learning was formulated as
a time sequence prediction task. The training set for each layer contained 10000
training examples. Each training example included randomly sampled constant
series as layer inputs and the desired layer outputs specified in Fig. 5 as label
series. Specifications of the SNS training are summarized in Table 1.

Table 1. The training parameters of the soft grasper controller.

Training parameters Value

Time step 0.1 sec

Number of training examples 10000

Window size 50

Batch size 200

Training epoch 50

Training method BPTT
Optimizer Adam
Performance Mean squared error (MSE)

2.4 Testing SNS control on the Soft Grasper Platform

To demonstrate the effectiveness of the controller in performing a pick-and-place
task with the soft grasper, the soft grasper was mounted to a customized gantry,
and the pressure of the pneumatic components was controlled by a pressure reg-
ulator (Fig. 3). The gantry and the pressure regulator were previously presented
in [18] and [5], respectively. The pressurization of the closure muscle and each
of the three soft jaws was independently controlled by the pressure controller
which received pressure commands from and sent pressure sensor readings to
the host PC in real-time. Communication with both the pressure regulator and
the gantry occurred over separate serial ports at 115200 Baud-rate.

In accordance with the controller tuned in simulation, at the start of a pick-
and-place test, each of the jaws was inflated to a pressure of 1 psig. Once all
the jaws were within 0.050 psig of this threshold, the inlet and outlet valves
for the corresponding ports on the pressure regulator were kept closed for the
duration of the experiment to maintain a constant volume of air within the jaws.
The controller sent position commands for the z-y-z axes of the gantry and sent
the pressure command corresponding to the desired radial change of the closure
muscle to the pressure regulator. The pressure readings of the closure muscle and
each of the soft jaws were reported by the pressure regulator and logged on the
host PC. Changes in the measured pressure at each of the jaws were used as a
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proxy for contact force measurement. For compatibility with the SNS controller
thresholds, force feedback presented to the SNS was calculated as follows. The
change in pressure (measured in psig) from the 1 psig setpoint was scaled by a
factor of 5 if the difference was greater than 0.2 psig; otherwise, the force for
that jaw was set to 0. The 0.2 psig threshold was manually tuned to prevent false
triggering of a state change from sensor noise. The scale factor of 5 was manually
tuned so that when secure contact with an object was initiated, it would trigger
a change in state from Phase III (close grasper) to Phase IV (lift object).

3 Results and Discussion

3.1 Force vs. pressure characterization for soft jaw

The soft deformable jaws demonstrated increased reaction force as a function of
both indentation distance and pressure applied to the internal cavity of the jaws
(Fig. 6A). The following nonlinear empirical model was fitted to the data using
MATLAB’s fitnlm routine:

Fgr[N] = (0.0416 + 0.505P}-°%47)(0.1792F712 4-0.8915714 + 5.4641)  (7)

where Fr is the reaction force in N, [; is the indentation depth in mm and Pjy
is the pressure applied to the jaw in psig.

Similar to the increase in reaction force with increased pneumatic pressure
applied to the jaw at a given indentation depth, there was also an increase in
stiffness. This was reflected in the empirical model by differentiating Fr (Eq. 7)
with respect to lg4:

OFR

keys[IN/mm] = Bl

= (0.0416 + 0.505P59547)(0.891"7 + 0.3581*71;)  (8)
where ks is the stiffness in N/mm.

At pressures beyond atmospheric (i.e. greater than 0 psig), there was a non-
zero force present at 0 indentation depth. This was because the faces of the soft
jaw bulged outward when pressurized. This increase in the effective size of the
jaw has the potential benefit of allowing the grasping of smaller objects than
was initially designed for by decreasing the radius of the space enclosed by the
jaws when the closure muscle is fully activated (19.5 mm, Fig. 1). However,
this increase in the size of the jaw was coupled with an increase in both force
and stiffness and may not be appropriate in all grasping applications, particu-
larly for very small and fragile objects. Future work will look at ways to limit
the deflection of the jaw surface during inflation, such as using selective fiber
reinforcements.

