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We present a theory of hydrodynamics for a vector U(1) charge in 2+1 dimensions, whose rota-
tional symmetry is broken to the point group of an equilateral triangle. We show that it is possible
for this U(1) to have a chiral anomaly. The hydrodynamic consequence of this anomaly is the in-
troduction of a ballistic contribution to the dispersion relation for the hydrodynamic modes. We
simulate classical Markov chains and find compelling numerical evidence for the anomalous hy-
drodynamic universality class. Generalizations of our theory to other symmetry groups are also
discussed.
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1. INTRODUCTION

Recent years have seen renewed interest in understanding hydrodynamics as an e↵ective field theory. On the one
hand, this is inspired by explicit geometric constructions of the Schwinger-Keldysh dissipative action that describes
the Navier-Stokes equations, and a thorough understanding of how to incorporate subtle symmetries, such as time-
reversal via Kubo-Martin-Schwinger invariance [1–3]. On the other hand, there are a variety of exotic fluids, arising
in (or at least inspired by) quantum matter. Anomalies lead to clear signatures even within classical hydrodynamics
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[4–6], while electron liquids may have reduced spatial symmetries which lead to unconventional transport coe�cients
[7–14]. Most recently, kinetically constrained “fracton hydrodynamics” have been intensely studied [15–29].

In a complementary thread of research, a series of papers over the past few years [30–38] has posed a simple
question: what happens when a quantum field theory has an unusual global symmetry? For example, suppose that
there is a U(1) symmetry on each plane of a three-dimensional cubic lattice. The resulting subsystem symmetry can
have peculiar consequences including UV-IR mixing and other subtle lattice dependences in continuum quantum field
theory. A particularly important structure which arises in these constructions is the presence of charges and or current
which transform in unusual irreducible representations of the spatial rotational symmetry (usually a discrete group).
For example, in the model of planar subsystem symmetry in three dimensions, one writes down a conserved current in
a three-dimensional representation (Jxy, Jyz, Jzx) of the cubic point group, descending from the spin-2 representation
of SO(3).

This paper was first inspired by a simple question: what is the landscape of hydrodynamic theories that are possible
when one considers a charge density ⇢a and a spatial charge current J↵ that transform in exotic representations of
the point group G? In the case where G = SO(3) in d = 3 spatial dimensions, some of us have addressed this question
in detail in the recent paper [39]. Here, we provide a more abstract and general treatment of the problem, with a
particular focus on discrete groups G where exotic structures can arise. As part of our discussion, we will consider
the possibility of unconventional theories with broken time-reversal symmetry, and discuss whether hydrodynamics
might be unstable to fluctuations (a la the flow of the Navier-Stokes equations in d = 1 to the KPZ universality class
[40]). We will review the e↵ective field theory framework we use to answer these questions in Section 2, and describe
the resulting hydrodynamics (usually di↵usive) in Section 3, paying particular attention to the exotic conservation
laws that can arise.

The most interesting such theory which we have found, and which forms the basis of the second part of this paper,
is a priori very simple: a theory in two spatial dimensions with triangular (D3 to physicists; D6 to mathematicians)
point group, with a vector conserved charge and a generic current. In this paper we will refer to D6 henceforth as
the symmetry group. One can think of this intuitively as keeping only the momentum of the usual Navier-Stokes
equations as a genuinely conserved quantity. Within the isotropic Navier-Stokes equations, one can easily see that the
only dynamics which can result from such a truncation is the di↵usive (viscous) relaxation of the vector charge. With
triangular symmetry, there is a naive possibility of finding a ballistic contribution to this viscous mode. Yet recent
work has found that such a ballistic contribution does not exist, either because it violated the KMS-invariance of the
geometric action (in the case where the vector conserved charge is momentum) [9], or because it is not compatible
with kinetic theory of liquids with anisotropic kinetic energy [8]. This raised the intriguing possibility that there
may truly be constraints on hydrodynamics, arising from fundamental statistical mechanics, that are wholly invisible
within the canonical Landau paradigm.

In this paper, we begin to resolve this puzzle: the terms described above are forbidden in a theory with a vector U(1)
conservation law the absence of a triangular chiral anomaly. In conventional physical settings, such chiral anomalies
can only arise in odd spatial dimensions d. This is not due to a fundamental physics reason, but rather a group
theoretic one: the only tensor which can be included in the anomalous terms in the hydrodynamic equations is the
spacetime Levi-Civita tensor, contracted into the U(1) Maxwell tensor Fµ⌫ ; hence d must be odd. In the triangular
theory, it will turn out there is a spatial third-rank tensor which can play a similar role. We discuss this anomaly in
Section 4 and in further detail in Appendix A. In the case where our vector conserved charge is instead momentum,
this may suggest an unusual kind of anisotropic gravitaitonal anomaly [41].

One might think that this anomaly is a curious quantum mechanical e↵ect, but in fact, it can arise in a strictly
classical system! In Section 5, we present extensive Markov chain simulations of a time-reversal- and inversion-
breaking theory on a triangular lattice in two-dimensions, with a vector conserved charge. We find unambiguous
signatures of the anomalous hydrodynamics in this wholly classical setting. Our model can ultimately be understood
as an interesting generalization of how a certain biased random walk can realize the usual chiral anomaly in 1+1
dimensional theories.

2. REVIEW OF EFFECTIVE FIELD THEORY FRAMEWORK

In this section we will review the e↵ective field theory framework proposed in [29]. The e↵ective field theory
describes “non-thermal” fluctuating systems with local, ergodic dynamics. Here the phrase “non-thermal” refers to
the fact that there is no conserved energy and thus no temperature. Nevertheless, we will posit the existence of a
many-body stationary probability distribution for the stochastic dynamics which will lead to emergent notions of
thermodynamics.

