é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Fuzz The Power: Dual-role State Guided
Black-box Fuzzing for USB Power Delivery

Kyungtae Kim and Sungwoo Kim, Purdue University;
Kevin R. B. Butler, University of Florida; Antonio Bianchi,
Rick Kennell, and Dave (Jing) Tian, Purdue University

https://www.usenix.org/conference/usenixsecurity23/presentation/kim-kyungtae

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 » Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

Fuzz The Power: Dual-role State Guided Black-box Fuzzing for USB Power Delivery

Kyungtae Kim", Sungwoo Kim', Kevin R. B. Butler®, Antonio Bianchi’, Rick Kennell", Dave (Jing) Tian®

TPurdue University, $University of Florida
T{kim1798,sk,antoniob, rick,daveti} @purdue.edu, Sbutler @ufl.edu

Abstract

USB Power Delivery (USBPD) is a state-of-the-art charg-
ing protocol for advanced power supply. Thanks to its high
volume of power supply, it has been widely adopted by con-
sumer devices, such as smartphones and laptops, and has be-
come the de facto USB charging standard in both EU and
North America. Due to the low-level nature of charging and
the complexity of the protocol, USBPD is often implemented
as proprietary firmware running on a dedicated microcon-
troller unit (MCU) with a USBPD physical layer. Bugs within
these implementations can not only lead to safety issues, e.g.,
over charging, but also cause security issues, such as allowing
attackers to reflash USBPD firmware.

This paper proposes FUzzPD, the first black-box fuzzing
technique with dual-role state guidance targeting off-the-shelf
USBPD devices with closed-source USBPD firmware. FUuz-
ZPD only requires a physical USB Type-C connection to
operate in a plug-n-fuzz fashion. To facilitate the black-box
fuzzing of USBPD firmware, FUZZPD manually creates a
dual-role state machine from the USBPD specification, which
enables both state coverage and transitions from fuzzing in-
puts. FuzzPD further provides a multi-level mutation strat-
egy, allowing for fine-grained state-aware fuzzing with intra-
and inter-state mutations. We implement FUZZPD using a
Chromebook as the fuzzing host and evaluate it against 12
USBPD mobile devices from 7 different vendors, 7 USB hubs
from 7 different vendors, and 5 chargers from 5 different ven-
dors. FuzzPD has found 15 unique bugs, 9 of which have
been confirmed by the corresponding vendors. We addition-
ally conduct a comparison between FUzZPD and multiple
state-of-the-art black-box fuzzing techniques, demonstrating
that FUZZPD achieves code coverage that is 40% to 3x higher
than other solutions. We then compare FUZZPD with the
USBPD compliance test suite from USBIF and show that
FuzzPD can find 7 more bugs with 2x higher code coverage.
FuzzPD is the first step towards secure and trustworthy USB
charging.

1 Introduction

With its usability and versatility, USB Type-C (a.k.a., USB-
C) has quickly replaced traditional USB ports (e.g., Type-A
and B) as the default USB connector in a large number of
consumer devices, including smartphones, laptops, etc. USB
Power Delivery (USBPD or PD) is a pivotal function over
the USB-C interface. Thanks to the extra pins available in
USB-C, USBPD offers “fast charging” by providing a power
negotiation capability and a higher power transmission for
each VBUS line. It keeps evolving with new revisions sup-
porting more powerful and various functionalities, such as
further increased power supply (up to 240W) and authenti-
cation capability [1]. USBPD has become the de facto USB
charging standard in both EU and North America.

Due to the low-level nature of charging and the complex-
ity of the protocol, USBPD is often implemented as propri-
etary firmware running on a dedicated microcontroller unit
(MCU) with a USBPD physical layer. Bugs within these im-
plementations can not only lead to safety issues, e.g., over
charging [2], but also cause security issues, such as allowing
attackers to reflash USBPD firmware or launch denial of ser-
vice [3]. While software fuzzing techniques have been proven
effective to USB bug discovery [4-6], all of them target USB
stacks within host operating systems assuming a white-box
environment with some instrumentation for coverage as the
feedback for fuzzing. On the contrary, USBPD stacks are
usually implemented apart from host operating systems and
provided as a binary blob (firmware) without source files pub-
licly available, yielding all existing USB fuzzing techniques
futile.

In this paper, we propose FuzzPD, the first black-box
fuzzing technique with dual-role state guidance targeting
off-the-shelf USBPD devices with closed-source USBPD
firmware. FUZZPD only requires a physical USB Type-C
connection to operate in a plug-n-fuzz fashion without the
burden of hardware emulation and firmware rehosting. As a
result, FUzzPD is ready to fuzz any commodity USBPD
devices found in the wild. FuzzPD facilitates the black-

USENIX Association

32nd USENIX Security Symposium 5845

box fuzzing of USBPD firmware by manually constructing
a dual-role state machine from the USBPD specification, en-
abling both state coverage and transitions from fuzzing inputs.
Specifically, we take the advantage of standard PD functional
sequences that exchange orderly to carry out different PD
functions. We obtain these PD functional sequences from the
USBPD standard [1] and consolidate the sequences into a
state machine with transitions populated with the functional
sequences. Our state machine covers dual-role, e.g., power
sink and source, defined by the specification, and FuzzPD
supports on-the-fly power role switching during fuzzing. FUz-
zPD further provides a multi-level mutation strategy, allowing
for a fine-grained state-aware fuzzing with intra- and inter-
state mutations, leveraging the dual-role state coverage as the
guidance and PD message seeding.

We implement FuzzPD using Chromium EC [7] on a
Chromebook [8] as the fuzzing host and evaluate it against
12 USBPD mobile devices from 7 different vendors, 7 USB
hubs from 7 different vendors, and 5 chargers from 5 differ-
ent vendors. FUZZPD have found 15 unique bugs, ranging
from PD compliance violations to over-voltage issues and
out-of-bounds bugs within firmware. All of the bugs have
been reported to the corresponding vendors and 9 of them
have been confirmed by the vendors. We further compare
FuzzPD against multiple state-of-the-art black-box fuzzing
solutions [9-11] in terms of fuzzing efficacy. We demonstrate
that FUzzPD outperformed all other techniques in terms of
execution coverage, which ranges from 40% to 3x higher,
using an open-source USBPD firmware as the ground truth.
We then compare FuzzPD with the USBPD compliance test
suite from USBIF [12] in terms of bug detection capability,
and show that FUzZPD can find 7 more bugs with 2x higher
code coverage. We open-source FUZZPD to facilitate the
USBPD security research in the community [13].

The key contributions of this paper are as follows:

e FuzzPD is the first black-box USBPD fuzzing tech-
nique targeting off-the-shelf USBPD devices.

* We design a dual-role state machine by extracting and
abstracting PD functional sequences from the USBPD
specification to guide the black-box fuzzing in Fuz-
zPD. We further devise a two-stage mutation strategy
for a fine-grained intra- and inter-state state explorations
considering both the dual-role state coverage and PD
message seeding

* We implement FuzzPD using Chromium EC on a
Chromebook as the fuzzing host, ready to fuzz any com-
modity USBPD devices found in the wild.

* We evaluate FuzzPD using 24 different USBPD-
capable devices across 19 different vendors and found
15 unique bugs. Comparing to multiple state-of-the-art
black-box fuzzing solutions and the USBPD compliance
test suite from USBIF, FUzZzZPD outperforms other tech-
niques in terms of code coverage, ranging from 40% to
3x higher, and also find 7 more bugs with 2x higher code

Power Power
source sink

P “REQUEST”
Y

o “ACCEPT” o
“PS_RDY”
O (®)

“SRC_CAPABILITIES”

A 4
©

\ 4

A 4

Figure 1: A functional sequence for power contract.

coverage respectively.

2 Background

USB Type-C (a.k.a. USB-C) [14] has become mainstream for
a variety of peripherals and smart devices, thanks to its versa-
tility and enhanced usability. In parallel, USB Power Delivery
(USBPD or PD), the power delivery standard carried over
USB-C, has been widely accepted and adopted for its rapid
power charging capability, such as the ability of providing
up to 240W [1]. Apart from increased power supply, USBPD
also supports the alternate mode defined by USB-C, which
enables USB-C ports to transfer non-USB data via multiple
interfaces, such as DisplayPort and Thunderbolt. USB4 also
relies on USBPD for power establishment.

USBPD communication involves two parties in different
roles: a power source (providing charge) and a power sink
(accepting charge). The specification [1] mandates how both
roles should be implemented, detailing a finite state machine
representing the different states a USBPD device can assume,
and the possible transitions between these states.

In USBPD, the data communication between the two con-
nected parties is achieved through the exchange of PD mes-
sages. Each PD message comes with a header, and optionally
includes data objects depending on the type of the message —
data and extended message types have up to 7 data objects,
while messages of the control type do not have any data object.
The specification also allows vendors to implement vendor-
specific messages (VDMs) that can be exchanged between
devices.

A functional sequence is a sequence of PD messages to be
exchanged between the two roles, as illustrated in Figure 1.
Both roles interact with each other by receiving and send-
ing corresponding messages in a designated order within a
specific functional sequence. Different functional sequences
are used for different (unique) PD functionalities. For exam-
ple, the “power contract” sequence in Figure | is used for
negotiating the charging power to deliver, whereas the “power
role swap” sequence is needed for switching the power roles
between two devices.

5846 32nd USENIX Security Symposium

USENIX Association

Scenario 1 Scenario 2

Dual-role USB-PD
device speaker

D —&3= ((()))

pw source I

Figure 2: A dual-role USBPD device.

Dual-role USB-PD

device charger

pw sink

Functional sequences are closely coupled to state transi-
tions of both power roles. For instance, as seen in Figure I,
the functional sequence induces a state change from state "X"
to state "Y" for the power source device, and, simultaneously,
from state "A" to state "B" for the power sink role device.