While the empirical model captures the change in contact force as a function
of pressure and indentation depth, it does not capture the time-varying dynamics
of the soft jaw. Including the dynamics introduced by the viscoelasticity of the
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elastomeric materials and inflation of the soft jaw will be important for real-time
control of the grasper’s mechanical properties. Future work will characterize such
dynamics through both experiment and simulation using finite-element-based
methods.

Fig. 6. A Reaction force and stiffness increase with increased pressure applied to the
internal cavity of the jaw. Indentation depth was measured relative to the height of the
jaw in the 0 psig state. B Pressure required to achieve a given change in the radius of
the closure muscle. To achieve changes larger than a few mm, pressures beyond 5 psig
were required. At 12 psig, the closure muscle reached the limit of its contraction.

3.2 Mapping input pressure to radial contraction in the closure
muscle

The closure muscle showed a non-linearly monotonic decrease in radius as pres-
sure was increased (Fig. 6B). The pressure required to achieve a given change in
radius was captured by the following 6th-order polynomial fit to the data:

Pcpsig] =3.03 x 1075Ar% —1.26 x 107 Ar® +9.37 x 10~ Ar*
+0.0217A7% — 0.364Ar% 4 2.075Ar (9)

where P is the pressure applied to the closure muscle in psig and Ar is the
decrease in radius in mm. Decreases in the radius from the uninflated closure
muscle state are considered positive.

The closure muscle contracted only a few mm for pressures below 5 psig,
with most of the contraction occurring between 5-11 psig. At pressures beyond
12 psi, there was no noticeable reduction in the radius of the grasper. This is
consistent with the previously observed behavior of these types of McKibben
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actuator rings [5], where although the inner latex bladder increases in diameter
for pressures below 5 psig, it is not yet in contact with the over-expanded mesh,
and so little contraction occurs. The maximum achievable decrease in radius
of 19 mm was lower than the expected 27 mm. This may be caused by two
factors: 1) the tubing used to connect the two McKibben actuators in the same
layer of the closure muscle reduces the effective length of the McKibben and
doesn’t contribute to contraction, and 2) The rigid jaw supports that were sewn
into the closure muscle served as constraints that prevented those regions from
contracting. Future iterations of the soft grasper should attempt to mitigate
these effects by fabricating the McKibben actuators out of a single long latex
bladder and fabricating the entire jaw structure out of deformable materials that
can compress circumferentially with the contraction of the closure muscle.

3.3 Controlling the pick-and-place grasper with an SNS in
simulation

We first tested the effectiveness of the proposed SNS controller in the simulation
environment. In the simulation, the soft grasper model could maintain sufficient
contact with the object and successfully complete the task in response to the
activity of the command neurons (Fig. 7).

While the simulation was able to modulate the change in contact stiffness
with pressure based on the empirical model (Eq. 8), the simulation did not
fully capture the physics of contact between the object and the soft jaws. The
deformation of the soft jaws around the grasped object was not captured by
the simulation because of the use of rigid bodies to represent the jaws. Future
work will address the limitations of the current simulation environment by using
finite element-based methods (FEA) to capture the physics of the interaction
more accurately.

3.4 Controller validation on physical robot w/grasper

The controller tuned in the simulation environment was then used to control the
physical gantry and soft robot (Fig. 3). To approximate the position control used
in the simulation for use with the physical closure muscle, the experimentally
determined relationship between change in radius and input pressure was used
(Eq. 9). With no further tuning of the controller thresholds and appropriate
scaling of the change in contact pressure of the jaw as a proxy for contact force,
the grasper successfully executed all nine phases of SNS control (Fig. 8A). In
addition, the grasper successfully completed the pick-and-place operation on a
variety of different object shapes and masses, up to a maximum tested weight
of 706 g (Fig. 8B). No additional tuning of the SNS controller was required to
account for the different shapes and masses of the objects grasped.