Let ⇢(x, t) denote the density of a scalar conserved charge in d spatial dimensions. We will write down an action
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involving both ⇢ and a conjugate “noise field” ⇡, of the form1

S =

Z
dtdx [⇡@t⇢�H(⇡, ⇢)] . (2.1)

Here H is a function to be determined, but we demand it to have no ⇡-independent terms (this is roughly related to
the desire that ⇢ undergoes a stochastic process with normalized probability distribution):

H(0, ⇢) = 0. (2.2)

The ⇡ equation of motion gives us @t⇢ = · · · , so the right hand side will encode the equations of motion for ⇢.
Suppose that the many-body probability distribution is

Peq[⇢] = e��[⇢]. (2.3)

Defining a conjugate chemical potential

µ(x) =
��

�⇢(x)
, (2.4)

it was shown in [29] that (in the weak noise or linear response limit, either of which is su�cient for our purposes
here), time-reversal corresponds to the transformations t ! �t and

⇡ ! �⇡ + iµ, (2.5)

assuming (as we do here) that ⇢ is even under time-reversal. Moreover, in order to demand that charge is conserved:

0 =
d

dt

Z
dx ⇢, (2.6)

we demand that (the integral of) H is invariant under

⇡ ! ⇡ + c(t) (2.7)

for arbitrary x-independent function of time c(t). Spatial parity is straightforward (x ! �x) and does nothing
interesting to either ⇢ or ⇡. Lastly, the assumption that statistical fluctuations are bounded forces

Im(H)  0. (2.8)

With these constraints, in one spatial dimension (d = 1), the leading order terms H that we can write down is

H = A(⇢)@x⇡ � i�(⇢) @x⇡ @x(⇡ � iµ) + · · · . (2.9)

where A(µ) and �(µ) are functions of µ with no derivatives. Moreover, A(⇢) = 0 if the system has P (parity) and/or
T (time-reversal) symmetry. The � term is compatible with both P and T symmetry, and is the minimal action for
hydrodynamics for a single conserved charge. Note that (2.8) implies � � 0, which is positivity of the conductivity
and di↵usion constant. Indeed, the noise-free equation of motion for ⇢ is found by varying S with respect to ⇡, and
then setting ⇡ ! 0:

�@tµ� @x (�@xµ) = 0. (2.10)

This is the form of a standard continuity equation where the charge current obeys Fick’s Law of di↵usion. Here
� = @⇢/@µ is the charge susceptibility, and is a constant within linear response.

In this theory, the relative scaling dimension between time and space (dynamical critical exponent z) is given by
z = 2. Since the term ⇡@t⇢ has to be marginal, the scaling dimensions of ⇢ and ⇡ satisfy [⇢] + [⇡] = d. From (2.5)
and µ ⇠ ⇢, we get

[⇢] = [⇡] =
d

2
. (2.11)

.

1 In the formalism of [1], ⇢ would be related to the r-field @t�r, and ⇡ the a-field �a, on the Schwinger-Keldysh contour.
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If the system has PT symmetry (but not P or T separately), and the system is defined on a spatial circle with
periodic boundary conditions, there is essentially no constraint on A. After all

Z
dx A(µ)@x⇡ !

Z
dx A(µ)(�@x)(�⇡ + iµ) =

Z
dx A(x)@x⇡ + i

Z
dx A(µ)@xµ. (2.12)

The last term is a total derivative and vanishes with periodic boundary conditions, meaning that the integral of H
is indeed invariant. If the A(⇢) term is nonzero, this term becomes the leading dissipationless term and can lead to
instability. Note that although A can contribute a term to the equation of motion

�@tµ� @x (A@xµ+ �@xµ) = 0. (2.13)

within linear response (where µ and ⇢ are proportional), we do not consider this to modify the dynamical critical
exponent: it is more important to maintain z = 2 so that fluctuations are not treated as irrelevant (it is better to
instead imagine “boosting” to a new reference frame and undoing the linear-in-A term).

Now consider the leading nonlinear contribution from A(⇢) to the current:

Jx = · · ·+A2µ
2 + · · · . (2.14)

The scaling dimension of [µ]2 = d, which is smaller than or equal to that for the dissipative term [@xµ] = 1 + d
2

when d  2. In d = 1, the nonlinearity is relevant and drives an instability of the hydrodynamic theory. This is
the instability of the Burgers equation, well-established in one dimension: it is well-known that the endpoint of this
instability is the Kardar-Parisi-Zhang universality class [40], which has anomalous exponent z = 3/2.

3. THEORIES WITH EXOTIC CONSERVED CHARGES

We now extend the discussion of the previous section to more general theories where the conserved charge ⇢a
transforms in a non-trivial irreducible representation of a spatial point group G associated to the rotational symmetry.

3.1. General framework

Suppose the microscopic dynamics are invariant under space group G, and suppose there is a conserved charge ⇢a
and current J↵ which transform in possibly non-trivial representations of G. For simplicity, we take ⇢a to transform
as an irreducible representation Ra; if it were reducible, we could equivalently consider each irrep to be a separately
conserved quantity. We allow J↵ to be more general and transform in a possibly reducible representation

L
i R↵i . A

general (non-multipolar) conservation law has the form

@t⇢a + @i�ia↵J↵ = 0, (3.1)

where �ia↵ is a set of generalized Clebsch-Gordan coe�cients. The �ia↵ are nonzero when Ra appears in the irrep
decomposition of (

L
k R↵k)⌦Vi (Vi denotes the d-dimensional vector representation in which the derivative lies). For

G = SO(3) and ⇢i transforming as a vector, and di↵erent choices of J↵, we recover known aspects of hydrodynamics
with vector conserved currents, as was discussed at some length in a recent paper [39].

Eq. (3.1) leads to (possibly infinitely many) conserved quantities. To find them, consider the quantity

Q[fa] :=

Z
ddx fa⇢a, (3.2)

where fa are arbitrary functions of space. This quantity being conserved means its time derivative vanishes; imposing
this as a condition (and assuming periodic boundary conditions, or that ⇢a vanishes at infinity) gives

0 =
d

dt

Z
fa⇢a = �

Z
�ia↵fa@iJ↵ =

Z
J↵�ia↵@ifa. (3.3)

We therefore find that the quantity Q[fa] are conserved when

�ia↵@ifa = 0. (3.4)

When ⇢a are the only conserved charges, and J↵ lies in an reducible representation as well, in general the lowest order
term in the gradient expansion is

J↵ =
X

↵k

�D↵k�ib↵k@i⇢b (3.5)



5

which leads to the generalized di↵usion equation

@t⇢a �
X

↵k

D↵k�ia↵k�jb↵k@i@j⇢b = 0. (3.6)

Note here that each representation R↵k would in general get its own di↵usion constant D↵k .
We can reformulate the above discussion in terms of the hydrodynamic e↵ective field theory of Section 2. We

generalize slightly the construction of the previous section to allow the density ⇢a and conjugate field ⇡a to transform
nontrivially under the space group G. The action then takes the form

S =

Z
dtdx [⇡a@t⇢a �H(⇡a, ⇢a)] (3.7)

where H(⇡a, ⇢a) obeys analogous constraints as in Sec. 2. In particular, the existence of a steady-state mandates