A sequence is considered as active by a device if it is
initiated by the device itself. Otherwise, it is considered as
passive. From the viewpoint of a power source role, for
example, the power contract sequence falls into an active
sequence because the source role is the one exclusively initi-
ating this sequence. Conversely, the power contract sequence
is a passive sequence from the sink role’s point of view.

While there are USBPD devices supporting only a single
role by nature (e.g., USB power chargers are typically source-
only), modern USBPD devices can support the dual-role ca-
pability (Table 2). Dual-role devices are capable of serving as
either power roles, depending on the usage scenario. For ex-
ample, a PD-enabled smartphone could be charged as a power
sink if a USB charger is plugged to it, whereas it becomes a
power source and delivers power when connected to a USB
speaker (see Figure 2). Furthermore, dual-role devices can
swap their current roles at any point of their communication,
while being connected to another dual-role device.

3 Security Model

We trust the USB hardware parts and especially the physical
layer of target PD devices, and assume they are free of hard-
ware defects (e.g., over-voltage caused by a rogue cable) and
operate properly in terms of functionality. We further limit the
attack surface to the Control Channel (CC) lines of USB-C,
where PD messages are exchanged, instead of worrying about
typical USB attacks launched via data pins, e.g., BadUSB
attacks [15].

We assume that PD firmware within target PD devices con-
tains software defects and vulnerabilities. In this scenario,
adversaries can exploit these vulnerabilities, which only re-
quires a physical USB-C connection to cause safety, security,
and privacy violations. For example, an adversary can install
a malicious USB-C charging port (or compromise existing
ones) in an airport. After connecting to a victim PD device
(e.g., smartphone), the illegitimate PD logic within the ma-
licious USBPD controller can ignore the power negotiation

and provide over-current and over-voltage power supply to
physically damage the target PD device. This rogue USB-C
charging port can also issue malformed and even malicious
PD messages to attack the target PD device, e.g., exploiting a
buffer overflow within target PD firmware implementation to
launch denial of service attack, or sending a firmware reflash-
ing command to the target PD device.

4 Motivation and Challenges

Existing works [4-6, 16—18] have demonstrated the efficacy
of fuzzing techniques on detecting bugs and vulnerabilities
within USB stack implementations. State-of-the-art USB
fuzzing solutions [4, 6] have managed to get rid of the hard-
ware dependency via emulation and leveraged code or state
coverage as the feedback for efficient fuzzing input mutations.
A naive approach would be applying existing USB fuzzing
techniques to USBPD, which unfortunately does not work
due to a number of unique challenges imposed by real-world
USBPD implementations.

C1: Diverse and closed-source ecosystems. Unlike typical
USB stack implementations found in operating systems, US-
BPD functions are usually implemented in firmware, running
on dedicated PD controllers (e.g., MCUs) and physical layers.
Different vendors have their own USBPD implementations
and keep both firmware and hardware as proprietary. It is pos-
sible to build an efficient firmware fuzzing environment using
firmware rehosting, which emulates the hardware (both MCU
and peripherals) to run firmware locally [19-22]. Using this
approach, we can run various firmware samples on a single
architecture at-scale (e.g., on a server dedicated to fuzzing)
and even instrument the firmware to support features such as
runtime coverage feedback.

Despite such benefits, firmware rehosting does not scale
for PD implementations. Specifically, hardware emulation
requires a significant amount of engineering effort to support
one single architecture and peripherals within an System-
on-Chip (SoC), let alone dozens of different USBPD imple-
mentations. More importantly, acquiring and unpacking PD
firmware are often challenging. For instance, vendors often
disable the firmware dumping capability within final prod-
ucts, and apply obfuscation and encryption schemes to protect
against firmware analysis. In the end, what we need is a “plug-
n-play” fuzzing technique that can fuzz off-the-shelf USBPD
devices with minimum requirements.

C2: Fully stateful communications. If the statefulness of
USB communication is mainly reflected at the enumeration
phase, USBPD communication is fully driven by the state
machines defined by the specification. Since PD message is a
key building block of USBPD communication (see Figure 2),
a naive approach is to simply fuzz arbitrary PD messages by
mutating individual messages with different message types,
as shown in Figure 3 (1). Despite following the format of PD

USENIX Association

32nd USENIX Security Symposium 5847

. Target Target Mutation In-State
Fuzzer Domain Role Stack Type Hardware Stateful Guidance Mutation
FaceDancer [16] USB Single (Host) OS Blackbox On-device X — —
Umap?2 [17] USB Single (Host) OS Blackbox On-device x — —
vUSBf [18] USB Single (Host) oS Greybox Emulation x - -
Syzkaller [4] USB Single (Host) OS Greybox Emulation A Code cov Code cov
USBFuzz [5] USB Single (Host) (O] Greybox Emulation x Codecov —
FuzzUSB [6] USB Single (Gadget) OS Greybox Emulation O State cov Code cov
Snipuzz [11] IoT Single Firmware Blackbox On-device X — —
DIANE [10] IoT Single Firmware Blackbox On-device x — -
ToTfuzzer [9] IoT Single Firmware Blackbox On-device x — —
FuzzPD USBPD Dual (Src/Sink) Firmware Blackbox On-device O State cov Seeding

Table 1: State-of-the-art USB/Black-box fuzzing techniques. In the Stateful column, the symbol ‘x’ indicates that fuzzers do not consider the
statefulness when fuzzing targets, whereas fuzzers with the symbol ‘O’ achieve state-aware fuzzing. Meanwhile, Syzkaller is represented by
the symbol ‘A’ because it has implicit and limited consideration of the target’s statefulness, using input templates.

Host PD device Host PD device
msg “A” msg “X”
— S
msg “C” wyr 9
e L 4;,
msg “P” msg
\ 4 / V

(1) Arbitrary message fuzzing (2) General stateful fuzzing

Figure 3: USBPD fuzzing scenarios.

Dual-role Dual-role
Host device Host device
(source) sink (sink) source
“SRC_CAP” “SRC_CAP”
(B)—= @ A) ¢——(B)
“REQUEST| “REQUEST”
® ——® ®
“ACCEPT” “ACCEPT”
©———> © O +——(©
“ ” “PS RDY”
i) PS_RDY ®) > S_ LS

Figure 4: USBPD communication for a dual-role PD device.

messages, this state-agnostic approach only discloses trivial
and shallow bugs within PD implementations, and might not
even get the fuzzing target connected after hours of fuzzing.
A better idea might be leveraging the statefulness of PD
communications and using states as guidance during fuzzing.
For instance, we can employ the standard PD state machine
defined by the specification [1] and mutate input messages
in the hope of triggering different state transitions, as shown
in Figure 3 (2), similar to existing state-guided fuzzers [6, 23—
26]. This approach enables a fuzzer to provide mutated mes-
sages in different states of the state machine towards new
state exploration. Unfortunately, such a textbook implemen-
tation of state-guided fuzzing does not work for real-world
PD implementations for two reasons. First, PD state machine

defined by the specification contains states related to non-
deterministic or non PD message triggers. For instance, a
state transition might depend not only on the PD messaging
but also the timer interrupt, which is out of the control of a
fuzzer and yields a non-deterministic transition. Second, it is
unlikely to exactly keep track of actual state changes of the
fuzzing target during PD communication without accessing
and analyzing the target PD firmware (which is often infeasi-
ble, as mentioned in C1). As a result, to reach the core logic
of PD implementations during fuzzing, we need a PD state
machine as the guidance, with transitions fully controlled by
fuzzers and the ease of tracking fuzzing target’s state without
understanding the target firmware.

C3: Dual-role capability. Existing USB fuzzing solutions [4—
6, 16-18] only target single-role fuzzing, e.g., USB host
fuzzing or USB gadget fuzzing. In fact, most USB fuzzers
aim for USB host fuzzing except FuzzUSB [6] targeting USB
gadget stacks. The reason is that a big portion of existing USB
devices are not dual-role device, e.g., laptops. Even for dual-
role USB devices, USB host stacks and USB gadget stacks
are independent from each other without sharing much code
base. As discussed in Figure 2, however, modern USBPD de-
vices are usually dual-role capable, and both roles are likely
to share the same code base due to their tight coupling. There-
fore, conventional single-role fuzzing solutions are unlikely
to examine the other role of USBPD implementations. For
instance, given the functional sequence example in Figure 4,
its 2nd message "REQUEST" in the sequence is only triggered
while in the power sink role, Likewise, the remaining three
messages in the sequence can be solely sent (or mutated) from
the power source role.

To maximize the fuzzing coverage, a PD fuzzer needs not
only to support both power roles, but also to be aware of
the constraints under each power role, e.g., what function-
ality could be conducted under a certain role. Recall C2 to
achieve stateful fuzzing using the PD state machine. This
means the PD state machine has to cover dual-role with all
the constraints encoded for each state transition, assuming

5848 32nd USENIX Security Symposium

USENIX Association

a power role switch might happen at any time during PD
communication.

C4: In-state fuzzing input mutation. As discussed in C2,
state guidance is an essential requirement to realize USBPD
fuzzing. However, state guidance alone does not suffice for
optimizing mutation generation. Specifically, state-guided
fuzzing particularly aims at exploring a new state within the
given state machine, but it cannot suggest further directions
for in-state mutation. For example, Syzkaller [4] and Fuz-
zUSB [6] leverage the code coverage as the feedback to help
in-state fuzzing input mutations. However, code coverage
requires instrumentation, which, in-turn typically requires
emulation capability or source code availability, which is im-
practical for PD firmware, as discussed in C1.

