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Abstract

We extend recent work on hydrodynamics with global multipolar symmetries — known
as “fracton hydrodynamics” — to systems in which the multipolar symmetries are gauged.
We refer to the latter as “fracton magnetohydrodynamics”, in analogy to conventional
magnetohydrodynamics (MHD), which governs systems with gauged charge conservation.
We show that fracton MHD arises naturally from higher-rank Maxwell’s equations and
in systems with one-form symmetries obeying certain constraints; while we focus on
“minimal” higher-rank generalizations of MHD that realize diffusion, our methods may
also be used to identify other, more exotic hydrodynamic theories (e.g., with magnetic
subdiffusion). In contrast to semi-microscopic derivations of MHD, our approach eluci-
dates the origin of the hydrodynamic modes by identifying the corresponding higher-form
symmetries. Being rooted in symmetries, the hydrodynamic modes may persist even
when the semi-microscopic equations no longer provide an accurate description of the
system.
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1 Introduction

Recent years have seen an explosion of interest in the dynamics of classical and quantum
many-body systems with kinetic constraints [1]. While sufficiently severe constraints and local
dynamics [2,3] may realize strong Hilbert space fragmentation [2-13], preventing the system
from relaxing, one generally expects that more mild constraints merely delay thermalization
due to anomalously slow dynamics [13]. In certain cases [13, 14], the universal properties
of these theories can be characterized within the framework of hydrodynamics, which is the
coarse-grained effective theory of the long-time and long-wavelength dynamics of systems as
they relax to equilibrium. As an example, consider interacting charged particles on a lattice,
where the Hamiltonian (or quantum circuit, e.g.) that generates the dynamics conserves both
total charge and its dipole moment [15]. The dynamics of thermalization in such a theory
is described by a fourth-order, subdiffusive equation [14, 16]; the resulting hydrodynamic
universality class characterizing the generic features of this and related constrained models
hosts so-called “fracton hydrodynamics”, [14, 17-24], as it describes the thermalization of
fracton systems [25-35] (systems whose elementary excitations can only move in tandem) as
they relax to global equilibrium.

Previous studies of hydrodynamics in fractonic systems explicitly treat the associated
multipolar symmetries as global [14]. However, to characterize actual fracton phases, one
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should instead consider gauged multipolar symmetries [31-34], which are relevant to proposed
realizations of fractons, e.g., in the quantum theory of elasticity [36] and in quantum spin
models [37-39]. The latter theories may be regarded as generalized quantum spin liquids
that realize an emergent compact quantum electrodynamics (QED); there, the underlying local
spin model gives rise to emergent electric and magnetic charges, along with gauge fields that
obey compact versions of Maxwell’s equations [40]. Importantly, the emergent gauge fields
in question are typically higher-rank [32], with basic experimental implications that have
recently been considered in the literature [41-44]. Note that in any laboratory realization,
there will inevitably be dissipative effects that spoil the effective higher-rank electromagnetism,
along with nonlinearities in the higher-rank Maxwell’s equations. To make clear predictions
for experiment, it is thus desirable to consider a formalism that does not treat the microscopic
degrees of freedom directly, but instead describes the collective, long-lived degrees of freedom in
the system. In generic interacting systems, these long-lived modes are associated with conserved
densities (or Goldstone bosons), and their dynamics is dubbed “hydrodynamics”! [45-47]. In
this work, we develop a hydrodynamic theory of systems with exotic conservation laws and
constraints, which give rise to higher-rank variants of electromagnetism.

Somewhat surprisingly, a first-principles derivation of magnetohydrodynamics using one-
form symmetries was not done until the past decade [48-53], and so we begin with a re-
view thereof in Sec. 2. The subtlety lies in the fact that the corresponding hydrodynamic
theory—magnetohydrodynamics (MHD)—is controlled by an unusual type of symmetry, known
as a one-form symmetry. The typical symmetries relevant to conventional hydrodynamics are
associated with the constancy in time of the integral over all space of a finite, local density. In
d spatial dimensions, an n-form symmetry corresponds to the integral of a local density over a
manifold with codimension n: When d = 3, one-form symmetries correspond to integrals of lo-
cal densities over two-dimensional surfaces, while two-form symmetries correspond to integrals
over one-dimensional curves. The one-form conserved charge in Maxwellian electromagnetism
is simply the magnetic flux through arbitrary closed and semi-infinite two-dimensional surfaces.
Still, a precise mathematical framework to interpret the hydrodynamics of such conserved
charges was only recently developed [54]. In the simplest limit—which describes conventional
metals—the only slow (i.e., long-lived) degree of freedom is the magnetic flux density, which
diffuses perpendicular to the field direction [55], as depicted in Fig. 1.

This approach, based on higher-form symmetries, has significant conceptual advantages
over more familiar semi-microscopic derivations of MHD. Specifically, the symmetry-based
approach highlights the underlying symmetries responsible for the observed long-wavelength
modes, while also being less limited in its regime of validity than the semi-microscopic approach.
For example, in conventional (rank-one) MHD, the semi-microscopic derivation invokes ap-
proximate separability of the electromagnetic and matter stress tensors. In the symmetry-based
approach [48], one invokes hydrodynamic principles to recover a coarse-grained theory of the
long-time and long-wavelength dynamics of the fields in the most interesting and physically
relevant regimes, where there may not be a clean separation between the two tensors. This
approach also gives predictions for particular limits of conventional U(1) spin-liquids in which
the relevant symmetries are weakly broken. In the case of emergent electromagnetism in
fractonic spin liquids, the emergent gauge fields are higher rank, leading to additional subtleties
and new universality classes. The hydrodynamic description of these higher-rank theories is
the subject of this work.

We investigate the simplest example of “fracton magnetohydrodynamics”, which arises in
rank-two electromagnetism, in Sec. 3. We show that, in the most interesting regime, where

INote that our use of the term “hydrodynamics”—the coarse-grained description of systems as they relax
to equilibrium—does not require that momentum be conserved, and need not correspond to the Navier-Stokes
equations, for example.
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Figure 1: Schematic illustration of diffusion of magnetic field lines. The field lines’
dynamics must preserve the flux of the magnetic field B, fs B -dS, through any choice
of surface, S. On the left, there exists a high “concentration” of field lines at the
center; on the right, dynamics over time interval 6t smooths out the local excess of
magnetic flux while preserving the total magnetic flux through the surface.

electric charges proliferate while magnetic charges do not,? the higher-rank magnetic field
obeys a diffusion equation. This result follows from including electrically charged matter via
Ohm’s law in the higher-rank generalization of Maxwell’s equations in Ref. [32].

More interestingly, we interpret this result independently of the semi-microscopic approach.
We show that higher-rank MHD naturally arises as a consequence of the theory’s one-form
symmetry when the conserved density corresponding to that one-form obeys certain global
constraints. In Sec. 4 we straightforwardly generalize the construction to higher-rank theories
starting either from higher-rank generalizations of Maxwell’s equations, or a one-form conserved
density combined with certain constraints. We show that at every rank, there exists a self-dual
generalization of Maxwell’s equations whose universal behavior is described by diffusion of
magnetic flux lines. For such theories involving traceless symmetric rank-n tensors, every
additional rank introduces two additional diffusing modes, and the diffusion constants at rank
n are given by Dm?/n?, with m € {1,...,n} and D = 7 ¢? is the diffusion constant for the
rank-one theory, with the relaxation time, 7, a phenomenological parameter. Additionally,
all of these theories share the same one-form symmetry; we also show how this one-form
conserved density and a set of constraints thereupon uniquely determine the rank and form of
the generalized Maxwell’s equations and the quasinormal mode structure of the corresponding
MHD.

In Sec. 5 we discuss a more exotic scenario, in which the densities of electric and magnetic
matter in Maxwell’s equations themselves carry a vector index. We show how this “vector
charge theory” [32], gives rise to subdiffusive MHD, and elucidate the combination of one-form
symmetries and constraints that lead to subdiffusion, rather than diffusion. Thus, the additional
constraints that lead to the fracton magnetohydrodynamics landscape can realize either diffusion
or subdiffusion, depending on details of the particular model under consideration, in contrast
to systems without multipolar symmetries, which only admit diffusive MHD.

We assume throughout that the systems of interest exist in three spatial dimensions (R®) and
enjoy SO(3) rotational invariance. The irreducible representations (irreps) of SO(3) correspond
to integer spins £ = 0,1, 2,..., which we denote according to their dimension: 1,3,5,.... Itis
also straightforward to extend our formalism to the reduced point groups relevant to condensed
matter realizations, but we relegate such studies to future work.

2The systems that we consider generally exhibit electromagnetic duality between electric and magnetic fields
and matter. Consequently, analogous results obtain when magnetic charges dominate, instead leading to “electrohy-
drodynamics”, i.e., diffusion of electric field lines.
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2 Electrodynamics to magnetohydrodynamics

Before considering systems with multipolar symmetries, we first review the modern hydrody-
namic interpretation of standard (rank-one) electromagnetism in terms of “magnetohydrody-
namics” — namely, the diffusion of magnetic flux lines in conducting metals (or plasmas) with
mobile, electrically charged particles. Starting from Maxwell’s equations, we discuss several
physical regimes and the corresponding behavior of the electromagnetic fields, and derive
magnetic diffusion generically in the presence of electrically charged matter. We interpret these
results in the language of hydrodynamics, and argue from more abstract perspectives, following
Ref. [48], how a one-form symmetry must arise whenever the charge and current lie in the
same irreducible representation of the SO(3) symmetry. The same approach will be applied to
theories that conserve higher multipole moments of charge density in subsequent sections.

2.1 Rank-one Maxwell’s equations

Standard, rank-one electromagnetism is a field theory describing the behavior of the electric
and magnetic fields, E and B, in the presence of electrically charged matter with charge density
p® and corresponding current J®. The dynamics of the E and B fields are governed entirely
by Maxwell’s equations (1). Our discussion applies equally to Maxwell’s equations in the
vacuum as to emergent electromagnetism; while magnetic monopoles do not occur ‘naturally’,
they are to be expected in emergent electrodynamics (and its higher-rank analogues discussed
in later sections). Thus, for generality, we allow for a nonzero magnetic charge density, p™,
and corresponding current, J™), in the discussion to follow. In a condensed matter setting, the
equations presented in the following section describe, e.g., U(1) spin liquids with gapless gauge
modes and gapped matter [56] (see also Refs. [57-60]), realized perhaps most prominently in
quantum spin ice [56,61,62].

In standard Cartesian coordinates, Maxwell’s equations for the electric and magnetic fields
are given by

1

O.E, = ;p(e), (1a)
9.B; = up™, (1b)
0.B; = —e, 0. E,— ™, (1)
3,E, = 1%6“" 3jBk—%Ji(e), (1d)

where p(® and p™ are the electric and magnetic monopole charge densities, respectively,
with J i(e) and Jl.(m) the ith components of the corresponding currents, and uec? = 1 defines
the speed of light, c, in terms of the dielectric permittivity, €, and the permeability, u, which
characterize the system’s linear response to electric and magnetic fields, respectively.

Additionally, because electric (magnetic) charge is locally conserved, charge density and its
associated current are related by a continuity equation,

8,09 +8J® =0, ®)

which follows from taking the divergence of Ampére’s law (1d); the magnetic charge continuity
equation takes the same form, and follows from taking the divergence of Faraday’s law (1c).
Note that magnetic monopoles are not present in standard Maxwellian electrodynamics;
thus, in the context of nonemergent electromagnetic systems, such as conventional metals
or plasmas in space, one should take p™ = Jl.(m) = 0. However, in the context of emergent
electromagnetism, one generally expects to find both electric and magnetic charges in generic
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temperature and parameter regimes. As we will see shortly, for the purposes of realizing
interesting hydrodynamics in such materials, it is crucial that a separation of scales exists
between the two types of matter so that one of the two species (electric or magnetic) is
sufficiently suppressed in density with respect to the complementary species [63].

2.2 Hydrodynamic interpretation

An important observation is that Maxwell’s equations (1) can be regarded as hydrodynamic
equations of motion for the electromagnetic fields. In the absence of magnetic matter, Faraday’s
law (1c) can be viewed as a hydrodynamic equation of motion for the B field:

8B, + 2, (e,E,) = 0, 3)

where the second, parenthetical term on the left-hand side plays the role of the hydrodynamic
current conjugate to the vector-valued conserved density, B.