While there was a potential risk of damage to the grasper or the grasped
object because the dimensions of the object were not accounted for in the con-
trol, the compliance of the soft jaws and the closure muscle made it not likely to
damage the objects grasped in this work. To grasp fragile objects in the future
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Fig. 7. Different phases of the pick-and-place manipulation and the activities of the
working command neurons. The top figure represents the simulation environment and
the bottom figure indicates the temporal activity of the command neuron from Fig. 5B
that is active in that phase (bold blue line). A Moving to the object. B Reaching
the object. C Grasping the object. D Lifting the object. E Moving to the target. F
Reaching the target. G Releasing the object. H Retracting the grasper.
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Fig. 8. A Phases of Grasper Motion. B Under SNS control, the grasper can successfully
grasp and manipulate a wide range of common household and laboratory objects (Inset
image shows objects). Masses of objects tested include I) 58 g, II) 706 g, III) 328 g,
IV) 497 g, V) 62 g, VI) 62.9 g.
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Fig. 9. A-C Comparison of simulation (left) vs. experimental (right) kinematics, pres-
sures, and forces. All data shown were from three pick-and-place trials of object VI
in Fig. 8. A Kinematics of the grasper position in the z, y and z axes. Phases of the
SNS control (I through IX) are indicated at the top. The kinematics of the actual
robotics system followed a similar shape to the experimental protocol but took longer
to execute phases VI-IX. B Commanded radial position. In the physical grasper, the
measured pressure (right) followed the general trend of the commanded radial position.
C Pressure increased upon making contact with the object (right), which corresponds
to the increased contact force seen in simulation (Phases III-IV). Pressure decreased
in the jaws when the object was released (Phases VII-IX).
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however, it will be important to actively control the radial opening of the grasper
to enclose the object without damaging it by providing feedback of shape infor-
mation. Methods for achieving such feedback include vision-based methods, or
processing the spatial contact information provided by the change of pressure in
each of the jaws. Currently, the controller does not reason about the change in
pressure in each jaw individually to extract shape information about the object,
but this could be explored in the future. As the internal radius of the closure
muscle is on the order of centimeters (design target: 19 mm, measured: 27 mm)
when fully inflated, the grasper was incapable of grasping very thin objects. In
contrast, Aplysia excels at tearing and ingesting thin objects such as seaweed
using the closure of the feeding apparatus’ internal grasper that can protract
to grasp the seaweed and retract to ingest the seaweed [14]. Future versions of
this bio-inspired soft grasper will incorporate similar structures to grasp a larger
range of objects.

The physical robotic system replicated key features of the dynamics of the
SNS-controlled simulation (Fig. 9A-C). The pressurization of the grasper (Fig.
9B right plot) began when the commanded radial position increased at the start
of Phase III (Close Grasper). The transition from Phase III to Phase IV (Lift
Object) corresponded to an increase in contact pressure in all three jaws as the
grasper closed around the object (Fig. 9C). When the object was released in
Phase VII and the grasper began to move up in Phase VIII, there was a corre-
sponding decrease in contact pressure that tracked with the decrease in contact
force seen in the simulation (Fig. 9C). The kinematics of the gantry to which
the grasper was attached also demonstrated qualitatively similar behavior to
the simulation (Fig. 9A), which aligns with our prior observations of transfer-
ring SNS-controllers of the gantry from simulation to the physical platform [18].

While the grasper was able to execute each phase of the pick-and-place task
successfully, it should be noted that there were deviations in the physical grasper
robot’s dynamics when compared to the expected simulation results. The phys-
ical gantry robot took 51.2 s to complete the pick-and-place task compared to
37.1 s in the simulation. A large portion of this discrepancy was due to phases
VII-VIII, where the gantry moved very slowly as it approached its target so as
not to overshoot it. In the physical gantry robot, hardware and communication
limitations prevented rapid fine-tuning of position [18].