The message syntax of USBPD is well-defined in the spec-
ification, providing valid templates (and outline) for fuzzing
input generation that can be used for individual message mu-
tation within a state. However, without any feedback from in-
state fuzzing, the fuzzing input mutation is still pure random,
leading to a randomly generated PD message for fuzzing with-
out the awareness of the current power role or state, and down-
grading a stateful fuzzer to a state-agnostic fuzzer. Therefore,
we need an efficient way to generate (mostly) valid inputs for
in-state fuzzing even without any feedback to improve muta-
tion generation and with the understanding of the constraints
imposed by the current power role and state.

As shown in Table 1, we did a mini systematization of
existing USB fuzzing solutions and state-of-the-art black-
box fuzzing techniques to highlight and distinguish this work
from all others. Compared to all USB fuzzing solutions, this
work is the first targeting USBPD firmware and supporting
dual-role during fuzzing. By comparing recent black-box
fuzzing techniques, this work introduces state coverage as the
feedback and incorporates in-state mutation.

5 Design

To address the challenges of USBPD fuzzing discussed in
§4, we present a new USBPD fuzzing technique, FUzzPD.
FuzzPD adopts a black-box fuzzing approach, and tackles
stateful USBPD communication for dual-role PD devices
based on a dual-role state machine. FUzzPD also improves
its mutation efficiency relying on multi-staged and message
seed guided mutations.

5.1 Opverview of FuzzPD

In this section, we describe the overall design of FuzzPD.

Generic black-box USBPD fuzzing. FUzZZPD is the first
black-box fuzzing technique for USB Power Delivery. As
presented in Figure 5, FUZZPD adopts an on-device fuzzing
design, examining real USBPD devices with a connection to a
dedicated USB-C cable. Since USBPD operates over USB-C

’l FuzzPD

Dual-role c |]
USBPD state machine g |==:> D
Specs s |
Message =1 . 3
% = seeding = | Detection | =" pD device

Figure 5: Overview of FuzzPD

seél

‘__ﬂ . seq#5

Se(iy ; seq#3 ‘)

@\se:lg se?q#4 ./se'q#l

seq#2

Sink role

Figure 6: A dual-role state machine

that defines a physical interface, our approach of on-device
fuzzing makes FUZZPD compatible with any of USBPD ca-
pable devices and carry out fuzzing in a generic way without
requiring expensive device emulation and tedious firmware
analysis (C1).

Dual-role state guidance. To tackle stateful USBPD com-
munication (C2) and examine dual-role PD functionality of
USBPD devices (C3), we design a customized dual-role state
machine (§5.2). We achieve a fully controllable dual-role state
machine with PD functional sequences for its state transitions.
Given the dual-role state machine, triggering its functional
sequences can move states implicitly for a black-box target
without the knowledge of its complex internals. Meanwhile,
the dual-role state machine seamlessly encompasses a dedi-
cated functional sequence for power role swap. Thus, dual-
role switch is offloaded under control of the dual-role state
machine, and state transitions can swap power roles at any
time during fuzzing, thereby reaching different PD function-
ality in different roles.

Multi-level mutation using message seeding. To enhance
the effectiveness of mutations by maximizing fuzzing scope
(C4), FuzzPD uses two-staged stateful mutations that deal
with inter- and intra-state fuzzing scope (§5.4). Other than
state coverage guided mutation for inter-state exploration, we
leverage message seeding for seed message inputs, which
provides further guidance for an in-state message mutation.
Our message seeding, originating from USBPD compliance
test rules, not only enables functional sequence aware muta-
tion, but also generates high-quality input messages to explore
deeper functional USBPD logic (§5.3).

USENIX Association

32nd USENIX Security Symposium 5849

fuzzer target fuzzer target
“PR_SWAP” “PR_SWAP”
“ACCEPT” “REJECT”
“PS_RDY”
“PS_RDY2”
(1) Using dual-role (2) Using two single-

state machine. role state machines.

Figure 7: Valid messages within the power role swap sequence in
two fuzzing approaches.

5.2 Dual-role State Machine

To tackle the challenges in using the standard state machine
(C2) and handling dual-role characteristics of PD devices
(C3), we develop a specialized dual-role state machine, as
illustrated in Figure 6. The key insight of our dual-role state
machine is in leveraging functional sequences to build a fully
controllable and consolidated state machine. As discussed
in Figure 2, functional sequences are solely executed by US-
BPD messages (i.e., fuzzing inputs) and tightly coupled with
the stateful communication of both connected devices, in-
cluding the handling of power role swaps during USBPD
operations. As such, our dual-role state machine makes use of
functional sequences to transition between states, which facil-
itates state-aware fuzzing in a black-box mode. Specifically,
the dual-role state machine triggers functional sequences to
implicitly change states of target PD devices, without requir-
ing any knowledge of the target’s internals. Additionally, it
handles both power roles in a dual-role PD device using a
dedicated role switch functional sequence seamlessly incor-
porated. It is worth noting that our dual-role state machine
enables a fuzzer to test both communication parties without
disrupting the ongoing fuzzing by requesting (or handling)
runtime role swaps at any time during the fuzzing campaign.
This capability cannot be achieved with traditional state ma-
chines focusing on a single communication entity (e.g., host
side).

Moreover, since a single-role state machine does not inher-
ently support role swaps at runtime, simply using two different
(single) role state machines cannot handle runtime role swaps
either. Consequently, a fuzzer using two single-role state ma-
chines is limited in various message mutations. For instance,
it is unable to fuzz the last message (PS_RDY2) of the role
swap sequence because it rejects the initial role swap request
due to the lack of the role swap support as shown in Figure 7
(2). In contrast, our fuzzer is capable of fuzzing the message
PS_RDY?2 after exchanging the first three messages, with the
support of the role swaps sequence in the dual-role state ma-
chine, as illustrated in Figure 7 (1). If the code dealing with
PS_RDY?2 is buggy or non-compliant within the tested device,

FuzzPD can have an opportunity to uncover such violations,
whereas the single-role state machines based fuzzer cannot,
as we will further discuss in §7.1.

State machine generation. Our dual-role state machine con-
sists of two essential components: 1) states that are abstracted
away from standard PD state machine and trigger functional
sequences, and 2) transitions that are essentially functional
sequences. Figure 8 summarizes a procedure of our dual-role
state machine construction. We first extract all the functional
sequences listed in the USBPD spec. For each functional se-
quence, we record its entry and exit states for both roles (®)
and abstract away all intermediate states in between these
two states due to their non-controllable nature (see Figure 4).
We then split each sequence into per-role sequences to distin-
guish different roles (®). Lastly, we construct a single state
machine by merging the same states for all different functional
sequences (®). As a result, its states are abstracted from the
standard PD state machine, and its transitions are represented
as functional sequences. Note that we seamlessly incorporate
state transitions for power role swap because a functional se-
quence of power role swap (i.e., seq#4 in Figure 6) is merged
into the state machine. The whole state machine can be tra-
versed by triggering functional sequences under the control
of our message mutation.

One unique feature of our state machine is that due to its
combined nature, the state machine is broadly broken down
into two distinct partitions with different roles, and both are
bridged by role swap functional sequences (i.e., seq#4). Ac-
cordingly, the whole state machine (especially its transitions)
looks symmetric because each functional sequence usually
involves both roles. Furthermore, the availability of functional
sequence execution depends on a state. As we will explain in
§5.4, to fuzz a message in a particular functional sequence,
the current state should be a state where the target functional
sequence can be triggered. Taking the example of Figure 6, to
fuzz any of message within the sequence #1, the current state
must be state B or state F depending on the required power
role.

5.3 Message Seeding

To support finer-grained guidance for mutation of FuzzPD,
we employ message seed guidance for PD message input
generation. As we will explain in §5.4, message seeding is
used to guide mutation within a state, which not only helps
generate high quality message inputs, but also allows mutated
messages to reach the core logic of PD functions without
being filtered by message validity checks. Message seeding
has two types of information, a meta data and a seed message.
A meta data indicates the information of a functional sequence
for its seed message, which contains a sequence ID that the
seed message belongs to and an order of the seed message
in the sequence. Using the meta data, we can mutate the
seed message in consideration of a PD device’s state, in a

5850 32nd USENIX Security Symposium

USENIX Association

O Source role state . Sink role state

Party, Partyy Party, Partyy
“SRC_CAP” “PR_SWAP”
O—— ® ©
“REQUEST” ¢ “ACCEPT” -
4— ++
“ACCEPT” “PS_RDY” (gn,'*
R
e “PS_RDY” “PS_RDY” e
e
Seq#1 Seq#2

Seq#1

® Seq#2
I I by —
= ** o **
T 5 g g
A 53 @ 5
Seq#2

1. Extracted functional sequences

2. Simplified functional sequences per role

3. Merging into a dual-role FSM

Figure 8: Dual-role state machine construction

1. USBPD compliance rule

Title: Invalid REQUEST in PW negotiation

check fails if a REJECT message is not received”

Description: “As a SINK, Tester sends a REQUEST, requesting the maximum current offered, the

3.seq#1 (PW nego)

2. Simplied rule

Source SINK
Msg seq = PW nego 4. Message seed
Role = SINK “SRC_CAP” (msg #1)
Msg.type = REQUEST > Meta data = seq#1 » msg#2
Msg.data = maximum current <« REQUEST” (msg#2) Seed message = Oxf2ed
Output.type = REJECT = Output.type = REJECT
put-type = “ACCEPT” (msg #3)

>

“PS_RDY” (msg #4)

Figure 9: Simplified message seeding extraction from USBPD compliance rule

way that the seed message is sent in the right order in the
right sequence. Meanwhile, a seed message presents certain
message values. Similar to general coverage guided fuzzing,
a seed message is used as a base message to mutate.