In fact, (3) can be recast in the form of a continuity equation (e.g., (22) in Sec. 2.3) by
identifying B, as a conserved density, and eijkEk as the corresponding current. Then (3) takes

the standard hydrodynamic form J,p, + ajJ ;=0 for a vector charge density, p;, corresponding
to B;, with the associated current given by Jij = € jkEk. Since the conserved density is a
[pseudo]vector, the current is rank two: J, j can be interpreted as the current of B; in the
jth direction. Effectively, Faraday’s law (1c) gives an explicit form for the current, obviating
the need for a standard constitutive relation in which the currents are expressed in terms of
derivative expansions of the conserved densities (in this case, the E and B fields).
A similar procedure can be applied to the E field: Rearranging Ampere’s law (1d) leads to
O, — c* €0,y = _%Ji(e)’ (4)
which resembles the magnetic analogue (3) but with a [possibly] nonzero source term on the
right-hand side. If the source is removed (J (O 0), then the electric field is, like the magnetic
field, a true conserved density, obeying the standard continuity equation J,p; + E}JJ ij =0, with

p; — E; and J, T —c%e B, , mirroring (3) up to the factor —c? in defining the conjugate

ijk
current. When J(® # 0, the electric field is no longer conserved.’

In the presence of magnetic charge, Maxwell’s equations become fully self dual, and the
magnetic field is no longer a conserved density, instead decaying on a time scale set by the
conductivity for magnetic monopoles, in accordance with the magnetic analogue of (14). In
what follows, unless otherwise stated, we will consider Maxwell’s equations (1) without mag-
netic charge, where the equations are no longer self dual under E «<— B (and, correspondingly,

e «— m), but the magnetic flux density is exactly conserved.

2.2.1 Matter-free limit: The photon

We first consider the matter-free sector, where p(e) = Jl.(e) = 0 (and likewise for magnetic
charges). This will serve as a useful point of comparison for the results obtained later on in the
context of higher-rank gauge theories. In the absence of charged matter, both the electric and
magnetic fields obey a continuity equation of the form J,p, + 8J.Ji ;=0 (22), where the current

corresponding to the conserved density E; is J; ;= —czel.jkBk , and the current conjugate to the

3More precisely, if we apply a Helmholtz decomposition to the electric field, the irrotational (curl-free) component
decays on a time scale 7! = o /¢, from the argument presented in Eq. (14). On the other hand, the solenoidal
(divergence-free) component is inextricably tied to the exactly conserved B field (absent magnetic monopoles).
From (1d), at times t > 7, we have a purely solenoidal electric field, E = tc2V x B, which is locked to the dynamics
of B, and, hence, diffuses. The “overlap” of E with the diffusing B field vanishes as k — 0, however.

6
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conserved density B, is J; ;= eijkEk. Taking the curl of Faraday’s law (1c¢) and inserting into
Ampére’s law (1d) (and vice versa), e.g., gives the equations of motion

25 _ 242 2p _ 242
O’E, = c®0°E;, 0J/B; =c"0°B,, (5)

where 92 is the Laplacian; the expressions above correspond to wave equations for both the
electric and magnetic fields, which propagate ballistically at speed c. Since Faraday’s (1c)
and Ampeére’s (1d) laws relate E and B, the above equations are not independent. Taking
E P~ E ; (k,w) ellk.z—0t) (and similarly for the B field), the system’s normal modes are identified
as

w = clk|, for Ex,y, with wB = k xE. (6)

Because the wave vector, k, is taken to be oriented in the 2 direction, (6) corresponds to
wavelike propagation of the transverse components of the E and B fields along the 2 direction;
the two transverse normal modes (i.e., those perpendicular to k||2) correspond to the two
polarizations of the photon.

A longitudinal photon polarization is forbidden by the matter-free Gauss law constraint
(1a), whose Fourier transform is given by k E, = 0, forcing the longitudinal component of
the electric field to vanish. We note that the same holds for the B field, even in the presence
of electrically charged matter. The absence of a propagating longitudinal mode can also be
justified by identifying a “hidden” conserved quantity, as we discuss in Sec. 2.2.3.

2.2.2 The Ohmic regime: Magnetic diffusion

We now consider the hydrodynamic description of the E and B fields in the case most relevant
to experiments in electronic materials: the Ohmic regime. There, electrically charged matter
obeys Ohm’s law, J (@) = oE, where o is the Drude conductivity; this limit describes the
behavior of mobile charges in conducting materials (including poor conductors), and is the
most analytically tractable scenario in which the electric fields decays while the magnetic field
remains a good hydrodynamic mode (i.e., a conserved density). This limit can arise in actual
electronic materials in the presence of dynamical fields (or in the context of spin liquids, in
which case the charges and fields are emergent) if there is a large separation of scales between
the electric and magnetic conductivities, so that the latter can be ignored [63].

The Ohmic regime is the most generic scenario in which the presence of (electric) charge
breaks the conservation of the electric field, E, leading to its decay, while the magnetic field
remains a good hydrodynamic mode. In Sec. 2.3, we will see that this corresponds to breaking
the E field’s one-form symmetry while preserving that of the B field.

Microscopically, one expects the matter current, J®, to be proportional to the force that
engenders it—in this case the Lorentz force, F o< E + v x B. We then introduce the Drude
conductivity, o (or equivalently, the relaxation time, T ~ 1/c), as the coefficient of propor-
tionality J©® ~ oF. Importantly, 0 ~ 1/7 is a phenomenological parameter, which differs
for different materials and must be determined using experiments (likewise, the parameters
o ~ 1/7 introduced for higher rank theories of electromagnetism will also differ from the 7
discussed here).

Note that we have already implicitly made some restrictions to this phenomenological
parameter based on symmetry arguments. Generally speaking, o could be a matrix; however,
since the system is assumed to exhibit SO(3) rotational invariance, we must construct o out
of SO(3)-invariant objects. Since the only compatible such matrix is the identity, o reduces
to a scalar. Thus, the current, J, is both proportional and parallel to the force that drives it.
Additionally, because we are interested in linear response (and linearized hydrodynamics), o
must be independent of both the E and B fields. Finally, because the matter velocity field, v, has
nonzero overlap with other hydrodynamic modes (e.g., the matter current, J(®), the magnetic
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contribution to the Lorentz force, v x B, is nonlinear, and therefore subleading. Hence, we
are left with J® = ¢E with ¢ a microscopically determined parameter that is independent of
the fields. We do not need to consider k or w dependence in o, which amount to subleading
corrections to hydrodynamics: In generic systems, such corrections are suppressed by the
dimensionless combinations of kg, or W Where £y, (Tryg) corresponds to a microscopic
mean free path (time) for inter-particle scattering. In the context of hydrodynamics, such terms
are generically interpreted as higher-derivative corrections to the constitutive relations.

The effect of including a nonvanishing matter current, J© # 0, is to break the conservation
of the electric field, E, as can be seen upon examination of the right-hand side of Ampere’s
law (4). Following the prescription of quasihydrodynamics [52], we further eschew the Drude
conductivity, o, in favor of the relaxation time, T, to recover

9.E — c? eijkajBk = _%Ji(e) = _% E, = _%Ei’ ™)
where, in an Ohmic metal, T = /0, with o the Drude conductivity. Note that the relaxation
time for fields, 7, that appears in (7) is not the same as the scattering time that appears in
microscopic expressions for the Drude conductivity.

Having recovered an expression governing the dynamics of the electric field in the Ohmic
limit, the hydrodynamic equation of motion for the magnetic flux density is found by taking

the curl of (7), and inserting the resulting expression into Faraday’s law (1c), giving
1
2 2 2p ) —
O7B;+ 0B, +c (3,0,8,—9?B,) =0, ©

where we have used the vector calculus identity € 0.0,B, =0, BJ.B ; —82Bi for the double

ijkekmn j mTn
4

curl, and we note that al.B ;=0 by the magnetic Gauss’s law (1b). At late times,” we take

70, < 1, meaning that J,B, > TﬁtZBi, resulting in the equation of motion
d.B, = D3’B,, 9

corresponding to diffusion of magnetic flux lines, with diffusion constant D = 7 c2, depicted
schematically in Fig. 1. In Sec. 2.3, we show how this same result (9) can be derived from the
usual hydrodynamic procedure of constructing the current conjugate to the conserved density,
B, via constitutive relations.

Making use of the generalized divergence theorem, the fact that the B field obeys a standard
continuity equation (3) implies that the components, B;, are conserved quantities over all space.
However, the equations of motion for B; actually exhibit a much larger set of conservation laws:
The total magnetic flux through any closed or semi-infinite surface is conserved, as we will
see in Sec. 2.3. In fact, this follows already from Faraday’s law (1c) alone [equivalently, the
hydrodynamic continuity equation (22)], without the need to appeal to the magnetic Gauss
law constraint (1b).

From (9), the quasinormal modes for the magnetic field corresponding to a wavevector
oriented in the % direction, B,(x, t) o< B;(k, w) elkz=»t) are given by

w =—iﬂ:c2k§, for B 10$)

X,y
and, as in (6), the longitudinal component, B,, is not a propagating mode since it is constrained
to vanish by the [Fourier-transformed] magnetic Gauss’s law (1b), k,B; = 0. The transverse
components of the field are not constrained by Gauss’s law and diffuse, as one would expect
from (9).

“By late times we mean t >> 7. At times t < 7, there exist oscillatory solutions for short-wavelength modes
satisfying Tck > 1/2, which decay over a time scale set by 7. At late times, the dominant contribution is from long-
wavelength modes with A X c+/t7, whose dispersion is given by w(k) = —5= + o= v 1 — 472c2k2 = —itc?k? + O(k*).
Analogous arguments are given in Appendix A of Ref. [63].

8
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2.2.3 Conservation of fluxes through surfaces

We now derive the conservation of magnetic flux through arbitrary closed surfaces; this deriva-
tion applies equally to electric flux in the absence of electrically charged matter (p(®) = 0). For
simplicity, we restrict our consideration to the magnetic field, where p™ = 0 is guaranteed in
free space, and assumed in the context of spin liquids.

Note that multiplying the magnetic Gauss’s law (1b) by an arbitrary, time-independent test
function, ®(x ), and integrating over any volume, D, still gives zero:

8B, =0 — J d*x®9,B; =0, (11)
D
and using integration by parts, we then find

f d’x @3B, = —f d3xBi(8i<I>)+f dS®B; A, , (12)
D D aD

where #; are the components of the unit vector normal to the surface D (where 3D is the
boundary of the volume, D, and i1 points outward from D).

Note that applying a total time derivative to this integral also gives zero. Choosing ® = 1
eliminates the volume integral in (12), and applying the total time derivative leads to

d
I | dshB =0, (13)
t Jop

for any domain, D, implying that the magnetic flux through the boundary, d D of any volume,
D, is conserved. The same result can be derived alternatively from Faraday’s law (1c) by
considering higher-form symmetries in Sec. 2.3, where we find that the magnetic flux through
semi-infinite surfaces is also conserved.