Another noticeable difference between the simulation and the physical robot
was seen when grasping smaller objects, where the grasper attempted to lift
(Phase IV) before the grasper’s closure muscle had completely pressurized. This
was likely because the simulation did not incorporate the dynamics of the closure
muscle’s inflation (and deflation) and assumed the closure muscle could respond
instantaneously to a position command. This was likewise reflected when at-
tempting to release the object (Phase VII). During object release, the grasper
incompletely depressurized before lifting (Phase VIII), causing the object to lift
slightly before dropping to the platform. This increased time to create contact
(Phase II-Phase IV) and lose contact (Phase VII-Phase VIII) with the grasped
object was reflected in the different rise times of the contact force in the sim-
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ulation compared to the contact pressure in the physical grasper robot (Fig.
9C). Including the dynamics of both the jaw inflation and the closure muscle
in the simulation will allow us to tune the SNS controller to account for these
dynamics and achieve better pick-and-place performance in the future. The gap
between the simulation and the physical grasper can be further minimized by
incorporating online learning of the parameters of the SNS. While the controller
operated in real-time as the transition from one phase to another was dependent
on position and force feedback from the physical robot (Fig. 5), the parameters
of the SNS were learned offline. Future work will explore such online methods
for learning and tuning the SNS parameters.

It was also observed that there was asymmetry in the contact pressures mea-
sured in the three jaws, which was not exhibited in the contact forces in the
simulation (Fig. 9C). While two of the jaws showed similar pressure changes,
the third jaw exhibited about 0.4 psig higher pressure. This asymmetry may
be attributed to the misalignment of the grasper relative to the gantry or the
misalignment of the center of the object relative to the center of the grasper.
Future iterations of the grasper will replace the tilt attachments (Fig. 1A), which
are currently 3D printed, with McKibben actuators to allow active tilting of the
closure muscle, which may lead to more even contact pressure distributions.

4 Conclusions

In this work, we have demonstrated that an SNS-controlled Aplysia-inspired soft
robot grasper can successfully pick-and-place objects of varying mass and size
(Fig. 8). Inspired by Aplysia’s ability to modulate grasp force and conform to
the shape of the grasped object, we presented the design and manufacture of
a SNS-controlled soft grasper capable of closing around the target object. The
grasper successfully modulated contact stiffness while providing simultaneous
feedback of contact using pneumatic soft actuators (Fig. 1). To our knowledge,
this is the first time the Synthetic Nervous System approach has been adapted
for soft robotic grasping and manipulation.

Future work will aim to expand the adaptability of the soft grasping plat-
form by improving the physical grasper, controller and simulation. To improve
the fidelity of the simulation to the physical robot, the temporal dynamics of
the closure muscles and the soft jaws will be included in the simulation. In ad-
dition, the positions of the object and target locations are currently fixed and
the parameters of the SNS are tuned offline. To improve the flexibility of the
grasper robot, future work will explore real-time feedback of the object and tar-
get position and online methods for learning the SNS parameters at run-time.
The tunable stiffness of the soft jaws was not exploited during the pick-and-place
tasks. Future work will explore the benefits of tunable stiffness to real-time ma-
nipulation tasks, particularly for soft and fragile objects.

The ability of this soft grasper platform to successfully manipulate objects
of variable size and mass in real-time with limited tuning of the controller is
exciting because it demonstrates that a soft grasper can combine the benefits of
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compliant surfaces inherent to soft robotic graspers with the efficient and robust
computational advantages of the SNS. In addition, the SNS is capable of emer-
gent dynamics that we will continue to explore in future work. For instance, in
limited trials, it was observed in both simulations and on the physical grasper
that the SNS controller had the ability to correct some grasping mistakes. Fur-
ther development of the platform will attempt to exploit this emergent feature
for use in the robust grasping of fragile and slippery objects, which may be
particularly important in agricultural and industrial applications.
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