Figure 9 simplifies the procedure of our message seed ex-
traction. As mentioned in §5.1, all message seeds originate
from USBPD compliance test suite [12]. The test suite enu-
merates compliance rules, and each compliance rule that cor-
responds to a certain functional sequence specifies a target
message to be tested within a relevant sequence. We inspect
the compliance rules one-by-one from the test suite, and then
extract and put together a list of message seedings. For each
rule, we first extract a relevant functional sequence, which is
easily noticeable according to the title of the rule or can be
inferred from the contents of the description (1). Then we find
out its meta information from its description, such as the role
and the type of the target message (2). Given this information
along with a list of functional sequences (see §5.2) (3), we
extract and record its sequence number as well as message
number in the sequence, along with its seed message (4).

5.4 Mutation Strategy

As aforementioned, we leverage a dual-role state machine for
USBPD fuzzing by taking advantage of the stateful nature of

USBPD functional sequences. With this state machine, we
devise a new mutation scheme that enables effective and fine-
grained USBPD fuzzing. FUzZPD’s mutation scheme has two
primary objects: 1) to explore the dual-role state machine for
inter state mutation, and 2) to provide finer-grained guidance
for intra state mutation.

Inter-state mutation. This mutation phase aims to explore
the dual-role state machine. To trigger state transitions, we
execute the corresponding functional sequences assigned for
the state transitions in the state machine. In this phase, we em-
ploy a general state-aware mutation approach, which explores
the state machine to prioritize new state or transition coverage
[6, 27]. Once all the states in the state machine are visited,
we switch to a random state exploration mode to continue the
subsequent intra-state mutation phase.

Intra-state mutation. Apart from across-state exploration,
we further enhance our fuzzing with in-state mutation. To
generate better message inputs within a state, we take advan-
tage of the message seeding as described in §5.3. Specifically,
given a message seed, a fuzzer first triggers the designated
functional sequence by exchanging its messages in order until
the target seed message is sent. Then, the fuzzer mutates the
seed message and delivers it to the device. Similar to gen-
eral coverage-guided mutation, we leverage typical mutation
operations, such as genetic algorithms, at this point.

USENIX Association

32nd USENIX Security Symposium 5851

Message seed seq#l

- geq#l A co#3
Meta data: seq#1 ~ msg#3 Fuzzer PD device
Seed message: Oxf2ed

msg#1 oy
msg#2
Mutated sequence
" msg#3

Meta data: seq#1 ~ msg#3
Mutated msg: 0xf2f8

Figure 10: Running example of intra-state mutation

Algorithm 1 Fuzzing Execution.

Initial: Cur_seq < {} /* initialize current sequence */

1: while True do
2 /* 1. message receive */
3 if IsMessageRecv() then
4: if Cur_seq = NULL then /* no current sequence */
5: Cur_seq <+ IntraStateMutate(passive)
6 if Cur_msg.type = Msg.type then /* received valid msg */
7 update Cur_msg count
8 else/* received invalid msg in the current sequence */
9: further analysis for detection
10: /* 2. message send */
11: if Cur_seq = NULL then
12: if Need inter-state mutate then
13: Cur_seq < InterStateMutate()
14: else
15: Cur_seq < IntraStateMutate(active)
16: if there are remaining msgs to send in the Cur_seq then
17: deliver a next msg in order within Cur_seq

Aside from the mutation strategy with message seeding, we
also support message generation for in-state mutations with-
out the assistance of seed messages. We use several different
strategies. For example, we randomly choose one out of func-
tional sequences that can be triggered from the current state
and then mutate an arbitrary message in the sequence. We
also perform out-of-order message mutation in a functional
sequence, switching messages or randomizing the order of
message exchanges. Once a new mutated sequence is ready,
this sequence can be exchanged like seed based mutation
above.

Figure 10 steps through FuzzZPD’s mutation when using
message seeding. In the example, we try to mutate a seed
message in seqg#1. Suppose the current state is F after inter-
state mutation, where seq#1 can be triggered. To perform
intra-state mutation subsequently, we first mutate the seed
message (0xf2ed) and then obtain a mutated message value
(0x£2£8). Then we initiate this mutated sequence seq#l by
sending its first message msg#1 to the device. Since then, we
expect to receive a message msg#2 from the device according
to seqg#l. Once receiving that message, we transfer the newly
mutated message at this point, i.e., in the third order (i.e.,
msg#3) of the sequence.

5.5 Fuzzing

Given the dual-role state machine and message seeds, FUz-
ZPD exercises multi-staged mutations during the entire
fuzzing execution. In this section, we elaborate on the fuzzing
execution workflow of FuzzPD by taking individual steps
from the beginning.

Preparation. As we highlight in §5.1, the essence of FUuz-
zPD is that FUzZPD examines and fuzzes real USBPD de-
vices. In this sense, all the requirements to carry out our
fuzzing is physical access and connection to each test PD
device. After connecting to our fuzzer machine, the entire
fuzzing process begins with a pre-processing phase, which
follows the steps outlined below.

Pre-processing. The availability of USBPD functions varies
by PD device. For example, some USBPD power adaptors
offer more advanced power supply capabilities, through Pro-
grammable Power Supply (PPS)[1], which is typically un-
available in smartphones. In this regard, it makes more sense
to extensively examine PPS functionality for USB chargers,
rather than smartphones. To enhance the mutation efficiency,
we prioritize functional sequences that are supported by tested
PD devices, and grant them higher priority to perform more
extensive mutation for these sequences. We achieve this by
identifying all PD functionalities (i.e., functional sequences)
available to a target device shortly after a new connection
is made. Specifically, we send a series of certain functional
sequences that retrieve the target’s capabilities, such as GET_-
STATUS sequence. The collected functional sequences would
be used for future message mutation with higher priority.

Fuzzing execution. Algorithm | details FUZZPD’s fuzzing
execution. At a high level, the fuzzing execution works
through two consecutive phases in a loop, message receiving
(line 3) and message sending (line 11). Note that the current
functional sequence (i.e., Cur_seq) can have either a normal
functional sequence or a mutated functional sequence (con-
taining a single mutated message), depending on different
mutation strategy. First, we try to select a new functional se-
quence to exercise in each phase if no sequence is currently
being tracked (line 4 and 11). In the message sending phase,
at this point, we carry out either inter- or intra-state mutation
depending on the mutation policy or probability. When per-
forming an inter-state mutation, a normal functional sequence
is chosen for the current sequence (line 13), which will trigger
a state transition. Otherwise, we execute an intra-state muta-
tion, and a new sequence with a mutated message is assigned
into the current sequence (line 15). Meanwhile, the message
receiving phase is responsible for mutating passive functional
sequences that are triggered exclusively by a PD device, not
by a fuzzing host (see Figure 2). Due to such non-triggerable
nature, we grant this passive sequence mutation a priority by
executing it (line 5) ahead of active sequence mutation (line
15) in a loop, to increase the opportunity of taking passive se-
quence mutation. Once a new functional sequence is assigned

5852 32nd USENIX Security Symposium

USENIX Association

and gets started to exercise, we send corresponding messages
in an orderly manner as specified in the current functional
sequence.

Bug detection. Unlike the greybox approach, sanitizing tech-
niques, such as ASAN [28] and MSAN [29], are usually in-
applicable for black-box fuzzing. Instead, we make use of
the following ways for bug detection. First, we ensure all
message exchanges are compliant with standard functional
sequence according to the USBPD spec, when performing
normal functional sequences, such as state transitions. We
then carry out further analysis to detect bugs if any discrep-
ancy is observed. Also, we check any output violation when
exercising regular compliance testing during fuzzing. For a
mutated message sent to a target, we conduct an investiga-
tion into every response message to check for its validity. For
example, as detailed in §7.1, we ensure that a target device
rejects request messages that have been intentionally mutated
to induce over-voltage.

6 Implementation

The prototype of FUzZPD is built upon Chromium OS Em-
bedded Controller (EC) software [7]. We deploy FUzZzZPD’s
core logics, such as the dual-role state machine and the
fuzzing engine, on EC’s USBPD subsystem module. Then,
we compile the extended EC implementation and flash its
binary into the EC ROM to reflect the change to a fuzzing
host, Chromebook Spin 713 [8], which we used throughout
all our experiments (§7). We basically piggyback on under-
lying resources and innate capabilities of the Chromebook,
such as power supply capability, for fuzzer’s base capability.
We additionally simulate further capabilities during message
exchanges to draw a variety of partner’s responses and their
PD functionality. FUzZPD is composed of 2,400 lines of C
code in total: 1800 lines for the dual-role state machine and
fuzzing engine, and 600 lines for message seeding, etc.

7 Evaluation

In this section, we evaluate different aspects of FuzzPD.
First, we show how USBPD can be used to find new bugs,
and we provide details of some of the found bugs in dedicated
case studies (§7.1). Next, we examine the effectiveness of
FuzzPD when using different methods for coverage tracking
(§7.3). We compare the performance of FUzzPD and the
USBPD compliance test (§7.4).

Experimental setup. To evaluate FUZZPD’s prototype, we
use a Chromebook Spin 713 [8], which is equipped with an
Intel Core i15-10210U 1.60GHz and 8 GB RAM. This system
runs Chrome OS and it has two USB-C ports supporting US-
BPD 3.0 technology. We perform all our evaluations via a
connection to each PD device under test, using a dedicated

USBPD cable supporting fast power charging, as well as ad-
vanced data communication, e.g., Thunderbolt4. To evaluate
FuzzPD, we used 24 USBPD devices from 18 vendors, rang-
ing from smart devices and USB chargers to USB docking
stations, as summarized in Table 2. Note that we also used
the Chromebook Spin 713 as a tested device. In this case, we
connected its two USB-C ports with each other, and used one
port as the fuzzing host and the other as the PD device under
test.