Z
dx H(0, ⇢a) =

Z
dx H(iµa, ⇢a) = 0. (3.8)

To encode the conservation law (3.1), we require that ⇡a only appear in H(⇡a, ⇢a) via the combination �ia↵@i⇡a.
This implies that the Hamiltonian is invariant under the transformation ⇡a ! ⇡a + fa(x, t), where fa(x, t) satisfies
(3.4). And as before, well-posedness of statistical fluctuations imposes the condition (2.8). Given these constraints,
the most general Hamiltonian we can write is

H(⇡a, ⇢a) = �i
X

↵k

�↵k(⇢)�ia↵k@i⇡a�jb↵k@j(⇡b � iµb) + . . . (3.9)

where �(⇢a) is a function of ⇢a with no derivatives. This action leads to the equation of motion

@t⇢a �
X

↵k

�ia↵k@i(�↵k(⇢a)�jb↵k@jµb) = 0, (3.10)

which can be identified with the continuity equation (3.1) and constitutive relation (3.5) at linear order after identifying

D↵k =
�↵k(⇢̄a)

�
(3.11)

where ⇢̄a is the average charge density and � is the susceptibility defined as ��ab =
@⇢a

@µb
.

One can also consider the possibility of dissipationless terms in the constitutive relation (3.5). In particular, this
can happen when Ra appears in the irrep decomposition

L
i R↵i . Then a term such as

J↵ � v⇢a�↵a (3.12)

is allowed on group theoretic grounds. Here the Kronecker delta indicates an inclusion of the Ra subrepresentation
into

L
i R↵i However, it is a priori unclear whether such a term is thermodynamically consistent. This is where the

e↵ective field theory formalism proves especially useful, as it provides a systematic method of determining whether
such terms are permitted. This term in the constitutive relation corresponds to a term

H � �↵µa�iab@i⇡b (3.13)

in the Hamiltonian. This manifestly satisfies invariance under ⇡a ! ⇡a+fa(x, t) as well as well-posedness of statistical
fluctuations, but is not in general consistent with the existence of a steady state as (3.8) is not obeyed. We note,
however, that if �iab is symmetric with respect to a and b, then it is possible for the term (3.13) to be a total derivative
upon substituting ⇡a = iµa. Explicitly,

�
Z

dx ↵µa�iab@i(iµb) = �i

Z
dx ↵µa�iab@iµb = �i

Z
dx @i

✓
1

2
↵�iabµaµb

◆
= 0, (3.14)

so the term (3.13) satisfies the condition (3.8) if �iab is symmetric in its last two indices and ↵ is constant. The
velocity in (3.12) is related to ↵ and the susceptibility by v = ↵/�.
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3.2. Hydrodynamics with triangular symmetry

We now specialize to the hydrodynamics of a two-dimensional system which is invariant under the point group an
equilateral triangle, D6. Let us first recall some useful properties of D6. D6 has three irreducible representations: the
trivial representation 1, the sign representation 10, and the two dimensional representation 2. The two dimensional
representation is the vector representation, which is acted on by D6 via 2⇥ 2 matrices viewed as a subgroup of O(2).
What is unique about this restriction is that the traceless symmetric tensors (which form a two-dimensional “spin 2”
irreducible representation of O(2)) also transform as the vector representation 2 under D6. The multiplication table
of irreps of D6 is as follows:

1 10 2
1 1 10 2
10 10 1 2
2 2 2 1� 10 � 2

The independent invariant tensors of D6 are �ij and �ijk. The first is inherited from the two-dimensional rotation
group O(2), while �ijk is intrinsic to D6. The components of �ijk are

(�1)ij = ��z
ij =

✓
�1 0
0 1

◆
, (�2)ij = �x

ij =

✓
0 1
1 0

◆
. (3.15)

One can check that �ijk is completely symmetric, and its trace over any two indices is zero. Intuitively, �ijk can be
seen as converting between vector and traceless-symmetric tensor interpretations of 2.

We will be interested in hydrodynamics where the charge is a vector. In this case, the conservation law reads

@t⇢i + @jJij = 0. (3.16)

In general, Jij can be decomposed into the trace, antisymmetric, and traceless symmetric parts, which correspond to
the 1, 10, and 2 irreps of D6, respectively. For generic Jij containing all three irreps, the only conserved quantities
are

R
⇢i.

We can use this as a starting point to build the hydrodynamic e↵ective field theory described in Sec. 3.1. The
action is

S =

Z
dtdxdy [⇡i@t⇢i �H(⇡i, ⇢i)] (3.17)

and we take H(⇡i, ⇢i) to be

H(⇡i, ⇢i) =� i�1

✓
@i⇡j + @j⇡i � �ij(@ · ⇡)

◆✓
@i(⇡j � iµj) + @j(⇡i � iµi)� �ij@ · (⇡ � iµ)

◆

� i�2(@ · ⇡)
✓
@ · (⇡ � iµ)

◆
� i�3(@j⇡i � @i⇡j)

✓
@j(⇡i � iµi)� @i(⇡j � iµj)

◆

� ↵µi�ijk@j⇡k.

(3.18)

The first three terms in H(⇡i, ⇢i) are the terms of (3.9) for each irrep of the triangular point group. The last term
is a dissipationless contribution which is possible because �ijk is symmetric in all of its indices. After making the
identifications D1 = 2�1/�, D2 = �2/�, D3 = 2�3/� and v = ↵/�, the Hamiltonian terms correspond to the
constitutive relation

Jij = v�ijk⇢k �D1

�
@i⇢j + @j⇢i � �ij(@ · ⇢)

�
| {z }

2

�D2 (@ · ⇢)�ij| {z }
1

�D3 (@j⇢i � @i⇢j)| {z }
10

. (3.19)

This leads to the equation of motion

@t⇢i + v�ijk@j⇢k � (D1 +D3)@
2⇢i � (D2 �D3)@i(@ · ⇢) = 0. (3.20)

From the e↵ective action we can show that the two-point correlation functions Cij(x, t) = h⇢i(x, t)⇢j(0, 0)i are the
Green’s functions for the equations of motion (3.20). Let us consider a simplified situation where D2 and D3 are equal
so the last term of (3.20) vanishes, and let D = D1 +D3. We solve for Cij in Fourier space, where (3.20) takes the
form