2.2.4 Absence of diffusion of the conserved electric charge

Here we explore why Fick’s Law of diffusion does not apply to the conserved electric charge,
p®). In a conducting medium with conductivity o, the charge current is given by Ohm’s law,
J l.(e) = OE;, whenever there are mobile charges. The continuity equation (2) gives rise to
exponential relaxation of charge in the bulk of the conducting medium,

1
8,p® +00E, = 3,0+ ;p(e) =0, (14)
so that the electric charge density in the bulk decays to zero exponentially on the time scale

(15)

o
T €
Essentially, the long-range Coulomb interactions easy pull charges from very far away, and
the resulting interaction rapidly screens any test charge placed in the system. The familiar
diffusion of conserved charges that one expects for locally interacting charges with a global
(rather than gauged) U(1) symmetry is absent here because the charge density is instead driven

by the self-generated electric field.
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2.2.5 Magnetic charges and regime of validity

We briefly reinstate magnetic matter in (1b) and (1c) for the purpose of discussing the regime of
validity of the magnetic diffusion recovered in Sec. 2.2.2, which gives rise to a magnetic charge
current J™ = o B. As discussed in Sec. 2.2.4, the long-ranged nature of the electric (magnetic)
fields implies that electric (magnetic) charge density — i.e., the irrotational component of the
electric (magnetic) field, p(® = €0,E; (™ = 0,B;/u) — decays on a time scale Te_l =o0./¢€
(’7.';11 = o). It is, however, the solenoidal components that are responsible for magnetic
diffusion. Orienting the wavevector parallel to 2, we find that the x and y components of B in
Fourier space satisfy

(iw)*B, = —c*k®B,| +iw(t ' +7.")B, — 7, 7. 'B,, (16)

and we assume that there exists a large separation of [time]scales — i.e., T, > T.. Restricting
to wavelengths ckt. < 1/2 (so as to preclude oscillatory solutions), the longest-lived solution
to (16) is given by

1
iw = 5 {Te_l + T;l - Te_lT;1 \/(Tm - Te)z - (2Ck7e7m)2} . (17)

In the long-wavelength limit, ckt, < 1, we find iw = 7! + T.c*k* + O(k*, 7. /7p,); for the
diffusion pole to dominate over simple exponential decay (implied by a finite 7,), there must
exist a further restriction on the wavevector, k: Specifically, the wavevector regime relevant to

magnetic diffusion is
T
\| = < ckT < 1. (18)
Tm

If there exists a large separation of scales between the two decay rates, Te_l > T;l, then there
exists a nonzero window over which magnetic diffusion prevails. Alternatively, in terms of
energy scales, the relevant regime is simply

-1 . -1
T KiK. (19)

One scenario that may realize this regime is if the gaps A,y to electric and magnetic matter
exhibit a [perhaps O(1)] separation of scales, as is typically the case in simple models of,
e.g., quantum spin ice [62]. Assuming a simple Drude-like expression for the conductivity, the
conductivity should scale with the density of the corresponding matter, such that 7, ~ eetm)/T
at temperature T, leading to /7./7, ~ e®< 2m)/CT) At sufficiently low temperatures,
T S (A, — A.), we obtain an exponentially large energy window over which magnetic diffusion
will be predominant.

2.3 One-form symmetries

Having presented a very thorough discussion of the hydrodynamic limit of the conventional
Maxwell equations, let us now present a derivation of these properties based on the more
modern language of one-form symmetries [48]. We interpret one-form symmetries in hydrody-
namic theories as being a consequence of demanding that the conserved density, p,, and its
corresponding current, J; i both realize vector representations of SO(3), which we denote as
the 3. We then apply these findings to the case of rank-one electromagnetism, and find the
results are equivalent to Sec. 2.2.
The standard hydrodynamic equation of motion for a vector-valued density is given by the
continuity equation,
d.p; +0,J;; =0, (20)
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and, in general, rank-two objects like J; j can be decomposed according to 33 =1®3®5 [64],

J; = 36,;u[J] +

y J + S, @D

l]k ij °
\—v—’ H,_/ ~—~—
3 5

where the first term is the trace part, J_ =€, J, = encodes the antisymmetric components
mn_mn

ij’
J;; [64]. In general the current may be ina reduable representation of SO(3), with nonzero

overlap with the 1, 3, and 5 irreps. Having a current that overlaps with particular irreps (or
combinations thereof) gives rise to different hydrodynamic theories with different conservation
laws. While one might generally expect the current to have nonzero overlap with all irreps
in (21), we will focus on the case where J ;; is in an irreducible representation of SO(3). This
will generally lead to the most conservation laws and the richest structure. A case where the
current overlaps with multiple irreps is discussed in App. A.3.

In particular, in the case where the current, J;; is in the 3 of SO(3) (the “spin-one” irrep),
then the current must be expressible entirely in terms of SO(3)-invariant tensors, and a vector-
valued object, J,. In (21), that vector object can be extracted from the rank-two object by
contracting with the Levi-Civita symbol €k Dropping the 1 and 5 pieces from (21), we rewrite
(20) in terms of J, €3 as

of J.., and the tensor Sij = (BJ T 3J —20,; J kk) /6 encodes the symmetric, traceless part of

0,p; +€;,4.0.J, (22)

ijk~j
which is precisely the form of Faraday’s law (1c) (and also Ampere’s law (1d) in the matter-free
limit).

To find the conserved quantities associated with the continuity equation (22), consider the
putatively conserved quantity

Q[f] EJ &xf.p;., (23)
R3

where f; is any vector-valued function of x € R3, and p ; is a vector-valued density. Since the
vector f is assumed to be time independent, the total time derivative of Q[ f] is given by

d
d—? = JRS d3xf o,p; = fR d3xf el]kaJ = JRB d3xJkel.jk8jfl. — . 3de €ixie i,

(24)
where we have invoked the continuity equation (22) to write J,p in terms of J and then
integrated by parts. We require that f and J are well-behaved as |[x| — oo, so that the
boundary integral above vanishes, giving

d
d_? B f &xJ(edif,) (25)
R3

and we then find that Q is conserved when the curl of f; vanishes, i.e.,
€ix9ifi = 0, (26)

so that the choice f, = J,¢ for some scalar function, ¢(x), leads to a conserved charge, Q[f],
of the form (23). One can recover solutions to (26) via Helmholtz decomposition of the vector
field f: Restricting to solutions that are well-behaved as |x| — ©co, the only solution for f;
in Fourier space is one parallel to the wave vector k; (26) precludes a nonzero “transverse”
(or divergence-free, solenoidal) term in the Helmholtz decomposition of f, leaving only the
parallel (or curl-free, irrotational) component, f; = J,¢.

11
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Choosing ¢ to be an indicator function for some finite volume, V, i.e.,

1 xeV,

‘PV(X):{O x¢V, 27)

implies that f; = 0, (x) = —6[x € V] A, (x), where & [...] is a delta function that restricts
x to lie in the boundary, dV, of the volume, V, and #;, is the unit vector pointing out of V and
normal to dV. Indicator functions can also be chosen for semi-infinite volumes, V, such that
6 [...] restricts x to some semi-infinite surface (i.e., a boundaryless surface, such as the xy
plane, that bounds a semi-infinite region of space).

Essentially, the prescription above gives rise to a conserved charge, O, that is the integral
over a surface, S, of the local density. Thus, in addition to conservation of p, over all space,
the fact that both p; and its current, J, ;= el.ijk are in the 3 of SO(3) leads to a new, one-form
conserved charge corresponding to the conservation of the flux of p, through surfaces. That
one-form charge is given by

Q, = J dSp.f,, (28)
s

where S is an arbitrary closed or semi-infinite surface (we have ignored an overall sign relating
solely to the definition of “outside” in the indicator function). The flux through any such
surface is exactly conserved by the continuity equation (22). The importance of p; and its
corresponding current, J; ;, being in the same irrep of SO(3) is that this allows J; j to be expressed
in terms of a lower-rank object, J,, and the Levi-Civita tensor €, . The appearance of the
antisymmetric tensor in J; ;= el.ijk guarantees (26), and thereby a one-form symmetry. This
same argument holds when p, and J, i each carry additional indices, e.g. in the higher-rank
theories of electromagnetism considered later.

Returning to the particular case of the electromagnetic fields in the Ohmic regime, we note
that Faraday’s law (1c) is already of the form required to realize a one-form symmetry,

Op; + €19k = 0, (22)

where p; — B, is the magnetic field and J, — E, € 3 is the electric field. This derives from the
ability to write the rank-two current, J; i conjugate to the conserved density, B;, entirely in
terms of the E field.

From the hydrodynamic perspective, the current J; € 3 can be constructed via derivative
expansion using the available conserved densities (namely, p j) and SO(3)-invariant objects
(i.e., 5jk and e].u). Given that J, transforms in the vector representation of SO(3), the terms
permitted at lowest order are given by

J, = apl.+Deijk8jpk+a’3l.8jpj+O(83), (29)

where the terms on the right-hand side are the only allowed terms with zero, one, and two
derivatives. While the term J;, o< p; is ostensibly allowed, as both objects belong to the 3,
other considerations preclude a # 0. For example, if the density p, is odd/even under time
reversal, inversion (or parity), or some combination thereof, then the current, J ;> must be
even/odd under the same transformation; since the term proportional to a in Eq. (29) contains
no derivatives, thermodynamics forbid any disagreement under either time reversal or inversion.
Even allowing for the possibility that time-reversal and/or inversion symmetry are broken
microscopically, the effective field theory formalism of Ref. [65] forbids a # 0 in general.®

°If we take a # O as the leading contribution, then the equations of motion become 3,p, = —aeijkaj P> OF
3%p, = azai(ajpj) —a®3%p,, which is unstable. In the case of MHD, we also have Gauss’s law, d,p, = 0 (1b), and

t
so the equation of motion becomes 92p, = —a”d?p,, whose unstable modes are given by w(k) = ialk|.
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Hence, we take a = 0, so that the leading, symmetry-allowed contribution to the current is

J; = € k@} P> with the latter, a’ term in (29) subleading (as it contains an extra derivative),

and we are left with

J; = Del.jké’jpk, (30)

to leading order, where D is a phenomenological parameter. Using (30) for the current in (22)
gives the equation of motion for the B field (p; — B,),

8B, = DB, —D3,(8,B;) = D3%B,, (1)

which is simply the diffusion equation, where Maxwell’s equations and Ohm’s law allow us to
make the identification D = 7tc2. The continuity equation alone (i.e., absent any Gauss law
constraint) gives rise to a nondecaying mode. For a density of the form p, ~ pi(k)ei(kzz_”t),
the transverse components diffuse, i.e., Py decay with rate Tczkzz, while the longitudinal
component does not decay. In the presence of a Gauss law constraint, the nondecaying

longitudinal mode is removed.

3 Tensor electrodynamics and magnetohydrodynamics

Here we consider a rank-two theory of electromagnetism analogous to the standard, rank-one
theory discussed in Sec. 2. Such theories arise in systems hosting charged matter, which
conserve not only electric charge, but also its first moment (i.e., the dipole moment). Regarding
the provenience of higher-rank gauge theories in a condensed matter setting, the emergence
of higher-rank electromagnetism from microscopic spin-liquid Hamiltonians is discussed at
length in Refs. [31,66-70]. Additionally, certain aspects of these theories are reminiscent of
gravity [71], which is also a rank-two theory.

3.1 Rank-two Maxwell’s equations

The rank-two Maxwell’s equations in which the electric and magnetic monopole (i.e., charge)
densities are scalars, and the E and B fields are [traceless, symmetric] tensors, take the form [32]

1
_ 1l ©
8,0,E;; = =p', (32a)
0,0,B;; = up™, (32b)
1 (m)
6B, = —5 (e SEyy + € 8Ey) — IS, (320)
1 1 @
3t Eij = Z_‘U,{;‘ ( €kl 8kB +€]kl 8kB )— EJU. . (32d)

As in the rank-one case, we recover continuity equations for the electric and magnetic charges
by taking the divergence on both indices of Faraday’s (32c) and Ampere’s (32d) laws. The
continuity equations are given by

atp(e/m) + aiaj‘]i(;/m) =0, (33)

where the doubled spatial derivative extends the divergence that appears in rank-one theories.
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3.2 Hydrodynamic interpretation

In analogy to the discussion of rank-one electromagnetism in Sec. 2.2, we recover a hydrody-
namic description for the rank-two electric and magnetic fields, E;; and B, , in the absence of
their corresponding matter (in the presence of electric matter, the electric field is no longer a
conserved density, as in the rank-one case, and likewise for the magnetic field). Because we
expect realizations of rank-two quantum electrodynamics (QED) to be emergent, we allow for
magnetic matter, with magnetic charge density, o™, in (32). In the context of, e.g., frustrated
magnets, where such higher-rank QED may emerge [31,33,34,66,67,69, 70], one generally
expects both electric and magnetic quasiparticles, whose densities will both be nonzero at
nonzero temperature.