7.1 Findings

We thoroughly inspected the USBPD specification and test
suites, extracting functional sequences as well as message
seeds. Out of the functional sequences and message seeds
available in the USBPD standard, we excluded the ones that
are not suitable for our purpose, such as sequences (or seeding)
for USB-C cables or unsupported by any of tested PD devices.
As aresult, we obtained 40 standard functional sequences and
45 message seeds.

As mentioned in §5.5, USBPD devices do not usually sup-
port all 40 functional sequences. They implement a limited set
of functional sequences that are needed to support their func-
tionalities. To retrieve valid functional sequences for the tested
devices, we send a series of messages (e.g., GET_STATUS) in
the pre-processing step of fuzzing (see §5.5), which takes
approximately 5 seconds for each device. Table 2 summa-
rizes their key capabilities. Note that the seventh and eighth
columns denote the number of functional sequences available
in each device and the total number of messages in individual
sequences, respectively. As mentioned in Figure 2, different
functional sequences represent different PD functions. For
this reason, the devices that support USBPD revision 3.0
have more functions than the ones supporting revision 2.0.
Additionally, smart devices (S.X) tend to provide richer PD
functions to be examined, in comparison with the others (H.X
and A.X). We observe that all the tested PD devices except
USB chargers are capable of dual power roles.

We conducted extensive fuzzing campaigns using the ex-
perimental setup explained above. As listed in Table 3, we
have discovered 15 unique bugs, reported all the bugs to the
corresponding vendors, and got 9 bugs confirmed. Table 5
presents the bug distribution for the tested devices by each
bug type (ID). The bugs ranged from over-voltage issues to
out-of-bounds memory access within the USBPD firmware.
Overall, the high-end devices equipped with richer PD fea-
tures, such as smart devices, tend to be more problematic.
However, Surface Pro 8 (S.5) turned out to be resilient to all
the mutated inputs and has shown much stronger security in
its USBPD system compared to other devices, despite its vast
range of supported PD functionality. Another observation is
that most of the bugs were discovered while fuzzing the se-
quence of the power contract. This is because all the USBPD
devices have at least this functionality for their rapid charging.

USENIX Association

32nd USENIX Security Symposium 5853

D Vendor Device Spec Message Coverage
PD Rev. D-Role VDMs #Seq #Msg PDfy, PDfs PDfy FuzzPD

S.1 Samsung Galaxy S21,S23Ultra 3 v v 34 71 0 34 37 71
S.2 Samsung Galaxy A13 3 v 34 71 0 34 37 71
S.3 Apple MacBook Pro 13 2 v v 40 72 0 40 32 72
S4 Apple iPad Pro 3 v v 40 72 0 40 32 72
S.5 Microsoft Surface Pro 8 3 v 36 64 0 36 28 64
S.6 Xiaomi Redmi Note 11 Pro 3 v 34 71 0 34 37 71
S.7 Xiaomi Mi 11 Lite 5G 3 v v 30 63 0 30 33 63
S.8 Google Pixel 5a 3 v 21 46 0 21 25 46
S.9 Google Pixelbook Go 2 v v 19 43 0 19 24 43
S.10 Acer Chromebook Spin 713 3 v v 33 61 0 31 30 61
S.11 Nintendo Switch 2 v 14 36 0 14 22 36
H.1 QGeeM 3 v 21 45 0 21 24 45
H2 IPTIME 3 v v 23 53 0 23 30 53
H.3 YCCTEAM 2 v v 13 45 0 13 32 45
H4 Anker USB-C hub 3 v 21 45 0 21 24 45
H.5 TrendNet 2 v 13 45 0 13 32 45
H.6 UtechSmart 3 v v 21 45 0 21 24 45
H.7 D-link 3 v 13 45 0 13 32 45
Al AOXEY 3 src-only 12 13 0 = 13 13
A.2 RavPower 3 src-only 10 10 0 = 10 10
A3 WeWatch USB-C charger 3 src-only 12 13 0 — 13 13
A4 syncwire 3 src-only 6 6 0 = 6 6
A.5 Blechmeki 3 src-only 12 13 0 = 13 13

Table 2: Tested devices with corresponding used PD specification.

FuzzPD found a non-compliant violation in the power role
swap sequences (Bug ID 15), which remains undisclosed by a
fuzzer using two single-role state machines because of unsup-
portive role swap sequence, as discussed in §5.2. Note that we
discovered a total of 8 messages within 3 different USBPD
functional sequences, including power role swaps, which can
be exclusively fuzzed when employing our dual-role state
machine.

7.2 Dual-role State Machine Construction

As described in §5.2, we take several steps to construct a
dual-role state machine from USBPD spec. In this section,
we quantify each step of the state machine generation. First,
we extract all the USBPD functional sequences and their
corresponding messages. This is a straightforward process
that takes 2 hours as USBPD spec provides a well-described
list of the functional sequences in the spec document. Next,
we associate each functional sequence with start and end
states, which is a more time-consuming task. We use two
different approaches for this step, depending on the functional
sequence. If the description of functional sequences includes
the relevant states, e.g., power contract functional sequence,
we extract them from this description directly. Otherwise, we
manually identify the start and end states from a standard
state machine based on functional sequence messages, which
takes 5 hours. After extracting the functional sequence with
their states, we split and merge them to create a complete
dual-role state machine, which takes approximately 2 hours.

In total, the entire process of building a complete dual-role
state machine takes around 9 hours.

7.3 Coverage

In this section, we examine fuzzing coverage achieved by
FuzzPD in different configurations. We take a measurement
in two different ways to complement limited black-box cover-
age measurement. To better evaluate the different features of
FuzzPD, we implemented three fuzzing configurations for
baselines, shown in Table 4, in which we selectively disable
the key features of FUzzPD. Specifically, PDf), is a basic
form of USBPD fuzzer that is aware of USBPD message
syntax, but it is state-agnostic. On the other hand, PDfs and
PDfg are advanced fuzzers equipped with a state machine
(with different role) along with functional sequence-based
mutations, but limited to a single power role, source for PDfg
and sink for PDfg.

7.3.1 Message Coverage

We try to measure the depth that our fuzzer, in its different
configurations, is able to reach in the generated PD message
sequences. To achieve this aim, we define a new coverage
criteria for this purpose, which we call message coverage.
This coverage represents the number of covered messages
within each functional sequence. In this context, a covered
message is a message that has been sent by the fuzzer after
having received a message from the tested device, indicating

5854 32nd USENIX Security Symposium

USENIX Association

ID Type Description Buggy seq Msg type Detected by Confirmed
1 DoS No response, repeat re-init PW contract PS_RDY FuzzPD

2 Out-of-bounds invalid object position PW contract REQUEST FuzzPD/ Test suite v
3 Non-compliance Not response with soft_reset PW contract ACCPET FuzzPD

4 Non-compliance Max and min voltage inversion PW contract SRC_CAP FuzzPD v
5 DoS Over-voltage PW contract SRC_CAP FuzzPD v
6 Non-compliance Max and op current inversion PW contract REQUEST FuzzPD

7 Non-compliance Rev. violation get status GET_STATUS FuzzPD/ Test suite v/
8 Non-compliance Rev. violation get battery cap GET_BAT_CAP FuzzPD/ Test suite v
9 Non-compliance Rev. violation get battery status GET_BAT_STATUS FuzzPD/ Test suite v
10 Non-compliance Rev. violation get manifacturer info GET_MANI_INFO FuzzPD/ Test suite v
11 Non-compliance Rev. violation alert ALERT FuzzPD/ Test suite v’
12 Non-compliance Not response with soft_reset PW contract REQUEST FuzzPD

13 Non-compliance Rev. violation get status STATUS FuzzPD/ Test suite v
14 Non-compliance Rev. violation get src cap extension GET_SRC_CAP_EXT FuzzPD/ Test suite

15 Non-compliance Not response with soft_reset PW role swap PS_RDY FuzzPD

Table 3: 15 unique bugs discovered by FuzzPD. Table 5 (in Appendix) presents the details about the affected devices.

Baseline Message State

Fuzzer Syntax Machine
PDfy v —

PDfy v Single (source)
PDfk v Single (sink)
FuzzPD v Dual

Table 4: Properties of the considered baseline fuzzers.

—— FuzzPD
807 4 o,
—&— PDfs
—— PRf,

—¥— IoTFz
DIANE
Snipuzz,

oo
o
s

(o))
o
L

401

EN
o
L

N
o
s
N
o
L

-

Execution coverage (%)
Execution coverage (%)

A4
— T T T T 0 ',/ T T T
0 10 20 30 40 0 10 20 30 40
Time (hours) Time (hours)

(a) Pixelbook Go (b) Spin 713

Figure 11: Execution coverage for USBPD on two Chromebook
laptops, Google Pixelbook Go, and Acer Spin713..

that the tested device reached an appropriate internal state.
For instance, in the power contract sequence, a fuzzer is able
to cover the second message (i.e., REQUEST) in its power sink
role after receiving the previous message (i.e., SRC_CAP) from
the target device. In fact, receiving the SRC_CAP message is
an indication that the target device reached an internal state
able to process the REQUEST message sent afterwards. Note
that the designed message coverage metric is available for all
the tested devices, while more traditional code coverage is
not always available, given the closed source nature of most
USBPD firmware.

We examine message coverage by issuing all available func-
tional sequences on each tested PD device. Without carrying

out mutations, we try to complete each available functional
sequence by sending valid (right) messages. Then, we count
the number of messages each fuzzer can trigger in the correct
position within the sequence. We repeat all these steps for all
the fuzzing configurations.