(�i!�il � ivkk�ikl +Dk2�il)Clj = 0. (3.21)
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This can be interpreted as an eigenvalue equation for the matrix �vkk�kil�iDk2�il with eigenvalue !. The eigenvalues
are ! = �iDk2 ± vk with corresponding eigenvectors

u+ =

✓
sin ✓

2
cos ✓

2

◆
, u� =

✓
� cos ✓

2
sin ✓

2

◆
(3.22)

where ✓ is the angle between ~k and the x-axis. The full solution to (3.21) in k-space is

Cij(~k, t) = c+j u
+
i e

�i!+(k)t + c�j u
�
i e

�i!�(k)t. (3.23)

The initial condition in k-space is Cij(~k, t = 0) = �ij , which sets c+j = u+
j , c

�
j = u�

j . Therefore we have

Cij(~k, t) = e�Dk2t

✓
cos vkt� i cos ✓ sin vkt i sin ✓ sin vkt

i sin ✓ sin vkt cos vkt+ i cos ✓ sin vkt

◆
. (3.24)

We will use this Green’s function to diagnose the presence of T-broken hydrodynamics in our numerical simulations
in Section 5.

Lastly, let us remark on the hydrodynamic stability of this theory. Assuming locality, the leading order expression
for � (defined in Section 3.1) is

� = F (⇢i⇢i,�ijk⇢i⇢j⇢k). (3.25)

Hence, the leading order terms in µi are

µi = b1⇢i + b2�ijk⇢j⇢k + b3⇢i⇢j⇢j + · · · . (3.26)

where b1,2,3 denote ⇢-independent constants. The power counting for [⇡] and [⇢i] follows along the same lines as
(2.11). If b2 6= 0 (note that then b3 6= 0 is required for stability purposes), then there are marginal nonlinearities in
this theory. While we do not know the ultimate impact of these nonlinearities on the nature of the hydrodynamic
fixed point, it is likely that they are not so important in practice: even in the two-dimensional Navier-Stokes equations
where such a nonlinearity is marginally relevant, its e↵ects are rather weak in practice (e.g. one uses two-dimensional
hydrodynamics routinely to model experiments!).

3.3. Holomorphic conserved charges

It is interesting to examine the special case where the current Jij = �ijkJk is restricted to live in the vector
representation. In this case, the conservation law reads

@t⇢i + �ijk@jJk = 0. (3.27)

Applying (3.4), the conserved quantities Q[f ] satisfy

�ijk@jfk = 0. (3.28)

Expanded out using (3.15), the fi obey

�@xfx + @yfy = 0

@xfy + @yfx = 0
(3.29)

which are the Cauchy-Riemann equations for fi. It follows that any holomorphic function f(z) yields a corresponding
conserved quantity. We can identify an infinite generating set of conserved quantities as coming from fn(z) = zn and
f̃n = izn for n a nonnegative integer. We will refer to these conserved quantities as holomorphic moments.

While the existence of an infinite family of conserved quantities may at first seem fine-tuned, these can in fact
emerge naturally as ”quasiconserved” quantities in the sense of [27]. Suppose the microscopic dynamics enforced the
conservation of D =

R
~r · ~⇢ and L =

R
~r ⇥ ~⇢. These correspond to the holomorphic functions f(z) = z and f(z) = iz,

respectively. In order for D and L to be conserved, the continuity equation must take the form of (3.27) within
linearized hydrodynamics at leading order in the derivative expansion; as a result, the holomorphic moments emerge
as an infinte tower of conserved quantities. However, this is only true at leading order in linearized hydrodynamics;
higher order terms in the hydrodynamic expansion (as well as nonlinear terms) may cause the moments to decay.
As such, they decay subdi↵usively, in contrast to what would be expected from the form of the continuity equation.
Hence the higher holomorphic moments would be ”quasiconserved” since they decay parametrically slowly. The
physics is similar to the situation discussed in [27] where the existence of only finitely many harmonic functions in
two dimensions can also lead to an infinite family of such quasiconserved quantities in fracton hydrodynamics.
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3.4. Other dihedral groups

The picture outlined above generalizes straightforwardly to the case of odd dihedral groups: see e.g. [7]. In general,
for dihedral groups D2n with n odd, the two-dimensional spin-k irreps of O(2) for k = 1, 2, . . . , n�1

2 descend to
two-dimensional irreps of D2n. The two one-dimensional irreps of O(2) similarly descend to D2n. We denote the
spin-k irreps as 2k, and one-dimensional irreps as 1 and 10. The ordinary vector representation is 21, and spin-k
representations can be identified with completely traceless-symmetric tensors with k indices. The group contains a
completely traceless-symmetric invariant tensor �I , with I = i1 . . . in a multi-index tensor. The construction of this
invariant tensor parallels that of �ijk in (5.5) and (5.6). The role of this invariant tensor is to identify the spin-k and
spin-|k�Nn| representations of SO(2) in D2n. The multiplication table for the tensor product of irreps descends from
that of O(2) up to the identification provided by �I [7].

For concreteness we can take n = 5 as an example. For a charge ⇢ij which is traceless-symmetric transforming in
the 22 representation of D10, the general conservation law takes the form

@t⇢ij + @kJijk = 0. (3.30)

The presence of the invariant tensor allows for a term

Jijk = v�ijklm⇢lm + . . . (3.31)

in the constitutive relation. Because �ijklm is completely symmetric, this term is allowed e↵ective field theory
formalism of Sec. 3.1. Identical considerations apply to ⇢I transforming in the 2n�1

2
irrep of D2n.

Something which di↵ers between this theory and the D6-invariant theory discussed previously is that we cannot
generalize (3.25): there is no way to contract three copies of ⇢lm with �ijklm and �ij . Therefore, there is no ⇢2 term in
µ; we conclude that there are no marginal nonlinear operators that can be added to the hydrodynamic action. Hence
the hydrodynamic theory identified above is a strictly stable fixed point for the n = 5, 7, . . . theories.

4. ANOMALIES

In this section, we will now explain that the drift term (v) captured in (3.19) is in fact the consequence of a chiral
anomaly. Our discussion here will be somewhat brief, as we only wish to explain the e↵ect from the perspective of
classical physics and hydrodynamics. A discussion of a quantum mechanical theory with this anomaly, which closely
mirrors the recent paper [35], is contained in Appendix A.