3.2.1 Matter-free limit: The photon

In the absence of both electric and magnetic matter, the components, E; i and B, i of both the
electric and magnetic field tensors are conserved in accordance with the higher-rank continuity
equation J, p; TR ﬁle.jk = 0. The dispersion relation for the “photon” can once again be derived,
e.g., by taking the time derivative of the rank-two Ampere’s law (32d), then using Faraday’s
law (32c) to express atBl. j in terms of the electric field tensor E i This results in the wave
equation ,

atinj = CZ [(5in32 - aian)Enj ~ €kt €jmn KO Eng T 1 j:l ) (34)
where uec? =1 defines the [maximum] speed of light, c. The equation for B, assumes the
same form, by electromagnetic duality. The system’s normal modes can then be found by
orienting the the wave vector k along 2 for convenience. We find four linearly dispersing
modes, with two doubly degenerate branches

1 E_,E,_,
o=k, x { x5y (35)
2" 2 E.E,=-E,,

which correspond to ballistic (wavelike) propagation at speed c/2 (E,,, E yz) and speed ¢ (E Xy

E. = —Eyy). In principle, the symmetric, traceless tensor E; j has five independent degrees
of freedom. However, one of the resulting five modes is dynamically trivialized by the Gauss
law constraints (32a) and (32b), i.e., the longitudinal components satisfy kgEzz =k§BZZ =0.
Note also that the diagonal elements E ., and E,, appear in the combination E, . + E,, =0,as

required by tracelessness.

3.2.2 The Ohmic regime: Magnetic diffusion

We now consider the sector in which only one species of charge (electric or magnetic) is present.
This may arise, e.g., due to a separation of scales between the gaps for electric versus magnetic
matter in materials with emergent QED. The self-dual nature of the traceless scalar charge
theory with respect to electric and magnetic fields means that, although we take the limit of
vanishing magnetic charge density, p(™ = 0, for concreteness, the results apply equally to the
regime of vanishing electric charge density, p(® = 0, with the roles of the electric and magnetic
fields reversed (up to signs and factors of ¢). The inclusion of both electric and magnetic matter
and the corresponding regime of validity is considered in Sec. 3.2.3.

In the absence of magnetic charge, Faraday’s law (32c) can be interpreted as a continuity
equation for the rank-two conserved density p, ;= By The continuity equation takes the form

1
%Bij+3 (eikfakEej + ejklakEZi) =0, (36)
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and, as before, the presence of electric matter in (32d) spoils the conservation of the rank-
two electric field. Following the prescription of quasihydrodynamics [52], we replace the

electric current in (32d) according to Jl.(f) = %Eij, where 7T is a phenomenological parameter

that depends on the material. Since Jl.(f) and E; i transform as rank-two tensors, the “electri-

cal conductivity” relating J'l.(f) and E, jis constrained by SO(3) symmetry to be of the form
Oijke = a5i15ke + /35ik6je + Y5i£5jk' For a traceless symmetric electric field tensor E;, the
conductivity is therefore characterized by a single parameter et~! = f3 + y. Similarly to (15)
in the rank-one case, we obtain
1, 1
3tEl.j _EC (eikeakBej +e].keakBel.) = —;Eij, 37)

and at late times, when 70, < 1, we ignore the time derivative term. Combining this result
with Eq. (36) gives

1 > 2
8,By;+ 5 7¢*(36,8,B,;+39,0,B,, —40°B;; — 26,;0,,0,B,,,,) = 0. (38)
We then seek quasinormal modes corresponding to a wavevector k oriented in the % direction,
and find four diffusing modes,

4 4 B_,B_=-B

i 1 B._,B__,
w=—=Dk>x { X2 Vs (39)
X_}/’ XX yy’

where D = 7 ¢? is the same diffusion constant identified in the rank-one case (9); as with the
quasinormal modes for the matter-free sector (35), the two branches are distinguished by the
propagation speed, c/2 versus c, and B,, = 0.

This mode structure is to be expected based on a general counting argument: A conserved
density, B, ;€5 [the traceless, symmetric, rank-two tensor irrep of SO(3)], contains five
independent elements, one of which is constrained by Gauss’s law (32b)—whose Fourier-
transform is kz2 B,, = 0 for propagation in the 2 direction—along with four propagating modes.
Thus, B,, is trivially zero by Gauss’s law, and tracelessness then requires that B, _+ Byy =0.
Interestingly, note that fixing the second index of B;; to be j = z, gives rise to the same three
modes recovered in the rank-one case (10); additionally, the 5 theory has two additional modes,
distinguished by a fourfold enhancement of the diffusion constant (each higher rank gives rise
to two new propagating modes; the diffusion constants at rank n are given by D,, = 7 ¢2 m?/n?
forme{l,...,n}).

3.2.3 Magnetic charge and regime of validity

Including magnetic matter, whose leading effect is to give rise to a current J l.(;n) =0mB;;, leads
to exponential decay of all rank-two fields at the longest time scales, as was the case for the
rank-one theory discussed in Sec. 2.2.5. Specifically, we find that, for well-separated time scales,
To =0,/ L Ty = O, the length scales relevant to magnetic diffusion of the higher-rank

gauge fields are those satisfying
Te
— L ckT . < 1. (40)
Tl’l’l

The same condition applies equally to both branches of propagating modes. Above the UV
cutoff, there exist remnants of wavelike propagation, and below the IR cutoff, all fields decay
exponentially at the same rate, irrespective of the characteristic length scales over which they

vary.
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3.3 One-form symmetries

The continuity equation (36) can be recast in the standard form for a tensor conserved quantity,
0P+ oJijk = 0, (41)

where both the rank-two density, p, i and the rank-three current, here Jijk = %(eili 0 +6jk1zJ Ei)’
transform in the 5 of SO(3), corresponding to traceless, symmetric rank-two tensors (i.e.,
Pij»Ji; € 5). We remind the reader that the vanishing of magnetic charge density can at best
only be expected to hold approximately in emergent theories; see Sec. 3.2.3 for a discussion of
the length and time scales over which (41) provides an accurate description of the dynamics. We
find the conserved quantities associated with (41) as in the rank-one case (23) by considering

Qlfl= f &x fi;04 5 (42)
R3

where f; jisa traceless, symmetric tensor-valued function of x € R® (note that any components
of f not in the 5 — i.e., the trace and the antisymmetric part — cannot contribute to Q, and
are therefore not physical). Following the same procedure as used in the rank-one case, we
find that Q[ f ] is conserved whenever f, j satisfies

2
€okiOSoi T €oriOSei — §5ij€£kmakfem =0, (43)

which derives from the fact that Jijk = 2(eik5Jw + e}.uJﬁ) is in the 5 — i.e., it can be written in

terms of the traceless, symmetric tensor J 0 The last term in (43) is identically zero when f; i is
symmetric; additionally, the contribution due to a nonzero trace component of fl.]. D %tr [f16 ij

from the first two terms will conspire to cancel, since (e].kl. + eikj)aktr [f]1=0. Owing to the

antisymmetry of €ik in its indices, (43) is satisfied precisely when f; i is of the form

1
fiy(x) = al.ajrb—gaija%, (44)

where & is any scalar function of x, leading to an infinite family of solutions to (43). It is worth
noting that (44) coincides with the structure of time-independent gauge transformations acting
on the vector potential A; i canonically conjugate to E, i This apparent equivalence derives
from the self-dual nature of the traceless scalar charge theory — i.e., the derivative and tensor
structure of the electric and magnetic Gauss’s laws is identical.

The preclusion of other forms of solutions to (43) can be justified by appealing to the “scalar-
vector-tensor” (SVT) decomposition of fl.j, which can be viewed intuitively as a Helmholtz
decomposition on each index of the rank-two tensor:

fij :fi|]|'+fij'_+ i?: (45)

where, in Fourier space, the “scalar” component, f”, is parallel to the wave vector, k, in
both indices; the “tensor” component, fl.]T, is transverse to k in both indices; and the “vector”

component, fi]ﬂ is mixed (being a symmetric sum of two terms that are parallel to k in one
index and transverse to k in the other).
The decomposition (45) can be realized using the projector,

1 1
1_ _
Py = ﬁ(k25i]’ - kikj) = ﬁ(eikeke)(ejkmkm)’ (46)
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which projects onto the subspace orthogonal to k, and its complement, P! = 1 — PL. Using
P + Pl = 1, we resolve the identity on either side of f to recover

) (47)

f=Plfpl+plfpt + PLpl 4+ PLEPL =
~—— ~——

v
scalar, ® vector, v, tensor, T,y

where, in the last equality, we have written f schematically in a basis in which the wavevector,
k, locally defines the “parallel” vector (1,0,0)7, so that & lies in the parallel block, T, lies in
the transverse (perpendicular) block, and the components v, mix between blocks.

The scalar contribution, k*®(k) = —k k : fi i corresponds to the doubly longitudinal com-
ponent; the vector, v(k), has two independent components,® and is written in terms of f‘.
as k*v,(k) = —(e, ,k)k f,.; and finally, k*T, (k) = (embka)(ejcd k.)f,, contains the two
remaining degrees of freedom (as T is a syrnmetrlc 2 x 2 matrix in the subspace orthogonal to
k, whose trace is fixed”).

Writing out the projectors explicitly — and ensuring that each individual term is traceless
and symmetric — gives

Fil) = —(kk;— 36,k2) @+ [ (e, 0,k v )k, +1 o ]

\V‘/ ~" —~
5 scalar, 1 vector, 2
2
[(elabk ) ( ]cd c) de - 5ijk T + 51]kakaab] (48)
tensor, 2

where each term is labelled below according to its role in the SVT decomposition and the
number of independent degrees of freedom carried.

Equipped with the decomposition (48), we can show that (44) is the only solution that leads
to conserved quantities of the form (42). Inserting (48) for f in the relation (emb a) fb =0, we
see that the scalar term in (48) is annihilated independently in each term in (43), and therefore
a valid solution to fl.].. However, the “vector” and “tensor” parts of the decomposition (48) only
satisfy (43) if they vanish (this is most apparent from the definitions of v and T in terms of fl.j).
In other words, (€, ,k,) fb]. = 0 implies that f must be “parallel” to k in both indices since f; j

is symmetric, which precludes any contribution from the terms f L and f T in (45) and (47), so
that only ® is nonzero, corresponding to the doubly parallel block in (47). Note that the more
general equation, (€,,, k,) be =A; for some antisymmetric tensor A, J(k) does not admit new
solutions in which the first two terms in (43) nontrivially cancel one another (i.e., conspire to
cancel without vanishing individually), and we conclude that there are no additional solutions
beyond those captured by (48).8

Having identified (44) as the only solutions for f compatible with charges of the form (42),
in analogy to the rank-one case, we take ® to be an indicator function for the volume, V C RS,

1 xeV,
q)v(x): 0 X¢V 49)

®Note that the decomposition (45) is not unique, since any components v o< k will be projected out of v.

“Much like the vector components®, T, is not uniquely determined: The trace is only fixed once the components
parallel to k have been projected out.

8Suppose that (€i0pk,) fb A and that the antisymmetric tensor A] = €, A, is parametrized in terms of
the (for now) arbitrary vector ﬁeld A(k). Since T;; must satisfy k, T, =0, and T, = (e e 4k JA,,, we find that
kz)tj —(k-2A)k; =0, or A o< k. Then eijkkjfkl o< ewmkm is solved by fl.]. o< Eij. However, we can also add any
function fij o< kl.cj, since it belongs to the null space of Eijkkj' Demanding symmetry of f; gives the solution

fl.j =k, k}. - %5 l.jkz, which is already captured by setting ® =1 in (48).

17


https://scipost.org
https://scipost.org/SciPostPhys.14.3.029

Scil SciPost Phys. 14, 029 (2023)

we have fi]. = 31.8].@‘, = —8}6 [x € dV]#,(x). As in the rank-one case, similar indicator
functions can be chosen for boundaryless, semi-infinite surfaces, S. The conserved quantities
associated with choosing = &,, (49) are

Qs = _f d?’xpijaj5[x eslh, = f ds (ajpij) ’ G0
R3 5

where S is either the boundary, V, of some finite volume, V, or a semi-infinite surface, and #
is the outwardly oriented unit vector normal to S. Essentially, the flux of

P = 9,pj> (G}

through any closed or semi-infinite surface is conserved; thus, in systems where the charge and
current transform as the 5 of SO(3), there is an effective one-form symmetry corresponding to
the one-form charge, p; (51).