Table 2 summarizes, in the last four columns, the results of
the coverage measurement. The results present the number
of messages covered by each fuzzing technique introduced
in Table 4. As shown, PDf), yielded the least coverage —
only the first message in each functional sequence is covered.
This happens because it does not consider message exchanges
driven by functional sequences due to its sequence- and state-
agnostic nature. On the other hand, PDfs and PDf, achieved
better coverage results since they are sequence-aware. In fact,
they exercise sequence-based communication and message
mutations. Meanwhile, FUzZPD outperformed the others
in most of the tested devices, except for USB chargers, in
which we cannot benefit from our dual-role feature, since
these devices do not support it. Instead, FUzZZPD can over-
come limited scope of power role and act as both power roles,
maximizing coverage of both roles using our dual-role state
machine.

7.3.2 Execution Coverage

Beside message coverage (as discussed in §7.3.1), we measure
coverage improvements in terms of execution paths. We uti-
lize two Chromebook machines, Spin 713 [8] and Pixelbook
Go [30], for this experiment because their USBPD firmware
source code (i.e., ChromiumOS EC code as explained in §6)
is available, allowing us to measure their execution coverage
[7]. To better highlight FUzZPD’s superiority in path explo-
ration, we compare it to state-of-the-art fuzzers. Since there
are no USBPD fuzzers available in the literature, we employ
three black-box firmware fuzzers [9—11] that are closer to
ours in design concept. We simulate their features and deploy
them on our fuzzing machine to conduct black-box USBPD
fuzzing because their techniques cannot be directly applied

USENIX Association

32nd USENIX Security Symposium 5855

to USBPD systems.

To track the execution coverage within the Chromebooks,
we instrumented the EC code to collect coverage for USBPD
functions and then reflashed each tested Chromebook ma-
chine. Note that fine-grained tracking methods, such as basic
block (or edge) coverage, is not suitable in a real PD machine,
because its performance overhead causes some PD functional-
ity to fail due to time constraint violations (e.g., send message
timeouts). For this reason, we settle on coarse-grained state-
ment coverage tracking.

The result is presented in Figure 11. We measure average
coverage after running each fuzzer for 40 hours three times.
We use seed messages retrieved from the USBPD testsuite, as
explained in §5.4. Since the Pixelbook Go supports less PD
functionality due to its lower PD revision (2.0), the fuzzers
tend to show less coverage than in the Spin713 laptop. More-
over, the three black-box fuzzers do not show meaningful
coverage increase for USBPD, and their coverage is close to
that of our message-aware fuzzer configuration (PDfy;). This
is because these fuzzers focus mainly on identifying message
formats for diverse IoT devices with fairly simple functions,
such as light on/off. Thus, the approaches of their fuzzers are
not suited for stateful and dual-role USBPD fuzzing. This
limitation mainly blocks these fuzzers from increasing cover-
age beyond that of message aware fuzzers, whereas FuzzPD
tackles more PD functions in different roles. Although this
is a limited study with a small set of USBPD devices, we
believe this can highlight and clearly show how FuzzPD’s
mutation with the dual-role state machine contributes to the
overall coverage growth of the targets.

Our coverage measurement is based on the Chromium EC
code, which is designed to implement all of the USBPD func-
tionalities described in the USBPD specification. However,
since the tested Chromebook machines support only a subset
of these functionalities (as represented in the #Seq column
for S9/S10 in Table 2), it is not possible to achieve full code
coverage of the Chromium EC code, although FuzzPD was
able to explore every supported functionality of the Chrome-
books. The missing coverage in our testing came from the
USBPD functionalities that are not supported by the target
Chromebooks, such as USB authentication. We confirmed
this finding manually by comparing the traced coverage with
dedicated per-functionality coverage.

7.4 Comparison with Compliance Test Suite

As discussed in §5.4, the FuzzPD’s mutation is based on
seed messages from the USBPD compliance test suite. In
this section, we further evaluate FUZZPD’s effectiveness by
comparing experimental results with the compliance test suite.
First, we investigate our findings and distinguish between
the bugs found by our mutation and the ones by testing the
compliance rules. The last column of Table 3 indicates the
source of each bug discovery. Our analysis shows that 7 bugs

> 80 - FuzzPD ¥~ Testsuite ;\?
N —— FuzzPD(R) Out-order >~ 60
[0 [
o 601 [s)
;
o
> = 40
g 401 S
c C
o
[} [}
9 9]
2 X
I B A S S S— Mo
0 10 20 30 40 0 10 20 30 40
Time (hours) Time (hours)
(a) Pixelbook Go (b) Spin 713

Figure 12: Execution coverage of FuzzPD, compared with compli-
ance test suite (Testsuite), random intra-state mutation (FuzzPD(R)),
and out-of-order mutation (Out-order).

were discovered through our fuzzing approach, which could
not be found through the compliance rule testing alone.

Beside bug discovery, we additionally compare the two
approaches in terms of execution coverage. Based on the
two Chromebook laptops, we conduct a series of tests for
the extracted USBPD compliance test suite by issuing mes-
sage sequences relevant to each test case, and accumulate
execution coverage data, similar to the coverage tracking in
§7.3.2, until all the tests are complete. To highlight the useful-
ness of message seeding, we design two additional baselines
with different mutation strategies. One employs a random
inter-mutation strategy and the second uses an out-of-order
mutation strategy without message seeding guidance, while
still guided by the dual-role state machine.

Figure 12 exhibits the result of the experiment. In compari-
son with the compliance test suite, FUZZPD achieved nearly
2x higher execution coverage on both Chromebooks. This
is because all their test cases in the suite are not designed
to maximize coverage, but to test limited USBPD function-
alities. Moreover, our message seed-based mutation showed
higher coverage than that of random intra-state mutation as
random message generation failed to reach core functions of
the USBPD module due to message sanitization within the
Chromebook machine. The out-of-order mutations explored
even lower coverage than random mutations because in most
cases, it cannot reach deeper code blocks due to the violation
of earlier time message type checks.

These experiments demonstrate that solely testing compli-
ance rules in the test suite presents limited advantages, in
terms of bug discovery and code coverage. In contrast, FUZ-
ZzPD is more effective, yielding significantly superior results
in the same aspects.

8 Discussion

Memory corruption attacks on USBPD. Memory-based
attacks (e.g., control flow hijacking) have posed a signifi-
cant threat to various types of firmware [31]. These firmware

5856 32nd USENIX Security Symposium

USENIX Association

memory attacks could be more problematic because of their
high privilege level and lack of mitigations (and protections)
against exploitations, unlike general OS kernels. Similarly,
USBPD firmware has been found to be vulnerable to memory
based attacks due to incorrect implementation. As described
in §7.1, one potential attack scenario on USBPD firmware is
that attackers can exploit array index access violation, poten-
tially leading to illegal memory reads or code execution [32].
Recent studies have demonstrated the feasibility of exploit-
ing memory corruption in USBPD firmware of commercial
USB-C chargers, which actually causes unintended firmware
upgrading [33]. Thus, it is crucial to protect USBPD firmware
against various memory attacks, like other firmware targeted
attacks.

Automated state machine generation. The building proce-
dure of a dual-role state machine is straightforward and one
time task, but it could be tedious, requiring manual efforts cur-
rently although it does not have the big impact on the runtime
efficiency and overall performance of FuzzPD. To comple-
ment and automate this phase, we could take advantage of
existing solutions, such as recent state machine construction
scheme leveraging natural language processing (NLP) [34].

USBPD functions untested. As discussed in $2, USBPD
protocol provides a variety of functionalities, not only power
supply related tasks, but also data communication. Besides,
more PD functionality has become available with its new
revisions, such as USB authentication. However, in reality,
USBPD devices have limited USBPD functionality depending
on their usage. For example, one of the latest PD features,
Extended Power Range (EPR) [1], supporting the high volume
of power up to 240W, is not even available by any of consumer
devices in production at the time of the experiment. Thus, we
were unable to examine all described PD functions in USBPD
spec, and leave this for our future work.

USB-C hardware defects. There have been recent advanced
attacks compromising errors and flaws within USB-C imple-
mentation. In their attacks, an attacker aims to launch side-
channel attacks and leak sensitive data [35] using a rogue
USB-C cable that secretly embeds a network chip. Others at-
tempt to directly damage USB devices by overcharging them
with hardware defected (or crafted) USB-C products [2]. Al-
though their impact is non-trivial and severe enough to be
addressed, such errors from hardware defects are orthogonal
to USBPD buggy firmware, and it is outside the scope of our

paper.

9 Related Work

USB security. Universal Serial Bus (USB) has large attack
surface and complex codebase to support various functional-
ity, and it has been an attractive target for many years. There
has been a large volume of efforts to achieve secure USB sub-
system. Specifically, recent fuzzing techniques have made sig-

nificant contributions to finding massive USB bugs [4-6, 16—
18, 36-39]. Against malicious USB devices, many of them
try to find buggy code within USB kernel stacks [4, 5, 37, 39],
and some of them focused on detecting malware within de-
vices [38]. Despite massive discovery of security bugs from
different aspects, none of existing USB fuzzing techniques
can apply to USBPD firmware bug discovery because US-
BPD firmware implements entirely different functionality on
its dedicated protocol stack. Another line of works apart from
the efforts to find vulnerability, aims at protecting USB stacks
from various runtime USB attacks [40—45]. They mostly de-
velop a USB filtering system to block non-permissive or in-
valid packets from accessing target USB stacks [40, 41, 43].
Often, existing work tries to prevent data exfiltration, provid-
ing a tracking mechanism for USB data provenance with the
help of hardware-assisted attestation [44]. Similary, none of
them are designed for USBPD protocol, and unable to tackle
the challenges regarding USBPD implementation.