4.1. Warm-up: biased random walk

As a warm-up example, we first review the hydrodynamics of a biased di↵usion process in one dimension, which
arises when we only have PT symmetry. It is known in isotropic fluids how a hydrodynamic e↵ective theory can
capture a U(1) chiral anomaly [6], using a more sophisticated geometric construction than what was described in
Section 2. But one can also understand this anomalous fluid dynamics, already at the ideal hydrodynamic level, by
a simple Hamiltonian system for density ⇢(x) with a modified Poisson bracket:

{⇢(x), ⇢(y)} = @x�(x� y). (4.1)

The Poisson bracket satisfies anticommutativity since

{⇢(y), ⇢(x)} = @y�(y � x) = �@x�(y � x) = �@x�(x� y) = �{⇢(x), ⇢(y)}. (4.2)

Now consider Hamiltonian

H =

Z
dx

1

2
v⇢(x)2. (4.3)

The Hamilton equations of motions are

⇢̇(x) = {⇢(x), H} = v@x⇢(x) (4.4)

which is precisely the hydrodynamic equation of motion for the biased random walk at the non-dissipative level. The
Poisson bracket (4.1), when quantized, appears in the commutation relations of the chiral boson [42], which has an
anomaly associated to its U(1) symmetry [43].
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4.2. Triangle fluid

The discussion for the time-reversal-breaking fluid with triangular point group proceeds similarly. Like the biased
random walk, the hydrodynamics of this theory is anomalous. We can see this anomaly arise at the classical level via
Hamiltonian dynamics: a quantization of this theory is found in Appendix A.

Here we have two conserved quantities ⇢x and ⇢y. The Poisson brackets for these fields are

{⇢i(x), ⇢j(y)} =
1

a
�ijk@k�

2(x� y) (4.5)

where �ijk is the invariant D6 tensor described earlier. Owing to the symmetry of �ijk, the Poisson bracket is
antisymmetric in the same way as in the biased random walk case. A new feature in this case is the existence of a
length scale a, which is needed on dimensional grounds. The Hamiltonian is

H =

Z
d2x

1

2
av(⇢2x + ⇢2y). (4.6)

Note that the length scale a appears explicitly in the Hamiltonian as well. The Hamiltonian equations of motion are

⇢̇i = v�ijk@j⇢k (4.7)

which reproduce the equations of motion (3.20) at the non-dissipative level. The structural similarities with the biased
random walk in the previous section suggest that the physics is controlled by an anomaly similar to the that of the
chiral boson in one dimension. Indeed, in Appendix A we propose and analyze a field theory exhibiting such an
anomaly.

An unusual feature of the theory is that there is a length scale a which appears explicitly, both in (4.5) and (4.6).
At the classical level, we cannot say much more. In quantum mechanics, analysis of the anomaly reveals that a�1 is
quantized in units of L�1, where L is the system size. This would lead to an unusual kind UV-IR mixing, where the
IR data enters into the UV commutator and Hamiltonian. However, when interpreting an anomaly inflow problem
whereby the 2 + 1-dimensional anomaly is cancelled by a 3 + 1-dimensional bulk action, the natural bulk action to
write down suggests that a�1 is a lattice spacing. We leave a more detailed analysis of interpreting a to future work.

5. MARKOV CHAINS

We now simulate hydrodynamics in systems with triangular symmetry using classical Markov chains, and observe
compelling evidence for the anomalous hydrodynamics predicted above.

5.1. Some useful facts

Before describing the Markov chain, we briefly review a few useful textbook facts about the triangular lattice. The
lattice is built out of adjacent points connected by the unit vectors

e1 = (1, 0), e2 =

 
�1

2
,

p
3

2

!
, e3 =

 
�1

2
,�

p
3

2

!
. (5.1)

This orientation is depicted in Figure 1, and is quite useful due to the identity

e1 + e2 + e3 = 0. (5.2)

In our Markov chain, we will place a charge on each edge e of the lattice. The x, y-components of this vector charge
are given by

(qex, q
e
y) = qeei, (5.3)

where ei is the orientation of that particular edge using the conventions of the figure. Our Markov chains will only
conserve the two quantities

Qx,y =
X

edges e

qex,y. (5.4)
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Gates that create the 
propagating wave

Gates that couple the 
three species of charges

Gates that couple the 
same species of charges

:Gate A

:Gate B

:Gate C

FIG. 1. The triangular lattice we used in our simulation. The directions and colors of the arrows represent the positive directions
and di↵erent species of the charges. The blocks with di↵erent colors represent di↵erent kinds of gates and the charges on which
they are acted. Note that although in this figure, gate B and gate C are acted on only one species of charges, they actually
also act on all species of charges in a way that preserve the triangular symmetry.

There are two natural ways to find the tensor �ijk, which are natural to find using the isomorphism between the
groups D6 and S3. One finds that

�ijk =
2

3

X

�2S3

ei,�(1)ej,�(2)ek,�(3), (5.5)

as well as

�ijk =
4

3

3X

a=1

ei,aej,aek,a. (5.6)

These identities will give us useful clues as to where the anomalous hydrodynamics will arise in our simulations.

5.2. Details of the Markov chains

We take a triangular lattice with periodic boundary conditions, and place a vector charge on each edge of the
lattice, as shown in Figure 1. The allowed values of charges are q = 0,±1, · · · ,±4 (the precise value 4 here is not too
important for what follows).

The update rules of the Markov chain are best described pictorially, as shown in Figure 1. We shortly provide more
details. First, we note the big picture: in each time interval, we randomly act with one of three di↵erent kinds of
“gates” (which replace charge configurations on nearby edges with other configurations, in a way that respects the
conservation laws), labeled A/B/C. The number of gates applied during each time interval is extensive: on an L⇥ L
lattice we apply L2 gates per time step, drawn uniformly at random from the possibilities described above.

Gate A acts on a triangular plaquette of either orientation up or down. Let (q1, q2, q3) denote the values of charges
on each of the three edges of the lattice. Then gate A will, with uniform probability, replace this configuration with
another one of the form (q1 + c, q2 + c, q3 + c), subject to the constraint that |qi + c|  4. This conserves both the x
and y components of charge, as is seen straightforwardly using (5.2).

Gate B acts on three adjacent edges of the same orientation, and randomly replaces the charge configuration
(q1, q2, q3) on these three edges with a di↵erent one, subject to the constraints that charges are at most ±4, and that
q1 + q2 + q3 is unchanged.