We also note that the rank-two continuity equation (36) (or (41) in terms of the rank-two
magnetic field) expressed in terms of the one-form conserved quantity, p; = aj p;; (51) realizes
the rank-one continuity equation (22) for a theory with a one-form symmetry, where both the
density and current are in the 3. Taking the divergence on both sides of (36) and using

5 ~ 1
p;=0p;, J = Eale.j, (52)
we then find that
2.0, +€,,0J, =0, (53)

which has the form of a continuity equation associated with one-form symmetries, and is
equivalent to the rank-one Faraday (1c¢) and/or Ampere (1d) laws.

Because p; obeys the continuity equation (53), the same arguments invoked in Sec. 2.3
apply—i.e., this describes a theory with a vector-valued conserved density, p,, along with a
one-form symmetry associated to the flux of p; through arbitrary closed or infinite surfaces.
Unlike the discussion of Sec. 2.3, however, because p, arises from taking the divergence of
the rank-two conserved density, p, I it obeys extra constraints that do not apply to p; in the
rank-one case.

The first constraint follows from the fact that p, is the divergence of a higher-rank object,
Pij> which constrains the total “charge” to be zero,

fd3x p; = fdgx ,p;; =0, (54)

where the latter equality follows from integration by parts and the fact that p, j is well-behaved
as |x| — oo.

The other constraints relate to the “moments” of charge, and derive from properties of p, j
(specifically, that it’s in the 5 of SO(3)). The fact that p, i is traceless gives the constraint

fd:;x X;p; = dex X; (ajpij) = Jd3x 6l.jpl.j = —dex tr([p] =0, (55)

which can be viewed as the “parallel” moment of p, (again using integration by parts to move
the derivative from ajpi jto x;). The fact that p, j is symmetric (in i < j) gives rise to

3 ~ 3 _ 3 _ 3 _
fd X €k XiPr = Jd X €k X (aepke) = _fd X eijk5jepke = _Jd X €xPi =0,
(56)
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which can be viewed as the “transverse” moment of p;, and also relies on integration by parts.
Note that, in the context of constraints on p,, “parallel” and “transverse” refer to x in real
space; in the context of decomposing f; i these terms refer to k in Fourier space.

The discussion thus far explains how the rank-two Maxwell’s equations (32) can be viewed
as a continuity equation (36) for the B field in the Ohmic regime, where both the density,
Pi; = By} and current J;; = E,;, are in the 5 of SO(3) (41). This leads to a one-form symmetry
corresponding to conservation of the flux of p, = 6']. P through boundary surfaces. We then
note that p, obeys precisely the continuity equation (53) that gives rise to a one-form symmetry
corresponding to fluxes of p; in the rank-one case in Sec. 2.3. However, because p; corresponds
to a rank-two conserved quantity in the 5, it obeys the additional constraints (54), (55), and
(56).

We now argue that it is possible to go in the other direction: Knowing that a vector-valued
conserved density, p;, obeys the one-form symmetric continuity equation (22) and respects
the above three constraints is sufficient to determine that the underlying theory is second
rank, obeys the rank-two continuity equation (41), and has the quasinormal modes (39)
corresponding to rank-two magnetohydrodynamics in the Ohmic regime.

First, the constraint that the total charge vanishes, f d3x p; = 0 (54), implies that p, is
the derivative of another object (in this case, that object is higher rank) that need only be
well behaved at infinity. Consider a function, g(x) in one dimension, where the Fundamental
Theorem of Calculus provides that g(x) = G’(x), with G the antiderivative of g. On the circle,
e.g., the vanishing of total charge is given by foz "de g(8) = G(2m)—G(0) = 0. The zero charge
constraint therefore implies that the antiderivative G(6) is single-valued. On the real line, we
use integration by parts to see

J dx g(x) = G(x)I*32 — 0. (57)
R

In this context, the zero-charge constraint implies that the antiderivative, G(x), asymptotically
vanishes such that lim|,|_,o G(x) = 0 (note that it is unreasonable to require that G be an even
function a priori, since the constraint is nonlocal). Note that the same considerations also hold
for vector-valued g. Essentially, the conclusion is that, while any smooth function, g, can be
written in terms of its antiderivative, G, the zero-charge constraint further implies that G(x) is
well-behaved at infinity (on the real line) or single-valued (on the circle).

The higher-dimensional case is slightly more subtle, as there is no crisp notion of an
antiderivative in RY for d > 1. Nonetheless, we posit that any well-behaved vector-valued
function, g; € RY, can be written as the derivative of a higher-rank object, g = 3]. Gy without
loss of generality, where the relation between g and G is determined (nonuniquely) by the
Helmholtz decomposition.” Using higher-dimensional integration by parts, we find

f dx g, = J d’x 9,G;; = J ds G;f; — 0, (58)
Rd Rd ORd

and thus, the constraint implies lim |, oo |x |41 G;; (x) = 0, where the factor of |x|9¢! is hidden
in the measure dS. As in the d =1 case, we see that generic vector-valued functions, g; € R4
can be written as aj G, 7> however, this becomes especially natural when f g =0, in which case

any choice of G that vanishes sufficiently rapidly at infinity and satisfies BJ. G =g is valid (on
the torus, the constraint is that G is single valued). Effectively, the vanishing of total charge

°One can view the G; for a particular i as a vector, where g = 8}. G; gives the irrotational component, g =V - G;
the solenoidal component, V x G, is not fixed in this scenario, so the decomposition is not unique.
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(54) immediately implies the existence of a well-behaved, higher-rank object:

Jd%@:o = p,=0,p; (59)
R3

for some P that vanishes as |x| — oo faster than 1/|x|%.

Next, the constraints (55) and (56) then imply that P is traceless and symmetric, respec-
tively. We note that, in principle, it is also possible that the trace and antisymmetric components
of p, j (respectively in the 1 and 3) are themselves divergences of higher-rank objects—however,
as higher-derivative corrections to the definition of p;, 7> these subleading terms can safely be
ignored.!? Essentially, at leading order, any nonzero trace component of P decouples from
the hydrodynamic equations governing the components of Py in the 5; hence these terms are
unimportant at the level of hydrodynamics.

Taking the time derivative of (56) gives a new constraint on fk:

Oz—Jd?’x €k X; P Jd?’xeuk ]( elemaJ )
= Jd?’x (alxj)(eijkewm)jm = Jd?’x ( Ukel]m)JN fdgx 26,9
—2f&x@=o, (60)

where the second line above relies upon integration by parts; by the same logic used for p,,
(60) implies that jl = %ajJ i Substituting the expressions for p, and jl in terms of higher-rank
objects into the [ostensibly rank-one] continuity equation (53) gives

1
2,(0; pu)+ elkeak(é’jjlj) =0, (61)

and, extracting an overall 9 > we determine that the equation of motion for p, i by consistency
with (53) and the rank-one theory — must be of the form

1 1
Opij+ luaka] + EejkéakAZi =0, (62)

where the latter term on the left-hand side is the most general term permitted by the constraints
on the index structure and is annihilated by 8].. Symmetry of p, j enforces A,; = J,; up to
subleading corrections (i.e., terms of the form 3€ ..., that are annihilated by €k 9,), while
tracelessness of p, j requires that

I (eedy) = 0, (63)

which implies that either J,; is symmetric, or that €,,,J,, = €,,..9, Q. As the latter means
that the antisymmetric part of J,, appears in the hydrodynamic equation of motion at higher
derivative order, we ignore this possibility and take J,; to be symmetric. Furthermore, the
trace component of J,; does not contribute to the hydrodynamic equation of motion, since
€109, (JO [j) + €y 3,(J6,,) = 0. Hence the continuity equation takes the form of (36) with
traceless, symmetric charge p, i and traceless, symmetric current J; - The normal modes (39)
follow as a consequence of the hydrodynamic equation of motion.

Oprecisely, any Green’s functions of interest for p;; would not exhibit any singularities sensitive to the neglected
terms—in fact, the neglected terms would be strictly subleading to those included. For example, again orienting
k = k2, ngypxy ~ (Dk? —iw) k2 x (1 + ak?® +---) where the ak? coefficient comes from total derivative terms we
have neglected.
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As a quick aside from the present discussion, note that if the tracelessness condition is
relaxed such that p, j transforms in the 1 @ 5 representation of SO(3), but (54) and (56) are
still imposed, then the resulting equation of motion is

1
opi;t+ 5 (eeBe; +€edder) = 0, (64)

where, now, Jl.j now transforms in the reducible 3 & 5 representation of SO(3)—i.e., it is
traceless but not symmetric. The resulting rank-two electromagnetic theory then corresponds
to a traceful electric field with scalar charge density [32], and is not self dual: The electric
field tensor, E i is symmetric but not traceless (1 @ 5), while the magnetic field tensor, B ij is
traceless but not symmetric (3 & 5).

Returning to the traceless scalar charge theory (32), we recover a constitutive relation for
the rank-two current, J;; €5, via derivative expansion of p, j and SO(3)-invariant objects. To
low order, this takes the form

D 2
Jyy = ap;+ ) (eikeakpt,j + ejuakpﬁ) +0(09), (65)
and we have neglected subleading contributions at O(82). The only SO(3)-invariant objects at
our disposal are 6, j and €kt Note that the only other zero-derivative term one could write

down is Jl.j o< 5ij5abpab = 5ijtr [p] = 0; single-derivative terms require use of €k but
symmetry of J; i forbids J, 7 O €pjee and symmetry of p, j forbids contracting two indices
of the latter with €k In direct analogy to the constitutive relation for the rank-one current
(29), the term J,; = ap;; is forbidden by arguments based on time-reversal symmetry and
generic results from effective hydrodynamic theories [65]; most convincingly, a # 0 leads to
unstable (and unphysical) solutions with quasinormal dispersions w = #ia|k|, +2ialk|. Thus,
we take a = 0, with the leading contribution proportional to D [identified as Tc? in the case of

Maxwell’s equations (32)], giving rise to the quasinormal modes (39).

4 Standard higher-rank generalizations of electromagnetism

Having explained the “higher-form symmetry” formulation of magnetohydrodynamics for both
conventional (rank-one) electromagnetism and its rank-two (fractonic) generalization, we now
turn to generalizing to traceless symmetric rank-n theories. In the interest of simplicity, we
make the “standard” assumption that the electric and magnetic charge densities are scalars,
that the generalized Maxwell equations are self dual, and that the E and B fields are both
in the same irrep of SO(3). While other choices exist, and may lead to exotic hydrodynamic
theories (see, e.g., Sec. 5), the theories that obtain from the aforementioned restrictions are
physically most similar to rank-one MHD, and thus we refer to this class of higher-rank theories
as “standard”. Microscopic Hamiltonians that realize such rank-n theories can be constructed
using ideas analogous to those presented in Refs. [32,41,68]. For completeness, we also discuss
a concrete lattice model realization in the next section.

To generalize the results of the preceding sections to rank-n theories of electromagnetism,
it will first prove convenient to define appropriate generalizations of the divergence and curl
operators that appear in the higher-rank extensions of Maxwell’s equations. The action of these
operators on some totally symmetric tensor A is given explicitly by

.....

v.A=00 ... A, (66a)
~ 1
(VXA i, = 0 (eiluakAz,iz,...,in +.. ) , (66b)
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where the generalized n-fold divergence, V™ - A, amounts to taking the divergence of each
index of A individually, and the symmetrized multi-index curl, V x A, is given simply by applying
the usual curl, € ke 6‘k , to each index, i, , of A, and taking the average, so that the resulting
object remains symmmetric in all indices. The former has n derivatives, while the latter contains
only one derivative for all n; these generalized derivative operators reduce to the standard
divergence and curl for n = 1. The standard vector calculus identity, div(curlA) = 0, also
applies to the rank-n variants (66). In the discussion to follow, we also make use of the multi-
index I,, = {iy,1y,...,1,}, to unencumber notation when working with higher-rank indices.
Using this language, the generalized divergence in (66a), e.g., can alternatively be written
5, A =V-A.