Firmware fuzzing. As IoT ecosystem is fast growing, there
is increasing need for firmware security. Security researchers
have recently focused their efforts on building better firmware
fuzzing techniques in this regard [9-11, 19-21]. A common
practice in firmware fuzzing is to carry out its execution in an
emulated environment [19-21]. They aim at building scalable
firmware fuzzing environment by emulating device hardware
to make firmware run on the emulation in a single test plat-
form. Unfortunately, it is still challenging to acquire firmware
images and implement emulation in diverse firmware plat-
forms. Meanwhile, black-box fuzzing is a promising alterna-
tive, which is particularly used for IoT landscape [9-11]. The
black-box approach overcomes the fundamental challenges
of emulation based fuzzing without the need for firmware
analysis and emulation efforts. Since the internals of devices
are agnostic in a black-box mode, they mainly focus on re-
trieving unknown input syntax by taking advantage of domain
knowledge, such as companion apps analysis [9, 10] or output
similarity [11]. In comparison, FUzZPD achieves black-box
USBPD fuzzing in a stateful manner with given message syn-
tax, which encompasses dual-role state machines along with
multi-layer mutation strategy.

10 Conclusion

Despite the wide adoption of USBPD, its implementation
flaws have led to serious problems, not only safety issues,
but also security breaches. In this paper, we present FUZz-
ZPD, the first black-box fuzzing technique for USBPD bug
finding. FuzzPD fuzzes real USBPD targets with a simple
physical USB-C connection. FUZZPD maximizes its fuzzing
performance with a dual-role state machine enabling both
state coverage and transitions from fuzzing inputs, along with
a multi-level mutation strategy, implementing a fine-grained
state-aware fuzzing with intra- and inter-state mutations. We

USENIX Association

32nd USENIX Security Symposium 5857

evaluate FUuzZPD on various USBPD devices, based on our
implementation on a Chromebook, and found 15 new bugs.
We demonstrate that FUzzPD achieves 40% to 3x higher
execution coverage than state-of-the-art black-box firmware
fuzzers. Compared with the USBPD compliance test suite,
FuzzPD found 7 more bugs with 2x higher coverage growth.

Acknowledgments

We thank the anonymous reviewers for the valuable comments
and suggestions. This work was supported in part by ONR
under grants N0O0014-20-1-2128 and N00014-20-1-2671, and
NSF under grants CNS-2145744 and CNS-2055123, and
AFOSR under grant FA8650-19-1-1741. This material is also
based on research sponsored by Wistron. Any opinions, find-
ings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect
the views of our sponsors.

References
[1] “Usb pd specifications,” USB Implementers
Forum https://www.usb.org/document-library/

usb-power-delivery, 2021.

[2] “Nintendo switch bricking,” https://switchchargers.com/
nintendo-switch-bricking-faqg/, 2019.

[3] “Cve-2019-6176,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=2019-6176, 2019.

[4] D. Vyukov, “Syzkaller,” https://github.com/google/
syzkaller, 2015.

[5] H. Peng and M. Payer, “Usbfuzz: A framework for
fuzzing usb drivers by device emulation,” in 25th
USENIX Security Symposium (USENIX Security 20),
2020, pp. 397-414.

[6] K. Kim, T. Kim, E. Warraich, B. Lee, K. R. Butler,
A. Bianchi, and D. J. Tian, “Fuzzusb: Hybrid stateful
fuzzing of usb gadget stacks,” in 2022 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2022.

[7] Google, “Chromium os embedded controller,”
https://chromium.googlesource.com/chromiumos/
platform/ec/+/HEAD/README.md.

[8] Acer, “Acer chromebook spin 713,” https://www.acer.
com/ac/en/GB/content/model/NX. HWNEK.001.

[9] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang,
W. C. Lau, M. Sun, R. Yang, and K. Zhang, “lotfuzzer:
Discovering memory corruptions in iot through app-
based fuzzing.” in NDSS, 2018.

[10] N. Redini, A. Continella, D. Das, G. De Pasquale,
N. Spahn, A. Machiry, A. Bianchi, C. Kruegel, and G. Vi-
gna, “Diane: Identifying fuzzing triggers in apps to gen-
erate under-constrained inputs for iot devices,” in 2021
IEEE Symposium on Security and Privacy (SP). 1EEE,
2021, pp. 484-500.

[11] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu,
S. Nepal, and Y. Xiang, “Snipuzz: Black-box fuzzing of
iot firmware via message snippet inference,” in Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021, pp. 337-350.

[12] “Usb power delivery compliance test
specification,” USB Implementers Fo-
rum https://www.usb.org/document-library/
usb-power-delivery-compliance-test-specification-0,
2021.

[13] Https://github.com/purseclab/fuzzpd.

[14] “Usb type-c® cable and connector specification,”
USB Implementers Forum https://www.usb.org/
usb-type-cr-cable-and-connector-specification, 2019.

[15] D. Kierznowski, “Badusb 2.0: Usb man in the middle
attacks,” Retrieved from RoyalHolloway, 2016.

[16] T. Goodspeed and S. Bratus, “Facedancer usb: Exploit-
ing the magic school bus,” in Proceedings of the REcon
2012 Conference, 2012.

[17] NCCGroup, “Umap2,” https://github.com/nccgroup/
umap?2.

[18] S. Schumilo, R. Spenneberg, and H. Schwartke, “Don’t
trust your usb! how to find bugs in usb device drivers,”
Blackhat Europe, 2014.

[19] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and
L. Sun, “Firm-afl: High-throughput greybox fuzzing of
iot firmware via augmented process emulation,” in 28th
USENIX Security Symposium (USENIX Security 19),
2019, pp. 1099-1114.

[20] G. Hernandez, M. Muench, D. Maier, A. Milburn,
S. Park, T. Scharnowski, T. Tucker, P. Traynor, and
K. R. B. Butler, “FirmWire: Transparent Dynamic Anal-
ysis for Cellular Baseband Firmware,” in Symposium
on Network and Distributed System Security (NDSS) ,
2022.

[21] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim,
“Firmae: Towards large-scale emulation of iot firmware
for dynamic analysis,” in Annual Computer Security
Applications Conference, 2020, pp. 733-745.

5858 32nd USENIX Security Symposium

USENIX Association

https://www.usb.org/document-library/usb-power-delivery
https://www.usb.org/document-library/usb-power-delivery
https://switchchargers.com/nintendo-switch-bricking-faq/
https://switchchargers.com/nintendo-switch-bricking-faq/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-6176
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-6176
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://chromium.googlesource.com/chromiumos/platform/ec/+/HEAD/README.md
https://chromium.googlesource.com/chromiumos/platform/ec/+/HEAD/README.md
https://www.acer.com/ac/en/GB/content/model/NX.HWNEK.001
https://www.acer.com/ac/en/GB/content/model/NX.HWNEK.001
https://www.usb.org/document-library/usb-power-delivery-compliance-test-specification-0
https://www.usb.org/document-library/usb-power-delivery-compliance-test-specification-0
https://www.usb.org/usb-type-cr-cable-and-connector-specification
https://www.usb.org/usb-type-cr-cable-and-connector-specification
https://github.com/nccgroup/umap2
https://github.com/nccgroup/umap2

[22] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway,
S. Savage, and K. Levchenko, “Jetset: Targeted firmware
rehosting for embedded systems,” in 30th USENIX Se-
curity Symposium (USENIX Security 21),2021, pp. 321—
338.

[23] J. De Ruiter and E. Poll, “Protocol state fuzzing of tls
implementations,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 193-206.

[24] R. Ma, T. Zhu, C. Hu, C. Shan, and X. Zhao, “Sulleyex:
A fuzzer for stateful network protocol,” in Proceedings
of the International Conference on Network and System
Security (NSS). Springer, 2017, pp. 359-372.

[25] E. B. Yi, H. Zhang, K. Xu, A. Maji, and S. Bagchi,
“Vulcan: Lessons in reliability of wear os ecosystem
through state-aware fuzzing,” in Proceedings of the 18th
Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2020.

[26] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and
K. Rieck, “Pulsar: Stateful black-box fuzzing of propri-
etary network protocols,” in Proceedings of the Interna-
tional Conference on Security and Privacy in Commu-
nication Systems (SecureComm). Springer, 2015, pp.
330-347.

[27] Y.-H. Zou, J.-J. Bai, J. Zhou, J. Tan, C. Qin, and S.-
M. Hu, “{TCP-Fuzz}: Detecting memory and semantic
bugs in {TCP} stacks with fuzzing,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021,
pp. 489-502.

[28] “Kernel address sanitizer,” https://github.com/google/
kasan/wiki, 2018.

[29] “Kernel memory sanitizer,” https://github.com/google/
kmsan, 2018.

[30] Google, “Pixelbook go,” https://store.google.com/us/
product/pixelbook_go?hl=en-US.

[31] U.F. Vulnerabilities, https://thehackernews.com/2022/
07/new-uefi-firmware-vulnerabilities.html/, 2022.

[32] “Cwe-129: Improper validation of array index.” https:
/lcwe.mitre.org/data/definitions/129.html.

[33] ZDNet, “Badpower attack corrupts fast
chargers to melt or set your device
on fire,” https://www.zdnet.com/article/

badpower-attack-corrupts-fast-chargers-to-melt-or-set\
protect\discretionary {\char\hyphenchar\
font}{}{ }your-device-on-fire.

[34] M. L. Pacheco, M. von Hippel, B. Weintraub, D. Gold-
wasser, and C. Nita-Rotaru, “Automated attack synthe-
sis by extracting finite state machines from protocol

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

specification documents,” in 2022 IEEE Symposium on
Security and Privacy (SP). 1EEE, 2022.