Gate C acts on two adjacent edges of the same orientation, and further oriented along the direction of the edge
ei. The update rule here is that whenever the absolute value of charge to the left (as defined by the edge at the
tail of the orientation vector ei) is larger than the charge at the right, the two charges are swapped with probability
1
8 (qleft � qright).
Let us first prove that this Markov chain has the desired spacetime symmetry group. It is obviously invariant under

120� rotation. Parity symmetry is a bit more subtle: the desired parity transformation turns out to be (x, y) ! (x,�y),
which (assuming the origin is a lattice point) e↵ectively flips e2 and e3 – again, the update rules are clearly invariant,
as is importantly �ijk.
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In contrast, the transformation (x, y) ! (�x, y) sends e1 ! �e1, e2 ! �e3, e3 ! �e2 – this is not a symmetry of
the theory. The reason is that if e flips orientation, Gate C also “reverses” and causes large charges to move left, rather
than right. (In contrast, Gates A and B are unchanged, and the change in coordinates of any gates are not important
since the update rules are discrete-translation invariant) We conclude based on this observation that without Gate
C, this Markov chain is invariant under the full hexagonal symmetry group D12 and is time-reversal invariant, while
when Gate C is included, the chain has manifest D6 invariance and is only invariant under time-reversal combined
with inversion. These are precisely the desired properties.

Next, we prove that the stationary distribution (up to conservation laws) of this Markov chain is uniform: namely,
all microstates are equally likely to be found. This is a very useful property since we can easily sample from this dis-
tribution by simply initializing the chain in a uniformly random configuration: we can then safely evaluate correlation
functions of the form h⇢i(x, t)⇢j(0, 0)i by simply running the chain for time t and (after averaging over realizations,
and space-time translations) looking at the average product of charges on two sites. The proof proceeds by showing
that for any microstate of the system, we are just as likely to transition into that state as to transition out of it. This
reversibility holds even when we fix the location of Gate A or B, so clearly the chain as a whole is also time-reversal
symmetric under Gates A and B. Moreover, Gates A and B cannot admit a non-uniform (within fixed charge sector)
stationary distribution: for each of these gates, the transition matrix (restricted to the sites the gate acts on) has
a single non-null vector which is uniform. Since using su�ciently many gates we can connect all microstates in the
same charge sector to each other, we deduce that the unique many-body stationary distribution for Gates A and B is
uniform.

Since Gate C breaks time-reversal symmetry, we need to consider the full microstate to prove that the transition
rates in and out are equal. Following [29], consider building a cycle (closed loop) on the lattice by starting with any
edge e, and then appending the edge of the same orientation directly next to it (oriented along the appropriate ei).
Since the lattice is finite this process must terminate: call the resulting cycle � = (e1, e2, . . .). Trivially, we have the
following telescoping sum identity:

X

i

(qei � qei+1) = 0, (5.7)

where (if the cycle has length N) we identify e1 = eN+1. Observe that Gate C will flip charges with probability
proportial to qei � qei+1 only when that di↵erence is positive, with a rate proportional to that di↵erence. So the
total transition rate out of this microstate (coming from Gate C acting along this cycle) is proportional to the sum
of positive terms only in (5.7):

Pout =
1

8N

X

i

(qei � qei+1)⇥(qei � qei+1), (5.8)

with ⇥ the step function. The prefactor arises from the fact that we are equally likely to act with Gate C anywhere
along the cycle, and this calculation assumes that no other gates will act anywhere. The transition rate into this
microstate, on the other hand, arises from places where qei+1 > qei , since whenever this happens, we could have (in
the previous time step) have been in a state where those charges were flipped. The total transition rate into our
microstate is then

Pin =
1

8N

X

i

|qei � qei+1 |⇥(qei+1 � qei). (5.9)

We clearly see that Pin = Pout, which ensures that the uniform distribution is stationary [29, 44].

5.3. Numerical results

We now show the numerical results of large-scale simulations of these Markov chains. The probabilities of acting
gate A, B, C are 1/9, 2/9 and 2/3 respectively. We first look for evidence of the sound wave predicted in (3.20). The
propagating wave can be directly seen from the correlation function Cij(x, y, t) = h⇢i(x, y, t)⇢j(0, 0, 0)i. In Figure 2,
we plot Cijea,iea,j with the basis vectors ea defined in (5.1). For Cijei,1ej,1, there is a propagating wave moving in
the negative x-direction; hence, the other two values of a return waves propagating at relative 120� angles.

In Figure 3, parts (a) and (b), we show that the quantitative structure of the correlation functions in this propagating
wave is consistent with our prediction in (3.24). To extract the dissipative exponent in the presence of a propagating
wave is a bit more subtle. Following [29], we calculate a discretized version of

g(t) ⌘
X

ij

Z
d2x |Cij(~x, t)|2 ⇠ t�2/z. (5.10)
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FIG. 2. The propagating wave implied by the anomalous coe�cient in hydrodynamics is captured in numerical simulations of
Cij(x, y, t) e

(a)
i e(a)j . From top to bottom, each row depicts this correlator for a = 1, a = 2, a = 3 respectively. The columns of

this figure represent di↵erent times: from left to right, t = 0, t = 120, t = 240. The origin (0,0) is always marked with an X in
the plots for nonzero t as a guide to the eye. Simulations here were done with 50⇥ 50 unit cells in the lattice.

Here z is the dynamical critical exponent of the theory. For our system, z = 2 at the hydrodynamic fixed point within
linear response theory, and we did not see noteworthy deviations from that prediction. Indeed, we find z ⇡ 2 in the
numerical results shown in Figure 3 (c).

6. DISCUSSION

In this paper, we have introduced the anomalous hydrodynamics of a theory with vector conserved charge and D6

symmetry in 2+1 dimensions. Classical Markov chain simulations have demonstrated that this anomalous hydrody-
namics indeed arises in an entirely classical setting, much like the biased random walk. The e↵ective field theory
approach we described allows one to generalize these findings to other point groups, dimensions, and irreducible
representations for conserved densities.