4.1 Rank-n Maxwell’s equations

Making use of the generalized derivatives in (66), the natural generalization of the rank-one (1)
and rank-two (32) Maxwell’s equations to rank-n fields and currents with scalar electric and
magnetic charge is

1

v g = 2p©, 672)
Y. g = o (67b)
0,B=—VxE—uJ™, (67¢)
8.F = i% xB—2J©, (674)

where both the rank-n fields E, , B, , and the current J, , are fully symmetric and traceless. As in

previous sections, we take ¢ to be defined by c? = (ue)™! despite the presence of multiple photon
branches in the matter-free case, each with its own “speed of light”. Taking the generalized
divergence over all n indices of either Faraday’s (67c) or Ampere’s (67d) law gives rise to the
appropriate continuity equation for the scalar charge density p(® or p™, respectively

4.2 Microscopic Hamiltonians

For completeness, we provide a sketch of how microscopic lattice models that realize higher-
rank gauge theories can be constructed systematically. The construction follows closely the
approach taken in, e.g., Refs. [32,41, 68]; the Hilbert space is constructed from rotor degrees
of freedom that live on the sites of a face-centered cubic lattice with an additional lattice site at
the center (as shown in Fig. 2). The Hilbert space of each individual rotor degree of freedom is
spanned by angular momentum eigenstates, with integer angular momentum quantum number
n, and approximates that of a large-S quantum spin under the mapping $* ~ n —1/2 and
$* ~ e*% While we focus on realizing the symmetric scalar charge theory (whose traceless
variant will be the focus of the following section), other theories can be constructed using the
same Hilbert space in the presence of different Hamiltonians that give rise to different Gauss
law constraints.

As is depicted in Fig. 2, the unit cell consists of 10 rotors: Three rotors, n,,,(r), ny,,(r),
and n,,,(r) are placed at the vertices of a simple cubic lattice, whose sites are located at positions
r; two rotors are then placed at the center of each plaquette, e.g., n,,,(r) and n,,,,(r) are
situated in the x y plane; finally, a single rotor, n,,(r), is placed on the corresponding vertex
of the dual simple cubic lattice. Note that rotors are labeled by the unit cell to which they
belong, rather than their actual locations within the unit cell.
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Figure 2: Schematic depiction of the sites that comprise the microscopic lattice
Hamiltonian that realizes a rank-three theory. The red sites, which live on the sites
of a simple cubic lattice, indexed by r, host the three rotors n,,,, n,,,, and n,,,.
The blue sites, which live at the centers of the plaquettes of the cubic lattice, host
two rotors each. For example, n,,, and n,, in the xy plane. Finally, the green site,
which lives on the sites of the dual cubic lattice, hosts a single rotor: n,,.

The charge-free electric Gauss’ law, J, aj 8kEl.jk = 0, can be reproduced in the rotor language
by replacing the derivatives that appear in the continuum theory with the corresponding finite

difference operators. One possible discretization uses the one-sided derivative:

aiajakEijk d Z[nijk(r) + nijk(r +el-) + nijk(r +ej) + nijk(r +ek)+
ijk nijk(r +e; +€j) + nijk(r +ej +ek) + nijk(r + e +ei)+
nijk(r +e; +ej +€k):| .

The lattice variant of the electric field tensor is obtained from the rotor variables n; ;. via an alter-
nating sign E;j;(r) = (—1)**"y*"=n,, (r) (and, similarly, the vector potential is obtained from
the operator 0, conjugate to n, via A;j ~ (1)t Frag; ik)- The corresponding contribution to
the Hamiltonian then takes the form of a soft [quadratic] constraint ~ A(J, aj akEl.jk)Z, which

ensures that the ground state of the model is free of charge, J, 8]. akEi].k =0, in the limit A — o0,
when the constraint is exact. The theory can then be endowed with dynamics by writing down
additional terms that commute with, and hence preserve, the Gauss law constraint (but mix
states within a fixed total charge sector). For further details on how such “E 2 + B?” terms can
be constructed, we refer the reader to Refs. [32,66,67]. Different theories are obtained by
writing down different Gauss law constraints, which select the configurations of El.j . that are

energetically penalized.

4.3 Hydrodynamic interpretation

As in previous sections, both the electric and magnetic fields are conserved in the absence
of their corresponding matter. In the following we derive the general mode structure for the
photon in the absence of both species of matter, and then derive diffusion of the rank-n magnetic
field when only electric matter is present. Since the higher rank theories that we discuss are
expected to be emergent, both species of matter are generally expected to be present with
nonzero density at nonzero temperatures. The energy and length scales over which magnetic
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diffusion prevails, laid out in Sec. 2.2.5 for the rank-one case, also describe the regime of
validity of the rank-n theories.

4.3.1 Matter free limit: The photon

To discuss the normal modes of the rank-n theory in the absence of both species of matter, we
will find it convenient to introduce a new notation for the components of symmetric tensors
such as the electric field E; . Since the tensor is fully symmetric by assumption, each component
of the field can be indexed by the number of x’s, y’s and 2’s that it contains, i.e., E, , . = E(;

with n; > 0 and Zle n; = n, where d = 3 throughout. For instance, E,,, — E5; in the
simplified notation. Taking the time derivative of Ampere’s law (67d) and making use of
Faraday’s law to replace J,B, we find the following equation of motion for the rank-n E field,
having oriented the wave vector parallel to 2

Yy

27.2
c“k
2 _ Z
w E{ni} = —nz [(nx +n, + 2nxny)E{ni} —ny(ny, — 1)Enx+2’ny72’nz —n,(n, — l)Enx—z,nerz,nz] . (69)
It can be verified explicitly that the equation of motion preserves the tracelessness constraint
E +E +E =0 (with m, + m, +m, + 2 =n), as it must. While it

my+2,m,,m, My, my+2,m, My, my,m,+2
may appear from (69) that sectors with fixed n, are not coupled by the dynamics, this is not the
case once the tracelessness constraints are taken into account. For the case n = 3, the theory
has six ballistically propagating modes. The rank-three tensor has d" = 27 components, of
which only (dT—l) = 10 are independent by symmetry, and a further (dﬂf) = 3 are removed

by the tracelessness constraint. This leaves us with the following seven modes

1 Eyzz = _4Exxy’ Exzz = _4Exyy ’
2 E._,E.__=—FE__,
w = %kz x . Exyz Exxz yyz (70)
Xyy’ Txxy’
0 E

222 °

where the values of the field components E__ _, E,, and E,,, are determined by the traceless-
ness constraints. The longitudinal mode E,,, is then removed by Gauss’ law, leaving the six
modes that are not three-fold parallel to 2. More generally, rank-n traceless symmetric tensors
in d = 3 possess 2n + 1 independent components, giving rise to 2n dynamical modes and one
nondecaying mode Ej  ,. Eliminating this nondynamical mode using Gauss’s law, there are
2n dynamical modes grouped into n two-fold degenerate branches with speeds in the range

[c/n,c] with dispersion relations w = ck,m/n form=1,2,...,n.

4.3.2 The Ohmic regime: Magnetic diffusion

We now permit nonzero electric charge density and current while maintaining a vanishing
density of magnetic charges, p™. In this limit, Faraday’s law (67c) may be interpreted as a
continuity equation for the rank-n locally conserved density p, = B, . Specifically,

B+VxE=0, (71)

may be written J,p, + 0 = 0 with a rank-(n + 1) current. On the other hand, the

ln+1JIn>in+1
continuity equation for the electric field is sourced by a nonvanishing current J®. Following
the prescription of quasihydrodynamics, the exact conservation of E is broken by introducing a
time scale ©

- 1
O,E+VxB=—-E. (72)
T
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The time scale, 7, characterizes the decay of the n-fold longitudinal component of the electric
field (i.e., the electric charge density). As explained in detail in Sec. 2.2.2, this procedure can
alternatively be thought of as imposing an Ohm’s law relationship between the current and
the field that drives it; in this case J; (&) — o.E; with a scalar conductivity o, which describes
the system’s linear response at sufﬁc1ently long length and time scales. By analogy with the
discussion above Eq. (37), this is the most general form of the conductivity permitted by SO(3)
symmetry: any rank-2n SO(3)-invariant tensor is expressible in terms of products of & i All
contributions from 9, i with both i and j contracted with E; vanish by virtue of tracelessness
of E; . A nonvanishing contribution therefore has i associated with J and j contracted with E

(or vice versa), for all terms in the product, giving rise to a contribution J® > E,; y, for some
(1)

permutation 7 of the indices {ij,...,1,}; since E 1, is totally symmetric, we obtain J 1, o< E 1

At sufficiently long times, when 70, < 1, we drop the time derivative in (72) and substitute
the resulting relationship between E and B fields into Faraday’s law (67c). This leads to an
equation of motion analogous to (69). Defining D = t¢? in accordance with (15)

Dk?
[(n +n, +2n,n,)B

iO()B{ni} - n} ny(”y - 1)an+2,ny—2,nZ - nx(nx - 1)an—2,ny+2,nz] ) (73)

where the B field satisfies the tracelessness constraints B =0
Y

(with m, +m, + m, + 2 = n). The mode structure mirrors that of the matter free case. For

instance, for the n = 3 theory there are six dynamical modes, while the three-fold longitudinal

mode is unable to decay

mx+2,my,mz+BmX,my +2,mz+Bmx,m ,Mmy+2

1 B, =—4B. B, =—4B .,
w=—tprzx{* BxyZ’ Poxs = By 74)
97 19 B, By,
Yy  ooxxy
0 B

2222

where the values of the field components B, B,,, and B, , are determined by the traceless-

ness constraints. The longitudinal mode B,,, is then removed by Gauss’ law, leaving the six
transverse modes, with diffusion constants D,, = Dm?/n? for m =1, ..., n, with each branch
doubly degenerate. This normal mode structure also generalizes to n > 3.

In the presence of magnetic charge, the regime of validity of (74), i.e., the length and time
scales over which magnetic diffusion occurs, is identical to the rank-one and rank-two theories,
presented in Secs. 2.2.5 and 3.2.3, respectively.

4.4 One-form symmetries

In the absence of magnetic currents, Faraday’s law (67c) can be recast as a continuity equation
for the conserved density p 1, =B

O0,p+VxJ=0. (75)
Following the Secs. 2.3 and 3.3, we consider the putatively conserved quantity

Alfl = J &*x f1, pr, » (76)
RB

where f; can be chosen to be traceless and symmetric. In order for Q[f ] to be conserved, i.e.,
O[f]=0, the tensor-valued f1, satisfies

€ mic(iy| S mliy. iy = 0> (77)
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which follows from integrating (76) by parts and utilizing the symmetry properties of the
J; , which is also traceless and symmetric. The parentheses indicate symmetrization over the

to the symmetric group S,. The vertical bars denote indices that are to be excluded from the
symmetrization procedure. We have omitted terms that vanish due to the assumed symmetry of
fiyyin = S0+ Accounting for the tracelessness of f, the appropriate solution to the above is

_ (z) 2 3(4) 4
=00 5 T 0%wa % % G Ty an =) Y diis s 0T R
(78)

where the second and third terms'! on the right-hand side progressively remove the trace part
of f. Tl“ak.ing the cur% on any of f;’s indice§ Van.ishes by antisymmetry 'O.f €k Choosing the
same indicator functions as, e.g., (49), we identify the conserved quantities as

1

Qs = —JRB dxp; 8, -8 8[x eSlhy = (—1)“f dsa, -3 p, . (79

S

R
where S = 3V for some volume V. That is, the flux of the object [61.1 = aiz e al.n Pi i through
any closed or semi-infinite surface is conserved by the rank-n continuity equation (75). Hence,
in systems whose charge and current are both symmetric traceless tensors of the same rank
[in the (2n + 1)-dimensional irrep of SO(3)], there is an effective one-form symmetry whose

.....

in (70), since for a surface %, the rank-n theory conserves

Qr=p; ;.. (O kin)f ds nileik'x =p,,. (DK f ds nl.eikZz . (80)

by b
Taking the surface X to be the xy plane, (80) evaluates to Q o< p_, ., implying that p_, .
is unable to decay in time. On the other hand, taking X to be the yz or zx planes places no
constraints on the components p . and Py since (80) evaluates to @ = 0. Furthermore,
the one-form symmetry does not constrain any components of p orthogonal to the projector

lAciz ‘e IA<i , Where k is the unit vector in the direction of k.
n

4.5 Conditions leading to particular higher-rank theories

This origin of the one-form symmetry may alternatively be seen by taking n — 1 derivatives of
.. . .. ~ 1
the continuity equation, defining J i = 531.2 S al.nJ gy