I. B. Times, “Usb-c to
planted with password stealing chip puts
users at risk,” https://www.ibtimes.com/
usb-c-lightning-cable-implanted- password- stealing-chip\
protect\discretionary {\char\hyphenchar\
font} { }{ }puts-users-risk-3287508.

lightning cable im-

J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Potus:
Probing off-the-shelf usb drivers with symbolic fault
injection,” in [/ Ith USENIX Workshop on Offensive Tech-
nologies (WOOT 17), 2017.

D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and
M. Franz, “Agamotto: Accelerating kernel driver fuzzing
with lightweight virtual machine checkpoints,” in 29th
{USENIX} Security Symposium ({USENIX} Security
20), 2020, pp. 2541-2557.

G. Hernandez, F. Fowze, D. Tian, T. Yavuz, and K. R.
Butler, “Firmusb: Vetting usb device firmware using
domain informed symbolic execution,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2245-2262.

D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Vol-
ckaert, G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz,
“Periscope: An effective probing and fuzzing framework
for the hardware-os boundary,” in Proceedings of the
2019 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

D. J. Tian, N. Scaife, A. Bates, K. Butler, and P. Traynor,
“Making usb great again with usbfilter,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016, pp.
415-430.

D. J. Tian, A. Bates, and K. Butler, “Defending against
malicious usb firmware with goodusb,” in Proceedings
of the 31st Annual Computer Security Applications Con-
ference, 2015, pp. 261-270.

S. Angel, R. S. Wahby, M. Howald, J. B. Leners,
M. Spilo, Z. Sun, A. J. Blumberg, and M. Walfish, “De-
fending against malicious peripherals with cinch,” in
25th USENIX Security Symposium (USENIX Security
16), 2016, pp. 397-414.

D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, P. C. John-
son, and K. R. Butler, “Lbm: a security framework for
peripherals within the linux kernel,” in 2019 IEEE Sym-
posium on Security and Privacy (SP). 1EEE, 2019, pp.
967-984.

USENIX Association

32nd USENIX Security Symposium 5859

https://github.com/google/kasan/wiki
https://github.com/google/kasan/wiki
https://github.com/google/kmsan
https://github.com/google/kmsan
https://store.google.com/us/product/pixelbook_go?hl=en-US
https://store.google.com/us/product/pixelbook_go?hl=en-US
https://thehackernews.com/2022/07/new-uefi-firmware-vulnerabilities.html/
https://thehackernews.com/2022/07/new-uefi-firmware-vulnerabilities.html/
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/129.html
https://www.zdnet.com/article/badpower-attack-corrupts-fast-chargers-to-melt-or-set\protect \discretionary {\char \hyphenchar \font }{}{}your-device-on-fire
https://www.zdnet.com/article/badpower-attack-corrupts-fast-chargers-to-melt-or-set\protect \discretionary {\char \hyphenchar \font }{}{}your-device-on-fire
https://www.zdnet.com/article/badpower-attack-corrupts-fast-chargers-to-melt-or-set\protect \discretionary {\char \hyphenchar \font }{}{}your-device-on-fire
https://www.zdnet.com/article/badpower-attack-corrupts-fast-chargers-to-melt-or-set\protect \discretionary {\char \hyphenchar \font }{}{}your-device-on-fire
https://www.ibtimes.com/usb-c-lightning-cable-implanted-password-stealing-chip\protect \discretionary {\char \hyphenchar \font }{}{}puts-users-risk-3287508
https://www.ibtimes.com/usb-c-lightning-cable-implanted-password-stealing-chip\protect \discretionary {\char \hyphenchar \font }{}{}puts-users-risk-3287508
https://www.ibtimes.com/usb-c-lightning-cable-implanted-password-stealing-chip\protect \discretionary {\char \hyphenchar \font }{}{}puts-users-risk-3287508
https://www.ibtimes.com/usb-c-lightning-cable-implanted-password-stealing-chip\protect \discretionary {\char \hyphenchar \font }{}{}puts-users-risk-3287508

[44] D. Tian, A. Bates, K. R. Butler, and R. Rangaswami,
“Provusb: Block-level provenance-based data protection
for usb storage devices,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2016, pp. 242-253.

[45] K. Zhong, Z. Jiang, K. Ma, and S. Angel, “A file system
for safely interacting with untrusted usb flash drives.”

[46] G. Alendal, S. Axelsson, and G. O. Dyrkolbotn, “Ex-
ploiting vendor-defined messages in the usb power de-
livery protocol,” in Advances in Digital Forensics XV:
15th IFIP WG 11.9 International Conference, Orlando,
FL, USA, January 28-29, 2019, Revised Selected Papers
15. Springer, 2019, pp. 101-118.

A Case Studies

Over-voltage. As an initial step of the power contract, the
power source provides a few available power options to the
power sink. The sink then chooses the best available option,
considering its acceptable power range. For safety reasons, the
first voltage option must always be 5V, which is considered as
a safe voltage for any connected device. When mutating and
increasing the voltage provided as the first option, however,
we observed 15 devices (out of 24 tested PD devices) that
accept the first provided voltage, regardless of its value. We
believe this issue is caused by the incorrect assumption that
the first provided option is always 5V. This flaw is a violation
of the PD specification, and it can cause over-charging and
irreversibly damage to any PD device physically designed to
only accept a low voltage.

Out-of-bounds. This bug occurs especially when fuzzing
S.1 and H.3. As mentioned in the case above, in the normal
power contract, the power receiver picks one of the voltage op-
tions provided by the connected power provider. For example,
when a power source provides 4 available voltage options,
the power sink should respond with an index ranging 1 to
4, for a valid response. Otherwise, the source should reject
that power request. Since those devices (S.1 and H.3) provide
only one voltage option to deliver, it should not accept any
index different from 1. However, when mutating the response
message to use the value 2 as voltage index, they accepted the
request. We believe this behavior is caused by an implemen-
tation error, causing out-of-bounds memory accesses, and it
is potentially exploitable.

B Vendor-defined Communication

As briefly mentioned in §2, USBPD offers vendor-specific
communication capabilities via vendor-defined messages
(VDMs). The messages of VDMs typically have private syn-
tax and they are used for multiple purposes, such as analytics,

firmware update, even malicious intent [46]. To show the ef-
fectiveness of FUzzPD, we try to analyze private message
communications of VDMs. Since we lack the knowledge of
their message formats and communications, we utilize ran-
dom input generation for VDM payloads in the experiment.
Specifically, our approach is to mutate each VDM payload
and deliver this mutated input, along with a vendor ID, to the
target device. We then analyze the responses.

As summarized in Table 2 (VDMs column), 9 devices re-
sponded to the VDM fuzzing in the experiment. We consider
a response as valid if we receive VDM message(s) from the
targets, rather than rejecting or ignoring our VDM request
message. We observed some devices showed certain patterns
in their message communication. For example, some smart
devices, such as Samsung’s, responded with the same output
pattern (e.g., 0x21) when receiving a message with a cer-
tain number (e.g., 5) as its last digit. To learn the detailed
semantics of each VDM communication, we further tried to
extract and examine USBPD firmware that implements such
vendor-specific messages exchanges.

We first learned the usage of the two Chromebooks’ (Spin
713 and Pixelbook Go) VDMs by analyzing ChromiumOS
EC’s firmware code (55a0acd279 commit). It turns out that
their VDM s are used for debug purposes, such as log message
transfer, which is a common usage for VDMs. For other 5
devices that support VDMs, we attempted to directly extract
their firmware from the devices since their USBPD firmware
is unavailable in public. To retrieve their firmware images, we
tried to utilize debug pins on a circuit board after disassem-
bling the devices. Unfortunately, we were unable to acquire
firmware as presented in Table 6. For smart devices (S.1 and
S.7), it was almost impossible to find out detailed information
of firmware (and even the PD controller) due to their custom
circuit board implementations of USBPD without known de-
bug interfaces. In other cases (H.2, H.3, and H.6), we could
not find a debug interface due to lack of its datasheet, or only
listen to noise without receiving valid ACKs from the target
board.

In summary, while FUZZPD provides an infrastructure for
testing VDMs, our limited study did not yield a complete
understanding of the meaningful interpretation for the tested
devices” VDM communications, To gain deeper understand-
ing of VDM communications, we may need to perform more
systematic and scalable studies, using various test devices
with appropriate approaches. We leave this for our future
work.

5860 32nd USENIX Security Symposium

USENIX Association

Device ID

Bug ID

- N M e, e s ® S DTN M T e N = 0 T

I B T S S R S B S - - I T D e -
1 1 1
2 1 2
3 1
4 11 1 1 5
5 111 11 T R 11111 15
6 11
7 1 1
8 1 1
9 1 1 2
10 1 1
11 1 1 2
12 1 1
13 1 1
14 1 1
15 1 1 2
#bugs 8 2 2 3 0 1 4 2 2 2 2 1 0 3 I 1 1 1 0 0 0 0 1 37

Table 5: Distribution of the USBPD bugs.

Device PD controller Failure reasons

S.1,S.7 unknown —

H.2 10352BM did not send valid ACKs

H.3 LDR6023SD implemented in hardware

H.6 ag9311-maq unknown debug ports (lack of datasheet)

Table 6: Experimental result of USBPD devices supporting VDMs.

USENIX Association 32nd USENIX Security Symposium 5861

	Introduction
	Background
	Security Model
	Motivation and Challenges
	Design
	Overview of FuzzPD
	Dual-role State Machine
	Message Seeding
	Mutation Strategy
	Fuzzing

	Implementation
	Evaluation
	Findings
	Dual-role State Machine Construction
	Coverage
	Message Coverage
	Execution Coverage

	Comparison with Compliance Test Suite

	Discussion
	Related Work
	Conclusion
	APPENDICES
	Case Studies
	Vendor-defined Communication