The anomaly of this theory with triangular point group appears to be somewhat unusual. In conventional field
theory, anomalies could not have existed in even spatial dimensions, simply as a consequence of rotational symmetry.
Even at the classical level, the only “anomalous” terms one could write down involve Levi-Civita tensors, and there is
no way to suitably contract indices in 2+1 dimensions. For the vector conserved charge, this issue has been avoided
due to the occurrence of third-rank invariant tensor �ijk. By dimensional analysis, we found an intrinsic length scale
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FIG. 3. (a,b) Confirmation of the triangular hydrodynamic theory by studying the particular structure of the correlation
function Cij(k, t), with kx = k cos ✓ and ky = k sin ✓. For given |k| and t0, the ✓-dependence of Cij is given in (3.24)

ImCxx(~k, t0) = ImCxx(✓, |k|, t0) / cos(✓), ImCxy(✓, |k|, t0) / sin(✓). The black lines are the theoretical predictions, while
the blue dots come from numerical simulations, which were done with 50 ⇥ 50 unit cells in the lattice, at time t0 = 4,
|k| = 8⇡/L ⇡ 0.16⇡. (c) Algebraic decay in g(t). The dashed line ⇠ t�1.01, which is close to the linear response exponent
2/z = 1. Simulations were done with 100⇥ 100 unit cells in the lattice.

arises when analyzing the anomaly, which quantum mechanically could arise from a UV length scale typical of foliated
quantum field theories [45]. Curiously, despite being related to a foliated field theory, the quantum mechanical theory
analyzed in Appendix A does not exhibit fractonic behavior along the lines of [45], instead hosting holomorphic
conserved charges as described in Sec. 3.3. The somewhat unexpected connection between this theory and foliated
quantum field theory raises the question of what other (non-fractonic) phenomena could be captured within the latter
framework. Alternatively, the length scale could be tied to the size of the system, which would lead to a more subtle
manifestation of the UV-IR mixing that arises in theories with exotic symmetry [30–38]. Understanding the length
scale a is also interesting, because anomaly coe�cients (in this case proportional to a�1) are RG-invariant, which is
in tension with the naive hydrodynamic scaling dimensions of operators in our classical field theory. We hope that
further analysis on this, and other, anomalous theories in 2+1 dimensions, clarifies the situation in the coming years.
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Appendix A: Lagrangian free field theory with triangular anomaly and 3+1d anomaly inflow

In this appendix, we describe a non-interacting field theory which exhibits the triangular chiral anomaly described
in the main text.

1. Warm-up: chiral boson

We begin, as before, with a brief review of the chiral boson with anomalous U(1), following appendix A of [35].
Consider a 1 + 1d system described by the real-time action

S =
N

4⇡

Z
dxdt

⇥
@t�@x�� v(@x�)

2
⇤

(A1)

Here � is a compact scalar, so � ⇠ �+ 2⇡. One can straightforwardly derive the equations of motion as

@t(@x�) + @x(@t�� 2v@x�) = 0, (A2)
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which reduces to

@t⇢� v@x⇢ = 0 (A3)

after making the identification ⇢ ⇠ @x�. We see that this action reproduces the physics of the biased random walk,
at least within linear response. The non-trivial Poisson bracket (in the classical limit) is encoded via the mixed first
term in the action.

Let us now examine the symmetries of the action, which will allow us to justify identifying ⇢, a conserved charge,
with @x�. The first symmetry we can consider is the shift symmetry of � 7! � + ↵. The Noether current for this
symmetry can be found via the usual procedure of allowing ↵(x) to be spacetime dependent. The corresponding
change of the action is

�S =
N

4⇡

Z
dxdt @t↵@x�+ @t�@x↵� 2v@x↵@x�

=
N

4⇡

Z
dxdt 2@t↵@x�� 2v@x↵@x�

=

Z
dxdt jt@t↵+ jx@x↵

(A4)

so we can identify the current as

⇢ =
N

2⇡
@x�, J = �v

N

2⇡
@x�. (A5)

The conservation equation reproduces the equation of motion. We can couple the current to a background gauge field
by adding to the action a term �

R
⇢At + JAx, and include a

R
(At � vAx)Ax term for convenience. The full action is

S[A] =
N

4⇡

Z
dxdt

⇥
@t�@x�� v(@x�)

2 � 2@x�At + 2v@x�Ax + (At � vAx)Ax

⇤
(A6)

This action is not invariant under the gauge transformation � 7! �+ ↵, A 7! A+ d↵. The action changes by

�S[A;↵] =
N

4⇡

Z
dxdt ↵(@xAt � @tAx). (A7)

This lack of gauge invariance signals an anomaly. The anomaly can be cancelled by a bulk Chern-Simons theory
(which describes an integer quantum Hall state). Explicitly, this can be shown as follows. Consider the Chern-Simons
action

Sbulk[A] =
N

4⇡

Z
dxdydt ✏↵��A↵@�A� (A8)

defined on on the region y  0. Under a gauge transformation Ai ! Ai + @i↵, the action changes by

�Sbulk[A;↵] =
N

4⇡

Z
dxdydt ✏↵��@↵↵@�A�

=
N

4⇡

Z
dxdydt @↵(✏↵��↵@�A�)

=
N

4⇡

Z
dxdt ✏y��↵@�A�

=
N

4⇡

Z
dxdt ↵(@tAx � @xAt) = ��S[A;↵].

(A9)

So the bulk Chern-Simons theory (A8) together with the boundary (A6) is gauge invariant. Hence, the bulk Chern-
Simons theory cancels the anomaly of the boundary via anomaly inflow.

2. Triangular model

We now consider a 2 + 1-dimensional system given by real-time action

S =
N

4⇡a

Z
dxdydt @t�i�ijk@j�k � v(�ijk@j�k)

2 (A10)
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where �i is a two-component compact boson transforming as a vector under the triangle point group, and a is a length
scale which is (as of now) undetermined. There is again a shift symmetry �i ! �i +↵i for which we can compute the
Noether current by allowing ↵i(x) to be spacetime dependent. The corresponding change of the action is

�S =
N

4⇡a

Z
dxdydt @t↵i@t↵i�ijk@j�k + @t�i�ijk@j↵k � 2v�ijk@j�k�ilm@l↵m

=
N

4⇡a

Z
dxdydt 2@t↵i�ijk@j�k � 2v@j↵i(�jim�mlk@l�k)

=

Z
dxdydt ⇢i@t↵i + Jij@j↵i

(A11)

so we can identify the conserved charge and current as

⇢i =
N

2⇡a
�ijk@j�k, Jij = �v

N

2⇡a
�ijm�mlk@l�k. (A12)

The continuity equation

@t⇢i + @jJij = 0 (A13)

is the equation of motion. Note that

Jij = �v�ijm⇢m, (A14)

so this action reproduces the (ideal hydrodynamic) physics of the triangle fluid described in the main text.
Let us now clarify the issues surrounding compactness of �i, the normalization of the action (A10), and quantization

of the charges ⇢i. For consistency with the triangular point group symmetry, we take space to be the torus R2/{⇤1,⇤2}
where ⇤1 = (L, 0) and ⇤2 = (L/2, L

p
3/2). This torus carries a natural action of the triangular point group. Similarly,

since �i transforms as a vector, we identify

(�x,�y) ⇠ (�x + 2⇡,�y) ⇠ (�x + ⇡,�y + ⇡
p
3). (A15)