0,p,+ €y, 8J, =0. (81)

Hence, common to all systems obeying generalized Maxwell’s equations of the form (67) is
a one-form symmetry of the conserved density p i = o, - 8l.n pi ;- In order to proceed in
the reverse direction, i.e., from the equation for a one-form symmetry (81) to the continuity
equation (75) for the object p that transforms in the (2n + 1)-dimensional irrep of SO(3), we

must impose supplementary constraints on p,. First,

Jd3xf5i=0, where 9, --+9, f=0, (82)

ln—1

for sufficiently well behaved p,. That is, multipole moments up to and including order n —2
must strictly vanish (for the rank-two case (54), this reduces to total charge, while for the

The terms included in Eq. (78) are sufficient to remove the trace part for n < 6. Including the second term only
is sufficient for n < 4.
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rank-one case there are no supplementary constraints on p,). Meanwhile, the tracelessness

condition on Pi i, Mapsto
> seetn

Jd?’xpx(x ---xl.n)ZO. (83)

The above represents (d+"23) independent constraints, which equals the number of independent

components in the trace. The constraints that enforce symmetry, on the other hand, are given
by

Jd?’x ekjfﬁjxe(xig---xin)zo. (84)

That the constraints (82) to (84) are sufficient to “canonically” determine the rank-n
continuity equation can be argued as follows. First, note that we can always write (nonuniquely)
9] B =0, 3in Pi i The constraints on the various moments of p, in (82) can be satisfied by
introducing the higher rank object p; ; that is well-behaved at infinity by direct analogy with

the arguments presented for the rank-two case in Sec. 3.3. Next, we make use of the symmetry
constraints (84). In writing p; = 8l.z e ain p; i, We can assume that Pi i i =P

.....

i1,(iyeensin)
due to the commutativity of derivatives. Integrating (84) by parts n—1 tlmes gives us that

Pithsigi) = PkGiini)? which implies that the tensor is fully symmetric, up to higher derivative
corrections, the possibility of which we ignore. Tracelessness of Pi i then follows from
integrating (83) by parts n— 1 times, i.e., p. iy i, = 0 Akin to the manlpulatlons in Eq. (60),
the corresponding constraints placed on the current J., ; are found by taking the time derivative
of (84), the precise details of which are deferred to Appendix B. There, we discuss carefully
the full reconstruction of the continuity equation (75) in the specific setting of a rank-three
theory. The key steps are as follows: (i) the constraints on :fl motivate the introduction of the
rank-n current J 1 (ii) symmetry of p I, restricts the continuity equation to be of the form (75),
but J I needn’t be symmetric or traceless; (iii) tracelessness of p I then restricts J ; to be fully
symmetric and traceless.

5 Magnetic subdiffusion

We now consider a higher-rank theory that exhibits subdiffusion of magnetic field lines, the
“traceful vector charge theory” of Ref. [32], in which the electric and magnetic charge (mono-
pole) densities are vector valued.

5.1 Maxwell’s equations with vector charge

The rank-two Maxwell’s equations for symmetric tensor E and B fields and vector densities for
the matter content are given by

_ 1
B =P (85a)
5By = up™, (85b)
— (m)
atBij = Cike ]mnakamEen AIJ'Jij ) (85c)
1 1
at Eij = _,U, €ike ]mnakamB - EJij . (85d)

Unlike sections 3 and 4, the tensor fields E; i and B, now transform in a reducible representation
of SO(3), 5@ 1. Continuity equations for the electric and magnetic charges can be recovered
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by taking the divergence on one index of Faraday’s (85¢) and Ampeére’s (85d) laws, respectively.
The continuity equations are given by

(e/m) (e/m) __
8tpl. + Ble.]. =0. (86)

5.2 Hydrodynamic interpretation

Like the traceless scalar charge theory and rank-one electromagnetism, Maxwell’s equations
can be interpreted as continuity equations for the rank-two electric and magnetic fields, E, i
and B, i in the absence of their corresponding matter.

We begin by considering the matter-free limit. In the absence of electric and magnetic
matter, both E;; and B, are conserved densities. The fields obey wavelike equations, which
derive straightforwardly using the same machinery employed in previous sections, and take
the form
82E;; = &*(—8,0,8,8,Ey, + 0°8,8,E,; + 38,0.E,; — 9°E,; ), 87)

t

for E, i and the equation of motion for B, j takes the same form due to electromagnetic du-

ality. We have defined ue&? = 1, although it should be noted that—in contrast to previous
sections—(ue) /2 (and hence &) no longer has the dimensions of a speed.
For wavevector k oriented in the 2 direction, the normal modes are given by

1 E _,E .E

o= ik x {O Esio 88)
xx> Pyy» Pxy

corresponding to three quadratically dispersing modes. This is to be expected given that the
symmetric tensor, E; 7 has six independent degrees of freedom, with three components removed
by the Gauss’s law constraints (85a) and (85b). In fact, Gauss’s law constrains k,E . = 0, which
freezes the modes E; .

Next we consider how the hydrodynamic description is altered in the presence of elec-
tric charges (with all vector components). The effect of, say, electric matter is to break the
conservation law associated to E; j while preserving the conservation law associated to B, i
Quasihydrodynamics dictates that the conservation law for E, i is should be broken in the most
general manner permitted by symmetry constraints

1 1 1
~2 _
3tEij+c e.uejmnakamBgn = _3_ﬁ51JEkk_T_5(ElJ_§5lJEkk) ) (89)

L
where 7, and 75 are phenomenological parameters characterizing the decay rate of the trace
part and the traceless symmetric part of E, i respectively. The right-hand side of Eq. (89)
represents the most general structure permitted by SO(3) rotational invariance; the fact that
E; transforms in a reducible representation of SO(3) implies that the “electrical condictivity” is
no longer characterized by a single time scale in general (as was the case in all prior sections).
Specifically, as noted above Eq. (37), SO(3) symmetry forces the electrical conductivity to
be of the form o, = a5ij5ke + /35“(5].( + yéieéjk, which for E; belonging to the reducible

5 & 1 representation gives ETII =3a and efgl = f +v. In the long time limit, 7,5, < 1 and
750, < 1, substituting (89) into (85c¢) gives

9B, = —T5¢” (—3i8j3k3mBkm +0%8,0.B,; + 03,0, — 34Bij)

t

(90)

km>

1
+5(rs =12 (6,,02—8,0,) (5,02 —3,3,,)B
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and the quasinormal modes for a wavevector, k, oriented in the 2 direction are

0 B,
.= 14 —
w=—iDk}x{1 , B,,,B.. =—B,,, 91)
1 T _
§(1+ 1) B..=B,

with D = 75 ¢2. In the special case T; = s, the normal mode structure mirrors that of the
matter-free case, but with subdiffusing—rather than propagating—modes. When the two time
scales differ, T, # 75, the quasinormal mode corresponding to the trace part of B, j decays with
a different rate. In the presence of a Gauss law constraint, the three nondecaying modes, B, i
are removed.

Note that in the presence of magnetic charge, the regime of validity of (91), i.e., the length
and time scales over which magnetic subdiffusion occurs, is determined by analogy to previous
sections, with modifications due to the higher-order nature of the hydrodynamic equations of
motion.

5.3 One-form symmetries

The continuity equation for the rank-two magnetic field takes the general form

845 + 8Bl o = 0. (92)

where both the rank-two charge, Py , and rank-four current, J'Ukm = €ikt€jmnden transform
as the reducible representation 1 ® 5 of SO(3), corresponding to symmetric but not traceless
rank-two tensors. The conserved quantities associated to this continuity equation are of the

form

QU]Ef &x f;py; (93)
R3

where the symmetric tensor f; i satisfies

€ike k jmn mfl] - (94)

Note the similarity to (43), which has the curl acting only on a single tensor index of fl.j. Here,
we obtain an infinite family of solutions that decay sufficiently quickly as |x| — oo of the form

fy(x) = 3, +8.%,, (95)

where W, (x) are arbitrary vector-valued functions. As in Sec. 3.3, the absence of additional solu-
tions that decay sufficiently quickly as [x| — oo can be justified using the “scalar-vector-tensor”
decomposition of fl.j. Recall that the tensor contribution, f I'c f can be written in terms of
the tensor k*T; i(k) =—(€,,,k Cl)((:‘]C ik )fp 4> U to the usual amblgulty in Helmholtz decompo-
sitions, which arises from additional contributions that are projected out when reconstructing
fl.j according to Eq. (48). Equation (94) therefore demands that T; j(k) = 0, leaving only the

contributions from the “scalar” and “vector” terms, f 1 and fl i respectively. In momentum
space, the general solution therefore assumes the form

fij(k) = —k;k; @+ (€;,,k, v )k; + k(€. k,v,), (96)

iab jab

parametrized in terms of the scalar ¢ and the vector v,. Note that the scalar term differs
from (48) since f; j is not necessarily traceless. Equation (96) can be rewritten as

100 = ek, v, — 3k @1H; + K, [ €5k, v, — 3K, 97)
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where the expression in the square brackets is identified as the Helmholtz decomposition of a
vector ¥, i.e., ¥, =€, kv, — %k . ®. We therefore recover the solution anticipated in Eq. (95),
parametrized by the arbitrary vector field ¥;(x).

To shed light on the conservation laws implied by the solution (95), we make use of the
vector-valued indicator functions

1 xeV,
\Iji;k,V(x):5ikx 0 x¢V, (98)

which lead to the three-component conserved quantity

Qi[S] =J ds p;;#;, (99)
S

for each choice of surface S = dV. Since there are three conserved quantities associated with
each surface S, the continuity equation effectively describes three one-form symmetries.

However, the three one-form symmetries are not completely independent, as the conserved
charges satisfy nontrivial constraints. Consider the conserved quantities

Qilx;) = f P dx,dx,, for jAk#L. (100)

These conserved quantities are a particular case of (99) where the surface, S, is taken to be the
X, X, plane at a given x i The constraint that Q;(x;) must satisfy is

jdxj Qi(.x]'):fdxi Qj(xi), (101)

where there is no sum on the repeated indices. The constraint (101) arises from the fact that the
LHS is equal to f d3x Py while the RHS is equal to f d3xp it Equality follows from symmetry
of the conserved density p, -

We now argue that the converse is true —that is, any theory hosting three independent
one-form symmetries subject to the constraint (101) is necessarily the vector charge theory.

We label our three conserved densities by pga), where a € {1, 2,3} is (for the moment) a flavor

index labeling the conserved densities and i is the usual spatial index. For each a, the charges
satisfy the continuity equation for a one-form symmetry:

0,0 +e,,8J” = 0. (102)
To each plane perpendicular to a coordinate direction x; we associate three conserved charges
0W(x,) = fpfa)dxjdxk, for i#£j#k. (103)

labeled by the flavor index a. To these conserved charges we impose the constraint
f dx; Q(“)(xi) = f dx, Q(i)(xa), (104)
which is the analogue of (101). Note that the constraint requires that the flavor index a be

identified with a spatial index that can be used to label the coordinates, so we will neglect the
parentheses henceforth. Expanding and rearranging the constraint (104) yields

Jdgx [pf—pé] =0. (105)
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We conclude that the antisymmetric part of p{ identically vanishes or is the divergence of a
higher-rank object. For simplicity we assume the former; the latter reduces to the former at
long wavelengths. There is hence no reason to distinguish between “raised” and “lowered”
indices, and we rewrite p{' — p;. The constraint that p,; is symmetric leads to a constraint on
Jgo: It must be of the forme__ J J,y SO that the second term of (102) is symmetric. We then

amn -m
recover the continuity equation

atpia + (eikﬁ ak)(eamnam)‘]ln = 0. (106)

This completes the understanding of the features of the subdiffusive normal modes in (91):
The mode structure arises from the three one-form symmetries, while subdiffusion arises from
the constraint (101), which forces a second derivative in the continuity equation for p;;.

6 Conclusion

We have presented a hydrodynamic formulation capable of dealing with gauged multipolar
symmetries, such as are expected to arise in fracton phases of matter. The formulation we
have presented is a natural generalization of the treatments of ordinary (Maxwell) magne-
tohydrodynamics based on higher-form symmetries. This (somewhat abstract) formulation
has the advantage of not being limited in validity to the weak-coupling regime, unlike more
semi-microscopic approaches where one simply couples a fracton fluid (as developed in, e.g.,
Ref. [14]) to a higher-rank gauge theory. Instead, we have argued that “fracton magneto-
hydrodynamics” is best understood in terms of one-form symmetries, just like conventional
magnetohydrodynamics [48], and the hydrodynamic objects are (linelike) symmetry charges
of this one-form symmetry, which may be viewed as “generalized magnetic flux lines.”

One surprising feature is that the “higher rank” fractonic gauge theories generically exhibit
diffusion of magnetic flux lines, in contrast to the subdiffusion of charge that is seen in theories
with global multipolar symmetry. To gain intuition for this absence of subdiffusion, it is helpful to
recall that whereas charge diffuses in a theory with a global U(1) symmetry, once the symmetry
gets gauged, the charge relaxes exponentially, being driven by long-range interactions carried
by the gauge fields. Similarly, the “subdiffusion of charge” obtained in theories with global
multipolar symmetry generically gives way to exponential relaxation when the symmetry is
gauged. The hydrodynamic modes involve not the charges, but rather the flux lines, and these
generically relax diffusively. Nevertheless, theories with subdiffusion of magnetic field lines
can also be accessed, and we have provided a specific example thereof.

The theories we present describe the generic long-time description of the quantum dynamics
of fractonic phases (at nonzero charge density) exhibiting gauged — as opposed to global
— multipolar symmetries (as relevant to spin liquids and fracton phases). We develop a
symmetry-based approach describing arbitrary higher-rank theories of this type, and showcase
the subdiffusion of magnetic fields as an example of the exotic universal dynamics that may
arise in this context.

One obvious direction for the future is to aim to apply this formalism to emerging experi-
ments on quantum spin liquids, both conventional and fractonic. Any such program would
need to be driven by experiment, so we do not discuss it further in this (theoretically focused)
manuscript. However, there are also important conceptual points of principle that should
be cleaned up in future work. For example, how can the effects of momentum conserva-
tion be incorporated into our hydrodynamic framework? Formally, this necessitates coupling
the higher-rank gauge theory to curved spacetime, which was done for MHD in Ref. [48].
However, this leads to technical challenges associated to the fact that defining moments of
charge on curved spacetime is difficult [72]. Additionally, we have restricted ourselves in
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this manuscript to systems in three spatial dimensions. Are there surprises if one changes
the dimension? Furthermore, the theories we have herein considered involve gauged U(1)
symmetries. However, going from such theories to the kinds of lattice models beloved of
the quantum information community requires a sequence of Higgs and partial confinement
transitions [73]. What happens to the hydrodynamic theory as we go through these transitions?
Or again: thus far we have considered gauge theories of Abelian fractons. What if we move
to non-Abelian generalizations? It was argued in [74] that imposing non-Abelian multipolar
global symmetries would totally trivialize the dynamics, but the same need not be true of gauged
non-Abelian symmetries, and the magnetohydrodynamics of non-Abelian fractonic systems
could be a particularly fruitful problem for future work, extending the literature on non-Abelian
versions of magnetohydrodynamics [75-78].
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A Charge and current belonging to different irreps

A.1 Two-form symmetry: Irrep 1

Consider a theory that contains a vector charge p, belonging to the 3 of SO(3), but whose
associated current Ji]. transforms instead in the 1, i.e., the trivial or scalar irrep of SO(3). In
this case the current may be parametrized in terms of the scalar J:

J; =78, (A1)

and the continuity equation for vector charge density becomes
d,p;+8J =0. (A.2)

As in the main text, we define the putatively conserved quantity Q] f, ] parametrized by vector
fields f,(x), ie., Q[f,] = fd?’x f;p; . Using the continuity equation (A.2 ), we obtain the
following constraints on the field f;

< 011 = f $x 0,0, = —fd%c 60 = J CxJaf, a3

where in the final equality we have integrated by parts. We then find that, so long as f; is
divergence-free,
3.f,=0, (A.4)

we are guaranteed that Q[f,] is a conserved quantity of the theory.
As is well known, there are infinitely many solutions to (A.4 ), which may be expressed by

writing f, = el.jkﬂjk using an antisymmetric tensor ij = —ij , in which case (A.4 ) amounts

32


https://scipost.org
https://scipost.org/SciPostPhys.14.3.029

Scil SciPost Phys. 14, 029 (2023)

to the statement that the two-form, £, is “closed,” i.e., dQ2 = 0. Up to topological effects (which
we do not consider here), this implies that Q = da is exact, or that

fi= €92 (A.5)

for any function a, (e, the vector field f; is the curl of some vector-valued function).

In a similar manner to the indicator functions chosen to elucidate the conservation of flux
through surfaces in, e.g., Sec. 2.3 of the main text, here it is instructive to choose a particular
form for the functions ak(x). Let y denote a curve (closed, or infinite in extent) in R3, and

consider dy.( )
€4y (v, —x;
ak(x)Ef 7k L, (A.6)
, o ly—=x

where y denotes the line integral along y and x denotes an arbitrary point in R®. Using the
textbook Biot—Savart law, we see that

fi(x)=J dy 6> (x —y) n,(y), (A.7)
Y

where n(y) is the unit vector along y at point y. We can write this more elegantly: The
conserved charges are generated by the different curves y and using the notation that p is a
one-form,

Q= f P, (A.8)
Y

is a conserved quantity. For each curve y there exists a corresponding conserved charge, Q..

A.2 Scale- and rotation-invariant hydrodynamics: Irrep 5

Next, suppose J;; transforms in the 5 of SO(3), corresponding to traceless symmetric tensors,
which may be parametrized by explicitly removing the antisymmetric and trace parts of a
generic rank-two current tensor

2
d.p; + [ale.j +0.J,— 28,

A lU}:o, (A.9)

where the term in the square brackets is manifestly symmetric and traceless. Looking for
conserved quantities Q[ f; ] parametrized by vector-valued functions f;(x) and repeating the
same logic as before, we find that

2
8.f;+0,f, = 56,8, =0 (A.10)

in order for Q[f;] to be conserved. In three spatial dimensions, there is a finite list of solutions
to (A.10), given explicitly by
fizaxi+e.jkxj/5k, (A.11)

1

with @ and f3, scalar and vector constants, respectively. Hence, (A.9 ) will generally only
lead to seven conserved quantities (four additional conservation laws from (A.11 ), and the
three original charges corresponding to f; = 1, since p; is a conserved density). If we were to
interpret p; as a velocity field, then the conserved quantities would correspond to momentum

(p;), angular momentum (el.jk XiPp ), and “dilatation” (x;p; ).
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A.3 Mixing and matching

In general, it’s possible that that the currents may not transform as a single irrep but instead as
a direct sum of different irreps. As an example, hydrodynamics with rotation invariance but
without scale invariance has a current J, i that transforms in the 1 @ 5 representation. In this
case, the current decomposes as

Jy=J6;+J;, (A.12)

where J and :fl i transform in the 1 and 5 irreps, respectively. The continuity equation then
reads

2 1
8,p; +[8].Jl.j+8].Jﬁ—§8iJjj]+§3iJjj =0. (A.13)
The quantity Q[ fi] is conserved when both (A.4 ) and (A.10 ) are satisfied simultaneously. The
finite list of solutions in (A.11 ) is reduced to

fi =€, By (A14)

so that the “dilatation” x; p, is no longer a conserved quantity. This is an example of the general
situation wherein the current decomposes into irreducible representations; if there exists a list
of conserved quantities associated to each irrep, then the set of conserved quantities is reduced
to the intersection of these lists when the current has nonzero overlap with multiple irreps.

B From constraints to the rank-n continuity equation

In this appendix we explicitly work through the steps that one may take to “canonically” derive
the rank-three continuity equation from the associated constraints on the density p;, which
obeys the equation of motion
0Pt €Oy =0 81)
associated with a one-form symmetry. The generalization to higher rank theories, n > 3, follows
an identical line of reasoning.
In Sec. 4.5, we described how the constraints (82) to (84) lead one to consider a symmetric,
traceless rank-n tensor p iy related to p; via p W= 8i2 e 8l.n Pi i that is well behaved
at infinity. We now proceed by considering the constraints placed on the effective current J;

associated with the density p,. Specializing to rank-three and taking the time derivative of
Eq. (84), we find

d 3 ~ 3 7
aJd X €300 XX; :_J d xekjeejmnxexiamJn =0. (B.1)

Consequently, the current fl is also constrained, and it is more natural to write :I: = %8]. ale.jk

in terms of a rank-three tensor that need only vanish at infinity. To see this, we write (B.1 ) in
terms of the new tensor Jl.jk and integrate by parts:

0= BJ d3x ekjfejmnxexiam‘]n = f d3X ekjﬂejmnxfxiamaaab‘]nab = f d3X ekjlejmnam‘]néi ’
(B.2)
where we have used the fact that Jiik is symmetric in [at least] its last two indices. Contracting
the two Levi-Cevita symbols, we arrive at

f d®x (8,044 — 8Jyy:) =0. (B.3)
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If the second term vanishes, then (B.3 ) implies that ik that decay away sufficiently quickly as
|x| — oo will satisfy the constraint in Eq. (B.1 ). That the second term should vanish (since
J; . should be symmetric and traceless) is not immediately apparent; we show that this must
be the case below. Writing (81) in terms of the new rank-three degrees of freedom

1
ajak (atpijk + geimnam njk) =0. (B.4)
To derive an equation of motion for the higher rank object Pyjx> We integrate up Eq. (B.4),
leading to
1
afpijk + g (eimnam‘]njk + ejmnamAnki + ekmnamA;Iij) = O’ (B'S)

where last two terms on the right are the most general terms annihilated by the derivatives
aj J, compatible with the index structure in Eq. (B.4). We now require that the equations
must respect the symmetry and tracelessness of p, which imposes stringent constraints on the
permitted form of A and A’. First, requiring that Pijx = Pji> We find that

€ mn O — A )=0. (B.6)

imn~m

)+ €imnPmn (A — Jir) + Ekmnam(A;ij —A;

nkj jmn~m nji

. . / _ / . .
The final term on the left-hand side suggests that A’ ; j = Ny up to terms that contain a higher

number of derivatives. A similar argument can be made for the other “integration constant”, A,
.. _ / . . .
!)y requiring that Pijk = Pyji- We therefore take both A and A’ to be syr.nmemC in their last two
indices. Under this assumption, the first two terms in (B.6 ) can be satisfied, to lowest order in
. . _ . . / _ . . .
der1\./at1.ves, by Ai]:k.— re S1m11arly, Al.jk =Jiix follow§ from smmetry of Py N its ﬁrst and
last indices. Requiring that p remains traceless under time evolution leads to the requirement

that
|
amJnik + ekmna Jnii) =0 > (B'7)

—0,0 = 7 (2€ m

imn

W

suggesting that we should take Jij to be symmetric in its first two indices (making it fully
symmetric when twinned with symmetry in its last two indices), and traceless. While a
fully symmetric and traceless J certainly satisfies (B.7 ), it turns out that this is not the only
choice. There exists one further solution in which the current transforms in the reducible 3 & 3
representation:

2 1 2
e R [5 (82 +6A,) — g%ﬁh] =5, +6,A;, (B8
parametrized by the vector field A,(x). While the existence of such a solution may appear to im-
ply that the rank-three continuity equation cannot be obtained from (81) and the corresponding
constraints alone, we note that
€. 0 (5n].7tk + 5nklj) + €010 (6, ;A +6 , A)+e€, 0 (6,A+6,.A)=0, (B.9)

imn“m jmn~m ni’";j nj’vi
i.e., the solution (B.8 ) does not contribute to the equation of motion for P [as was the case
for the trace part of J; i below Eq. (63)], and can therefore be disregarded. This leaves us with
the equation of motion

1
Btpl.jk+—(6 oJ .+e. 0 J . +e€. 0 J )ZO, (B.10)

3 imn~“m" njk jmn~m* nki m“ nij

where both Pijk and Jl.jk transform in the 7 of SO(3), i.e., they are symmetric traceless rank-
three tensors. This is precisely the form of the continuity equation in Eq. (75) of the main
text.
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