Having established the target space torus, we can now consider winding configurations of �i. There are four integer
parameters which characterize the possible windings up to homotopy; representative winding configurations are given
by

✓
�x

�y

◆
=

2⇡

L

 
n1 +

n3
2 � 2n1�4n2+n3�2n4

2
p
3

n3

p
3

2 �n3
2 + n4

!✓
x
y

◆
(A16)

with n1, n2, n3, n4 2 Z. Applying (A12), the total charges are

Qx =

Z
⇢x = (�n1 � n3 + n4)N

L
p
3

2a

Qy =

Z
⇢y =

�n1 + 2n2 + n3 + n4p
3

N
L
p
3

2a
.

(A17)

We take

L
p
3

2a
2 Z, (A18)

for reasons which will become clear when we discuss anomaly inflow. Interestingly, for a a microscopic length scale,
the minimal winding configurations have charge which scale with system size. However, the requirement for the theory
to be well-posed is not as strong, and would allow for a ⇠ L. We see that the normalization of (A10) ensures that
Q · ea are integer valued.

As before, we can couple the theory to a background gauge field for the symmetry. We add to the action a term
�
R
⇢iAti + JijAij and include a

R
�ilm(Ati � v�ijkAjk)Alm term for convenience. The action is

S[A] =
N

4⇡a

Z
dxdydt

⇥
@t�i�ijk@j�k � v(�ijk@j�k)

2 � 2�ijk@j�kAti

+ 2v�ijm�mlk@l�kAij + �ilm(Ati � v�ijkAjk)Alm] .
(A19)
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Under a gauge transformation �i 7! �i + ↵i, Ati 7! @t↵i, Aij 7! @j↵i, the action changes as

�S[A;↵] =
N

4⇡a

Z
dxdydt ↵i(�ijk@jAtk � �ijk@tAjk). (A20)

Like before, (A20) signals an anomaly. To motivate the bulk theory which cancels this anomaly, let us turn to the
Markov chain picture of the anomalous triangle fluid. Recall that the Markov chain consists of three species of charges
(one for each type of edge on the triangular lattice) and three types of gates: Gate A, which couples the three species
of charges; Gate B, which implements a random walk for each species of charge and leads to di↵usion; and Gate C,
which introduces a bias to the random walk. The key point is that, ignoring for the moment Gate A, the Markov
chain resembles three separate infinite stacks of biased random walks, arranged to form a triangular lattice. Making
use of the analogy between the biased random walk and the chiral boson, we can conjecture that a bulk formed from
a triangular stacking of quantum Hall states (described by Chern-Simons theory) should cancel the anomaly.

We now make the previous statements precise. The procedure for defining theories with a “stack” (foliation)
structure was laid out in [45]. Consider first a toy example of a stack of Chern-Simons theories stacked such that the
normal vector points along the y-direction, while the chiral edge modes propagate along the x-direction. Following
[45], the appropriate field theory is

S ⇠
Z

A ^ dA ^ dy

a
(A21)

where dy is the coordinate one-form in the y-direction and a is a length scale which represents the spacing between the
stacks. For now, we leave the normalization undetermined; it will later be fixed by the anomaly matching condition.
Now, consider three such stacks of Chern-Simons theories, stacked such that the chiral edge modes in the xy-plane
boundary propagate along the ea directions. We therefore have

Sbulk ⇠
3X

a=1

Z
Aa ^ dAa ^ fa�

dx�

a

⇠
3X

a=1

Z
dxdydzdt

1

a
✏↵���A

a
↵@�A

a
�f

a
�

(A22)

where faA = ✏BAeaB are vectors orthogonal to the triangular lattice vectors ea. The three Aa gauge fields are not
independent; we make the identification

Aa
↵ =

X

A=x,y

A↵Ae
a
A (A23)

so that

3X

a=1

Aa = 0. (A24)

In the above and what follows, we use capital letters A,B, . . . to denote indices which only take values in x, y, lowercase
letters i, j, k, . . . to denote all spatial indices, and Greek letters ↵,�, . . . to denote spacetime indices. Now we can
make use of the identity (5.6) to rewrite the action as

Sbulk =
N

4⇡a

Z
dxdydzdt ✏↵��D�ABCA↵A@�A�B✏CD. (A25)

where we have fixed the normalization of Sbulk to ensure that the bulk cancels the anomaly of the boundary. To see that
this is the case, consider the bulk action defined on a region z  0. Upon a gauge transformation A↵A ! A↵A+@↵↵A,
the action changes by

�Sbulk =
N

4⇡a

Z
dxdydzdt ✏↵��D✏CD�ABC@↵↵A@�A�B

=
N

4⇡a

Z
dxdydzdt @↵(✏↵��D✏CD�ABC↵A@�A�B)

=
N

4⇡a

Z
dxdydt ✏z��D✏CD�ABC↵A@�A�B .

(A26)
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In the ✏z��D, only � or � can be t; expanding out these possibilities gives

�Sbulk =
N

4⇡a

Z
dxdydt ✏ED✏CD�ABC↵A@tAEB � ✏ED✏CD�ABC↵A@EAtB

=
N

4⇡a

Z
dxdydt ↵A�ABC(@tACB � @CAtB)

(A27)

which is the same anomaly that occurred in the triangle fluid.
Finally, let us return to the issue of charge quantization. In arguing for quantization of charge in (A17), we claimed

that L
p
3

2a is integer valued. Here we see that an interpretation of this quantity is simply the number of layers of
Chern-Simons theories which comprise the stack in (A22), which must be an integer. Interestingly, this would imply
that the minimal winding configurations (A16) carry charges which scale with the system size. Such configurations
have energy scaling as 1

a , similar to the field theories discussed in [31, 32]. However, in (A10) a simply plays the role
of a length scale required by dimensional analysis rather than a lattice regularizer, and so no a ! 0 limit is needed.

Indeed, there seems to be no formal obstruction to taking a ⇠ L so long as L
p
3

2a is integer valued. This would lead to
a rather unusual kind of UV-IR mixing, where the UV action contains an anomalously small 1/L prefactor.
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